1
|
Mannes PZ, Barnes CE, Latoche JD, Day KE, Nedrow JR, Lee JS, Tavakoli S. 2-deoxy-2-[ 18F]fluoro-D-glucose Positron Emission Tomography to Monitor Lung Inflammation and Therapeutic Response to Dexamethasone in a Murine Model of Acute Lung Injury. Mol Imaging Biol 2023; 25:681-691. [PMID: 36941514 PMCID: PMC10027262 DOI: 10.1007/s11307-023-01813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE To image inflammation and monitor therapeutic response to anti-inflammatory intervention using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) in a preclinical model of acute lung injury (ALI). PROCEDURES Mice were intratracheally administered lipopolysaccharide (LPS, 2.5 mg/kg) to induce ALI or phosphate-buffered saline as the vehicle control. A subset of mice in the ALI group received two intraperitoneal doses of dexamethasone 1 and 24 h after LPS. [18F]FDG PET/CT was performed 2 days after the induction of ALI. [18F]FDG uptake in the lungs was quantified by PET (%ID/mLmean and standardized uptake value (SUVmean)) and ex vivo γ-counting (%ID/g). The severity of lung inflammation was determined by quantifying the protein level of inflammatory cytokines/chemokines and the activity of neutrophil elastase and glycolytic enzymes. In separate groups of mice, flow cytometry was performed to estimate the contribution of individual immune cell types to the total pulmonary inflammatory cell burden under different treatment conditions. RESULTS Lung uptake of [18F]FDG was significantly increased during LPS-induced ALI, and a decreased [18F]FDG uptake was observed following dexamethasone treatment to an intermediate level between that of LPS-treated and control mice. Protein expression of inflammatory biomarkers and the activity of neutrophil elastase and glycolytic enzymes were increased in the lungs of LPS-treated mice versus those of control mice, and correlated with [18F]FDG uptake. Furthermore, dexamethasone-induced decreases in cytokine/chemokine protein levels and enzyme activities correlated with [18F]FDG uptake. Neutrophils were the most abundant cells in LPS-induced ALI, and the pattern of total cell burden during ALI with or without dexamethasone therapy mirrored that of [18F]FDG uptake. CONCLUSIONS [18F]FDG PET noninvasively detects lung inflammation in ALI and its response to anti-inflammatory therapy in a preclinical model. However, high [18F]FDG uptake by bone, brown fat, and myocardium remains a technical limitation for quantification of [18F]FDG in the lungs.
Collapse
Affiliation(s)
- Philip Z Mannes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clayton E Barnes
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph D Latoche
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kathryn E Day
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessie R Nedrow
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sina Tavakoli
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Bastos AL, Ferreira GA, Mamede M, Mancuzo EV, Teixeira MM, Santos FPST, Ferreira CS, Correa RA. PET/CT and inflammatory mediators in systemic sclerosis-associated interstitial lung disease. JORNAL BRASILEIRO DE PNEUMOLOGIA : PUBLICACAO OFICIAL DA SOCIEDADE BRASILEIRA DE PNEUMOLOGIA E TISILOGIA 2022; 48:e20210329. [PMID: 35674522 PMCID: PMC9262436 DOI: 10.36416/1806-3756/e20210329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
Abstract
Objective: To investigate the correlation of HRCT findings with pulmonary metabolic activity in the corresponding regions using 18F-FDG PET/CT and inflammatory markers in patients with systemic sclerosis (SSc)-associated interstitial lung disease (ILD). Methods: This was a cross-sectional study involving 23 adult patients with SSc-associated ILD without other connective tissue diseases. The study also involved 18F-FDG PET/CT, HRCT, determination of serum chemokine levels, clinical data, and pulmonary function testing. Results: In this cohort of patients with long-term disease (disease duration, 11.8 ± 8.7 years), a nonspecific interstitial pneumonia pattern was found in 19 (82.6%). Honeycombing areas had higher median standardized uptake values (1.95; p = 0.85). Serum levels of soluble tumor necrosis factor receptor 1, soluble tumor necrosis factor receptor 2, C-C motif chemokine ligand 2 (CCL2), and C-X-C motif chemokine ligand 10 were higher in SSc patients than in controls. Serum levels of CCL2-a marker of fibroblast activity-were correlated with pure ground-glass opacity (GGO) areas on HRCT scans (p = 0.007). 18F-FDG PET/CT showed significant metabolic activity for all HRCT patterns. The correlation between serum CCL2 levels and GGO on HRCT scans suggests a central role of fibroblasts in these areas, adding new information towards the understanding of the mechanisms surrounding cellular and molecular elements and their expression on HRCT scans in patients with SSc-associated ILD. Conclusions: 18F-FDG PET/CT appears to be unable to differentiate the intensity of metabolic activity across HRCT patterns in chronic SSc patients. The association between CCL2 and GGO might be related to fibroblast activity in these areas; however, upregulated CCL2 expression in the lung tissue of SSc patients should be investigated in order to gain a better understanding of this association.
Collapse
Affiliation(s)
- Andréa L Bastos
- . Departamento de Anatomia e Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais - UFMG - Belo Horizonte (MG) Brasil
| | - Gilda A Ferreira
- . Departamento do Aparelho Locomotor, Faculdade de Medicina, Universidade Federal de Minas Gerais - UFMG - Belo Horizonte (MG) Brasil
| | - Marcelo Mamede
- . Departamento de Anatomia e Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais - UFMG - Belo Horizonte (MG) Brasil
| | - Eliane V Mancuzo
- . Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais - UFMG - Belo Horizonte (MG) Brasil
| | - Mauro M Teixeira
- . Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Faculdade de Medicina, Universidade Federal de Minas Gerais - UFMG - Belo Horizonte (MG) Brasil
| | - Flávia P S T Santos
- . Serviço de Reumatologia, Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Minas Gerais - UFMG - Belo Horizonte (MG) Brasil
| | - Cid S Ferreira
- . Departamento de Radiologia, Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Minas Gerais - UFMG - Belo Horizonte (MG) Brasil
| | - Ricardo A Correa
- . Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais - UFMG - Belo Horizonte (MG) Brasil
| |
Collapse
|
3
|
Chen DL, Agapov E, Wu K, Engle JT, Solingapuram Sai KK, Arentson E, Spayd KJ, Moreland KT, Toth K, Byers DE, Pierce RA, Atkinson JJ, Laforest R, Gelman AE, Holtzman MJ. Selective Imaging of Lung Macrophages Using [ 11C]PBR28-Based Positron Emission Tomography. Mol Imaging Biol 2021; 23:905-913. [PMID: 34137002 DOI: 10.1007/s11307-021-01617-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE We tested whether the translocator protein (TSPO)-targeted positron emission tomography (PET) tracer, N-acetyl-N-(2-[11C]methoxybenzyl)-2-phenoxy-5-pyridinamine ([11C]PBR28), could distinguish macrophage dominant from neutrophilic inflammation better than 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mouse models of lung inflammation and assessed TSPO association with macrophages in lung tissue from the mouse models and in patients with chronic obstructive pulmonary disease (COPD). PROCEDURES MicroPET imaging quantified [11C]PBR28 and [18F]FDG lung uptake in wild-type (Wt) C57BL/6J or heterozygous transgenic monocyte-deficient Wt/opT mice at 49 days after Sendai virus (SeV) infection, during macrophage-dominant inflammation, and in Wt mice at 3 days after SeV infection or 24 h after endotoxin instillation during neutrophilic inflammation. Immunohistochemical staining for TSPO in macrophages and neutrophils was performed using Mac3 and Ly6G for cell identification in mouse lung sections and CD68 and neutrophil elastase (NE) in human lung sections taken from explanted lungs from patients with COPD undergoing lung transplantation and donor lungs rejected for transplantation. Differences in tracer uptake among SeV-infected, endotoxin-treated, and uninfected/untreated control mice and in TSPO staining between neutrophils and macrophage populations in human lung sections were tested using analysis of variance. RESULTS In Wt mice, [11C]PBR28 uptake (% injected dose/ml lung tissue) increased significantly with macrophage-dominant inflammation at 49 days (D49) after SeV infection compared to controls (p = <0.001) but not at 3 days (D49) after SeV infection (p = 0.167). [11C]PBR28 uptake was unchanged at 24 h after endotoxin instillation (p = 0.958). [18F]FDG uptake increased to a similar degree in D3 and D49 SeV-infected and endotoxin-treated Wt mice compared to controls with no significant difference in the degree of increase among the tested conditions. [11C]PBR28 but not [18F]FDG lung uptake at D49 post-SeV infection was attenuated in Wt/opT mice compared to Wt mice. TSPO localized predominantly to macrophages in mouse lung tissue by immunostaining, and TSPO staining intensity was significantly higher in CD68+ cells compared to neutrophils in the human lung sections. CONCLUSIONS PET imaging with [11C]PBR28 can specifically detect macrophages versus neutrophils during lung inflammation and may be a useful biomarker of macrophage accumulation in lung disease.
Collapse
Affiliation(s)
- Delphine L Chen
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA. .,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Radiology, University of Washington, Seattle Cancer Care Alliance, 1144 Eastlake Ave E, # LG2-200, Seattle, WA, 98109, USA.
| | - Eugene Agapov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jacquelyn T Engle
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Elizabeth Arentson
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine J Spayd
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kirby T Moreland
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelsey Toth
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard A Pierce
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey J Atkinson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard Laforest
- Division of Radiological Sciences and Nuclear Medicine, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Chen DL, Ballout S, Chen L, Cheriyan J, Choudhury G, Denis-Bacelar AM, Emond E, Erlandsson K, Fisk M, Fraioli F, Groves AM, Gunn RN, Hatazawa J, Holman BF, Hutton BF, Iida H, Lee S, MacNee W, Matsunaga K, Mohan D, Parr D, Rashidnasab A, Rizzo G, Subramanian D, Tal-Singer R, Thielemans K, Tregay N, van Beek EJR, Vass L, Vidal Melo MF, Wellen JW, Wilkinson I, Wilson FJ, Winkler T. Consensus Recommendations on the Use of 18F-FDG PET/CT in Lung Disease. J Nucl Med 2020; 61:1701-1707. [PMID: 32948678 PMCID: PMC9364897 DOI: 10.2967/jnumed.120.244780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023] Open
Abstract
PET with 18F-FDG has been increasingly applied, predominantly in the research setting, to study drug effects and pulmonary biology and to monitor disease progression and treatment outcomes in lung diseases that interfere with gas exchange through alterations of the pulmonary parenchyma, airways, or vasculature. To date, however, there are no widely accepted standard acquisition protocols or imaging data analysis methods for pulmonary 18F-FDG PET/CT in these diseases, resulting in disparate approaches. Hence, comparison of data across the literature is challenging. To help harmonize the acquisition and analysis and promote reproducibility, we collated details of acquisition protocols and analysis methods from 7 PET centers. From this information and our discussions, we reached the consensus recommendations given here on patient preparation, choice of dynamic versus static imaging, image reconstruction, and image analysis reporting.
Collapse
Affiliation(s)
- Delphine L Chen
- Department of Radiology, University of Washington, Seattle Cancer Care Alliance, Seattle, Washington
| | - Safia Ballout
- School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Laigao Chen
- Worldwide Research, Development, and Medical, Pfizer Inc., Cambridge, Massachusetts
| | - Joseph Cheriyan
- Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gourab Choudhury
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Elise Emond
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Kjell Erlandsson
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Marie Fisk
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Ashley M Groves
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Roger N Gunn
- inviCRO, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University, Osaka, Japan
| | - Beverley F Holman
- Nuclear Medicine Department, Royal Free Hospital, London, United Kingdom
| | - Brian F Hutton
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Hidehiro Iida
- Faculty of Biomedicine and Turku PET Center, University of Turku, Turku, Finland
| | - Sarah Lee
- Amallis Consulting Ltd., London, United Kingdom
| | - William MacNee
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Keiko Matsunaga
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University, Osaka, Japan
| | - Divya Mohan
- Medical Innovation, Value Evidence, and Outcomes, GlaxoSmithKline R&D, Collegeville, Pennsylvania
| | - David Parr
- University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Alaleh Rashidnasab
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Gaia Rizzo
- inviCRO, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Ruth Tal-Singer
- Medical Innovation, Value Evidence, and Outcomes, GlaxoSmithKline R&D, Collegeville, Pennsylvania
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Nicola Tregay
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edwin J R van Beek
- Edinburgh Imaging, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Laurence Vass
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Marcos F Vidal Melo
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeremy W Wellen
- Research and Early Development, Celgene, Cambridge, Massachusetts; and
| | - Ian Wilkinson
- Cambridge University Hospitals, NHS Foundation Trust, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Frederick J Wilson
- Clinical Imaging, Clinical Pharmacology, and Experimental Medicine, GlaxoSmithKline, Stevenage, United Kingdom
| | - Tilo Winkler
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Vass L, Fisk M, Lee S, Wilson FJ, Cheriyan J, Wilkinson I. Advances in PET to assess pulmonary inflammation: A systematic review. Eur J Radiol 2020; 130:109182. [PMID: 32702614 DOI: 10.1016/j.ejrad.2020.109182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
|
6
|
Pourfathi M, Kadlecek SJ, Chatterjee S, Rizi RR. Metabolic Imaging and Biological Assessment: Platforms to Evaluate Acute Lung Injury and Inflammation. Front Physiol 2020; 11:937. [PMID: 32982768 PMCID: PMC7487972 DOI: 10.3389/fphys.2020.00937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/13/2020] [Indexed: 12/26/2022] Open
Abstract
Pulmonary inflammation is a hallmark of several pulmonary disorders including acute lung injury and acute respiratory distress syndrome. Moreover, it has been shown that patients with hyperinflammatory phenotype have a significantly higher mortality rate. Despite this, current therapeutic approaches focus on managing the injury rather than subsiding the inflammatory burden of the lung. This is because of the lack of appropriate non-invasive biomarkers that can be used clinically to assess pulmonary inflammation. In this review, we discuss two metabolic imaging tools that can be used to non-invasively assess lung inflammation. The first method, Positron Emission Tomography (PET), is widely used in clinical oncology and quantifies flux in metabolic pathways by measuring uptake of a radiolabeled molecule into the cells. The second method, hyperpolarized 13C MRI, is an emerging tool that interrogates the branching points of the metabolic pathways to quantify the fate of metabolites. We discuss the differences and similarities between these techniques and discuss their clinical applications.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Shampa Chatterjee
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Rahim R. Rizi,
| |
Collapse
|
7
|
Brooks D, Barr LC, Wiscombe S, McAuley DF, Simpson AJ, Rostron AJ. Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation. Eur Respir J 2020; 56:13993003.01298-2019. [PMID: 32299854 DOI: 10.1183/13993003.01298-2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a key feature in the pathogenesis of sepsis and acute respiratory distress syndrome (ARDS). Sepsis and ARDS continue to be associated with high mortality. A key contributory factor is the rudimentary understanding of the early events in pulmonary and systemic inflammation in humans, which are difficult to study in clinical practice, as they precede the patient's presentation to medical services. Lipopolysaccharide (LPS), a constituent of the outer membrane of Gram-negative bacteria, is a trigger of inflammation and the dysregulated host response in sepsis. Human LPS models deliver a small quantity of LPS to healthy volunteers, triggering an inflammatory response and providing a window to study early inflammation in humans. This allows biological/mechanistic insights to be made and new therapeutic strategies to be tested in a controlled, reproducible environment from a defined point in time. We review the use of human LPS models, focussing on the underlying mechanistic insights that have been gained by studying the response to intravenous and pulmonary LPS challenge. We discuss variables that may influence the response to LPS before considering factors that should be considered when designing future human LPS studies.
Collapse
Affiliation(s)
- Daniel Brooks
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Laura C Barr
- Dept of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sarah Wiscombe
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel F McAuley
- School of Medicine, Dentistry and Biomedical Sciences, Institute for Health Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Anthony J Rostron
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
8
|
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases. Int J Nanomedicine 2020; 15:3803-3826. [PMID: 32547029 PMCID: PMC7266405 DOI: 10.2147/ijn.s242516] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent obstructive lung disease worldwide characterized by decline in lung function. It is associated with airway obstruction, oxidative stress, chronic inflammation, mucus hypersecretion, and enhanced autophagy and cellular senescence. Cigarette smoke being the major risk factor, other secondary risk factors such as the exposure to air pollutants, occupational exposure to gases and fumes in developing countries, also contribute to the pathogenesis of COPD. Conventional therapeutic strategies of COPD are based on anti-oxidant and anti-inflammatory drugs. However, traditional anti-oxidant pharmacological therapies are commonly used to alleviate the impact of COPD as they have many associated repercussions such as low diffusion rate and inappropriate drug pharmacokinetics. Recent advances in nanotechnology and stem cell research have shed new light on the current treatment of chronic airway disease. This review is focused on some of the anti-oxidant therapies currently used in the treatment and management of COPD with more emphasis on the recent advances in nanotechnology-based therapeutics including stem cell and gene therapy approaches for the treatment of chronic airway disease such as COPD and asthma.
Collapse
Affiliation(s)
- Mehak Passi
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sadia Shahid
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | | | - Isaac Kirubakaran Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.,Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
9
|
Kern AL, Biller H, Klimeš F, Voskrebenzev A, Gutberlet M, Renne J, Müller M, Holz O, Wacker F, Hohlfeld JM, Vogel-Claussen J. Noninvasive Monitoring of the Response of Human Lungs to Low-Dose Lipopolysaccharide Inhalation Challenge Using MRI: A Feasibility Study. J Magn Reson Imaging 2019; 51:1669-1676. [PMID: 31729119 DOI: 10.1002/jmri.27000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Development of antiinflammatory drugs for lung diseases demands novel methods for noninvasive assessment of inflammatory processes in the lung. PURPOSE To investigate the feasibility of hyperpolarized 129 Xe MRI, 1 H T1 time mapping, and dynamic contrast-enhanced (DCE) perfusion MRI for monitoring the response of human lungs to low-dose inhaled lipopolysaccharide (LPS) challenge compared to inflammatory cell counts from induced-sputum analysis. STUDY TYPE Prospective feasibility study. POPULATION Ten healthy volunteers underwent MRI before and 6 hours after inhaled LPS challenge with subsequent induced-sputum collection. FIELD STRENGTH/SEQUENCES 1.5T/hyperpolarized 129 Xe MRI: Interleaved multiecho imaging of dissolved and gas phase, ventilation imaging, dissolved-phase spectroscopy, and chemical shift saturation recovery spectroscopy. 1 H MRI: Inversion recovery fast low-angle shot imaging for T1 mapping, time-resolved angiography with stochastic trajectories for DCE MRI. ASSESSMENT Dissolved-phase ratios of 129 Xe in red blood cells (RBC), tissue/plasma (TP) and gas phase (GP), ventilation defect percentage, septal wall thickness, surface-to-volume ratio, capillary transit time, lineshape parameters in dissolved-phase spectroscopy, 1 H T1 time, blood volume, flow, and mean transit time were determined and compared to cell counts. STATISTICAL TESTS Wilcoxon signed-rank test, Pearson correlation. RESULTS The percentage of neutrophils in sputum was markedly increased after LPS inhalation compared to baseline, P = 0.002. The group median RBC-TP ratio was significantly reduced from 0.40 to 0.31, P = 0.004, and 1 H T1 was significantly elevated from 1157.6 msec to 1187.8 msec after LPS challenge, P = 0.027. DCE MRI exhibited no significant changes in blood volume, P = 0.64, flow, P = 0.17, and mean transit time, P = 0.11. DATA CONCLUSION Hyperpolarized 129 Xe dissolved-phase MRI and 1 H T1 mapping may provide biomarkers for noninvasive assessment of the response of human lungs to LPS inhalation. By its specificity to the alveolar region, hyperpolarized 129 Xe MRI together with 1 H T1 mapping adds value to sputum analysis. LEVEL OF EVIDENCE 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020;51:1669-1676.
Collapse
Affiliation(s)
- Agilo L Kern
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Heike Biller
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Filip Klimeš
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Andreas Voskrebenzev
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Marcel Gutberlet
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Julius Renne
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Meike Müller
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Olaf Holz
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Frank Wacker
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Jens M Hohlfeld
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Department of Clinical Airway Research, Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.,Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Jens Vogel-Claussen
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
10
|
Cereda M, Xin Y, Goffi A, Herrmann J, Kaczka DW, Kavanagh BP, Perchiazzi G, Yoshida T, Rizi RR. Imaging the Injured Lung: Mechanisms of Action and Clinical Use. Anesthesiology 2019; 131:716-749. [PMID: 30664057 PMCID: PMC6692186 DOI: 10.1097/aln.0000000000002583] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acute respiratory distress syndrome (ARDS) consists of acute hypoxemic respiratory failure characterized by massive and heterogeneously distributed loss of lung aeration caused by diffuse inflammation and edema present in interstitial and alveolar spaces. It is defined by consensus criteria, which include diffuse infiltrates on chest imaging-either plain radiography or computed tomography. This review will summarize how imaging sciences can inform modern respiratory management of ARDS and continue to increase the understanding of the acutely injured lung. This review also describes newer imaging methodologies that are likely to inform future clinical decision-making and potentially improve outcome. For each imaging modality, this review systematically describes the underlying principles, technology involved, measurements obtained, insights gained by the technique, emerging approaches, limitations, and future developments. Finally, integrated approaches are considered whereby multimodal imaging may impact management of ARDS.
Collapse
Affiliation(s)
- Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Goffi
- Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, ON, Canada
| | - Jacob Herrmann
- Departments of Anesthesia and Biomedical Engineering, University of Iowa, IA
| | - David W. Kaczka
- Departments of Anesthesia, Radiology, and Biomedical Engineering, University of Iowa, IA
| | | | - Gaetano Perchiazzi
- Hedenstierna Laboratory and Uppsala University Hospital, Uppsala University, Sweden
| | - Takeshi Yoshida
- Hospital for Sick Children, University of Toronto, ON, Canada
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Garpered S, Minarik D, Diaz S, Valind S, Edenbrandt L, Wollmer P. Measurement of airway inflammation in current smokers by positron emission tomography. Clin Physiol Funct Imaging 2019; 39:393-398. [PMID: 31278814 DOI: 10.1111/cpf.12590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/27/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Accumulation of activated neutrophilic leucocytes is known to increase uptake of 18 F-fluorodeoxyglucose (18 F-FDG) into lung tissue. Available evidence suggests that smokers and subjects with chronic obstructive pulmonary disease (COPD) have neutrophilic inflammation in peripheral airways. The aim of this study was to examine whether current smokers have higher lung tissue uptake of 18 F-FDG than never-smokers when correcting for air fraction of the lungs. METHODS We prospectively recruited 33 current smokers and 33 never-smokers among subjects referred for diagnosis or staging of cancer, other than lung cancer, with combined positron emission tomography/computed tomography (PET/CT) with 18 F-FDG. Subjects with focal 18 F-FDG uptake or focal CT abnormalities in the lungs were excluded. The lungs were segmented in the CT image, and lung density measured. 18 F-FDG uptake was measured in the corresponding volume and corrected for air fraction. RESULTS Lung uptake of 18 F-FDG, corrected for air fraction, was 12·5 and 8 per cent higher in the right and left lungs, respectively, in current smokers than in never-smokers (P<0·05). Conclusion Abnormal lung tissue uptake of 18 F-FDG may be masked by reduced lung density if the uptake is not related to air fraction. Increased uptake of 18 F-FDG in lung tissue in current smokers relative to never-smokers may reflect inflammation in peripheral airways. Measurements of 18 F-FDG uptake in the lung tissue may be useful for animal and human studies of airways disease in COPD and the relation between airway and systemic inflammation.
Collapse
Affiliation(s)
- Sabine Garpered
- Clinical Physiology and Nuclear Medicine Unit, Department of Translational Medicine, Lund University, Lund, Sweden
| | - David Minarik
- Department of Radiation Physics, Skane University Hospital Malmö, Malmö, Sweden
| | - Sandra Diaz
- Department of Radiology, Skane University Hospital Malmö, Malmö, Sweden
| | - Sven Valind
- Clinical Physiology and Nuclear Medicine Unit, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Lars Edenbrandt
- Sahlgrenska Hospital Nuclear Medicine Unit, University Gothenburg, Gothenburg, Sweden
| | - Per Wollmer
- Clinical Physiology and Nuclear Medicine Unit, Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Guo J, Hardie WD, Cleveland ZI, Davidson C, Xu X, Madala SK, Woods JC. Longitudinal free-breathing MRI measurement of murine lung physiology in a progressive model of lung fibrosis. J Appl Physiol (1985) 2019; 126:1138-1149. [PMID: 30730810 DOI: 10.1152/japplphysiol.00993.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To longitudinally monitor progressive fibrosis in the transforming growth factor-α (TGF-α) transgenic mouse model of lung fibrosis, we used retrospective self-gating ultrashort echo time (UTE) magnetic resonance imaging (MRI) to image mouse lung at baseline and after 4 and 8 wk of fibrosis initiation via doxycycline administration. Only bitransgenic mice were used in this study and divided into two cohorts: six mice were fed doxycycline food to induce lung fibrosis (referred to as Dox cohort), and five other mice were fed normal food (referred to as control cohort). Lung mechanics, histology, and hydroxyproline were assessed after the final MRI. A linear mixed-effects model was used to analyze MRI-derived longitudinal lung-function parameters. Tidal volume decreased at a rate of -0.016 ± 0.002 ml/week [χ2(1) = 16.48, P < 0.001] for Dox cohort and increased at a rate of 0.010 ± 0.003 ml/week [χ2(1) = 6.37, P = 0.01] for control cohort. Minute ventilation decreased at a rate of -1.71 ± 0.26 ml·min-1·wk-1 [χ2(1) = 14.04, P < 0.001] for Dox cohort but did not change significantly over time for control cohort. High-density lung volume percentage increased at a rate of 3.9 ± 0.7%/wk for Dox cohort [χ2(1) = 11.47, P < 0.001] but did not change significantly over time for control cohort. MRI-derived lung structure and function parameters were strongly correlated with pleural thickness, hydroxyproline content, lung compliance, airway resistance, and airway elastance. We conclude that self-gating UTE MRI could be used to longitudinally monitor lung fibrosis in the TGF-α transgenic mouse model. NEW & NOTEWORTHY Self-gating UTE MRI was used to monitor morphology and physiology in lung fibrosis in a transforming growth factor-α transgenic mouse model. Tidal volume was shown for the first time to correlate strongly with conventional metrics of fibrosis such as hydroxyproline and pleural thickness.
Collapse
Affiliation(s)
- Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Physics, Washington University in St. Louis , St. Louis, Missouri
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| | - Zackary I Cleveland
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| | - Cynthia Davidson
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Xuefeng Xu
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio.,Department of Physics, Washington University in St. Louis , St. Louis, Missouri.,Department of Physics, University of Cincinnati , Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
13
|
The peroxisome proliferator-activated receptor agonist pioglitazone and 5-lipoxygenase inhibitor zileuton have no effect on lung inflammation in healthy volunteers by positron emission tomography in a single-blind placebo-controlled cohort study. PLoS One 2018; 13:e0191783. [PMID: 29414995 PMCID: PMC5802889 DOI: 10.1371/journal.pone.0191783] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 01/11/2018] [Indexed: 11/22/2022] Open
Abstract
Background Anti-inflammatory drug development efforts for lung disease have been hampered in part by the lack of noninvasive inflammation biomarkers and the limited ability of animal models to predict efficacy in humans. We used 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in a human model of lung inflammation to assess whether pioglitazone, a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, and zileuton, a 5-lipoxygenase inhibitor, reduce lung inflammation. Methods For this single center, single-blind, placebo-controlled cohort study, we enrolled healthy volunteers sequentially into the following treatment cohorts (N = 6 per cohort): pioglitazone plus placebo, zileuton plus placebo, or dual placebo prior to bronchoscopic endotoxin instillation. 18F-FDG uptake pre- and post-endotoxin was quantified as the Patlak graphical analysis-determined Ki (primary outcome measure). Secondary outcome measures included the mean standard uptake value (SUVmean), post-endotoxin bronchoalveolar lavage (BAL) cell counts and differentials and blood adiponectin and urinary leukotriene E4 (LTE4) levels, determined by enzyme-linked immunosorbent assay, to verify treatment compliance. One- or two-way analysis of variance assessed for differences among cohorts in the outcome measures (expressed as mean ± standard deviation). Results Ten females and eight males (29±6 years of age) completed all study procedures except for one volunteer who did not complete the post-endotoxin BAL. Ki and SUVmean increased in all cohorts after endotoxin instillation (Ki increased by 0.0021±0.0019, 0.0023±0.0017, and 0.0024±0.0020 and SUVmean by 0.47±0.14, 0.55±0.15, and 0.54±0.38 in placebo, pioglitazone, and zileuton cohorts, respectively, p<0.001) with no differences among treatment cohorts (p = 0.933). Adiponectin levels increased as expected with pioglitazone treatment but not urinary LTE4 levels as expected with zileuton treatment. BAL cell counts (p = 0.442) and neutrophil percentage (p = 0.773) were similar among the treatment cohorts. Conclusions Endotoxin-induced lung inflammation in humans is not responsive to pioglitazone or zileuton, highlighting the challenge in translating anti-inflammatory drug efficacy results from murine models to humans. Trial registration ClinicalTrials.gov NCT01174056.
Collapse
|
14
|
Satoh Y, Motosugi U, Saito A, Omiya Y, Onishi H. Pretreatment 18F-fluorodeoxyglucose Uptake in the Lung Parenchyma Predicts Poor Survival After Stereotactic Body Radiation Therapy in Patients With Stage I Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2018; 17:1533033818794934. [PMID: 30222060 PMCID: PMC6141922 DOI: 10.1177/1533033818794934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE In this study, we aimed to evaluate the prognostic value of fluorodeoxyglucose uptake in the lung parenchyma and the presence of subclinical interstitial lung disease on computed tomography as predictive factors for survival following stereotactic body radiation therapy in patients with stage I non-small cell lung cancer. METHODS We retrospectively evaluated 125 patients with stage I non-small cell lung cancer who underwent stereotactic body radiation therapy at our institute between December 2005 and March 2013 for various demographic and clinical parameters. The fluorodeoxyglucose uptake in the lung parenchyma corrected with computed tomography value (tissue fraction-corrected standardized uptake value) was quantified using fluorodeoxyglucose-positron emission tomography/computed tomography before the therapy. Additionally, the radiological findings of interstitial lung disease on computed tomography were evaluated. The prognostic analyses were performed using the Kaplan-Meier analysis and Cox proportional hazards regression model for univariate and multivariate analyses. RESULTS The median follow-up period was 39 months. The 3-year overall survival rate was 67.9%, and the 3-year progression-free survival rate was 52.0%. The multivariate analysis indicated that the tissue fraction-corrected standardized uptake value was correlated with the patients' overall survival ( P = .027, hazard ratio: 2.694, 95% confidence interval: 1.109-8.057). The presence of subclinical interstitial lung disease showed no correlation with the overall survival ( P = .535, hazard ratio: 1.256, 95% confidence interval: 0.592-2.473). CONCLUSION The results indicated that fluorodeoxyglucose uptake in the lung parenchyma, expressed as the tissue fraction-corrected standardized uptake value, was an independent prognostic factor in patients with stage I non-small cell lung cancer who have received stereotactic body radiation therapy.
Collapse
Affiliation(s)
- Yoko Satoh
- 1 Yamanashi PET Imaging Clinic, Kofu Neurosurgical Hospital, Chuo City, Yamanashi Prefecture, Japan.,2 Department of Radiology, University of Yamanashi, Chuo City, Yamanashi Prefecture, Japan
| | - Utaroh Motosugi
- 2 Department of Radiology, University of Yamanashi, Chuo City, Yamanashi Prefecture, Japan
| | - Akitoshi Saito
- 3 Department of Radiology, Yamanashi Prefectural Hospital, Kofu City, Yamanashi Prefecture, Japan
| | - Yoshie Omiya
- 2 Department of Radiology, University of Yamanashi, Chuo City, Yamanashi Prefecture, Japan
| | - Hiroshi Onishi
- 2 Department of Radiology, University of Yamanashi, Chuo City, Yamanashi Prefecture, Japan
| |
Collapse
|
15
|
Abravan A, Knudtsen IS, Eide HA, Løndalen AM, Helland Å, van Luijk P, Malinen E. A new method to assess pulmonary changes using 18F-fluoro-2-deoxyglucose positron emission tomography for lung cancer patients following radiotherapy. Acta Oncol 2017; 56:1597-1603. [PMID: 28849707 DOI: 10.1080/0284186x.2017.1349336] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND 18F-fluoro-2-deoxyglucose positron emission tomography (18F-FDG-PET) may be used for assessing radiation induced alterations in the lung. However, there is a need to further develop methodologies to improve quantification. Using computed tomography (CT), a local structure method has been shown to be superior to conventional CT-based analysis. Here, we investigate whether the local structure method based on 18F-FDG-PET improves radiotherapy (RT) dose-response quantification for lung cancer patients. MATERIAL AND METHODS Sixteen patients with lung cancer undergoing fractionated RT were examined by 18F-FDG-PET/CT at three sessions (pre, mid, post) and the lung was delineated in the planning CT images. The RT dose matrix was co-registered with the PET images. For each PET image series, mean (μ) and standard deviation (σ) maps were calculated based on cubes in the lung (3 × 3 × 3 voxels), where the spread in pre-therapy μ and σ was characterized by a covariance ellipse in a sub-volume of 3 × 3 × 3 cubes. Mahalanobis distance was used to measure the distance of individual cube values to the origin of the ellipse and to further form local structure 'S' maps. The structural difference maps (ΔS) and mean difference maps (Δμ) were calculated by subtracting pre-therapy maps from maps at mid- and post-therapy. Corresponding maps based on CT images were also generated. RESULTS ΔS identified new areas of interest in the lung compared to conventional Δμ maps. ΔS for PET and CT gave a significantly elevated lung signal compared to a control group during and post-RT (p < .05). Dose-response analyses by linear regression showed that ΔS between pre- and post-therapy for 18F-FDG-PET was the only parameter significantly associated with local lung dose (p = .04). CONCLUSIONS The new method using local structures on 18F-FDG-PET provides a clearer uptake dose-response compared to conventional analysis and CT-based approaches and may be valuable in future studies addressing lung toxicity.
Collapse
Affiliation(s)
- Azadeh Abravan
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Ingerid Skjei Knudtsen
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Hanne Astrid Eide
- Department of Oncology, Oslo University Hospital, Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Åslaug Helland
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Peter van Luijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, The Netherlands
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Eirik Malinen
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Abravan A, Eide HA, Knudtsen IS, Løndalen AM, Helland Å, Malinen E. Assessment of pulmonary 18F-FDG-PET uptake and cytokine profiles in non-small cell lung cancer patients treated with radiotherapy and erlotinib. Clin Transl Radiat Oncol 2017; 4:57-63. [PMID: 29594209 PMCID: PMC5833916 DOI: 10.1016/j.ctro.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose To investigate effects of radiotherapy (RT) and erlotinib on pulmonary glucose uptake using 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) positron emission tomography (PET) during and after treatment of non-small cell lung cancer (NSCLC) and to identify associations between serum cytokine levels and lung glucose uptake. Material and methods Twenty-seven patients with advanced NSCLC, receiving RT alone or concomitant RT and erlotinib therapy, were examined by 18F-FDG PET before, during, and after treatment. A total of 57 18F-FDG PET scans were analyzed. Pulmonary 18F-FDG uptake and radiotherapy dose mapping were used to acquire dose-response curves for each patient, where subsequent linear regression gave a glucose uptake level in the un-irradiated parts of the lungs (SUV0) and a response slope (ΔSUV). Serum cytokine levels at corresponding time points were assessed using a multiplex bioassay. Correlations between the most robust cytokines and lung 18F-FDG dose response parameters were further investigated. Results From the dose response analysis, SUV0 at post-therapy was significantly higher (P < 0.001) than at mid- and pre-therapy (45% and 58%, respectively) for the group receiving RT + erlotinib. Also, SUV0 at post-therapy was higher for patients receiving RT + erlotinib compared to RT alone (42%; P < 0.001). No differences in ΔSUV were seen with treatments or time. SUV0 was positively associated (r = 0.47, P = 0.01) with serum levels of the chemokine C-C motif ligand 21 (CCL21) for patients receiving RT + erlotinib. Conclusions Concomitant RT and erlotinib causes an elevation in pulmonary 18F-FDG uptake post treatment compared to RT alone. Pulmonary glucose uptake is associated with an upregulation of a chemokine (CCL21) involved in inflammatory reactions.
Collapse
Key Words
- 18F-FDG
- 18F-FDG, 2-deoxy-2-(18F)fluoro-D-glucose
- CCL, Chemokine (CC motif) ligand
- CT, Computed tomography
- EGFR, Epidermal growth factor receptor
- EORTC QLQ-C30, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Core 30
- EORTC QLQ-LC13, EORTC QLQ Lung Cancer 13
- Erlotinib
- GTV, Gross tumor volume
- HU, Hounsfield Unit
- IL, Interleukin
- Lung cancer
- MMP, Matrix metalloproteinase
- NSCLC, Non-small cell lung cancer
- PET, Positron emission tomography
- Positron emission tomography
- RILT, Radiation induced lung toxicity
- RT, Radiotherapy
- SUV, Standard uptake value
- Standardized uptake value
- Thoracic radiotherapy
Collapse
Affiliation(s)
- Azadeh Abravan
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Hanne Astrid Eide
- Department of Oncology, Oslo University Hospital, Oslo, Norway.,Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ingerid Skjei Knudtsen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | | | - Åslaug Helland
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Rodrigues RS, Bozza FA, Hanrahan CJ, Wang LM, Wu Q, Hoffman JM, Zimmerman GA, Morton KA. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury. Nucl Med Biol 2017; 48:52-62. [PMID: 28237630 PMCID: PMC5380510 DOI: 10.1016/j.nucmedbio.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/10/2016] [Accepted: 01/12/2017] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Molecular imaging of the earliest events related to the development of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) could facilitate therapeutic development and patient management. We previously reported that 18F-fluoro-2-deoxyglucose (18F-FDG) PET identifies ALI/ARDS prior to radiographic abnormalities. The purpose of this study was to establish the time courses of 18F-FDG uptake, edema and neutrophil recruitment in an endotoxin-induced acute lung injury model and to examine molecular events required for 14C-2DG uptake in activated neutrophils. METHODS Lung uptake of 18F-FDG was measured by PET in control male Sprague Dawley rats and at 2, 6 and 24h following the intraperitoneal injection of 10mg/kg LPS. Lung edema (attenuation) was measured by microCT. Neutrophil influx into the lungs was measured by myeloperoxidase assay. Control and activated human donor neutrophils were compared for uptake of 14C-2DG, transcription and content of hexokinase and GLUT isoforms and for hexokinase (HK) activity. RESULTS Significant uptake of 18F-FDG occurred by 2h following LPS, and progressively increased to 24h. Lung uptake of 18F-FDG preceded increased CT attenuation (lung edema). Myeloperoxidase activity in the lungs, supporting neutrophil influx, paralleled 18F-FDG uptake. Activation of isolated human neutrophils resulted in increased uptake of 14C-2DG, expression of GLUT 3 and GLUT 4 and expression and increased HK1 activity. CONCLUSION Systemic endotoxin-induced ALI results in very early and progressive uptake of 18F-FDG, parallels neutrophil accumulation and occurs earlier than lung injury edema. Activated neutrophils show increased uptake of 14C-2DG, expression of specific GLUT3, GLUT4 and HK1 protein and HK activity. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: 18F-FDG pulmonary uptake is an early biomarker of neutrophil recruitment in ALI and is associated with specific molecular events that mediate 14C-2DG uptake in activated neutrophils. 18F-FDG PET may provide a potential mechanism for early diagnosis and therapeutic assessment of ALI/ARDS.
Collapse
Affiliation(s)
- Rosana S Rodrigues
- Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christopher J Hanrahan
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Li-Ming Wang
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Qi Wu
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John M Hoffman
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Guy A Zimmerman
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kathryn A Morton
- Department of Radiology and Imaging Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
18
|
Systemic inflammation enhances stimulant-induced striatal dopamine elevation. Transl Psychiatry 2017; 7:e1076. [PMID: 28350401 PMCID: PMC5404612 DOI: 10.1038/tp.2017.18] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/10/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022] Open
Abstract
Changes in the mesolimbic dopamine (DA) system are implicated in a range of neuropsychiatric conditions including addiction, depression and schizophrenia. Dysfunction of the neuroimmune system is often comorbid with such conditions and affects similar areas of the brain. The goal of this study was to use positron emission tomography with the dopamine D2 antagonist tracer, 11C-raclopride, to explore the effect of acute immune activation on striatal DA levels. DA transmission was modulated by an oral methylphenidate (MP) challenge in order to reliably elicit DA elevation. Elevation in DA concentration due to MP was estimated via change in 11C-raclopride binding potential from the baseline scan. Prior to the post-MP scan, subjects were pre-treated with either the immune activator lipopolysaccharide (LPS) or placebo (PBO) in a cross-over design. Immune activation was confirmed by measuring tumor necrosis factor alpha (TNFα), interleukin (IL)-6 and IL-8 concentration in plasma. Eight healthy subjects were scanned four times each to determine the MP-induced DA elevation under both LPS and PBO pre-treatment conditions. MP-induced DA elevation in the striatum was significantly greater (P<0.01) after LPS pre-treatment compared to PBO pre-treatment. Seven of eight subjects responded similarly. This effect was observed in the caudate and putamen (P<0.02), but was not present in ventral striatum. DA elevation induced by MP was significantly greater when subjects were pre-treated with LPS compared to PBO. The amplification of stimulant-induced DA signaling in the presence of systemic inflammation may have important implications for our understanding of addiction and other diseases of DA dysfunction.
Collapse
|
19
|
Amado-Rodríguez L, Del Busto C, García-Prieto E, Albaiceta GM. Mechanical ventilation in acute respiratory distress syndrome: The open lung revisited. Med Intensiva 2017; 41:550-558. [PMID: 28238441 DOI: 10.1016/j.medin.2016.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/26/2016] [Indexed: 02/02/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is still related to high mortality and morbidity rates. Most patients with ARDS will require ventilatory support. This treatment has a direct impact upon patient outcome and is associated to major side effects. In this regard, ventilator-associated lung injury (VALI) is the main concern when this technique is used. The ultimate mechanisms of VALI and its management are under constant evolution. The present review describes the classical mechanisms of VALI and how they have evolved with recent findings from physiopathological and clinical studies, with the aim of analyzing the clinical implications derived from them. Lastly, a series of knowledge-based recommendations are proposed that can be helpful for the ventilator assisted management of ARDS at the patient bedside.
Collapse
Affiliation(s)
- L Amado-Rodríguez
- Unidad de Gestión Clínica de Medicina Intensiva, Hospital Valle del Nalón, Langreo, Spain
| | - C Del Busto
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - E García-Prieto
- Servicio de Medicina Intensiva, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - G M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Spain; Departamento de Biología Funcional, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain.
| |
Collapse
|
20
|
Chen DL, Cheriyan J, Chilvers ER, Choudhury G, Coello C, Connell M, Fisk M, Groves AM, Gunn RN, Holman BF, Hutton BF, Lee S, MacNee W, Mohan D, Parr D, Subramanian D, Tal-Singer R, Thielemans K, van Beek EJR, Vass L, Wellen JW, Wilkinson I, Wilson FJ. Quantification of Lung PET Images: Challenges and Opportunities. J Nucl Med 2017; 58:201-207. [PMID: 28082432 DOI: 10.2967/jnumed.116.184796] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/10/2017] [Indexed: 01/03/2023] Open
Abstract
Millions of people are affected by respiratory diseases, leading to a significant health burden globally. Because of the current insufficient knowledge of the underlying mechanisms that lead to the development and progression of respiratory diseases, treatment options remain limited. To overcome this limitation and understand the associated molecular changes, noninvasive imaging techniques such as PET and SPECT have been explored for biomarker development, with 18F-FDG PET imaging being the most studied. The quantification of pulmonary molecular imaging data remains challenging because of variations in tissue, air, blood, and water fractions within the lungs. The proportions of these components further differ depending on the lung disease. Therefore, different quantification approaches have been proposed to address these variabilities. However, no standardized approach has been developed to date. This article reviews the data evaluating 18F-FDG PET quantification approaches in lung diseases, focusing on methods to account for variations in lung components and the interpretation of the derived parameters. The diseases reviewed include acute respiratory distress syndrome, chronic obstructive pulmonary disease, and interstitial lung diseases such as idiopathic pulmonary fibrosis. Based on review of prior literature, ongoing research, and discussions among the authors, suggested considerations are presented to assist with the interpretation of the derived parameters from these approaches and the design of future studies.
Collapse
Affiliation(s)
- Delphine L Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph Cheriyan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Edwin R Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gourab Choudhury
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Martin Connell
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie Fisk
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ashley M Groves
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Roger N Gunn
- Imanova Ltd., London, United Kingdom.,Department of Medicine, Imperial College London, London, United Kingdom
| | - Beverley F Holman
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Brian F Hutton
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Sarah Lee
- Medical Image Analysis Consultant, London, United Kingdom
| | - William MacNee
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Divya Mohan
- Clinical Discovery, Respiratory Therapy Area Unit, GlaxoSmithKline R&D, King of Prussia, Pennsylvania
| | - David Parr
- University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | | | - Ruth Tal-Singer
- Clinical Discovery, Respiratory Therapy Area Unit, GlaxoSmithKline R&D, King of Prussia, Pennsylvania
| | - Kris Thielemans
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Edwin J R van Beek
- Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Laurence Vass
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jeremy W Wellen
- Worldwide Research and Development, Pfizer, Inc., Cambridge, Massachusetts; and
| | - Ian Wilkinson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Frederick J Wilson
- Experimental Medicine Imaging, GlaxoSmithKline, Stevenage, United Kingdom
| |
Collapse
|
21
|
Pourfathi M, Xin Y, Kadlecek SJ, Cereda MF, Profka H, Hamedani H, Siddiqui SM, Ruppert K, Drachman NA, Rajaei JN, Rizi RR. In vivo imaging of the progression of acute lung injury using hyperpolarized [1- 13 C] pyruvate. Magn Reson Med 2017; 78:2106-2115. [PMID: 28074497 DOI: 10.1002/mrm.26604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate pulmonary metabolic alterations during progression of acute lung injury. METHODS Using hyperpolarized [1-13 C] pyruvate imaging, we measured pulmonary lactate and pyruvate in 15 ventilated rats 1, 2, and 4 h after initiation of mechanical ventilation. Lung compliance was used as a marker for injury progression. 5 untreated rats were used as controls; 5 rats (injured-1) received 1 ml/kg and another 5 rats (injured-2) received 2 ml/kg hydrochloric acid (pH 1.25) in the trachea at 70 min. RESULTS The mean lactate-to-pyruvate ratio of the injured-1 cohort was 0.15 ± 0.02 and 0.15 ± 0.03 at baseline and 1 h after the injury, and significantly increased from the baseline value 3 h after the injury to 0.23 ± 0.02 (P = 0.002). The mean lactate-to-pyruvate ratio of the injured-2 cohort decreased from 0.14 ± 0.03 at baseline to 0.08 ± 0.02 1 h after the injury and further decreased to 0.07 ± 0.02 (P = 0.08) 3 h after injury. No significant change was observed in the control group. Compliance in both injured groups decreased significantly after the injury (P < 0.01). CONCLUSIONS Our findings suggest that in severe cases of lung injury, edema and hyperperfusion in the injured lung tissue may complicate interpretation of the pulmonary lactate-to-pyruvate ratio as a marker of inflammation. However, combining the lactate-to-pyruvate ratio with pulmonary compliance provides more insight into the progression of the injury and its severity. Magn Reson Med 78:2106-2115, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen J Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maurizio F Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarmad M Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas A Drachman
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennia N Rajaei
- School of Medicine, Stanford University, Stanford, California, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Zhang Y, Yu Y, Yu J, Fu Z, Liu T, Guo S. 18FDG PET-CT standardized uptake value for the prediction of radiation pneumonitis in patients with lung cancer receiving radiotherapy. Oncol Lett 2015; 10:2909-2914. [PMID: 26722262 DOI: 10.3892/ol.2015.3637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 07/07/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine if the standardized uptake value (SUV) determined with 18F-FDG PET-CT can be used to predict radiation pneumonitis (RP) in lung cancer patients who receive radiotherapy. A total of 40 patients with non-small cell lung cancer received 18F-FDG PET-CT examinations prior to and following radiotherapy. The average SUV of lung tissue prior to and following radiation were measured at differing radiation doses. SUV differences between patients with and without RP, and the SUV ratio of the irradiated lung tissues compared with that of non-irradiated lung tissues (L/B) were compared. There were no differences in the mean SUV between the RP and no RP groups prior to radiotherapy. There were also no significant differences in the mean SUV of lung tissue within groups or between the no RP and RP groups with radiation doses of <5 Gy, 5 to ≤14.9 Gy and 15 to ≤34.9 Gy (all P>0.05) following radiotherapy. There were, however, statistically significant differences in the mean SUV of lung tissue within groups or between the no RP and RP groups with doses of ≥60 Gy prior to therapy and 35 to ≤59.9 Gy and ≥60 Gy following therapy (all P<0.05). When the L/B ratio was ≥3, the incidence of RP was 50%, and when the L/B ratio was ≥2.5 the incidence was 40.7%. When the L/B ratio was <2, there were no cases of RP. In conclusion, the present study indicates that 18F-FDG PET-CT can be used to predict RP by L/B ratio.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Radiation Oncology, Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Yonghua Yu
- Department of Radiation Oncology, Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Zheng Fu
- Department of Nuclear Medicine, Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Tonghai Liu
- Department of Imaging Physics, Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Shoufang Guo
- Department of Nuclear Medicine, Shandong Tumor Hospital and Institute, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
23
|
de Prost N, Sasanelli M, Deux JF, Habibi A, Razazi K, Galactéros F, Meignan M, Maître B, Brun-Buisson C, Itti E, Dessap AM. Positron Emission Tomography With 18F-Fluorodeoxyglucose in Patients With Sickle Cell Acute Chest Syndrome. Medicine (Baltimore) 2015; 94:e821. [PMID: 25950690 PMCID: PMC4602525 DOI: 10.1097/md.0000000000000821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The acute chest syndrome (ACS) is the main cause of mortality among adult patients with sickle cell disease (SCD). Its pathophysiology is still unclear. Using positron emission tomography (PET) with F-fluorodeoxyglucose [18F-fluorodeoxyglucose (F-FDG)], we explored the relationship between regional lung density and lung metabolism, as a reflection of lung neutrophilic infiltration during ACS.Patients were prospectively enrolled in a single-center study. Dual modality chest PET/computed tomography (CT) scans were performed, with F-FDG emission scans for quantification of regional F-FDG uptake and CT scans with radiocontrast agent to check for pulmonary artery thrombosis. Regional lung F-FDG uptake was quantified in ACS patients and in SCD patients without ACS (SCD non-ACS controls). Maximal (SUVmax) and mean (SUVmean) standardized uptake values were computed.Seventeen patients with ACS (mean age 28.3 ± 6.4 years) were included. None died nor required invasive mechanical ventilation. The main lung opacity on CT scans was lower lobe consolidation. Lungs of patients with ACS exhibited higher SUVmax than those of SCD non-ACS controls (2.5 [2.1-2.9] vs 0.8 [0.6-1.0]; P < 0.0001). Regional SUVmax and SUVmean was higher in lower than in upper lobes of ACS patients (P < 0.001) with a significant correlation between lung density and SUVmax (R = 0.78). SUVmean was higher in upper lobes of ACS patients than in lungs of SCD non-ACS controls (P < 0.001). Patients with SUVmax >2.5 had longer intensive care unit (ICU) stay than others (7 [6-11] vs 4 [3-6] days; P = 0.016).Lungs of patients with ACS exhibited higher F-FDG uptake than SCD non-ACS controls. Lung apices had normal aeration and lower F-FDG uptake than lung bases, but higher F-FDG uptake than lungs of SCD non-ACS controls. Patients with higher lung F-FDG uptake had longer ICU stay than others.
Collapse
Affiliation(s)
- Nicolas de Prost
- From the Assistance Publique-Hôpitaux de Paris (NP, KR, CB-B, AMD), Hôpitaux Universitaires Henri Mondor, DHU A-TVB, Service de Réanimation Médicale; UPEC-Université Paris-Est Créteil Val de Marne (NP, KR, CB-B, AMD), Faculté de Médecine de Créteil, CARMAS Research Group; UPEC-Université Paris-Est Créteil Val de Marne (MS, J-FD, AH, FG, MM, BM, EI), Faculté de Médecine de Créteil; Assistance Publique-Hôpitaux de Paris (MS, MM, EI), Hôpitaux Universitaires Henri Mondor, Service de Médecine Nucléaire; Assistance Publique-Hôpitaux de Paris (J-FD), Hôpitaux Universitaires Henri Mondor, Service de Radiologie; Assistance Publique-Hôpitaux de Paris (AH, FG), Hôpitaux Universitaires Henri Mondor, Unité des Maladies Génétiques du Globule Rouge - Service de Médecine Interne; and Assistance Publique-Hôpitaux de Paris (BM), Hôpitaux Universitaires Henri Mondor Antenne de Pneumologie, Service de Réanimation Médicale, Créteil, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Castillo R, Pham N, Castillo E, Aso-Gonzalez S, Ansari S, Hobbs B, Palacio D, Skinner H, Guerrero TM. Pre-Radiation Therapy Fluorine 18 Fluorodeoxyglucose PET Helps Identify Patients with Esophageal Cancer at High Risk for Radiation Pneumonitis. Radiology 2015; 275:822-31. [PMID: 25584706 DOI: 10.1148/radiol.14140457] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To examine the association between pre-radiation therapy (RT) fluorine 18 fluorodeoxyglucose (FDG) uptake and post-RT symptomatic radiation pneumonitis (RP). MATERIALS AND METHODS In accordance with the retrospective study protocol approved by the institutional review board, 228 esophageal cancer patients who underwent FDG PET/CT before chemotherapy and RT were examined. RP symptoms were evaluated by using the Common Terminology Criteria for Adverse Events, version 4.0, from the consensus of five clinicians. By using the cumulative distribution of standardized uptake values (SUVs) within the lungs, those values greater than 80%-95% of the total lung voxels were determined for each patient. The effect of pre-chemotherapy and RT FDG uptake, dose, and patient or treatment characteristics on RP toxicity was studied by using logistic regression. RESULTS The study subjects were treated with three-dimensional conformal RT (n = 36), intensity-modulated RT (n = 135), or proton therapy (n = 57). Logistic regression analysis demonstrated elevated FDG uptake at pre-chemotherapy and RT was related to expression of RP symptoms. Study subjects with elevated 95% percentile of the SUV (SUV95) were more likely to develop symptomatic RP (P < .000012); each 0.1 unit increase in SUV95 was associated with a 1.36-fold increase in the odds of symptomatic RP. Receiver operating characteristic (ROC) curve analysis resulted in area under the ROC curve of 0.676 (95% confidence interval: 0.58, 0.77), sensitivity of 60%, and specificity of 71% at the 1.17 SUV95 threshold. CT imaging and dosimetric parameters were found to be poor predictors of RP symptoms. CONCLUSION The SUV95, a biomarker of pretreatment pulmonary metabolic activity, was shown to be prognostic of symptomatic RP. Elevation in this pretreatment biomarker identifies patients at high risk for posttreatment symptomatic RP.
Collapse
Affiliation(s)
- Richard Castillo
- From the Department of Radiation Oncology, The University of Texas Medical Branch, Galveston, Tex (R.C.); Department of Radiation Oncology, Baylor College of Medicine, Houston, Tex (N.P.); Department of Radiation Oncology, Beaumont Health System, 3601 W Thirteen Mile Rd, Royal Oak, MI 48073-6769 (E.C., T.M.G.); Department of Computational and Applied Mathematics, Rice University, Houston, Tex (E.C., T.M.G.); Department of Pulmonology, Bellvitge Hospital, University of Barcelona, Barcelona, Spain (S.A.G.); Department of Radiation Oncology, University of Chicago, Chicago, Ill (S.A.); and Divisions of Quantitative Sciences (B.H.), Diagnostic Imaging (D.P.), and Radiation Oncology (H.S.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Huang HJ, Isakow W, Byers DE, Engle JT, Griffin EA, Kemp D, Brody SL, Gropler RJ, Miller JP, Chu W, Zhou D, Pierce RA, Castro M, Mach RH, Chen DL. Imaging pulmonary inducible nitric oxide synthase expression with PET. J Nucl Med 2015; 56:76-81. [PMID: 25525182 PMCID: PMC4501590 DOI: 10.2967/jnumed.114.146381] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Inducible nitric oxide synthase (iNOS) activity increases in acute and chronic inflammatory lung diseases. Imaging iNOS expression may be useful as an inflammation biomarker for monitoring lung disease activity. We developed a novel tracer for PET that binds to iNOS in vivo, (18)F-NOS. In this study, we tested whether (18)F-NOS could quantify iNOS expression from endotoxin-induced lung inflammation in healthy volunteers. METHODS Healthy volunteers were screened to exclude cardiopulmonary disease. Qualifying volunteers underwent a baseline, 1-h dynamic (18)F-NOS PET/CT scan. Endotoxin (4 ng/kg) was then instilled bronchoscopically in the right middle lobe. (18)F-NOS imaging was performed again approximately 16 h after endotoxin instillation. Radiolabeled metabolites were determined from blood samples. Cells recovered by bronchoalveolar lavage (BAL) after imaging were stained immunohistochemically for iNOS. (18)F-NOS uptake was quantified as the distribution volume ratio (DVR) determined by Logan plot graphical analysis in volumes of interest placed over the area of endotoxin instillation and in an equivalent lung region on the left. The mean Hounsfield units (HUs) were also computed using the same volumes of interest to measure density changes. RESULTS Seven healthy volunteers with normal pulmonary function completed the study with evaluable data. The DVR increased by approximately 30%, from a baseline mean of 0.42 ± 0.07 to 0.54 ± 0.12, and the mean HUs by 11% after endotoxin in 6 volunteers who had positive iNOS staining in BAL cells. The DVR did not change in the left lung after endotoxin. In 1 volunteer with low-level iNOS staining in BAL cells, the mean HUs increased by 7% without an increase in DVR. Metabolism was rapid, with approximately 50% of the parent compound at 5 min and 17% at 60 min after injection. CONCLUSION (18)F-NOS can be used to image iNOS activity in acute lung inflammation in humans and may be a useful PET tracer for imaging iNOS expression in inflammatory lung disease.
Collapse
Affiliation(s)
- Howard J Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Warren Isakow
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jacquelyn T Engle
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Elizabeth A Griffin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Debra Kemp
- Center for Clinical Studies, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Steven L Brody
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - J Philip Miller
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Wenhua Chu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Dong Zhou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard A Pierce
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mario Castro
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Robert H Mach
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Delphine L Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
26
|
de Prost N, Feng Y, Wellman T, Tucci MR, Costa EL, Musch G, Winkler T, Harris RS, Venegas JG, Chao W, Vidal Melo MF. 18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome. J Nucl Med 2014; 55:1871-7. [PMID: 25286924 DOI: 10.2967/jnumed.114.140962] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED PET with (18)F-FDG allows for noninvasive assessment of regional lung metabolism reflective of neutrophilic inflammation. This study aimed at determining during early acute lung injury whether local (18)F-FDG phosphorylation rate and volume of distribution were sensitive to the initial regional inflammatory response and whether they depended on the mechanism of injury: endotoxemia and surfactant depletion. METHODS Twelve sheep underwent homogeneous unilateral surfactant depletion (alveolar lavage) and were mechanically ventilated for 4 h (positive end-expiratory pressure, 10 cm H2O; plateau pressure, 30 cm H2O) while receiving intravenous endotoxin (lipopolysaccharide-positive [LPS+] group; n = 6) or not (lipopolysaccharide-negative group; n = 6). (18)F-FDG PET emission scans were then acquired. (18)F-FDG phosphorylation rate and distribution volume were calculated with a 4-compartment model. Lung tissue expression of inflammatory cytokines was measured using real-time quantitative reverse transcription polymerase chain reaction. RESULTS (18)F-FDG uptake increased in LPS+ (P = 0.012) and in surfactant-depleted sheep (P < 0.001). These increases were topographically heterogeneous, predominantly in dependent lung regions, and without interaction between alveolar lavage and LPS. The increase of (18)F-FDG uptake in the LPS+ group was related both to increases in the (18)F-FDG phosphorylation rate (P < 0.05) and to distribution volume (P < 0.01). (18)F-FDG distribution volume increased with infiltrating neutrophils (P < 0.001) and phosphorylation rate with the regional expression of IL-1β (P = 0.026), IL-8 (P = 0.011), and IL-10 (P = 0.023). CONCLUSION Noninvasive (18)F-FDG PET-derived parameters represent histologic and gene expression markers of early lung injury. Pulmonary metabolism assessed with (18)F-FDG PET depends on the mechanism of injury and appears to be additive for endotoxemia and surfactant depletion. (18)F-FDG PET may be a valuable imaging biomarker of early lung injury.
Collapse
Affiliation(s)
- Nicolas de Prost
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Medical Intensive Care Unit, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Yan Feng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tyler Wellman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Mauro R Tucci
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Pulmonary Division, Cardio-pulmonary Department, Heart Institute (Incor), University of São Paulo, São Paulo, Brazil; and
| | - Eduardo L Costa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts Pulmonary Division, Cardio-pulmonary Department, Heart Institute (Incor), University of São Paulo, São Paulo, Brazil; and
| | - Guido Musch
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - R Scott Harris
- Department of Medicine (Pulmonary and Critical Care Unit), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jose G Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wei Chao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcos F Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Shaghaghi H, Kadlecek S, Deshpande C, Siddiqui S, Martinez D, Pourfathi M, Hamedani H, Ishii M, Profka H, Rizi AR. Metabolic spectroscopy of inflammation in a bleomycin-induced lung injury model using hyperpolarized 1-(13) C pyruvate. NMR IN BIOMEDICINE 2014; 27:939-47. [PMID: 24865640 PMCID: PMC4110199 DOI: 10.1002/nbm.3139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 05/04/2023]
Abstract
Metabolic activity in the lung is known to change in response to external insults, inflammation, and cancer. We report measurements of metabolism in the isolated, perfused rat lung of healthy controls and in diseased lungs undergoing acute inflammation using hyperpolarized 1-(13) C-labeled pyruvate. The overall apparent activity of lactate dehydrogenase is shown to increase significantly (on average by a factor of 3.3) at the 7 day acute stage and to revert substantially to baseline at 21 days, while other markers indicating monocarboxylate uptake and transamination rate are unchanged. Elevated lung lactate signal levels correlate well with phosphodiester levels as determined with (31) P spectroscopy and with the presence of neutrophils as determined by histology, consistent with a relationship between intracellular lactate pool labeling and the density and type of inflammatory cells present. We discuss several alternate hypotheses, and conclude that the most probable source of the observed signal increase is direct uptake and metabolism of pyruvate by inflammatory cells and primarily neutrophils. This signal is seen in high contrast to the low baseline activity of the lung.
Collapse
Affiliation(s)
- Hoora Shaghaghi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Author to whom correspondence should be addressed: Submitting author: Hoora Shaghaghi, PhD University of Pennsylvania Department of Radiology 338 Stemmler Hall 3450 Hamilton Walk Philadelphia, PA 19104 215-662-6775
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Charuhas Deshpande
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Martinez
- Department of Pathology and Pathology Core Laboratory, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Masaru Ishii
- Department of Otolaryngology, Johns Hopkins University, Baltimore, MD, United States
| | - Harrilla Profka
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - and Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
28
|
Wellman TJ, Winkler T, Costa EL, Musch G, Harris RS, Zheng H, Venegas JG, Vidal Melo MF. Effect of local tidal lung strain on inflammation in normal and lipopolysaccharide-exposed sheep*. Crit Care Med 2014; 42:e491-500. [PMID: 24758890 PMCID: PMC4123638 DOI: 10.1097/ccm.0000000000000346] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Regional tidal lung strain may trigger local inflammation during mechanical ventilation, particularly when additional inflammatory stimuli are present. However, it is unclear whether inflammation develops proportionally to tidal strain or only above a threshold. We aimed to 1) assess the relationship between regional tidal strain and local inflammation in vivo during the early stages of lung injury in lungs with regional aeration heterogeneity comparable to that of humans and 2) determine how this strain-inflammation relationship is affected by endotoxemia. DESIGN Interventional animal study. SETTING Experimental laboratory and PET facility. SUBJECTS Eighteen 2- to 4-month-old sheep. INTERVENTIONS Three groups of sheep (n = 6) were mechanically ventilated to the same plateau pressure (30-32 cm H2O) with high-strain (VT = 18.2 ± 6.5 mL/kg, positive end-expiratory pressure = 0), high-strain plus IV lipopolysaccharide (VT = 18.4 ± 4.2 mL/kg, positive end-expiratory pressure = 0), or low-strain plus lipopolysaccharide (VT = 8.1 ± 0.2 mL/kg, positive end-expiratory pressure = 17 ± 3 cm H2O). At baseline, we acquired respiratory-gated PET scans of inhaled NN to measure tidal strain from end-expiratory and end-inspiratory images in six regions of interest. After 3 hours of mechanical ventilation, dynamic [F]fluoro-2-deoxy-D-glucose scans were acquired to quantify metabolic activation, indicating local neutrophilic inflammation, in the same regions of interest. MEASUREMENTS AND MAIN RESULTS Baseline regional tidal strain had a significant effect on [F]fluoro-2-deoxy-D-glucose net uptake rate Ki in high-strain lipopolysaccharide (p = 0.036) and on phosphorylation rate k3 in high-strain (p = 0.027) and high-strain lipopolysaccharide (p = 0.004). Lipopolysaccharide exposure increased the k3-tidal strain slope three-fold (p = 0.009), without significant lung edema. The low-strain lipopolysaccharide group showed lower baseline regional tidal strain (0.33 ± 0.17) than high-strain (1.21 ± 0.62; p < 0.001) or high-strain lipopolysaccharide (1.26 ± 0.44; p < 0.001) and lower k3 (p < 0.001) and Ki (p < 0.05) than high-strain lipopolysaccharide. CONCLUSIONS Local inflammation develops proportionally to regional tidal strain during early lung injury. The regional inflammatory effect of strain is greatly amplified by IV lipopolysaccharide. Tidal strain enhances local [F]fluoro-2-deoxy-D-glucose uptake primarily by increasing the rate of intracellular [F]fluoro-2-deoxy-D-glucose phosphorylation.
Collapse
Affiliation(s)
- Tyler J. Wellman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tilo Winkler
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eduardo L.V. Costa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Guido Musch
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - R. Scott Harris
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hui Zheng
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jose G. Venegas
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marcos F. Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Guo J, Huang HJ, Wang X, Wang W, Ellison H, Thomen RP, Gelman AE, Woods JC. Imaging mouse lung allograft rejection with (1)H MRI. Magn Reson Med 2014; 73:1970-8. [PMID: 24954886 DOI: 10.1002/mrm.25313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/05/2014] [Accepted: 05/18/2014] [Indexed: 12/24/2022]
Abstract
PURPOSE To demonstrate that longitudinal, noninvasive monitoring via MRI can characterize acute cellular rejection in mouse orthotopic lung allografts. METHODS Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig versus anti-CD4/anti-CD8 treated groups. A two-dimensional multislice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at postoperative days 3, 7, and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. RESULTS Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 posttransplantation (0.046→0.789; P < 0.05), despite large intermouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003; P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. CONCLUSION Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment.
Collapse
Affiliation(s)
- Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Stem cells and cell therapies in lung biology and diseases: conference report. Ann Am Thorac Soc 2014; 10:S25-44. [PMID: 23869447 DOI: 10.1513/annalsats.201304-089aw] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
31
|
Abstract
Cystic fibrosis (CF) is characterized by persistent neutrophilic lung inflammation that begins early in life and leads to an inexorable progressive loss of lung function over time, causing significant morbidity and mortality. Studies to date support the hypothesis that higher levels of lung inflammation lead to worsening lung dysfunction. However, measuring the extent and severity of lung inflammation in the CF lung is difficult as few lung-specific biomarkers of inflammation can quantify the regional and whole-lung inflammatory burden accurately and reproducibly. PET with (18)F-fluorodeoxyglucose ((18)F-FDG) has shown promise in measuring lung inflammation in both acute and chronic lung diseases. Several studies have now shown that (18)F-FDG uptake may be a useful measure of lung inflammation in CF. The whole-lung rate of (18)F-FDG uptake in stable CF, quantified by the Patlak graphical analysis, appears to correlate with more rapidly declining lung function. Acute exacerbation, on the contrary, leads to focally increased (18)F-FDG uptake, which decreases with antibiotic treatment. These small studies are the first attempts to characterize the patterns of (18)F-FDG uptake in CF and suggest a potential role for (18)F-FDG as a treatment modifiable biomarker of lung inflammation in CF.
Collapse
|
32
|
Early inflammation mainly affects normally and poorly aerated lung in experimental ventilator-induced lung injury*. Crit Care Med 2014; 42:e279-87. [PMID: 24448197 DOI: 10.1097/ccm.0000000000000161] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The common denominator in most forms of ventilator-induced lung injury is an intense inflammatory response mediated by neutrophils. PET with [(18)F]fluoro-2-deoxy-D-glucose can be used to image cellular metabolism, which, during lung inflammatory processes, mainly reflects neutrophil activity, allowing the study of regional lung inflammation in vivo. The aim of this study was to assess the location and magnitude of lung inflammation using PET imaging of [(18)F]fluoro-2-deoxy-D-glucose in a porcine experimental model of early acute respiratory distress syndrome. DESIGN Prospective laboratory investigation. SETTING A university animal research laboratory. SUBJECTS Seven piglets submitted to experimental ventilator-induced lung injury and five healthy controls. INTERVENTIONS Lung injury was induced by lung lavages and 210 minutes of injurious mechanical ventilation using low positive end-expiratory pressure and high inspiratory pressures. All animals were subsequently studied with dynamic PET imaging of [(18)F]fluoro-2-deoxy-D-glucose. CT scans were acquired at end expiration and end inspiration. MEASUREMENTS AND MAIN RESULTS [(18)F]fluoro-2-deoxy-D-glucose uptake rate was computed for the whole lung, four isogravitational regions, and regions grouping voxels with similar density. Global and intermediate gravitational zones [(18)F]fluoro-2-deoxy-D-glucose uptakes were higher in ventilator-induced lung injury piglets compared with controls animals. Uptake of normally and poorly aerated regions was also higher in ventilator-induced lung injury piglets compared with control piglets, whereas regions suffering tidal recruitment or tidal hyperinflation had [(18)F]fluoro-2-deoxy-D-glucose uptakes similar to controls. CONCLUSIONS The present findings suggest that normally and poorly aerated regions--corresponding to intermediate gravitational zones--are the primary targets of the inflammatory process accompanying early experimental ventilator-induced lung injury. This may be attributed to the small volume of the aerated lung, which receives most of ventilation.
Collapse
|
33
|
Lung [(18)F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch in the early stage of experimental acute smoke inhalation. Anesthesiology 2014; 120:683-93. [PMID: 24051392 DOI: 10.1097/01.anes.0000435742.04859.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute lung injury occurs in a third of patients with smoke inhalation injury. Its clinical manifestations usually do not appear until 48-72 h after inhalation. Identifying inflammatory changes that occur in pulmonary parenchyma earlier than that could provide insight into the pathogenesis of smoke-induced acute lung injury. Furthermore, noninvasive measurement of such changes might lead to earlier diagnosis and treatment. Because glucose is the main source of energy for pulmonary inflammatory cells, the authors hypothesized that its pulmonary metabolism is increased shortly after smoke inhalation, when classic manifestations of acute lung injury are not yet expected. METHODS In five sheep, the authors induced unilateral injury with 48 breaths of cotton smoke while the contralateral lung served as control. The authors used positron emission tomography with: (1) [F]fluorodeoxyglucose to measure metabolic activity of pulmonary inflammatory cells; and (2) [N]nitrogen in saline to measure shunt and ventilation-perfusion distributions separately in the smoke-exposed and control lungs. RESULTS The pulmonary [F]fluorodeoxyglucose uptake rate was increased at 4 h after smoke inhalation (mean ± SD: 0.0031 ± 0.0013 vs. 0.0026 ± 0.0010 min; P < 0.05) mainly as a result of increased glucose phosphorylation. At this stage, there was no worsening in lung aeration or shunt. However, there was a shift of perfusion toward units with lower ventilation-to-perfusion ratio (mean ratio ± SD: 0.82 ± 0.10 vs. 1.12 ± 0.02; P < 0.05) and increased heterogeneity of the ventilation-perfusion distribution (mean ± SD: 0.21 ± 0.07 vs. 0.13 ± 0.01; P < 0 .05). CONCLUSION Using noninvasive imaging, the authors demonstrated that increased pulmonary [F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch occur early after smoke inhalation.
Collapse
|
34
|
Castillo R, Pham N, Ansari S, Meshkov D, Castillo S, Li M, Olanrewaju A, Hobbs B, Castillo E, Guerrero T. Pre-radiotherapy FDG PET predicts radiation pneumonitis in lung cancer. Radiat Oncol 2014; 9:74. [PMID: 24625207 PMCID: PMC3995607 DOI: 10.1186/1748-717x-9-74] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/02/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A retrospective analysis is performed to determine if pre-treatment [18 F]-2-fluoro-2-deoxyglucose positron emission tomography/computed tomography (FDG PET/CT) image derived parameters can predict radiation pneumonitis (RP) clinical symptoms in lung cancer patients. METHODS AND MATERIALS We retrospectively studied 100 non-small cell lung cancer (NSCLC) patients who underwent FDG PET/CT imaging before initiation of radiotherapy (RT). Pneumonitis symptoms were evaluated using the Common Terminology Criteria for Adverse Events version 4.0 (CTCAEv4) from the consensus of 5 clinicians. Using the cumulative distribution of pre-treatment standard uptake values (SUV) within the lungs, the 80th to 95th percentile SUV values (SUV(80) to SUV(95) were determined. The effect of pre-RT FDG uptake, dose, patient and treatment characteristics on pulmonary toxicity was studied using multiple logistic regression. RESULTS The study subjects were treated with 3D conformal RT (n=23), intensity modulated RT (n=64), and proton therapy (n=13). Multiple logistic regression analysis demonstrated that elevated pre-RT lung FDG uptake on staging FDG PET was related to development of RP symptoms after RT. A patient of average age and V(30) with SUV(95)=1.5 was an estimated 6.9 times more likely to develop grade ≥ 2 radiation pneumonitis when compared to a patient with SUV(95)=0.5 of the same age and identical V(30). Receiver operating characteristic curve analysis showed the area under the curve was 0.78 (95% CI=0.69 - 0.87). The CT imaging and dosimetry parameters were found to be poor predictors of RP symptoms. CONCLUSIONS The pretreatment pulmonary FDG uptake, as quantified by the SUV(95), predicted symptoms of RP in this study. Elevation in this pre-treatment biomarker identifies a patient group at high risk for post-treatment symptomatic RP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Thomas Guerrero
- The University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
35
|
Vincent JL. Dynamics of Regional Lung Inflammation: New Questions and Answers Using PET. ANNUAL UPDATE IN INTENSIVE CARE AND EMERGENCY MEDICINE 2014 2014. [PMCID: PMC7176157 DOI: 10.1007/978-3-319-03746-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The meaning of the term ‘inflammation’ has undergone considerable evolution. It was originally defined around the year 25 A.D. by Aulus Cornelius Celsus [1] and described the body’s acute reaction following a traumatic event, such as a microscopic tear of a ligament or muscle. His original wording: “Notae vero inflammationis sunt quatour: rubor et tumor cum calore et dolore” (true signs of inflammation are four: redness and swelling with heat and pain) still holds. Disturbance of function (functio laesa) is the legendary fifth cardinal sign of inflammation and was added by Galen in the second century A.D. [2]. Recent articles [3] highlight the complicated role that inflammation plays in chronic illnesses, including metabolic, cardiovascular and neurodegenerative diseases. In addition to these difficult-to-treat diseases, more research and research tools are needed to illuminate therapeutic strategies in another difficulty-to-treat inflammatory malady, the acute respiratory distress syndrome (ARDS).
Collapse
|
36
|
Saha D, Takahashi K, de Prost N, Winkler T, Pinilla-Vera M, Baron RM, Vidal Melo MF. Micro-autoradiographic assessment of cell types contributing to 2-deoxy-2-[(18)F]fluoro-D-glucose uptake during ventilator-induced and endotoxemic lung injury. Mol Imaging Biol 2013; 15:19-27. [PMID: 22752654 DOI: 10.1007/s11307-012-0575-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the study was to use micro-autoradiography to investigate the lung cell types responsible for 2-deoxy-2-[(18)F]fluoro-D-glucose (FDG) uptake in murine models of acute lung injury (ALI). PROCEDURES C57/BL6 mice were studied in three groups: controls, ventilator-induced lung injury (VILI), and endotoxin. VILI was produced by high tidal volumes and zero end-expiratory pressure and endotoxin ALI, by intranasal administration. Following FDG injection, the lungs were processed and exposed to autoradiographic emulsion. Grain density over cells was used to quantify FDG uptake. RESULTS Neutrophils, macrophages, and type 2 epithelial cells presented higher grain densities during VILI and endotoxin ALI than controls. Remarkably, cell grain density in specific cell types was dependent on the injury mechanism. Whereas macrophages showed high grain densities during endotoxin ALI, similar to those exhibited by neutrophils, type 2 epithelial cells demonstrated the second highest grain density (with neutrophils as the highest) during VILI. CONCLUSIONS In murine models of VILI and endotoxin ALI, FDG uptake occurs not only in neutrophils but also in macrophages and type 2 epithelial cells. FDG uptake by individual cell types depends on the mechanism underlying ALI.
Collapse
Affiliation(s)
- Dalia Saha
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Chen DL, Wang X, Yamamoto S, Carpenter D, Engle JT, Li W, Lin X, Kreisel D, Krupnick AS, Huang HJ, Gelman AE. Increased T cell glucose uptake reflects acute rejection in lung grafts. Am J Transplant 2013; 13:2540-9. [PMID: 23927673 PMCID: PMC3956601 DOI: 10.1111/ajt.12389] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/30/2013] [Accepted: 06/15/2013] [Indexed: 01/25/2023]
Abstract
Although T cells are required for acute lung rejection, other graft-infiltrating cells such as neutrophils accumulate in allografts and are also high glucose utilizers. Positron emission tomography (PET) with the glucose probe [(18)F]fluorodeoxyglucose ([(18)F]FDG) has been employed to image solid organ acute rejection, but the sources of glucose utilization remain undefined. Using a mouse model of orthotopic lung transplantation, we analyzed glucose probe uptake in the grafts of syngeneic and allogeneic recipients with or without immunosuppression treatment. Pulmonary microPET scans demonstrated significantly higher [(18)F]FDG uptake in rejecting allografts when compared to transplanted lungs of either immunosuppressed or syngeneic recipients. [(18)F]FDG uptake was also markedly attenuated following T cell depletion therapy in lung recipients with ongoing acute rejection. Flow cytometric analysis using the fluorescent deoxyglucose analog 2-NBDG revealed that T cells, and in particular CD8(+) T cells, were the largest glucose utilizers in acutely rejecting lung grafts followed by neutrophils and antigen-presenting cells. These data indicate that imaging modalities tailored toward assessing T cell metabolism may be useful in identifying acute rejection in lung recipients.
Collapse
Affiliation(s)
- Delphine L. Chen
- Department of Radiology, Washington University School of Medicine,
St. Louis, MO 63110 USA,Address correspondence to either: Delphine L. Chen, Division of
Radiological Sciences and Nuclear Medicine, Washington University School of
Medicine, Box 8223, 510 S. Kingshighway Blvd., St. Louis, MO 63110
or Andrew E. Gelman, Division of
Cardiothoracic Surgery, Washington University School of Medicine, Box 8234, 660
S. Euclid Ave., St. Louis, MO 63110
| | - Xingan Wang
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA
| | - Sumiharu Yamamoto
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA
| | - Danielle Carpenter
- Department of Pathology & Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| | - Jacquelyn T. Engle
- Department of Radiology, Washington University School of Medicine,
St. Louis, MO 63110 USA
| | - Wenjun Li
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA
| | - Xue Lin
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA,Department of Pathology & Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| | - Alexander S. Krupnick
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA
| | - Howard J. Huang
- Department of Medicine, Washington University School of Medicine,
St. Louis, MO 63110 USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St.
Louis, MO 63110 USA,Department of Pathology & Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA,Address correspondence to either: Delphine L. Chen, Division of
Radiological Sciences and Nuclear Medicine, Washington University School of
Medicine, Box 8223, 510 S. Kingshighway Blvd., St. Louis, MO 63110
or Andrew E. Gelman, Division of
Cardiothoracic Surgery, Washington University School of Medicine, Box 8234, 660
S. Euclid Ave., St. Louis, MO 63110
| |
Collapse
|
38
|
de Prost N, Costa EL, Wellman T, Musch G, Tucci MR, Winkler T, Harris R, Venegas JG, Kavanagh BP, Vidal Melo MF. Effects of ventilation strategy on distribution of lung inflammatory cell activity. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R175. [PMID: 23947920 PMCID: PMC4056777 DOI: 10.1186/cc12854] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 08/15/2013] [Indexed: 01/22/2023]
Abstract
Introduction Leukocyte infiltration is central to the development of acute lung injury, but it is not known how mechanical ventilation strategy alters the distribution or activation of inflammatory cells. We explored how protective (vs. injurious) ventilation alters the magnitude and distribution of lung leukocyte activation following systemic endotoxin administration. Methods Anesthetized sheep received intravenous endotoxin (10 ng/kg/min) followed by 2 h of either injurious or protective mechanical ventilation (n = 6 per group). We used positron emission tomography to obtain images of regional perfusion and shunting with infused 13N[nitrogen]-saline and images of neutrophilic inflammation with 18F-fluorodeoxyglucose (18F-FDG). The Sokoloff model was used to quantify 18F-FDG uptake (Ki), as well as its components: the phosphorylation rate (k3, a surrogate of hexokinase activity) and the distribution volume of 18F-FDG (Fe) as a fraction of lung volume (Ki = Fe × k3). Regional gas fractions (fgas) were assessed by examining transmission scans. Results Before endotoxin administration, protective (vs. injurious) ventilation was associated with a higher ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2) (351 ± 117 vs. 255 ± 74 mmHg; P < 0.01) and higher whole-lung fgas (0.71 ± 0.12 vs. 0.48 ± 0.08; P = 0.004), as well as, in dependent regions, lower shunt fractions. Following 2 h of endotoxemia, PaO2/FiO2 ratios decreased in both groups, but more so with injurious ventilation, which also increased the shunt fraction in dependent lung. Protective ventilation resulted in less nonaerated lung (20-fold; P < 0.01) and more normally aerated lung (14-fold; P < 0.01). Ki was lower during protective (vs. injurious) ventilation, especially in dependent lung regions (0.0075 ± 0.0043/min vs. 0.0157 ± 0.0072/min; P < 0.01). 18F-FDG phosphorylation rate (k3) was twofold higher with injurious ventilation and accounted for most of the between-group difference in Ki. Dependent regions of the protective ventilation group exhibited lower k3 values per neutrophil than those in the injurious ventilation group (P = 0.01). In contrast, Fe was not affected by ventilation strategy (P = 0.52). Lung neutrophil counts were not different between groups, even when regional inflation was accounted for. Conclusions During systemic endotoxemia, protective ventilation may reduce the magnitude and heterogeneity of pulmonary inflammatory cell metabolic activity in early lung injury and may improve gas exchange through its effects predominantly in dependent lung regions. Such effects are likely related to a reduction in the metabolic activity, but not in the number, of lung-infiltrating neutrophils.
Collapse
|
39
|
Echeverria AE, McCurdy M, Castillo R, Bernard V, Ramos NV, Buckley W, Castillo E, Liu P, Martinez J, Guerrero T. Proton therapy radiation pneumonitis local dose-response in esophagus cancer patients. Radiother Oncol 2012; 106:124-9. [PMID: 23127772 DOI: 10.1016/j.radonc.2012.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 08/03/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
PURPOSE This study quantifies pulmonary radiation toxicity in patients who received proton therapy for esophagus cancer. MATERIALS/METHODS We retrospectively studied 100 esophagus cancer patients treated with proton therapy. The linearity of the enhanced FDG uptake vs. proton dose was evaluated using the Akaike Information Criterion (AIC). Pneumonitis symptoms (RP) were assessed using the Common Toxicity Criteria for Adverse Events version 4.0 (CTCAEv4). The interaction of the imaging response with dosimetric parameters and symptoms was evaluated. RESULTS The RP scores were: 0 grade 4/5, 7 grade 3, 20 grade 2, 37 grade 1, and 36 grade 0. Each dosimetric parameter was significantly higher for the symptomatic group. The AIC winning models were 30 linear, 52 linear quadratic, and 18 linear logarithmic. There was no significant difference in the linear coefficient between models. The slope of the FDG vs. proton dose response was 0.022 for the symptomatic and 0.012 for the asymptomatic (p=0.014). Combining dosimetric parameters with the slope did not improve the sensitivity or accuracy in identifying symptomatic cases. CONCLUSIONS The proton radiation dose response on FDG PET/CT imaging exhibited a predominantly linear dose response on modeling. Symptomatic patients had a higher dose response slope.
Collapse
|
40
|
Dorward DA, Lucas CD, Rossi AG, Haslett C, Dhaliwal K. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther 2012; 135:182-99. [PMID: 22627270 DOI: 10.1016/j.pharmthera.2012.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
Abstract
Dysregulation of inflammation is central to the pathogenesis of innumerable human diseases. Understanding and tracking the critical events in inflammation are crucial for disease monitoring and pharmacological drug discovery and development. Recent progress in molecular imaging has provided novel insights into spatial associations, molecular events and temporal sequelae in the inflammatory process. While remaining a burgeoning field in pre-clinical research, increasing application in man affords researchers the opportunity to study disease pathogenesis in humans in situ thereby revolutionizing conventional understanding of pathophysiology and potential therapeutic targets. This review provides a description of commonly used molecular imaging modalities, including optical, radionuclide and magnetic resonance imaging, and details key advances and translational opportunities in imaging inflammation from initiation to resolution.
Collapse
Affiliation(s)
- D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
41
|
Amin R, Charron M, Grinblat L, Shammas A, Grasemann H, Graniel K, Ciet P, Tiddens H, Ratjen F. Cystic fibrosis: detecting changes in airway inflammation with FDG PET/CT. Radiology 2012; 264:868-75. [PMID: 22829680 DOI: 10.1148/radiol.12111873] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE To determine if fluorine 18 fluorodeoxyglucose (FDG) positron emission tomographic (PET)/computed tomographic (CT) imaging can depict a treatment effect from intravenous antibiotics for pulmonary exacerbation in cystic fibrosis (CF). MATERIALS AND METHODS The study was approved by the institutional review board of the Hospital for Sick Children and by Health Canada. Consent was obtained from all subjects. Patients with CF who were between 6 and 18 years of age and were admitted for a pulmonary exacerbation were eligible for the study. FDG PET/CT examinations (with low-dose CT) were performed on days 1 and 14 of admission (±72 hours). PET activity was quantified by using standardized uptake values (SUVs) through assessment of background activity (mean SUV [SUV(mean)]) and superimposed focal uptake (maximum SUV [SUV(max)]) for each lung zone. CT studies were scored by using the CF-CT model. SUVs from pre- and posttherapy studies were compared by using paired t tests. Unpaired t tests were used to compare data in patients with CF and data in 10 control subjects. RESULTS Twenty patients with CF were enrolled. Antibiotic therapy resulted in a significant decrease in SUV(max) (mean difference, 2.3 ± 2.1 [standard deviation], P < .0001). Pretherapy SUV(max) and SUV(mean) and posttherapy SUV(max) were significantly different from those in control subjects. The change in SUV(max) and percentage predicted forced expiratory volume in 1 second was negatively correlated. (R = -0.72, P = .004). Overall CF-CT scores significantly correlated with SUV(max) (R = 0.40, P = .01). CONCLUSION FDG PET/CT is a useful tool for detecting inflammatory changes resulting from treatment for pulmonary exacerbations in pediatric patients with CF. Inflammatory changes detected by using FDG PET/CT correlated with lung function, sputum neutrophil counts, and CF-CT scores. Analyzing focal lung inflammation (with SUV(max)) may be a feasible way to measure airway inflammation in patients with CF.
Collapse
Affiliation(s)
- Reshma Amin
- Division of Respiratory Medicine, Department of Paediatrics, Hospital for Sick Children, University of Toronto, 555 University Ave, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Jonsson CB, Camp JV, Wu A, Zheng H, Kraenzle JL, Biller AE, Vanover CD, Chu YK, Ng CK, Proctor M, Sherwood L, Steffen MC, Mollura DJ. Molecular imaging reveals a progressive pulmonary inflammation in lower airways in ferrets infected with 2009 H1N1 pandemic influenza virus. PLoS One 2012; 7:e40094. [PMID: 22911695 PMCID: PMC3401186 DOI: 10.1371/journal.pone.0040094] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/31/2012] [Indexed: 12/16/2022] Open
Abstract
Molecular imaging has gained attention as a possible approach for the study of the progression of inflammation and disease dynamics. Herein we used [(18)F]-2-deoxy-2-fluoro-D-glucose ([(18)F]-FDG) as a radiotracer for PET imaging coupled with CT (FDG-PET/CT) to gain insight into the spatiotemporal progression of the inflammatory response of ferrets infected with a clinical isolate of a pandemic influenza virus, H1N1 (H1N1pdm). The thoracic regions of mock- and H1N1pdm-infected ferrets were imaged prior to infection and at 1, 2, 3 and 6 days post-infection (DPI). On 1 DPI, FDG-PET/CT imaging revealed areas of consolidation in the right caudal lobe which corresponded with elevated [(18)F]-FDG uptake (maximum standardized uptake values (SUVMax), 4.7-7.0). By days 2 and 3, consolidation (CT) and inflammation ([(18)F]-FDG) appeared in the left caudal lobe. By 6 DPI, CT images showed extensive areas of patchy ground-glass opacities (GGO) and consolidations with the largest lesions having high SUVMax (6.0-7.6). Viral shedding and replication were detected in most nasal, throat and rectal swabs and nasal turbinates and lungs on 1, 2 and 3 DPI, but not on day 7, respectively. In conclusion, molecular imaging of infected ferrets revealed a progressive consolidation on CT with corresponding [(18)F]-FDG uptake. Strong positive correlations were measured between SUVMax and bronchiolitis-related pathologic scoring (Spearman's ρ = 0.75). Importantly, the extensive areas of patchy GGO and consolidation seen on CT in the ferret model at 6 DPI are similar to that reported for human H1N1pdm infections. In summary, these first molecular imaging studies of lower respiratory infection with H1N1pdm show that FDG-PET can give insight into the spatiotemporal progression of the inflammation in real-time.
Collapse
Affiliation(s)
- Colleen B Jonsson
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
McCurdy MR, Castillo R, Martinez J, Al Hallack MN, Lichter J, Zouain N, Guerrero T. [18F]-FDG uptake dose-response correlates with radiation pneumonitis in lung cancer patients. Radiother Oncol 2012; 104:52-7. [PMID: 22578806 DOI: 10.1016/j.radonc.2012.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 03/23/2012] [Accepted: 04/03/2012] [Indexed: 11/16/2022]
Abstract
PURPOSE To quantify the post-radiotherapy 2-[(18)F]-fluoro-2-deoxyglucose (FDG) pulmonary uptake dose-response in lung cancer patients and determine its relationship with radiation pneumonitis symptoms. METHODS AND MATERIALS The data from 24 patients treated for lung cancer with thoracic radiotherapy who received restaging PET/CT imaging between 4 and 12 weeks after radiotherapy completion were evaluated. Their radiation dose distribution was registered with the post-treatment restaging PET/CT. Using histogram analysis, the voxel average FDG-PET uptake vs. radiation dose was obtained for each case and linear regression was performed. The resulting slope, the pulmonary metabolic radiation response (PMRR), was used to characterize the dose-response. The Common Toxicity Criteria version 3 was used to score clinical pulmonary toxicity symptoms. Receiver operating characteristic (ROC) curves were used to determine the level of FDG uptake vs. dose, MLD, V(5), V(10), V(20), and V(30) that can best predict symptomatic and asymptomatic patients. RESULTS The median time between radiotherapy completion and FDG-PET imaging was 59 days (range, 26-70 days). The median of the mean SUV from lung that received 0-5 Gy was 1.00 (range, 0.37-1.48), 5-10 Gy was 1.01 (range, 0.37-1.77), 10-20 Gy was 1.04 (0.42-1.53), and >20 Gy was 1.29 (range, 0.41-8.01). Using the dose range of 0 Gy to the maximum dose minus 10 Gy, hierarchical linear regression model of the radiation dose and normalized FDG uptake per case found an adequate fit with the linear model. Pneumonitis scores were: Grade 0 for 13, Grade 1 for 5, Grade 2 for 6, and Grade 3, 4 or 5 for none. Using a PMRR threshold of 0.017 yields an associated true positive rate of 0.67 and false positive rate of 0.15 with average error of 30%. A V(5) threshold of 57.6 gives an associated true positive rate of 0.67 and false positive rate of 0.05 with a 20% average error. CONCLUSION The metabolic radiation pneumonitis dose-response was evaluated from post-treatment FDG-PET/CT imaging. Statistical modeling found a linear relationship. The FDG uptake dose-response and V(5) correlated with symptomatic radiation pneumonitis.
Collapse
Affiliation(s)
- Matthew R McCurdy
- Division of Medicine, University of North Dakota School of Medicine, Grand Forks, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Zambelli V, Di Grigoli G, Scanziani M, Valtorta S, Amigoni M, Belloli S, Messa C, Pesenti A, Fazio F, Bellani G, Moresco RM. Time course of metabolic activity and cellular infiltration in a murine model of acid-induced lung injury. Intensive Care Med 2012; 38:694-701. [PMID: 22278592 DOI: 10.1007/s00134-011-2456-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 11/28/2011] [Indexed: 01/11/2023]
Abstract
PURPOSE This study investigates whether positron emission tomography (PET) can be used to monitor the inflammatory response and its correlation with the later fibroproliferative phase in an experimental model of acute lung injury. METHODS Hydrochloric acid (0.1 N, pH 1, 1.5 ml/kg) was instilled into the right bronchus of mice. A group of mice underwent a micro-computed tomography (CT) scan 1 h after lung injury and a series of 2-[(18)F]fluorine-2-deoxy-D: -glucose (FDG)-PET scans (6, 24 and 48 h and 7 days after surgery). After 21 days respiratory static compliance was assessed and lung tissue was collected in order to measure the hydroxy (OH)-proline content. Other groups of mice underwent micro-CT and micro-PET scans at the same time points, and then were immediately killed to assess arterial blood gases and histology. RESULTS Histological analysis showed the recruitment of neutrophils and macrophages into the damaged lung, reaching the peak at 24 and 48 h, respectively. The time course of the [(18)F]FDG signal, used as a marker of inflammation, correlated with that of recruited inflammatory cells. In mice killed 21 days after the surgery, a correlation was found between reduced respiratory static compliance and high PET signal 7 days after lung injury. The PET signal also correlated with the OH-proline content. CONCLUSIONS This study demonstrated that PET imaging is a valid means of tracking the inflammatory response, also in longitudinal studies. Moreover, a correlation was found between persistence of the inflammatory response and fibrotic evolution of the injury.
Collapse
Affiliation(s)
- Vanessa Zambelli
- Department of Experimental Medicine (DIMS), University of Milan-Bicocca, Via Cadore 48, 20900 Monza, MB, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Guerrero T, Martinez J, McCurdy MR, Wolski M, McAleer MF. Elevation in exhaled nitric oxide predicts for radiation pneumonitis. Int J Radiat Oncol Biol Phys 2012; 82:981-8. [PMID: 21377296 PMCID: PMC3626498 DOI: 10.1016/j.ijrobp.2010.08.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 08/11/2010] [Accepted: 08/14/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE Radiation pneumonitis is a major toxicity after thoracic radiotherapy (RT), with no method available to accurately predict the individual risk. This was a prospective study to evaluate exhaled nitric oxide as a predictive biomarker for radiation pneumonitis in esophageal cancer patients. PATIENTS AND METHODS A total of 34 patients prescribed neoadjuvant chemoradiotherapy for esophageal cancer were enrolled in the present trial. Each patient underwent respiratory surveys and exhaled nitric oxide (NO) measurements before, at the end of, and 1 to 2 months after completing RT. Pneumonitis toxicity was scored using the Common Terminology Criteria for Adverse Events, version 4.0. The demographics, dosimetric factors, and exhaled NO levels were evaluated for correlation with symptomatic patients (scores ≥ 2). RESULTS Of the 34 patients, 28 were evaluable. All had received 50.4 Gy RT with concurrent chemotherapy. The pneumonitis toxicity score was Grade 3 for 1, Grade 2 for 3, Grade 1 for 7, and Grade 0 for 17. The dosimetric factors were not predictive of symptoms. The mean exhaled NO level measured before, at completion, and at restaging was 17.3 ± 8.5 (range, 5.5-36.7), 16.0 ± 14.2 (range, 5.8-67.7), and 14.7 ± 6.2 (range, 5.5-28.0) parts per billion, respectively. The ratio of exhaled NO at the end of RT vs. before treatment was 3.4 (range, 1.7-6.7) for the symptomatic and 0.8 (range, 0.3-1.3) for the asymptomatic (p = .0017) patients. The elevation in exhaled NO preceded the peak symptoms by 33 days (range, 21-50). The interval to peak symptoms was inversely related to the exhaled NO elevation. CONCLUSIONS Elevations in exhaled NO at the end of RT was found to predict for radiation pneumonitis symptoms.
Collapse
Affiliation(s)
- Thomas Guerrero
- Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
46
|
McCurdy MR, Wazni MW, Martinez J, McAleer MF, Guerrero T. Exhaled nitric oxide predicts radiation pneumonitis in esophageal and lung cancer patients receiving thoracic radiation. Radiother Oncol 2011; 101:443-8. [PMID: 21981878 DOI: 10.1016/j.radonc.2011.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND PURPOSE Radiation pneumonitis is a significant toxicity following thoracic radiotherapy with no method to predict individual risk. MATERIALS AND METHODS Sixty-five patients receiving thoracic radiation for lung or esophageal cancer were enrolled in a phase II study. Each patient received respiratory surveys and exhaled nitric oxide measurements before, on the last day of, and 30-60 days after completing radiotherapy (RT). Pneumonitis toxicity was scored using the common terminology criteria for adverse events, version 4.0. The demographics, dosimetric factors, and nitric oxide ratio (NOR) of end RT/pre-RT were evaluated for correlation with symptomatic patients (Grade ≥ 2). RESULTS Fifty patients completed the trial. The pneumonitis toxicity score was: Grade 3 for 1 patient, Grade 2 for 6 patients, Grade 1 for 18 patients, and Grade 0 for 25 patients. Dosimetric factors were not predictive of symptoms. The NOR was 3.0 ± 1.8 (range 1.47-6.73) for the symptomatic and 0.78 ± 0.29 (range 0.33-1.37) for the asymptomatic patients (p=0.006). A threshold NOR of 1.4 separated symptomatic and asymptomatic patients (p<0.001). The average error was 4%. CONCLUSIONS Elevation in eNO on the last day of radiotherapy predicted subsequent symptomatic radiation pneumonitis weeks to months after treatment.
Collapse
Affiliation(s)
- Matthew R McCurdy
- Division of Radiation Oncology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | |
Collapse
|
47
|
de Prost N, Costa EL, Wellman T, Musch G, Winkler T, Tucci MR, Harris RS, Venegas JG, Vidal Melo MF. Effects of surfactant depletion on regional pulmonary metabolic activity during mechanical ventilation. J Appl Physiol (1985) 2011; 111:1249-58. [PMID: 21799132 DOI: 10.1152/japplphysiol.00311.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inflammation during mechanical ventilation is thought to depend on regional mechanical stress. This can be produced by concentration of stresses and cyclic recruitment in low-aeration dependent lung. Positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) allows for noninvasive assessment of regional metabolic activity, an index of neutrophilic inflammation. We tested the hypothesis that, during mechanical ventilation, surfactant-depleted low-aeration lung regions present increased regional (18)F-FDG uptake suggestive of in vivo increased regional metabolic activity and inflammation. Sheep underwent unilateral saline lung lavage and were ventilated supine for 4 h (positive end-expiratory pressure = 10 cmH(2)O, tidal volume adjusted to plateau pressure = 30 cmH(2)O). We used PET scans of injected (13)N-nitrogen to compute regional perfusion and ventilation and injected (18)F-FDG to calculate (18)F-FDG uptake rate. Regional aeration was quantified with transmission scans. Whole lung (18)F-FDG uptake was approximately two times higher in lavaged than in nonlavaged lungs (2.9 ± 0.6 vs. 1.5 ± 0.3 10(-3)/min; P < 0.05). The increased (18)F-FDG uptake was topographically heterogeneous and highest in dependent low-aeration regions (gas fraction 10-50%, P < 0.001), even after correction for lung density and wet-to-dry lung ratios. (18)F-FDG uptake in low-aeration regions of lavaged lungs was higher than that in low-aeration regions of nonlavaged lungs (P < 0.05). This occurred despite lower perfusion and ventilation to dependent regions in lavaged than nonlavaged lungs (P < 0.001). In contrast, (18)F-FDG uptake in normally aerated regions was low and similar between lungs. Surfactant depletion produces increased and heterogeneously distributed pulmonary (18)F-FDG uptake after 4 h of supine mechanical ventilation. Metabolic activity is highest in poorly aerated dependent regions, suggesting local increased inflammation.
Collapse
Affiliation(s)
- Nicolas de Prost
- Dept. of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vij N. Nano-based theranostics for chronic obstructive lung diseases: challenges and therapeutic potential. Expert Opin Drug Deliv 2011; 8:1105-9. [PMID: 21711085 DOI: 10.1517/17425247.2011.597381] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The major challenges in the delivery and therapeutic efficacy of nano-delivery systems in chronic obstructive airway conditions are airway defense, severe inflammation and mucous hypersecretion. Chronic airway inflammation and mucous hypersecretion are hallmarks of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease) and CF (cystic fibrosis). Distinct etiologies drive inflammation and mucous hypersecretion in these diseases, which are further induced by infection or components of cigarette smoke. Controlling chronic inflammation is at the root of treatments such as corticosteroids, antibiotics or other available drugs, which pose the challenge of sustained delivery of drugs to target cells or tissues. In spite of the wide application of nano-based drug delivery systems, very few are tested to date. Targeted nanoparticle-mediated sustained drug delivery is required to control inflammatory cell chemotaxis, fibrosis, protease-mediated chronic emphysema and/or chronic lung obstruction in COPD. Moreover, targeted epithelial delivery is indispensable for correcting the underlying defects in CF and targeted inflammatory cell delivery for controlling other chronic inflammatory lung diseases. We propose that the design and development of nano-based targeted theranostic vehicles with therapeutic, imaging and airway-defense penetrating capability, will be invaluable for treating chronic obstructive lung diseases. This paper discusses a novel nano-theranostic strategy that we are currently evaluating to treat the underlying cause of CF and COPD lung disease.
Collapse
|
49
|
Positron emission tomography: a tool for better understanding of ventilator-induced and acute lung injury. Curr Opin Crit Care 2011; 17:7-12. [PMID: 21169828 DOI: 10.1097/mcc.0b013e32834272ab] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW PET has recently gained traction among several groups of investigators as an imaging tool to study lung pathophysiology in vivo noninvasively on a regional basis. This review aims to present the major findings of PET studies on acute lung injury (ALI) and ventilator-induced lung injury (VILI) with a perspective relevant to the physiologist-intensivist. RECENT FINDINGS Using various tracers, PET has been used to investigate the relationship between the distributions of pulmonary perfusion, ventilation and aeration, and the effect of positive end-expiratory pressure, recruitment maneuvers, prone positioning, and endotoxin on these distributions in ALI. More recently, PET with 2-[18F]fluoro-2-deoxy-D-glucose has been used to measure regional neutrophil metabolic activation in ALI and VILI. Because gas exchange impairment and inflammation are two hallmarks of ALI and VILI, these studies have provided significant insights into the pathophysiology of these conditions. SUMMARY PET is a versatile imaging tool for physiologic investigation. By imaging the regional effects of interventions commonly performed in critically ill patients with ALI, PET has improved our understanding of the mechanism by which such interventions can exert their positive or negative effects as well as of the pathophysiology of ALI and VILI.
Collapse
|
50
|
Schroeder T, Vidal Melo MF, Venegas JG. Analysis of 2-[Fluorine-18]-Fluoro-2-deoxy-D-glucose uptake kinetics in PET studies of pulmonary inflammation. Acad Radiol 2011; 18:418-23. [PMID: 21292507 DOI: 10.1016/j.acra.2010.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Dynamic positron emission tomography (PET) imaging of the lung using the radiotracer 2-[fluorine-18]-fluoro-2-deoxy-D-glucose ((18)F-FDG) is an emerging method to assess noninvasively the metabolic activity of pulmonary inflammatory cells. Nevertheless, because of the distinct functional and structural characteristics of inflamed lung tissue standard methods of (18)F-FDG analysis can be substantially limited and there is no consensus about the best method for quantification of the (18)F-FDG signal for acute or chronic inflammatory lung diseases. This article gives an overview on recent advances in quantitative analysis of (18)F-FDG uptake kinetics in non-neoplastic inflamed lung tissue.
Collapse
|