1
|
Tait CC, Ramirez MD, Katz PS. Egg-laying hormone expression in identified neurons across developmental stages and reproductive states of the nudibranch Berghia stephanieae. Horm Behav 2024; 164:105578. [PMID: 38925074 PMCID: PMC11330727 DOI: 10.1016/j.yhbeh.2024.105578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Neuropeptides play essential roles in coordinating reproduction. Egg-laying hormone (ELH) is conserved in genetic sequence and behavioral function across molluscs, where neuronal clusters secrete ELH to modulate and induce egg-laying. Here we investigated ELH in the nudibranch mollusc, Berghia stephanieae. ELH preprohormone gene orthologs, which showed clade-specific differences at the C-terminus of the predicted bioactive peptide, were identified in brain transcriptomes across several nudipleuran species, including B. stephanieae. ELH shares deep homology with the corticotropin-releasing hormone gene family, which has roles broadly in stress response. Injection of synthesized B. stephanieae ELH peptide into mature individuals induced egg-laying. ELH gene expression in the brain and body was mapped using in-situ hybridization chain reaction. Across the adult brain, 300-400 neurons expressed ELH. Twenty-one different cell types were identified in adults, three of which were located unilaterally on the right side, which corresponds to the location of the reproductive organs. Ten cell types were present in pre-reproductive juvenile stages. An asymmetric cluster of approximately 100 small neurons appeared in the right pedal ganglion of late-stage juveniles. Additional neurons in the pleural and pedal ganglia expressed ELH only in adults that were actively laying eggs and sub-adults that were on the verge of doing so, implicating their direct role in reproduction. Outside the brain, ELH was expressed on sensory appendages, including in presumptive sensory neurons. Its widespread expression in the nudibranch B. stephanieae suggests that ELH plays a role beyond reproduction in gastropod molluscs.
Collapse
Affiliation(s)
- Cheyenne C Tait
- Department of Biology, University of Massachusetts Amherst, United States of America.
| | - M Desmond Ramirez
- Department of Biology, University of Massachusetts Amherst, United States of America
| | - Paul S Katz
- Department of Biology, University of Massachusetts Amherst, United States of America; Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, United States of America
| |
Collapse
|
2
|
Hamanaka Y, Hasebe M, Shiga S. Neural mechanism of circadian clock-based photoperiodism in insects and snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:601-625. [PMID: 37596422 PMCID: PMC11226556 DOI: 10.1007/s00359-023-01662-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023]
Abstract
The photoperiodic mechanism distinguishes between long and short days, and the circadian clock system is involved in this process. Although the necessity of circadian clock genes for photoperiodic responses has been demonstrated in many species, how the clock system contributes to photoperiodic mechanisms remains unclear. A comprehensive study, including the functional analysis of relevant genes and physiology of their expressing cells, is necessary to understand the molecular and cellular mechanisms. Since Drosophila melanogaster exhibits a shallow photoperiodism, photoperiodic mechanisms have been studied in non-model species, starting with brain microsurgery and neuroanatomy, followed by genetic manipulation in some insects. Here, we review and discuss the involvement of the circadian clock in photoperiodic mechanisms in terms of neural networks in insects. We also review recent advances in the neural mechanisms underlying photoperiodic responses in insects and snails, and additionally circadian clock systems in snails, whose involvement in photoperiodism has hardly been addressed yet. Brain neurosecretory cells, insulin-like peptide/diuretic hormone44-expressing pars intercerebralis neurones in the bean bug Riptortus pedestris and caudo-dorsal cell hormone-expressing caudo-dorsal cells in the snail Lymnaea stagnalis, both promote egg laying under long days, and their electrical excitability is attenuated under short and medium days, which reduces oviposition. The photoperiodic responses of the pars intercerebralis neurones are mediated by glutamate under the control of the clock gene period. Thus, we are now able to assess the photoperiodic response by neurosecretory cell activity to investigate the upstream mechanisms, that is, the photoperiodic clock and counter.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Masaharu Hasebe
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Sakiko Shiga
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
3
|
Chistopolsky I, Leonova A, Mezheritskiy M, Boguslavsky D, Kristinina A, Zakharov I, Sorminskiy A, Vorontsov D, Dyakonova V. Intense Locomotion Enhances Oviposition in the Freshwater Mollusc Lymnaea stagnalis: Cellular and Molecular Correlates. BIOLOGY 2023; 12:764. [PMID: 37372049 DOI: 10.3390/biology12060764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023]
Abstract
Intense species-specific locomotion changes the behavioural and cognitive states of various vertebrates and invertebrates. However, whether and how reproductive behaviour is affected by previous increased motor activity remains largely unknown. We addressed this question using a model organism, the pond snail Lymnaea stagnalis. Intense crawling in shallow water for two hours had previously been shown to affect orienting behaviour in a new environment as well as the state of the serotonergic system in L. stagnalis. We found that the same behaviour resulted in an increased number of egg clutches and the total number of eggs laid in the following 24 h. However, the number of eggs per clutch was not affected. This effect was significantly stronger from January to May, in contrast to the September-December period. Transcripts of the egg-laying prohormone gene and the tryptophan hydroxylase gene, which codes for the rate-limiting enzyme in serotonin synthesis, were significantly higher in the central nervous system of snails that rested in clean water for two hours after intense crawling. Additionally, the neurons of the left (but not the right) caudo-dorsal cluster (CDC), which produce the ovulation hormone and play a key role in oviposition, responded to stimulation with a higher number of spikes, although there were no differences in their resting membrane potentials. We speculate that the left-right asymmetry of the response was due to the asymmetric (right) location of the male reproductive neurons having an antagonistic influence on the female hormonal system in the hermaphrodite mollusc. Serotonin, which is known to enhance oviposition in L. stagnalis, had no direct effect on the membrane potential or electrical activity of CDC neurons. Our data suggest that (i) two-hour crawling in shallow water enhances oviposition in L. stagnalis, (ii) the effect depends on the season, and (iii) the underlying mechanisms may include increased excitability of the CDC neurons and increased expression of the egg-laying prohormone gene.
Collapse
Affiliation(s)
- Ilya Chistopolsky
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Alexandra Leonova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Maxim Mezheritskiy
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitri Boguslavsky
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Angelina Kristinina
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Igor Zakharov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrey Sorminskiy
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Dmitri Vorontsov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Varvara Dyakonova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
4
|
Bouly L, Vignet C, Carayon JL, Malgouyres JM, Fenet H, Géret F. Multigenerational responses in the Lymnaea stagnalis freshwater gastropod exposed to diclofenac at environmental concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106266. [PMID: 36037607 DOI: 10.1016/j.aquatox.2022.106266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/17/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Over the last decade, there has been increased concern about the occurrence of diclofenac (DCF) in aquatic ecosystems. Living organisms could be exposed to this "pseudo-persistent" pharmaceutical for more than one generation. In this multigenerational study, we assessed the DCF impact at environmentally relevant concentrations on the life history and behavioral parameters of two offspring generations (F1 and F2) of the Lymnaea stagnalis freshwater gastropod. Snail growth was affected by DCF in the F1 generation, with increased shell sizes of juveniles exposed to 0.1 µg L - 1 concentration and a decreased shell size at 2 and 10 µg L - 1. DCF also lowered food intake, enhanced locomotion activity and reduced the number of eggs/egg mass in the F1 generation. For the F2 generation, shorter time to hatch, faster growth, increased food intake and production of more egg masses/snail were induced by DCF exposure at 10 µg L - 1. Over time, DCF exposure led to maximization of L. stagnalis reproductive function. These results show that multigenerational studies are crucial to reveal adaptive responses to chronic contaminant exposure, which are not observable after short-term exposure.
Collapse
Affiliation(s)
- Lucie Bouly
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France; HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France.
| | - Caroline Vignet
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Luc Carayon
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Jean-Michel Malgouyres
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| | - Hélène Fenet
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - Florence Géret
- Biochimie et Toxicologie des Substances Bioactives, EA 7417, INU Champollion, Albi, France
| |
Collapse
|
5
|
Rosato M, Hoelscher B, Lin Z, Agwu C, Xu F. Transcriptome analysis provides genome annotation and expression profiles in the central nervous system of Lymnaea stagnalis at different ages. BMC Genomics 2021; 22:637. [PMID: 34479505 PMCID: PMC8414863 DOI: 10.1186/s12864-021-07946-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The pond snail, Lymnaea stagnalis (L. stagnalis), has served as a valuable model organism for neurobiology studies due to its simple and easily accessible central nervous system (CNS). L. stagnalis has been widely used to study neuronal networks and recently gained popularity for study of aging and neurodegenerative diseases. However, previous transcriptome studies of L. stagnalis CNS have been exclusively carried out on adult L. stagnalis only. As part of our ongoing effort studying L. stagnalis neuronal growth and connectivity at various developmental stages, we provide the first age-specific transcriptome analysis and gene annotation of young (3 months), adult (6 months), and old (18 months) L. stagnalis CNS. RESULTS Using the above three age cohorts, our study generated 55-69 millions of 150 bp paired-end RNA sequencing reads using the Illumina NovaSeq 6000 platform. Of these reads, ~ 74% were successfully mapped to the reference genome of L. stagnalis. Our reference-based transcriptome assembly predicted 42,478 gene loci, of which 37,661 genes encode coding sequences (CDS) of at least 100 codons. In addition, we provide gene annotations using Blast2GO and functional annotations using Pfam for ~ 95% of these sequences, contributing to the largest number of annotated genes in L. stagnalis CNS so far. Moreover, among 242 previously cloned L. stagnalis genes, we were able to match ~ 87% of them in our transcriptome assembly, indicating a high percentage of gene coverage. The expressional differences for innexins, FMRFamide, and molluscan insulin peptide genes were validated by real-time qPCR. Lastly, our transcriptomic analyses revealed distinct, age-specific gene clusters, differentially expressed genes, and enriched pathways in young, adult, and old CNS. More specifically, our data show significant changes in expression of critical genes involved in transcription factors, metabolisms (e.g. cytochrome P450), extracellular matrix constituent, and signaling receptor and transduction (e.g. receptors for acetylcholine, N-Methyl-D-aspartic acid, and serotonin), as well as stress- and disease-related genes in young compared to either adult or old snails. CONCLUSIONS Together, these datasets are the largest and most updated L. stagnalis CNS transcriptomes, which will serve as a resource for future molecular studies and functional annotation of transcripts and genes in L. stagnalis.
Collapse
Affiliation(s)
- Martina Rosato
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Brittany Hoelscher
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA
| | - Zhenguo Lin
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA
| | - Chidera Agwu
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA
| | - Fenglian Xu
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, MO, USA. .,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, St. Louis, MO, USA. .,Department of Pharmacology and Physiology, Saint Louis University, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Photoperiod controls egg laying and caudodorsal cell hormone expression but not gonadal development in the pond snail Lymnaea stagnalis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:523-532. [PMID: 34091708 DOI: 10.1007/s00359-021-01494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Photoperiod is a reliable cue to regulate growth and reproduction for seasonal adaptation. Although photoperiodism has been well studied in Chordata and Arthropoda, less is known about Mollusca. We examined photoperiodic effects on egg laying, body size, gonad-somatic index, oocyte size and relative amounts of caudodorsal cell hormone mRNA in individual rearing conditions in the pond snail Lymnaea stagnalis. Twenty-five weeks after hatching, the percentages of egg-laying snails under a photoperiod of 12 h light and 12 h darkness (12L:12D) were significantly smaller than those under longer days. The total numbers of eggs and egg masses under 12L:12D were significantly smaller than those under longer days. Significant differences between 16L:8D and 12L:12D were not observed in the soft body and ovotestis weight, and the gonad-somatic index. Photoperiodic effects were also not observed in oocyte diameters twenty-two weeks after hatching. Twenty-seven weeks after hatching amounts of caudodorsal cell hormone mRNA were significantly lower in the cerebral ganglia with commissure under 12L:12D than 16L:8D. L. stagnalis exhibited a clear photoperiodic response in egg laying and the amount of caudodorsal cell hormone mRNA, but not in gonadal development. Under 12L:12D suppression of caudodorsal cell hormone expression might suppress egg laying.
Collapse
|
7
|
Lombardo P, Miccoli FP. A note on oviposition by Lymnaea stagnalis (Linnaeus, 1758) (Gastropoda: Pulmonata: Lymnaeidae) on shells of conspecifics under laboratory conditions. FOLIA MALACOLOGICA 2017. [DOI: 10.12657/folmal.025.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Characterisation of Reproduction-Associated Genes and Peptides in the Pest Land Snail, Theba pisana. PLoS One 2016; 11:e0162355. [PMID: 27706146 PMCID: PMC5051934 DOI: 10.1371/journal.pone.0162355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/22/2016] [Indexed: 01/18/2023] Open
Abstract
Increased understanding of the molecular components involved in reproduction may assist in understanding the evolutionary adaptations used by animals, including hermaphrodites, to produce offspring and retain a continuation of their lineage. In this study, we focus on the Mediterranean snail, Theba pisana, a hermaphroditic land snail that has become a highly invasive pest species within agricultural areas throughout the world. Our analysis of T. pisana CNS tissue has revealed gene transcripts encoding molluscan reproduction-associated proteins including APGWamide, gonadotropin-releasing hormone (GnRH) and an egg-laying hormone (ELH). ELH isoform 1 (ELH1) is known to be a potent reproductive peptide hormone involved in ovulation and egg-laying in some aquatic molluscs. Two other non-CNS ELH isoforms were also present in T. pisana (Tpi-ELH2 and Tpi-ELH3) within the snail dart sac and mucous glands. Bioactivity of a synthetic ELH1 on sexually mature T. pisana was confirmed through bioassay, with snails showing ELH1-induced egg-laying behaviours, including soil burrowing and oviposition. In summary, this study presents a detailed molecular analysis of reproductive neuropeptide genes in a land snail and provides a foundation for understanding ELH function.
Collapse
|
9
|
Mendoza-Porras O, Botwright NA, Reverter A, Cook MT, Harris JO, Wijffels G, Colgrave ML. Identification of differentially expressed reproductive and metabolic proteins in the female abalone (Haliotis laevigata) gonad following artificial induction of spawning. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 24:127-138. [PMID: 27268288 DOI: 10.1016/j.cbd.2016.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/14/2016] [Accepted: 04/30/2016] [Indexed: 10/21/2022]
Abstract
Inefficient control of temperate abalone spawning prevents pair-wise breeding and production of abalone with highly marketable traits. Traditionally, abalone farmers have used a combination of UV irradiation and application of temperature gradients to the tank water to artificially induce spawning. Proteins are known to regulate crucial processes such as respiration, muscle contraction, feeding, growth and reproduction. Spawning as a pre-requisite of abalone reproduction is likely to be regulated, in part, by endogenous proteins. A first step in elucidating the mechanisms that regulate spawning is to identify which proteins are directly involved during spawning. The present study examined protein expression following traditional spawning induction in the Haliotis laevigata female. Gonads were collected from abalone in the following physiological states: (1) spawning; (2) post-spawning; and (3) failed-to-spawn. Differential protein abundance was initially assessed using two-dimensional difference in-gel electrophoresis coupled with mass spectrometry for protein identification. A number of reproductive proteins such as vitellogenin, vitelline envelope zona pellucida domain 29 and prohibitin, and metabolic proteins such as thioredoxin peroxidase, superoxide dismutase and heat shock proteins were identified. Differences in protein abundance levels between physiological states were further assessed using scheduled multiple reaction monitoring mass spectrometry. Positive associations were observed between the abundance of specific proteins, such as heat shock cognate 70 and peroxiredoxin 6, and the propensity or failure to spawn in abalone. These findings have contributed to better understand both the effects of oxidative and heat stress over abalone physiology and their influence on abalone spawning.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia; School of Biological Sciences, Flinders University, GPO Box 2100, South Australia 5001, Australia; Australian Seafood Cooperative Research Centre, Science Park Adelaide, Laffer Drive, Bedford Park, South Australia 5042, Australia.
| | - Natasha A Botwright
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia.
| | - Antonio Reverter
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia.
| | - Mathew T Cook
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia.
| | - James O Harris
- School of Biological Sciences, Flinders University, GPO Box 2100, South Australia 5001, Australia.
| | - Gene Wijffels
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia.
| | - Michelle L Colgrave
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia.
| |
Collapse
|
10
|
Zatylny-Gaudin C, Cornet V, Leduc A, Zanuttini B, Corre E, Le Corguillé G, Bernay B, Garderes J, Kraut A, Couté Y, Henry J. Neuropeptidome of the Cephalopod Sepia officinalis: Identification, Tissue Mapping, and Expression Pattern of Neuropeptides and Neurohormones during Egg Laying. J Proteome Res 2015; 15:48-67. [PMID: 26632866 DOI: 10.1021/acs.jproteome.5b00463] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cephalopods exhibit a wide variety of behaviors such as prey capture, communication, camouflage, and reproduction thanks to a complex central nervous system (CNS) divided into several functional lobes that express a wide range of neuropeptides involved in the modulation of behaviors and physiological mechanisms associated with the main stages of their life cycle. This work focuses on the neuropeptidome expressed during egg-laying through de novo construction of the CNS transcriptome using an RNAseq approach (Illumina sequencing). Then, we completed the in silico analysis of the transcriptome by characterizing and tissue-mapping neuropeptides by mass spectrometry. To identify neuropeptides involved in the egg-laying process, we determined (1) the neuropeptide contents of the neurohemal area, hemolymph (blood), and nerve endings in mature females and (2) the expression levels of these peptides. Among the 38 neuropeptide families identified from 55 transcripts, 30 were described for the first time in Sepia officinalis, 5 were described for the first time in the animal kingdom, and 14 were strongly overexpressed in egg-laying females as compared with mature males. Mass spectrometry screening of hemolymph and nerve ending contents allowed us to clarify the status of many neuropeptides, that is, to determine whether they were neuromodulators or neurohormones.
Collapse
Affiliation(s)
- Céline Zatylny-Gaudin
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Valérie Cornet
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Alexandre Leduc
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France
| | - Bruno Zanuttini
- Normandy University , GREYC, UMR CNRS 6072, F-14032 Caen, France
| | - Erwan Corre
- UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | | | - Benoît Bernay
- Normandy University , F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| | - Johan Garderes
- Center for Marine Research, "Ruder Boskovic" Institute , HR-52210 Rovinj, Croatia
| | - Alexandra Kraut
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Yohan Couté
- Univ. Grenoble Alpes , iRTSV-BGE, F-38000 Grenoble, France.,CEA, iRTSV-BGE, F-38000 Grenoble, France.,INSERM, BGE, F-38000 Grenoble, France
| | - Joël Henry
- Normandy University , F-14032 Caen, France.,Normandy University , UMR BOREA MNHN, UPMC, UCBN, CNRS-7208, IRD-207, F-14032 Caen, France.,Post Genomic Platform PROTEOGEN, Normandy University , SF ICORE 4206, F-14032 Caen, France
| |
Collapse
|
11
|
Horák P, Mikeš L, Lichtenbergová L, Skála V, Soldánová M, Brant SV. Avian schistosomes and outbreaks of cercarial dermatitis. Clin Microbiol Rev 2015; 28:165-90. [PMID: 25567226 PMCID: PMC4284296 DOI: 10.1128/cmr.00043-14] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cercarial dermatitis (swimmer's itch) is a condition caused by infective larvae (cercariae) of a species-rich group of mammalian and avian schistosomes. Over the last decade, it has been reported in areas that previously had few or no cases of dermatitis and is thus considered an emerging disease. It is obvious that avian schistosomes are responsible for the majority of reported dermatitis outbreaks around the world, and thus they are the primary focus of this review. Although they infect humans, they do not mature and usually die in the skin. Experimental infections of avian schistosomes in mice show that in previously exposed hosts, there is a strong skin immune reaction that kills the schistosome. However, penetration of larvae into naive mice can result in temporary migration from the skin. This is of particular interest because the worms are able to migrate to different organs, for example, the lungs in the case of visceral schistosomes and the central nervous system in the case of nasal schistosomes. The risk of such migration and accompanying disorders needs to be clarified for humans and animals of interest (e.g., dogs). Herein we compiled the most comprehensive review of the diversity, immunology, and epidemiology of avian schistosomes causing cercarial dermatitis.
Collapse
Affiliation(s)
- Petr Horák
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Libor Mikeš
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Lucie Lichtenbergová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Vladimír Skála
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Miroslava Soldánová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Sara Vanessa Brant
- Museum Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
12
|
Ramakrishnan S, Arnett B, Murphy AD. Contextual modulation of a multifunctional central pattern generator. J Exp Biol 2014; 217:3935-44. [PMID: 25189372 DOI: 10.1242/jeb.086751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The multifunctional buccal central pattern generator in snails, which controls different oral behaviors, has been well characterized. In this work we propose a role for the group of about 40 electrotonically coupled buccal A cluster cells as a context-dependant switch for the buccal central pattern generator, modulating motor patterns that elicit different oral behaviors. We characterize these cells based on location and morphology, and provide evidence for their selective activation under two different stimuli - Listerine perfusion and intestinal nerve stimulation - triggering buccal motor patterns putatively underlying egestion and substrate cleaning. A new role for these electrotonically coupled buccal A cluster neurons is shown. They serve as a context-dependant switch that alters buccal motor patterns depending on input stimuli, thereby eliciting the appropriate behavioral response.
Collapse
Affiliation(s)
| | | | - A Don Murphy
- Department of Biological Sciences, University of Illinois, Chicago, IL-60607, USA
| |
Collapse
|
13
|
Koene JM. Neuro-endocrine control of reproduction in hermaphroditic freshwater snails: mechanisms and evolution. Front Behav Neurosci 2010; 4:167. [PMID: 21088700 PMCID: PMC2981420 DOI: 10.3389/fnbeh.2010.00167] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 09/19/2010] [Indexed: 11/13/2022] Open
Abstract
Invertebrates are used extensively as model species to investigate neuro-endocrine processes regulating behaviors, and many of these processes may be extrapolated to vertebrates. However, when it comes to reproductive processes, many of these model species differ notably in their mode of reproduction. A point in case are simultaneously hermaphroditic molluscs. In this review I aim to achieve two things. On the one hand, I provide a comprehensive overview of the neuro-endocrine control of male and female reproductive processes in freshwater snails. Even though the focus will necessarily be on Lymnaea stagnalis, since this is the best-studied species in this respect, extensions to other species are made wherever possible. On the other hand, I will place these findings in the actual context of the whole animal, after all these are simultaneous hermaphrodites. By considering the hermaphroditic situation, I uncover a numbers of possible links between the regulation of the two reproductive systems that are present within this animal, and suggest a few possible mechanisms via which this animal can effectively switch between the two sexual roles in the flexible way that it does. Evidently, this opens up a number of new research questions and areas that explicitly integrate knowledge about behavioral decisions (e.g., mating, insemination, egg laying) and sexual selection processes (e.g., mate choice, sperm allocation) with the actual underlying neuronal and endocrine mechanisms required for these processes to act and function effectively.
Collapse
Affiliation(s)
- Joris M Koene
- Animal Ecology, Faculty of Earth and Life Sciences, VU University Amsterdam, Netherlands
| |
Collapse
|
14
|
Roubos EW, Jenks BG, Xu L, Kuribara M, Scheenen WJJM, Kozicz T. About a snail, a toad, and rodents: animal models for adaptation research. Front Endocrinol (Lausanne) 2010; 1:4. [PMID: 22649351 PMCID: PMC3355873 DOI: 10.3389/fendo.2010.00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022] Open
Abstract
Neural adaptation mechanisms have many similarities throughout the animal kingdom, enabling to study fundamentals of human adaptation in selected animal models with experimental approaches that are impossible to apply in man. This will be illustrated by reviewing research on three of such animal models, viz. (1) the egg-laying behavior of a snail, Lymnaea stagnalis: how one neuron type controls behavior, (2) adaptation to the ambient light condition by a toad, Xenopus laevis: how a neuroendocrine cell integrates complex external and neural inputs, and (3) stress, feeding, and depression in rodents: how a neuronal network co-ordinates different but related complex behaviors. Special attention is being paid to the actions of neurochemical messengers, such as neuropeptide Y, urocortin 1, and brain-derived neurotrophic factor. While awaiting new technological developments to study the living human brain at the cellular and molecular levels, continuing progress in the insight in the functioning of human adaptation mechanisms may be expected from neuroendocrine research using invertebrate and vertebrate animal models.
Collapse
Affiliation(s)
- Eric W. Roubos
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Bruce G. Jenks
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Miyuki Kuribara
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Wim J. J. M. Scheenen
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| | - Tamás Kozicz
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience, Radboud University NijmegenNijmegen, Netherlands
| |
Collapse
|
15
|
Miller N, Katzoff A, Susswein AJ. Nitric oxide induces aspects of egg-laying behavior in Aplysia. J Exp Biol 2008; 211:2388-96. [DOI: 10.1242/jeb.015040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Aplysia egg laying is a complex behavior requiring synchronized activity in many organs. Aspects of the behavior are synchronized viathe direct effects of peptide bag cell neurohormones and via stimuli arising during the behavior. Stimuli synchronizing egg laying were examined by treating A. fasciata with a nitric oxide (NO) donor. NO elicited normal appetitive and consummatory behaviors leading to the deposition of cordons containing egg capsules without eggs. The sites at which NO acts were investigated. The latency to egg deposition in response to a NO donor was shorter than that in response to other stimuli, consistent with NO acting at downstream sites from those affected by the other stimuli. The NO donor does not act on neurons in the head ganglia presynaptic to the bag cells or on the bag cells. Ligating the small hermaphroditic duct connecting the gonad to the accessory genital mass blocked egg laying in response to bag cell homogenates,but not in response to exogenous NO, indicating that NO does not act on the gonad. NO is released by transport of eggs along the small hermaphroditic duct, and NO directly acts on the accessory genital mass which packages eggs. NO also acts at a second site, independent of the effect on the accessory genital mass. A NO donor activates appetitive behaviors that normally precede egg laying even in A. californica that are unable to lay eggs.
Collapse
Affiliation(s)
- Nimrod Miller
- Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center,Bar Ilan University, Ramat Gan, 52900, Israel
| | - Ayelet Katzoff
- Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center,Bar Ilan University, Ramat Gan, 52900, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| | - Abraham J. Susswein
- Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center,Bar Ilan University, Ramat Gan, 52900, Israel
- Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
16
|
Lagadic L, Coutellec MA, Caquet T. Endocrine disruption in aquatic pulmonate molluscs: few evidences, many challenges. ECOTOXICOLOGY (LONDON, ENGLAND) 2007; 16:45-59. [PMID: 17235673 DOI: 10.1007/s10646-006-0114-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
As compared to other groups of aquatic gastropods, documented examples of endocrine disruption in pulmonates are rather limited. This is quite surprising because the endocrine control of physiological functions has been extensively studied in these animals. In the model-species Lymnaea stagnalis, the neurohormonal regulation of reproduction has been thoroughly investigated, and the primary structure of several peptides and receptors involved in endocrine processes has been established. However, the use of this knowledge has been fairly limited in the context of ecotoxicology, to investigate the effects of endocrine-disrupting chemicals. The present review summarizes the main and more recent findings on the neuroendocrine control of reproduction in aquatic pulmonate snails (Basommatophora). It then comprehensively describes selected in vivo laboratory and semi-field studies which provide evidence for possible endocrine disrupting effects of estrogenic and androgenic test compounds [e.g., ethynylestradiol, methyltestosterone (MT)], and of environmental contaminants [e.g., cadmium (Cd), tributyltin (TBT), and nonylphenol (NP), pesticides]. Finally, challenging perspectives for future research are discussed.
Collapse
Affiliation(s)
- Laurent Lagadic
- UMR985 INRA-Agrocampus Ecobiologie et Qualité des Hydrosystèmes Continentaux, Equipe Ecotoxicologie et Qualité des Milieux aquatiques, 65 Rue de Saint-Brieuc, F-35042 Rennes Cedex, France.
| | | | | |
Collapse
|
17
|
Jiménez CR, Li KW, Smit AB, Janse C. Auto-inhibitory control of peptidergic molluscan neurons and reproductive senescence. Neurobiol Aging 2005; 27:763-9. [PMID: 15951060 DOI: 10.1016/j.neurobiolaging.2005.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 03/25/2005] [Accepted: 03/30/2005] [Indexed: 11/15/2022]
Abstract
We recently, characterized a novel peptide of the egg-laying controlling caudodorsal cells (CDC) of Lymnaea stagnalis. Here, we show that the novel peptide has autoinhibitory actions and its expression is significantly up-regulated in reproductively senescent animals. Intracellular recordings show that when bath-applied to the central nervous system in vitro, the peptide reduces the depolarizing after potential (DAP) in CDCs without affecting the action potential-threshold and -amplitude and the resting membrane potential. Moreover, peptide application can terminate an ongoing after discharge in the CDCs or, when electrical stimulation fails to induce an after discharge, can terminate the long-lasting depolarization. Semiquantitative peptide profiling by mass spectrometry demonstrated correct processing and targeting of peptides in the CDC somata and axon terminals of reproductively senescent animals. Interestingly, the level of the autoinhibitory peptide was selectively increased in the CDCs of reproductively senescent animals. Our results indicate that a shift in balance between excitatory and inhibitory auto-transmitter peptides in the CDC system of old non-egg-laying animals, plays a role in after discharge failure in CDCs of reproductively senescent Lymnaea.
Collapse
Affiliation(s)
- C R Jiménez
- Department of Molecular and Cellular Neurobiology, Faculty of Earth and Life Sciences, Research Institute Neurosciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
18
|
Hoek RM, Li KW, van Minnen J, Lodder JC, de Jong-Brink M, Smit AB, van Kesteren RE. LFRFamides: a novel family of parasitation-induced -RFamide neuropeptides that inhibit the activity of neuroendocrine cells in Lymnaea stagnalis. J Neurochem 2005; 92:1073-80. [PMID: 15715658 DOI: 10.1111/j.1471-4159.2004.02927.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We report the characterization of a cDNA encoding a novel -RFamide neuropeptide precursor that is up-regulated during parasitation in the snail Lymnaea stagnalis. Processing of this precursor yields five structurally related neuropeptides, all but one ending with the C-terminal sequence -LFRFamide, as was confirmed by direct mass spectrometry of brain tissue. The LFRFamide gene is expressed in a small cluster of neurons in each buccal ganglion, three small clusters in each cerebral ganglion, and one cluster in each lateral lobe of the cerebral ganglia. Application of two of the LFRFamide peptides to neuroendocrine cells that control either growth and metabolism or reproduction induced similar hyperpolarizing K+-currents, and inhibited electrical activity. We conclude that up-regulation of inhibitory LFRFamide neuropeptides during parasitation probably reflects an evolutionary adaptation that allows endoparasites to suppress host metabolism and reproduction in order to fully exploit host energy recourses.
Collapse
Affiliation(s)
- R M Hoek
- Department of Molecular and Cellular Neurobiology, Research Institute Neurosciences, Faculty of Earth and Life Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Hatakeyama D, Fujito Y, Sakakibara M, Ito E. Expression and distribution of transcription factor CCAAT/enhancer-binding protein in the central nervous system of Lymnaea stagnalis. Cell Tissue Res 2004; 318:631-41. [PMID: 15578275 DOI: 10.1007/s00441-004-0965-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 07/28/2004] [Indexed: 11/30/2022]
Abstract
The transcription factor, CCAAT/enhancer-binding protein (C/EBP), is involved in important physiological processes, such as cellular proliferation and differentiation, homeostasis, and higher-order functions of the brain. In the present study, we investigated the distribution of mRNA and protein of C/EBP in the central nervous system of the pond snail, Lymnaea stagnalis, by in situ hybridization and immunohistochemistry. Specificity of the anti-mammalian C/EBP antibody against Lymnaea C/EBP (LymC/EBP) was confirmed by combination of sodium dodecyl sulfate polyacrylamide gel electrophoresis or isoelectric focusing and immunoblotting. Cells positive for in situ hybridization were immunoreactive for LymC/EBP in all 11 ganglia. The motoneurons (B1, B2, B4, and B4 clusters) in the buccal ganglia and interneurons (cerebral giant cell, CGC) in the cerebral ganglia were positive for in situ hybridization and were immunopositive. In the pedal ganglion, the right pedal dorsal 1 (RPeD1), pedal A, and pedal C clusters exhibited positive signals of in situ hybridization and immunohistochemistry for LymC/EBP. CGC and RPeD1 are key neurons for associative learning. In addition, the neuropeptidergic cells in the cerebral, pleural, parietal, and visceral ganglia were positive for in situ hybridization and immunoreactive. Interestingly, although the cytoplasm of almost all immunopositive cells was stained, some neuropeptidergic cells located in the light parietal and visceral ganglia exhibited immunoreactivity in nuclei. Our results suggest that LymC/EBP is involved in learning and memory and in the expression and/or secretion of neuropeptides in Lymnaea.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, 060-0810, Sapporo, Hokkaido, Japan.
| | | | | | | |
Collapse
|
20
|
FLARI VASILIKIA, EDWARDS JOHNP. The role of the endocrine system in the regulation of reproduction in terrestrial pulmonate gastropods. INVERTEBR REPROD DEV 2003. [DOI: 10.1080/07924259.2003.9652564] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
de Lange RP, Moorer-van Delft CM, de Boer PA, van Minnen J, de Jong-Brink M. Target-dependent differentiation and development of molluscan neurons and neuroendocrine cells: use of parasitisation as a tool. Neuroscience 2001; 103:289-99. [PMID: 11311809 DOI: 10.1016/s0306-4522(00)00556-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Specimens of the freshwater snail Lymnaea stagnalis infected with the schistosome parasite Trichobilharzia ocellata show a strongly inhibited development of their reproductive tract. We hypothesised that the effects of the underdevelopment of targets are reflected at the level of the neuronal development of (i) the motor neurons innervating the male copulation organ and (ii) neuroendocrine cells regulating the gonad. We determined the state of neuronal development by measuring cell number, cell size and neuropeptide gene expression. Our results show that the neuronal development of both copulation controlling anterior lobe motor neurons of the right cerebral ganglion and neuroendocrine caudodorsal cells, which produce neuropeptides regulating ovulation, egg laying and accompanying behaviour, are affected in parasitised animals in which their respective target organs were not developed. The cell bodies were smaller and fewer cells were found to express neuropeptide genes compared to those in non-parasitised animals. These effects were not observed in the appropriate controls. Backfills and lesions of the penis nerve have shown that the inhibited development of central motor neurons in parasitised snails is target dependent; neighbouring neurons that have no connection with the male copulation organ are not affected. Our data suggest that this effect is established by target-derived neurotrophic factors that need this connection for being transported to the innervating motor neurons. We propose that the effect on the neuroendocrine caudodorsal cells is mediated by a humoral factor, since they have no known connection with their target. We have shown that the size and gene expression of motor neurons controlling copulation behaviour in the pond snail Lymnaea stagnalis are related to the size of their target, the copulation organ, and depend on the connection with this target.
Collapse
Affiliation(s)
- R P de Lange
- Graduate School Neurosciences Amsterdam, Research Institute Neurosciences Vrije Universiteit, Faculty of Biology, Department of Organismal Neurobiology, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Saunders SE, Burke JF, Benjamin PR. Multimeric CREB-binding sites in the promoter regions of a family of G-protein-coupled receptors related to the vertebrate galanin and nociceptin/orphanin-FQ receptor families. Eur J Neurosci 2000; 12:2345-53. [PMID: 10947813 DOI: 10.1046/j.1460-9568.2000.00124.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Four related genes encoding a family of G-protein-coupled receptors (GPCRs) have been isolated from the mollusc Lymnaea stagnalis. The coding regions of this family of receptors share 97-99% sequence similarity at both the protein and nucleotide level, and they also share high sequence identity with vertebrate galanin and orphanin-FQ/nociceptin GPCR families. Analysis of the promoter regions reveals shared domains, some of which encode highly conserved repeating units. One 27-bp repeating unit, which encodes a c-AMP response element (CRE) and binds CREB protein, is repeated 14 times in one promoter. In situ hybridization showed expression of these receptors in identified neurons of several behaviourly important networks including those involved in feeding and ion and water regulation. These Lymnaea receptors are likely to represent members of a novel family of invertebrate neuropeptide receptors extensively regulated in response to intracellular signalling cascades.
Collapse
Affiliation(s)
- S E Saunders
- Sussex Centre for Neuroscience, School of Biological Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | |
Collapse
|
23
|
Jansen RF, Pieneman AW, Maat AT. Pattern generation in the buccal system of freely behaving Lymnaea stagnalis. J Neurophysiol 1999; 82:3378-91. [PMID: 10601469 DOI: 10.1152/jn.1999.82.6.3378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central pattern generators (CPGs) are neuronal circuits that drive active repeated movements such as walking or swimming. Although CPGs are, by definition, active in isolated central nervous systems, sensory input is thought play an important role in adjusting the output of the CPGs to meet specific behavioral requirements of intact animals. We investigated, in freely behaving snails (Lymnaea stagnalis), how the buccal CPG is used during two different behaviors, feeding and egg laying. Analysis of the relationship between unit activity recorded from buccal nerves and the movements of the buccal mass showed that electrical activity in laterobuccal/ventrobuccal (LB/VB) nerves was as predicted from in vitro data, but electrical activity in the posterior jugalis nerve was not. Autodensity and interval histograms showed that during feeding the CPG produces a much stronger rhythm than during egg laying. The phase relationship between electrical activity and buccal movement changed little between the two behaviors. Fitting the spike trains recorded during the two behaviors with a simple model revealed differences in the patterns of electrical activity produced by the buccal system during the two behaviors investigated. During egg laying the bursts contained less spikes, and the number of spikes per burst was significantly more variable than during feeding. The time between two bursts of in a spike train was longer during egg laying than during feeding. The data show what the qualitative and quantitative differences are between two motor patterns produced by the buccal system of freely behaving Lymnaea stagnalis.
Collapse
Affiliation(s)
- R F Jansen
- Faculty of Biology, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
24
|
Magoski NS, Bulloch AG. Dopamine activates two different receptors to produce variability in sign at an identified synapse. J Neurophysiol 1999; 81:1330-40. [PMID: 10085359 DOI: 10.1152/jn.1999.81.3.1330] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemical synaptic transmission was investigated at a central synapse between identified neurons in the freshwater snail, Lymnaea stagnalis. The presynaptic neuron was the dopaminergic cell, Right Pedal Dorsal one (RPeD1). The postsynaptic neuron was Visceral Dorsal four (VD4). These neurons are components of the respiratory central pattern generator. The synapse from RPeD1 to VD4 showed variability of sign, i.e., it was either inhibitory (monophasic and hyperpolarizing), biphasic (depolarizing followed by hyperpolarizing phases), or undetectable. Both the inhibitory and biphasic synapse were eliminated by low Ca2+/high Mg2+ saline and maintained in high Ca2+/high Mg2+ saline, indicating that these two types of connections were chemical and monosynaptic. The latency of the inhibitory postsynaptic potential (IPSP) in high Ca2+/high Mg2+ saline was approximately 43 ms, whereas the biphasic postsynaptic potential (BPSP) had approximately 12-ms latency in either normal or high Ca2+/high Mg2+ saline. For a given preparation, when dopamine was pressured applied to the soma of VD4, it always elicited the same response as the synaptic input from RPeD1. Thus, for a VD4 neuron receiving an IPSP from RPeD1, pressure application of dopamine to the soma of VD4 produced an inhibitory response similar to the IPSP. The reversal potentials of the IPSP and the inhibitory dopamine response were both approximately -90 mV. For a VD4 neuron with a biphasic input from RPeD1, pressure-applied dopamine produced a biphasic response similar to the BPSP. The reversal potentials of the depolarizing phase of the BPSP and the biphasic dopamine response were both approximately -44 mV, whereas the reversal potentials for the hyperpolarizing phases were both approximately -90 mV. The hyperpolarizing but not the depolarizing phase of the BPSP and the biphasic dopamine response was blocked by the D-2 dopaminergic antagonist (+/-) sulpiride. Previously, our laboratory demonstrated that both IPSP and the inhibitory dopamine response are blocked by (+/-) sulpiride. Conversely, the depolarizing phase of both the BPSP and the biphasic dopamine response was blocked by the Cl- channel antagonist picrotoxin. Finally, both phases of the BPSP and the biphasic dopamine response were desensitized by continuous bath application of dopamine. These results indicate that the biphasic RPeD1 --> VD4 synapse is dopaminergic. Collectively, these data suggest that the variability in sign (inhibitory vs. biphasic) at the RPeD1 --> VD4 synapse is due to activation of two different dopamine receptors on the postsynaptic neuron VD4. This demonstrates that two populations of receptors can produce two different forms of transmission, i.e., the inhibitory and biphasic forms of the single RPeD1 --> VD4 synapse.
Collapse
Affiliation(s)
- N S Magoski
- Department of Physiology and Biophysics, Neuroscience Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
25
|
Hermann PM, Bulloch AGM. Pronase modifies synaptic transmission and activity of identifiedLymnaea neurons. INVERTEBRATE NEUROSCIENCE 1998. [DOI: 10.1007/bf02577689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|