1
|
Roh WS, Yoo JH, Dravid SM, Mannaioni G, Krizman EN, Wahl P, Robinson MB, Traynelis SF, Lee CJ, Han KS. Astrocytic PAR1 and mGluR2/3 control synaptic glutamate time course at hippocampal CA1 synapses. Glia 2024; 72:1707-1724. [PMID: 38864289 PMCID: PMC11410382 DOI: 10.1002/glia.24579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Astrocytes play an essential role in regulating synaptic transmission. This study describes a novel form of modulation of excitatory synaptic transmission in the mouse hippocampus by astrocytic G-protein-coupled receptors (GPCRs). We have previously described astrocytic glutamate release via protease-activated receptor-1 (PAR1) activation, although the regulatory mechanisms for this are complex. Through electrophysiological analysis and modeling, we discovered that PAR1 activation consistently increases the concentration and duration of glutamate in the synaptic cleft. This effect was not due to changes in the presynaptic glutamate release or alteration in glutamate transporter expression. However, blocking group II metabotropic glutamate receptors (mGluR2/3) abolished PAR1-mediated regulation of synaptic glutamate concentration, suggesting a role for this GPCR in mediating the effects of PAR1 activation on glutamate release. Furthermore, activation of mGluR2/3 causes glutamate release through the TREK-1 channel in hippocampal astrocytes. These data show that astrocytic GPCRs engage in a novel regulatory mechanism to shape the time course of synaptically-released glutamate in excitatory synapses of the hippocampus.
Collapse
Affiliation(s)
- Woo Suk Roh
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Jae Hong Yoo
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Shashank M Dravid
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
- Creighton University, Department of Pharmacology, Omaha, Nebraska, USA
| | - Guido Mannaioni
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
- Department of Pharmacology, University of Florence, Florence, GA, Italy
| | - Elizabeth N Krizman
- Departments of Pediatrics and Pharmacology, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Philip Wahl
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
| | - Michael B Robinson
- Departments of Pediatrics and Pharmacology, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen F Traynelis
- Emory University School of Medicine, Department of Pharmacology and Chemical Biology, Atlanta, Georgia, USA
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, South Korea
| | - Kyung-Seok Han
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
2
|
Savtchenko LP, Rusakov DA. Glutamate-Transporter Unbinding in Probabilistic Synaptic Environment Facilitates Activation of Distant NMDA Receptors. Cells 2023; 12:1610. [PMID: 37371080 DOI: 10.3390/cells12121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Once outside the synaptic cleft, the excitatory neurotransmitter glutamate is rapidly bound by its high-affinity transporters, which are expressed in abundance on the surface of perisynaptic astroglia. While this binding and the subsequent uptake of glutamate constrain excitatory transmission mainly within individual synapses, there is growing evidence for the physiologically important extrasynaptic actions of glutamate. However, the mechanistic explanation and the scope of such actions remain obscure. Furthermore, a significant proportion of glutamate molecules initially bound by transporters could be released back into the extracellular space before being translocated into astrocytes. To understand the implications of such effects, we simulated the release, diffusion, and transporter and receptor interactions of glutamate molecules in the synaptic environment. The latter was represented via trial-by-trial stochastic generation of astroglial and neuronal elements in the brain neuropil (overlapping spheroids of varied sizes), rather than using the 'average' morphology, thus reflecting the probabilistic nature of neuropil architectonics. Our simulations predict significant activation of high-affinity receptors, such as receptors of the NMDA type, at distances beyond half-micron from the glutamate release site, with glutamate-transporter unbinding playing an important role. These theoretical predictions are consistent with recent glutamate imaging data, thus lending support to the concept of significant volume-transmitted actions of glutamate in the brain.
Collapse
Affiliation(s)
- Leonid P Savtchenko
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
3
|
Giangrasso DM, Veros KM, Timm MM, West PJ, Wilcox KS, Keefe KA. Glutamate dynamics in the dorsolateral striatum of rats with goal-directed and habitual cocaine-seeking behavior. Front Mol Neurosci 2023; 16:1160157. [PMID: 37251646 PMCID: PMC10213946 DOI: 10.3389/fnmol.2023.1160157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
The shift from drug abuse to addiction is considered to arise from the transition between goal-directed and habitual control over drug behavior. Habitual responding for appetitive and skill-based behaviors is mediated by potentiated glutamate signaling in the dorsolateral striatum (DLS), but the state of the DLS glutamate system in the context of habitual drug-behavior remains undefined. Evidence from the nucleus accumbens of cocaine-experienced rats suggests that decreased transporter-mediated glutamate clearance and enhanced synaptic glutamate release contribute to the potentiated glutamate signaling that underlies the enduring vulnerability to relapse. Preliminary evidence from the dorsal striatum of cocaine-experienced rats suggests that this region exhibits similar alterations to glutamate clearance and release, but it is not known whether these glutamate dynamics are associated with goal-directed or habitual control over cocaine-seeking behavior. Therefore, we trained rats to self-administer cocaine in a chained cocaine-seeking and -taking paradigm, which yielded goal-directed, intermediate, and habitual cocaine-seeking rats. We then assessed glutamate clearance and release dynamics in the DLS of these rats using two different methods: synaptic transporter current (STC) recordings of patch-clamped astrocytes and the intensity-based glutamate sensing fluorescent reporter (iGluSnFr). While we observed a decreased rate of glutamate clearance in STCs evoked with single-pulse stimulation in cocaine-experienced rats, we did not observe any cocaine-induced differences in glutamate clearance rates from STCs evoked with high frequency stimulation (HFS) or iGluSnFr responses evoked with either double-pulse stimulation or HFS. Furthermore, GLT-1 protein expression in the DLS was unchanged in cocaine-experienced rats, regardless of their mode of control over cocaine-seeking behavior. Lastly, there were no differences in metrics of glutamate release between cocaine-experienced rats and yoked-saline controls in either assay. Together, these results suggest that glutamate clearance and release dynamics in the DLS are largely unaltered by a history of cocaine self-administration on this established cocaine seeking-taking paradigm, regardless of whether the control over the cocaine seeking behavior was habitual or goal directed.
Collapse
Affiliation(s)
- Danielle M. Giangrasso
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
| | - Kaliana M. Veros
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
| | - Maureen M. Timm
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Peter J. West
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
- Anticonvulsant Drug Development Program, Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Karen S. Wilcox
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
- Anticonvulsant Drug Development Program, Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Kristen A. Keefe
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
4
|
Brymer KJ, Hurley EP, Barron JC, Mukherjee B, Barnes JR, Nafar F, Parsons MP. Asymmetric dysregulation of glutamate dynamics across the synaptic cleft in a mouse model of Alzheimer's disease. Acta Neuropathol Commun 2023; 11:27. [PMID: 36788598 PMCID: PMC9926626 DOI: 10.1186/s40478-023-01524-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/28/2023] [Indexed: 02/16/2023] Open
Abstract
Most research on glutamate spillover focuses on the deleterious consequences of postsynaptic glutamate receptor overactivation. However, two decades ago, it was noted that the glial coverage of hippocampal synapses is asymmetric: astrocytic coverage of postsynaptic sites exceeds coverage of presynaptic sites by a factor of four. The fundamental relevance of this glial asymmetry remains poorly understood. Here, we used the glutamate biosensor iGluSnFR, and restricted its expression to either CA3 or CA1 neurons to visualize glutamate dynamics at pre- and postsynaptic microenvironments, respectively. We demonstrate that inhibition of the primarily astrocytic glutamate transporter-1 (GLT-1) slows glutamate clearance to a greater extent at presynaptic compared to postsynaptic membranes. GLT-1 expression was reduced early in a mouse model of AD, resulting in slower glutamate clearance rates at presynaptic but not postsynaptic membranes that opposed presynaptic short-term plasticity. Overall, our data demonstrate that the presynapse is particularly vulnerable to GLT-1 dysfunction and may have implications for presynaptic impairments in a variety of brain diseases.
Collapse
Affiliation(s)
- Kyle J. Brymer
- grid.25055.370000 0000 9130 6822Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6 Canada
| | - Emily P. Hurley
- grid.25055.370000 0000 9130 6822Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6 Canada
| | - Jessica C. Barron
- grid.25055.370000 0000 9130 6822Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6 Canada
| | - Bandhan Mukherjee
- grid.25055.370000 0000 9130 6822Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6 Canada
| | - Jocelyn R. Barnes
- grid.25055.370000 0000 9130 6822Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6 Canada
| | - Firoozeh Nafar
- grid.25055.370000 0000 9130 6822Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6 Canada
| | - Matthew P. Parsons
- grid.25055.370000 0000 9130 6822Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6 Canada
| |
Collapse
|
5
|
Tyurikova O, Shih P, Dembitskaya Y, Savtchenko LP, McHugh TJ, Rusakov DA, Semyanov A. K + efflux through postsynaptic NMDA receptors suppresses local astrocytic glutamate uptake. Glia 2022; 70:961-974. [PMID: 35084774 PMCID: PMC9132042 DOI: 10.1002/glia.24150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
Glutamatergic transmission prompts K+ efflux through postsynaptic NMDA receptors. The ensuing hotspot of extracellular K+ elevation depolarizes presynaptic terminal, boosting glutamate release, but whether this also affects glutamate uptake in local astroglia has remained an intriguing question. Here, we find that the pharmacological blockade, or conditional knockout, of postsynaptic NMDA receptors suppresses use-dependent increase in the amplitude and duration of the astrocytic glutamate transporter current (IGluT ), whereas blocking astrocytic K+ channels prevents the duration increase only. Glutamate spot-uncaging reveals that astrocyte depolarization, rather than extracellular K+ rises per se, is required to reduce the amplitude and duration of IGluT . Biophysical simulations confirm that local transient elevations of extracellular K+ can inhibit local glutamate uptake in fine astrocytic processes. Optical glutamate sensor imaging and a two-pathway test relate postsynaptic K+ efflux to enhanced extrasynaptic glutamate signaling. Thus, repetitive glutamatergic transmission triggers a feedback loop in which postsynaptic K+ efflux can transiently facilitate presynaptic release while reducing local glutamate uptake.
Collapse
Affiliation(s)
- Olga Tyurikova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Pei‐Yu Shih
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Yulia Dembitskaya
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Leonid P. Savtchenko
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
| | - Thomas J. McHugh
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
- RIKEN Center for Brain Science, Wako‐shiSaitamaJapan
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
| | - Alexey Semyanov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
- Department of Clinical Pharmacology, Sechenov First Moscow State Medical UniversityMoscowRussia
| |
Collapse
|
6
|
Matthews EA, Sun W, McMahon SM, Doengi M, Halka L, Anders S, Müller JA, Steinlein P, Vana NS, van Dyk G, Pitsch J, Becker AJ, Pfeifer A, Kavalali ET, Lamprecht A, Henneberger C, Stein V, Schoch S, Dietrich D. Optical analysis of glutamate spread in the neuropil. Cereb Cortex 2022; 32:3669-3689. [PMID: 35059716 PMCID: PMC9433421 DOI: 10.1093/cercor/bhab440] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Fast synaptic communication uses diffusible transmitters whose spread is limited by uptake mechanisms. However, on the submicron-scale, the distance between two synapses, the extent of glutamate spread has so far remained difficult to measure. Here, we show that quantal glutamate release from individual hippocampal synapses activates extracellular iGluSnFr molecules at a distance of >1.5 μm. 2P-glutamate uncaging near spines further showed that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-Rs and N-methyl-D-aspartate (NMDA)-Rs respond to distant uncaging spots at approximately 800 and 2000 nm, respectively, when releasing the amount of glutamate contained in approximately five synaptic vesicles. The uncaging-induced remote activation of AMPA-Rs was facilitated by blocking glutamate transporters but only modestly decreased by elevating the recording temperature. When mimicking release from neighboring synapses by three simultaneous uncaging spots in the microenvironment of a spine, AMPA-R-mediated responses increased supra-additively. Interfering with extracellular glutamate diffusion through a glutamate scavenger system weakly reduced field synaptic responses but not the quantal amplitude. Together, our data suggest that the neuropil is more permissive to short-range spread of transmitter than suggested by theory, that multivesicular release could regularly coactivate nearest neighbor synapses and that on this scale glutamate buffering by transporters primarily limits the spread of transmitter and allows for cooperative glutamate signaling in extracellular microdomains.
Collapse
Affiliation(s)
| | | | | | - M Doengi
- Institute of Physiology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - L Halka
- Institute of Physiology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - S Anders
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - J A Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - P Steinlein
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany,Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - N S Vana
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - G van Dyk
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - J Pitsch
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany,Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - A J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany,Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - A Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - E T Kavalali
- Department of Pharmacology, The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - A Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - C Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany,Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - V Stein
- Institute of Physiology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - S Schoch
- Address correspondence to Prof. Dr Dirk Dietrich, Department of Neurosurgery, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany. ; and Prof. Dr Susanne Schoch, Institute of Neuropathology, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany.
| | - D Dietrich
- Address correspondence to Prof. Dr Dirk Dietrich, Department of Neurosurgery, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany. ; and Prof. Dr Susanne Schoch, Institute of Neuropathology, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany.
| |
Collapse
|
7
|
Postnikova TY, Diespirov GP, Amakhin DV, Vylekzhanina EN, Soboleva EB, Zaitsev AV. Impairments of Long-Term Synaptic Plasticity in the Hippocampus of Young Rats during the Latent Phase of the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms222413355. [PMID: 34948152 PMCID: PMC8705146 DOI: 10.3390/ijms222413355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Status epilepticus (SE) causes persistent abnormalities in the functioning of neuronal networks, often resulting in worsening epileptic seizures. Many details of cellular and molecular mechanisms of seizure-induced changes are still unknown. The lithium–pilocarpine model of epilepsy in rats reproduces many features of human temporal lobe epilepsy. In this work, using the lithium–pilocarpine model in three-week-old rats, we examined the morphological and electrophysiological changes in the hippocampus within a week following pilocarpine-induced seizures. We found that almost a third of the neurons in the hippocampus and dentate gyrus died on the first day, but this was not accompanied by impaired synaptic plasticity at that time. A diminished long-term potentiation (LTP) was observed following three days, and the negative effect of SE on plasticity increased one week later, being accompanied by astrogliosis. The attenuation of LTP was caused by the weakening of N-methyl-D-aspartate receptor (NMDAR)-dependent signaling. NMDAR-current was more than two-fold weaker during high-frequency stimulation in the post-SE rats than in the control group. Application of glial transmitter D-serine, a coagonist of NMDARs, allows the enhancement of the NMDAR-dependent current and the restoration of LTP. These results suggest that the disorder of neuron–astrocyte interactions plays a critical role in the impairment of synaptic plasticity.
Collapse
|
8
|
Michaluk P, Heller JP, Rusakov DA. Rapid recycling of glutamate transporters on the astroglial surface. eLife 2021; 10:e64714. [PMID: 33860761 PMCID: PMC8079145 DOI: 10.7554/elife.64714] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Glutamate uptake by astroglial transporters confines excitatory transmission to the synaptic cleft. The efficiency of this mechanism depends on the transporter dynamics in the astrocyte membrane, which remains poorly understood. Here, we visualise the main glial glutamate transporter GLT1 by generating its pH-sensitive fluorescent analogue, GLT1-SEP. Fluorescence recovery after photobleaching-based imaging shows that 70-75% of GLT1-SEP dwell on the surface of rat brain astroglia, recycling with a lifetime of ~22 s. Genetic deletion of the C-terminus accelerates GLT1-SEP membrane turnover while disrupting its surface pattern, as revealed by single-molecule localisation microscopy. Excitatory activity boosts surface mobility of GLT1-SEP, involving its C-terminus, metabotropic glutamate receptors, intracellular Ca2+, and calcineurin-phosphatase activity, but not the broad-range kinase activity. The results suggest that membrane turnover, rather than lateral diffusion, is the main 'redeployment' route for the immobile fraction (20-30%) of surface-expressed GLT1. This finding reveals an important mechanism helping to control extrasynaptic escape of glutamate.
Collapse
Affiliation(s)
- Piotr Michaluk
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PASWarsawPoland
| | - Janosch Peter Heller
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- School of Biotechnology and National Institute for Cellular Biotechnology (NICB), Dublin City UniversityGlasnevinIreland
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
9
|
Brymer KJ, Barnes JR, Parsons MP. Entering a new era of quantifying glutamate clearance in health and disease. J Neurosci Res 2021; 99:1598-1617. [PMID: 33618436 DOI: 10.1002/jnr.24810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Glutamate transporter proteins, expressed on both neurons and glia, serve as the main gatekeepers that dictate the spatial and temporal actions of extracellular glutamate. Glutamate is essential to the function of the healthy brain yet paradoxically contributes to the toxicity associated with many neurodegenerative diseases. Rapid transporter-mediated glutamate uptake, primarily occurring at astrocytic processes, tightens the efficiency of excitatory network activity and prevents toxic glutamate build-up in the extracellular space. Glutamate transporter dysfunction is thought to underlie myriad central nervous system (CNS) diseases including Alzheimer and Huntington disease. Over the past few decades, techniques such as biochemical uptake assays and electrophysiological recordings of transporter currents from individual astrocytes have revealed the remarkable ability of the CNS to efficiently clear extracellular glutamate. In more recent years, the rapidly evolving glutamate-sensing "sniffers" now allow researchers to visualize real-time glutamate transients on a millisecond time scale with single synapse spatial resolution in defined cell populations. As we transition to an increased reliance on optical-based methods of glutamate visualization and quantification, it is of utmost importance to understand not only the advantages that glutamate biosensors bring to the table but also the associated caveats and their implications for data interpretation. In this review, we summarize the strengths and limitations of the commonly used methods to quantify glutamate uptake. We then discuss what these techniques, when viewed as a complementary whole, have told us about the brain's ability to regulate glutamate levels, in both health and in the context of neurodegenerative disease.
Collapse
Affiliation(s)
- Kyle J Brymer
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jocelyn R Barnes
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew P Parsons
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
10
|
Passlick S, Rose CR, Petzold GC, Henneberger C. Disruption of Glutamate Transport and Homeostasis by Acute Metabolic Stress. Front Cell Neurosci 2021; 15:637784. [PMID: 33603647 PMCID: PMC7884476 DOI: 10.3389/fncel.2021.637784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
High-affinity, Na+-dependent glutamate transporters are the primary means by which synaptically released glutamate is removed from the extracellular space. They restrict the spread of glutamate from the synaptic cleft into the perisynaptic space and reduce its spillover to neighboring synapses. Thereby, glutamate uptake increases the spatial precision of synaptic communication. Its dysfunction and the entailing rise of the extracellular glutamate concentration accompanied by an increased spread of glutamate result in a loss of precision and in enhanced excitation, which can eventually lead to neuronal death via excitotoxicity. Efficient glutamate uptake depends on a negative resting membrane potential as well as on the transmembrane gradients of the co-transported ions (Na+, K+, and H+) and thus on the proper functioning of the Na+/K+-ATPase. Consequently, numerous studies have documented the impact of an energy shortage, as occurring for instance during an ischemic stroke, on glutamate clearance and homeostasis. The observations range from rapid changes in the transport activity to altered expression of glutamate transporters. Notably, while astrocytes account for the majority of glutamate uptake under physiological conditions, they may also become a source of extracellular glutamate elevation during metabolic stress. However, the mechanisms of the latter phenomenon are still under debate. Here, we review the recent literature addressing changes of glutamate uptake and homeostasis triggered by acute metabolic stress, i.e., on a timescale of seconds to minutes.
Collapse
Affiliation(s)
- Stefan Passlick
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Division of Vascular Neurology, University Hospital Bonn, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
11
|
Smaga I, Fierro D, Mesa J, Filip M, Knackstedt LA. Molecular changes evoked by the beta-lactam antibiotic ceftriaxone across rodent models of substance use disorder and neurological disease. Neurosci Biobehav Rev 2020; 115:116-130. [PMID: 32485268 DOI: 10.1016/j.neubiorev.2020.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/06/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Ceftriaxone is a beta-lactam antibiotic that increases the expression of the major glutamate transporter, GLT-1. As such, ceftriaxone ameliorates symptoms across multiple rodent models of neurological diseases and substance use disorders. However, the mechanism behind GLT-1 upregulation is unknown. The present review synthesizes this literature in order to identify commonalities in molecular changes. We find that ceftriaxone (200 mg/kg for at least two days) consistently restores GLT-1 expression in multiple rodent models of neurological disease, especially when GLT-1 is decreased in the disease model. The same dose given to healthy/drug-naive rodents does not reliably upregulate GLT-1 in any brain region except the hippocampus. Increased GLT-1 expression does not consistently arise from transcriptional regulation, and is likely to be due to trafficking changes. In addition to altered transporter expression, ceftriaxone ameliorates neuropathologies (e.g. tau, amyloid beta, cell death) and aberrant protein expression associated with a number of neurological disease models. Taken together, these results indicate that ceftriaxone remains a strong candidate for treatment of multiple disorders in the clinic.
Collapse
Affiliation(s)
- Irena Smaga
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL, 31-343, Kraków, Poland
| | - Daniel Fierro
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL, 32611, USA
| | - Javier Mesa
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL, 32611, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32611, USA
| | - Malgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL, 31-343, Kraków, Poland
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, 945 Center Dr., Gainesville, FL, 32611, USA; Center for Addiction Research and Education, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Ma S, Zheng X, Zheng T, Huang F, Jiang J, Luo H, Guo Q, Hu B. Amitriptyline influences the mechanical withdrawal threshold in bone cancer pain rats by regulating glutamate transporter GLAST. Mol Pain 2020; 15:1744806919855834. [PMID: 31218920 PMCID: PMC6637840 DOI: 10.1177/1744806919855834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients with cancer, especially breast, prostate, and lung cancer, commonly experience bone metastases that are difficult to manage and are associated with bone cancer pain. Amitriptyline is often used to treat chronic pain, such as neuropathic pain. In this study, the effects of amitriptyline on the mechanical withdrawal threshold and its underlying mechanisms were evaluated in rat models of bone cancer pain. Walker 256 rat mammary gland carcinoma cells were injected into the bone marrow cavity of the right tibia of rats to provoke bone cancer pain. Then, amitriptyline was intraperitoneally administered twice daily from fifth day after the operation. Rats with bone cancer showed an apparent decline in the mechanical withdrawal threshold at day 11 after Walker 256 cells inoculation. The levels of the glutamate-aspartate transporter in the spinal cord dorsal horn decreased remarkably, and the concentration of the excitatory amino acid glutamate in the cerebrospinal fluid increased substantially. Amitriptyline injection could prevent the decline of mechanical withdrawal threshold in bone cancer pain rats. In addition, glutamate-aspartate transporter was upregulated on the glial cell surface, and glutamate levels were reduced in the cerebrospinal fluid. However, amitriptyline injection could not prevent the bone cancer pain-induced reduction in glutamate-aspartate transporter in the glial cell cytosol, it further downregulated cytosolic glutamate-aspartate transporter. Amitriptyline had no significant effect on GLAST messenger RNA expression, and bone cancer pain-invoked protein kinase A/protein kinase C upregulation was prevented. Taken together, these results suggest that the intraperitoneal injection of amitriptyline can prevent the decrease of mechanical withdrawal threshold in bone cancer pain rats, the underlying mechanisms may be associated with the inhibition of protein kinase A/protein kinase C expression, thus promoting glutamate-aspartate transporter trafficking onto the glial cell surface and reducing excitatory amino acid concentrations in the cerebrospinal fluid.
Collapse
Affiliation(s)
- Simeng Ma
- 1 Fujian Provincial Hospital, Fuzhou, China
| | | | - Ting Zheng
- 1 Fujian Provincial Hospital, Fuzhou, China
| | | | | | | | | | - Bin Hu
- 1 Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
13
|
Hippocampal Synaptic Dysfunction in a Mouse Model of Huntington Disease Is Not Alleviated by Ceftriaxone Treatment. eNeuro 2020; 7:ENEURO.0440-19.2020. [PMID: 32354757 PMCID: PMC7242817 DOI: 10.1523/eneuro.0440-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Glutamate transporters, particularly glutamate transporter 1 (GLT-1), help to prevent the adverse effects associated with glutamate toxicity by rapidly clearing glutamate from the extracellular space. Since GLT-1 expression and/or function are reduced in many neurodegenerative diseases, upregulation of GLT-1 is a favorable approach to treat the symptoms of these diseases. Ceftriaxone, a β-lactam antibiotic reported to increase GLT-1 expression, can exert neuroprotective effects in a variety of neurodegenerative diseases; however, many of these diseases do not exhibit uniform brain pathology. In contrast, as a drug that readily crosses the blood–brain barrier, ceftriaxone administration is likely to increase GLT-1 levels globally throughout the neuroaxis. In Huntington disease (HD), low GLT-1 expression is observed in the striatum in postmortem tissue and animal models. While ceftriaxone was reported to increase striatal GLT-1 and ameliorate the motor symptoms in a mouse model of HD, the extrastriatal effects of ceftriaxone in HD are unknown. Using electrophysiology and high-speed imaging of the glutamate biosensor iGluSnFR, we quantified real-time glutamate dynamics and synaptic plasticity in the hippocampus of the Q175FDN mouse model of HD, following intraperitoneal injections of either saline or ceftriaxone. We observed an activity-dependent increase in extracellular glutamate accumulation within the HD hippocampus, which was not the result of reduced GLT-1 expression. Surprisingly, ceftriaxone had little effect on glutamate clearance rates and negatively impacted synaptic plasticity. These data provide evidence for glutamate dysregulation in the HD hippocampus but also caution the use of ceftriaxone as a treatment for HD.
Collapse
|
14
|
Armbruster M, Dulla CG, Diamond JS. Effects of fluorescent glutamate indicators on neurotransmitter diffusion and uptake. eLife 2020; 9:54441. [PMID: 32352378 PMCID: PMC7255799 DOI: 10.7554/elife.54441] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/29/2020] [Indexed: 01/10/2023] Open
Abstract
Genetically encoded fluorescent glutamate indicators (iGluSnFRs) enable neurotransmitter release and diffusion to be visualized in intact tissue. Synaptic iGluSnFR signal time courses vary widely depending on experimental conditions, often lasting 10–100 times longer than the extracellular lifetime of synaptically released glutamate estimated with uptake measurements. iGluSnFR signals typically also decay much more slowly than the unbinding kinetics of the indicator. To resolve these discrepancies, here we have modeled synaptic glutamate diffusion, uptake and iGluSnFR activation to identify factors influencing iGluSnFR signal waveforms. Simulations suggested that iGluSnFR competes with transporters to bind synaptically released glutamate, delaying glutamate uptake. Accordingly, synaptic transporter currents recorded from iGluSnFR-expressing astrocytes in mouse cortex were slower than those in control astrocytes. Simulations also suggested that iGluSnFR reduces free glutamate levels in extrasynaptic spaces, likely limiting extrasynaptic receptor activation. iGluSnFR and lower affinity variants, nonetheless, provide linear indications of vesicle release, underscoring their value for optical quantal analysis.
Collapse
Affiliation(s)
- Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, United States
| | - Jeffrey S Diamond
- Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, United States
| |
Collapse
|
15
|
Birefringence Changes of Dendrites in Mouse Hippocampal Slices Revealed with Polarizing Microscopy. Biophys J 2020; 118:2366-2384. [PMID: 32294480 DOI: 10.1016/j.bpj.2020.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
Intrinsic optical signal (IOS) imaging has been widely used to map the patterns of brain activity in vivo in a label-free manner. Traditional IOS refers to changes in light transmission, absorption, reflectance, and scattering of the brain tissue. Here, we use polarized light for IOS imaging to monitor structural changes of cellular and subcellular architectures due to their neuronal activity in isolated brain slices. To reveal fast spatiotemporal changes of subcellular structures associated with neuronal activity, we developed the instantaneous polarized light microscope (PolScope), which allows us to observe birefringence changes in neuronal cells and tissues while stimulating neuronal activity. The instantaneous PolScope records changes in transmission, birefringence, and slow axis orientation in tissue at a high spatial and temporal resolution using a single camera exposure. These capabilities enabled us to correlate polarization-sensitive IOS with traditional IOS on the same preparations. We detected reproducible spatiotemporal changes in both IOSs at the stratum radiatum in mouse hippocampal slices evoked by electrical stimulation at Schaffer collaterals. Upon stimulation, changes in traditional IOS signals were broadly uniform across the area, whereas birefringence imaging revealed local variations not seen in traditional IOS. Locations with high resting birefringence produced larger stimulation-evoked birefringence changes than those produced at low resting birefringence. Local application of glutamate to the synaptic region in CA1 induced an increase in both transmittance and birefringence signals. Blocking synaptic transmission with inhibitors CNQX (for AMPA-type glutamate receptor) and D-APV (for NMDA-type glutamate receptor) reduced the peak amplitude of the optical signals. Changes in both IOSs were enhanced by an inhibitor of the membranous glutamate transporter, DL-TBOA. Our results indicate that the detection of activity-induced structural changes of the subcellular architecture in dendrites is possible in a label-free manner.
Collapse
|
16
|
Valtcheva S, Venance L. Control of Long-Term Plasticity by Glutamate Transporters. Front Synaptic Neurosci 2019; 11:10. [PMID: 31024287 PMCID: PMC6465798 DOI: 10.3389/fnsyn.2019.00010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Activity-dependent long-term changes in synaptic strength constitute key elements for learning and memory formation. Long-term plasticity can be induced in vivo and ex vivo by various physiologically relevant activity patterns. Depending on their temporal statistics, such patterns can induce long-lasting changes in the synaptic weight by potentiating or depressing synaptic transmission. At excitatory synapses, glutamate uptake operated by excitatory amino acid transporters (EAATs) has a critical role in regulating the strength and the extent of receptor activation by afferent activity. EAATs tightly control synaptic transmission and glutamate spillover. EAATs activity can, therefore, determine the polarity and magnitude of long-term plasticity by regulating the spatiotemporal profile of the glutamate transients and thus, the glutamate access to pre- and postsynaptic receptors. Here, we summarize compelling evidence that EAATs regulate various forms of long-term synaptic plasticity and the consequences of such regulation for behavioral output. We speculate that experience-dependent plasticity of EAATs levels can determine the sensitivity of synapses to frequency- or time-dependent plasticity paradigms. We propose that EAATs contribute to the gating of relevant inputs eligible to induce long-term plasticity and thereby select the operating learning rules that match the physiological function of the synapse adapted to the behavioral context.
Collapse
Affiliation(s)
- Silvana Valtcheva
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241/INSERM U1050, Paris, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241/INSERM U1050, Paris, France
| |
Collapse
|
17
|
Romanos J, Benke D, Saab AS, Zeilhofer HU, Santello M. Differences in glutamate uptake between cortical regions impact neuronal NMDA receptor activation. Commun Biol 2019; 2:127. [PMID: 30963115 PMCID: PMC6451009 DOI: 10.1038/s42003-019-0367-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/05/2019] [Indexed: 01/06/2023] Open
Abstract
Removal of synaptically-released glutamate by astrocytes is necessary to spatially and temporally limit neuronal activation. Recent evidence suggests that astrocytes may have specialized functions in specific circuits, but the extent and significance of such specialization are unclear. By performing direct patch-clamp recordings and two-photon glutamate imaging, we report that in the somatosensory cortex, glutamate uptake by astrocytes is slower during sustained synaptic stimulation when compared to lower stimulation frequencies. Conversely, glutamate uptake capacity is increased in the frontal cortex during higher frequency synaptic stimulation, thereby limiting extracellular buildup of glutamate and NMDA receptor activation in layer 5 pyramidal neurons. This efficient glutamate clearance relies on Na+/K+-ATPase function and both GLT-1 and non-GLT-1 transporters. Thus, by enhancing their glutamate uptake capacity, astrocytes in the frontal cortex may prevent excessive neuronal excitation during intense synaptic activity. These results may explain why diseases associated with network hyperexcitability differentially affect individual brain areas.
Collapse
Affiliation(s)
- Jennifer Romanos
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Dietmar Benke
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Aiman S. Saab
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Mirko Santello
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
18
|
Single Synapse Indicators of Impaired Glutamate Clearance Derived from Fast iGlu u Imaging of Cortical Afferents in the Striatum of Normal and Huntington (Q175) Mice. J Neurosci 2019; 39:3970-3982. [PMID: 30819797 DOI: 10.1523/jneurosci.2865-18.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/05/2019] [Accepted: 02/19/2019] [Indexed: 01/23/2023] Open
Abstract
Changes in the balance between glutamate (Glu) release and uptake may stimulate synaptic reorganization and even synapse loss. In the case of neurodegeneration, a mismatch between astroglial Glu uptake and presynaptic Glu release could be detected if both parameters were assessed independently and at a single-synapse level. This has now become possible due to a new imaging assay with the genetically encoded ultrafast Glu sensor iGlu u We report findings from individual corticostriatal synapses in acute slices prepared from mice of either sex that were >1 year of age. Contrasting patterns of short-term plasticity and a size criterion identified two classes of terminals, presumably corresponding to the previously defined IT (intratelencephalic) and PT (pyramidal tract) synapses. The latter exhibited a higher degree of frequency potentiation/residual Glu accumulation and were selected for our first iGlu u single-synapse study in Q175 mice, a model of Huntington's disease (HD). In HD mice, the decay time constant of the perisynaptic Glu concentration (TauD), as an indicator of uptake, and the peak iGlu u amplitude, as an indicator of release, were prolonged and reduced, respectively. Treatment of WT preparations with the astrocytic Glu uptake blocker TFB-TBOA (100 nm) mimicked the TauD changes in homozygotes. Considering the largest TauD values encountered in WT, ∼40% of PT synapses tested in Q175 heterozygotes can be classified as dysfunctional. Moreover, HD but not WT synapses exhibited a positive correlation between TauD and the peak amplitude of iGlu u Finally, EAAT2 (excitatory amino acid transport protein 2) immunoreactivity was reduced next to corticostriatal terminals. Thus, astrocytic Glu transport remains a promising target for therapeutic intervention.SIGNIFICANCE STATEMENT Alterations in astrocytic Glu uptake can play a role in synaptic plasticity and neurodegeneration. Until now, the sensitivity of synaptic responses to pharmacological transport block and the resulting activation of NMDA receptors were regarded as reliable evidence for a mismatch between synaptic uptake and release. But the latter parameters are interdependent. Using a new genetically encoded sensor to monitor extracellular glutamate concentration ([Glu]) at individual corticostriatal synapses, we can now quantify the time constant of perisynaptic [Glu] decay (as an indicator of uptake) and the maximal [Glu] elevation next to the active zone (as an indicator of Glu release). The results provide a positive answer to the hitherto unresolved question of whether neurodegeneration (e.g., Huntington's disease) associates with a glutamate uptake deficit at tripartite excitatory synapses.
Collapse
|
19
|
Conditional Knock-out of mGluR5 from Astrocytes during Epilepsy Development Impairs High-Frequency Glutamate Uptake. J Neurosci 2018; 39:727-742. [PMID: 30504280 DOI: 10.1523/jneurosci.1148-18.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 11/11/2018] [Accepted: 11/18/2018] [Indexed: 11/21/2022] Open
Abstract
Astrocyte expression of metabotropic glutamate receptor 5 (mGluR5) is consistently observed in resected tissue from patients with epilepsy and is equally prevalent in animal models of epilepsy. However, little is known about the functional signaling properties or downstream consequences of astrocyte mGluR5 activation during epilepsy development. In the rodent brain, astrocyte mGluR5 expression is developmentally regulated and confined in expression/function to the first weeks of life, with similar observations made in human control tissue. Herein, we demonstrate that mGluR5 expression and function dramatically increase in a mouse model of temporal lobe epilepsy. Interestingly, in both male and female mice, mGluR5 function persists in the astrocyte throughout the process of epileptogenesis following status epilepticus. However, mGluR5 expression and function are transient in animals that do not develop epilepsy over an equivalent time period, suggesting that patterns of mGluR5 expression may signify continuing epilepsy development or its resolution. We demonstrate that, during epileptogenesis, astrocytes reacquire mGluR5-dependent calcium transients following agonist application or synaptic glutamate release, a feature of astrocyte-neuron communication absent since early development. Finally, we find that the selective and conditional knock-out of mGluR5 signaling from astrocytes during epilepsy development slows the rate of glutamate clearance through astrocyte glutamate transporters under high-frequency stimulation conditions, a feature that suggests astrocyte mGluR5 expression during epileptogenesis may recapitulate earlier developmental roles in regulating glutamate transporter function.SIGNIFICANCE STATEMENT In development, astrocyte mGluR5 signaling plays a critical role in regulating structural and functional interactions between astrocytes and neurons at the tripartite synapse. Notably, mGluR5 signaling is a positive regulator of astrocyte glutamate transporter expression and function, an essential component of excitatory signaling regulation in hippocampus. After early development, astrocyte mGluR5 expression is downregulated, but reemerges in animal models of temporal lobe epilepsy (TLE) development and patient epilepsy samples. We explored the hypothesis that astrocyte mGluR5 reemergence recapitulates earlier developmental roles during TLE acquisition. Our work demonstrates that astrocytes with mGluR5 signaling during TLE development perform faster glutamate uptake in hippocampus, revealing a previously unexplored role for astrocyte mGluR5 signaling in hypersynchronous pathology.
Collapse
|
20
|
Dual action of L-Lactate on the activity of NR2B-containing NMDA receptors: from potentiation to neuroprotection. Sci Rep 2018; 8:13472. [PMID: 30194439 PMCID: PMC6128851 DOI: 10.1038/s41598-018-31534-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
L-Lactate is a positive modulator of NMDAR-mediated signaling resulting in plasticity gene induction and memory consolidation. However, L-Lactate is also able to protect neurons against excito-toxic NMDAR activity, an indication of a mitigating action of L-Lactate on NMDA signaling. In this study, we provide experimental evidence that resolves this apparent paradox. Transient co-application of glutamate/glycine (1 μM/100 μM; 2 min) in primary cultures of mouse cortical neurons triggers a NMDA-dependent Ca2+ signal positively modulated by L-Lactate (10 mM) or DTT (1 mM) but decreased by Pyruvate (10 mM). This L-Lactate and DTT-induced potentiation is blocked by Ifenprodil (2 μM), a specific blocker of NMDARs containing NR2B sub-units. In contrast, co-application of glutamate/glycine (1 mM/100 μM; 2 min) elicits a NMDAR-dependent excitotoxic death in 49% of neurons. L-Lactate and Pyruvate significantly reduce this rate of cell death processes (respectively to 23% and 9%) while DTT has no effect (54% of neuronal death). This L-Lactate-induced neuroprotection is blocked by carbenoxolone and glibenclamide, respectively blockers of pannexins and KATP. In conclusion, our results show that L-Lactate is involved in two distinct and independent pathways defined as NMDAR-mediated potentiation pathway (or NADH pathway) and a neuroprotective pathway (or Pyruvate/ATP pathway), the prevalence of each one depending on the strength of the glutamatergic stimulus.
Collapse
|
21
|
Region- and Activity-Dependent Regulation of Extracellular Glutamate. J Neurosci 2018; 38:5351-5366. [PMID: 29760178 DOI: 10.1523/jneurosci.3213-17.2018] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022] Open
Abstract
Transporter-mediated glutamate uptake plays an essential role in shaping synaptic neurotransmission. The rapid removal of synaptically released glutamate ensures the high temporal dynamics characteristic of fast excitatory chemical neurotransmission and prevents the overexcitation of extrasynaptic NMDA receptors that have been implicated in synaptic plasticity impairments and cell death. Despite clear regional differences in plasticity and excitotoxic thresholds, few studies have compared extracellular glutamate dynamics across different brain regions and in response to a range of neural activity including plasticity-inducing stimuli. Here, we used the rapid extracellular fluorescent glutamate sensor iGluSnFR (intensity-based glutamate-sensing fluorescent reporter) and high-speed imaging (205 frames per second) to quantify relative differences in glutamate clearance rates over a wide range of presynaptic activity in situ in the hippocampus, cortex, and striatum of male C57/BL6NCrl mice. We found that the hippocampus was significantly more efficient than the cortex and striatum at clearing synaptically released glutamate and that this efficiency could be attributed, at least in part, to faster glutamate diffusion away from the release site. In addition, we found that pharmacological inhibition of GLT-1, the brain's most abundant glutamate transporter, slowed clearance rates to only a fraction (∼20-25%) of the effect induced by nonselective transporter blockade, regardless of the brain region and the duration of presynaptic activity. In all, our data reveal clear regional differences in glutamate dynamics after neural activity and suggest that non-GLT-1 transporters can make a large contribution to the rate of glutamate clearance in the hippocampus, cortex, and striatum.SIGNIFICANCE STATEMENT Glutamate is the brain's most abundant neurotransmitter, and although essential for rapid cell-cell communication, too much glutamate can negatively impact cellular health. Extracellular glutamate levels are tightly regulated by membrane-bound transporters that rapidly remove the glutamate that is released during neural activity, thereby shaping both the spatial and temporal dynamics of excitatory neurotransmission. Using high-speed imaging of an optical sensor of extracellular glutamate, we show that glutamate dynamics vary widely from one brain region to the next and are highly dependent on the duration of synaptic activity. Our data demonstrate the heterogeneous nature of glutamate regulation in the brain and suggest that such regional differences can dramatically affect both the localization and duration of postsynaptic receptor activation during synaptic neurotransmission.
Collapse
|
22
|
Rose CR, Felix L, Zeug A, Dietrich D, Reiner A, Henneberger C. Astroglial Glutamate Signaling and Uptake in the Hippocampus. Front Mol Neurosci 2018; 10:451. [PMID: 29386994 PMCID: PMC5776105 DOI: 10.3389/fnmol.2017.00451] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
Astrocytes have long been regarded as essentially unexcitable cells that do not contribute to active signaling and information processing in the brain. Contrary to this classical view, it is now firmly established that astrocytes can specifically respond to glutamate released from neurons. Astrocyte glutamate signaling is initiated upon binding of glutamate to ionotropic and/or metabotropic receptors, which can result in calcium signaling, a major form of glial excitability. Release of so-called gliotransmitters like glutamate, ATP and D-serine from astrocytes in response to activation of glutamate receptors has been demonstrated to modulate various aspects of neuronal function in the hippocampus. In addition to receptors, glutamate binds to high-affinity, sodium-dependent transporters, which results in rapid buffering of synaptically-released glutamate, followed by its removal from the synaptic cleft through uptake into astrocytes. The degree to which astrocytes modulate and control extracellular glutamate levels through glutamate transporters depends on their expression levels and on the ionic driving forces that decrease with ongoing activity. Another major determinant of astrocytic control of glutamate levels could be the precise morphological arrangement of fine perisynaptic processes close to synapses, defining the diffusional distance for glutamate, and the spatial proximity of transporters in relation to the synaptic cleft. In this review, we will present an overview of the mechanisms and physiological role of glutamate-induced ion signaling in astrocytes in the hippocampus as mediated by receptors and transporters. Moreover, we will discuss the relevance of astroglial glutamate uptake for extracellular glutamate homeostasis, focusing on how activity-induced dynamic changes of perisynaptic processes could shape synaptic transmission at glutamatergic synapses.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | - Dirk Dietrich
- Department of Neurosurgery, University of Bonn Medical School, Bonn, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,German Center for Degenerative Diseases (DZNE), Bonn, Germany.,Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
23
|
Astrocytes and presynaptic plasticity in the striatum: Evidence and unanswered questions. Brain Res Bull 2018; 136:17-25. [DOI: 10.1016/j.brainresbull.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 02/03/2023]
|
24
|
Functional Indicators of Glutamate Transport in Single Striatal Astrocytes and the Influence of Kir4.1 in Normal and Huntington Mice. J Neurosci 2017; 36:4959-75. [PMID: 27147650 DOI: 10.1523/jneurosci.0316-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED This study evaluates single-cell indicators of glutamate transport in sulforhodamine 101-positive astrocytes of Q175 mice, a knock-in model of Huntington's disease (HD). Transport-related fluorescent ratio signals obtained with sodium-binding benzofuran isophtalate (SBFI) AM from unperturbed or voltage-clamped astrocytes and respective glutamate transporter currents (GTCs) were induced by photolytic or synaptic glutamate release and isolated pharmacologically. The HD-induced deficit ranged from -27% (GTC maximum at -100 mV in Ba(2+)) to -41% (sodium transients in astrocytes after loading SBFI-AM). Our specific aim was to clarify the mechanism(s) by which Kir4.1 channels can influence glutamate transport, as determined by either Na(+) imaging or transport-associated electrical signals. A decrease of Kir4.1 conductance was mimicked with Ba(2+) (200 μm), and an increase of Kir4.1 expression was obtained by intravenous administration of AAV9-gfaABC1D-Kir4.1-EGFP. The decrease of Kir4.1 conductance reduced the sodium transients but increased the amplitudes of somatic GTCs. Accordingly, after genetic upregulation of Kir4.1, somatic GTCs were found to be decreased. In individual cells, there was a negative correlation between Kir4.1 currents and GTCs. The relative effect of the Kir4.1 conductance was higher in the astrocyte periphery. These and other results suggest that the Kir4.1 conductance affects glutamate transporter activity in a dual manner: (1) by providing the driving force (voltage dependency of the transport itself) and (2) by limiting the lateral charge transfer (thereby reducing the interference with other electrogenic transporter functions). This leads to the testable prediction that restoring the high conductance state of passive astrocytes will not only normalize glutamate uptake but also restore other astrocytic transporter activities afflicted with HD. SIGNIFICANCE STATEMENT Insufficiency of astrocytic glutamate uptake is a major element in the pathophysiology of neurodegenerative diseases. Considering the heterogeneity of astrocytes and their differential susceptibility to therapeutic interventions, it becomes necessary to evaluate the determinants of transport activity in individual astroglial cells. We have examined intracellular Na(+) transients and glutamate transporter currents as the most telling indicators of glutamate clearance after synaptic or photolytic release of glutamate in striatal slices. The results show that, in Huntington's disease, glutamate uptake activity critically depends on Kir4.1. These channels enable the high conductance state of the astrocytic plasma membrane, which ensures the driving force for glutamate transport and dumps the transport-associated depolarization along the astrocyte processes. This has significant implications for developing therapeutic targets.
Collapse
|
25
|
Glutamate Clearance Is Locally Modulated by Presynaptic Neuronal Activity in the Cerebral Cortex. J Neurosci 2017; 36:10404-10415. [PMID: 27707974 DOI: 10.1523/jneurosci.2066-16.2016] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/18/2016] [Indexed: 02/02/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) are abundantly expressed by astrocytes, rapidly remove glutamate from the extracellular environment, and restrict the temporal and spatial extent of glutamate signaling. Studies probing EAAT function suggest that their capacity to remove glutamate is large and does not saturate, even with substantial glutamate challenges. In contrast, we report that neuronal activity rapidly and reversibly modulates EAAT-dependent glutamate transport. To date, no physiological manipulation has shown changes in functional glutamate uptake in a nonpathological state. Using iGluSnFr-based glutamate imaging and electrophysiology in the adult mouse cortex, we show that glutamate uptake is slowed up to threefold following bursts of neuronal activity. The slowing of glutamate uptake depends on the frequency and duration of presynaptic neuronal activity but is independent of the amount of glutamate released. The modulation of glutamate uptake is brief, returning to normal within 50 ms after stimulation ceases. Interestingly, the slowing of glutamate uptake is specific to activated synapses, even within the domain of an individual astrocyte. Activity-induced slowing of glutamate uptake, and the increased persistence of glutamate in the extracellular space, is reflected by increased decay times of neuronal NR2A-mediated NMDA currents. These results show that astrocytic clearance of extracellular glutamate is slowed in a temporally and spatially specific manner following bursts of neuronal activity ≥30 Hz and that these changes affect the neuronal response to released glutamate. This suggests a previously unreported form of neuron-astrocyte interaction. SIGNIFICANCE STATEMENT We report the first fast, physiological modulation of astrocyte glutamate clearance kinetics. We show that presynaptic activity in the cerebral cortex increases the persistence of glutamate in the extracellular space by slowing its clearance by astrocytes. Because of abundant EAAT expression, glutamate clearance from the extracellular space has been thought to have invariant kinetics. While multiple studies report experimental manipulations resulting in altered EAAT expression, our findings show that astrocytic glutamate uptake is dynamic on a fast time-scale. This shows rapid plasticity of glutamate clearance, which locally modulates synaptic signaling in the cortex. As astrocytic glutamate uptake is a fundamental and essential mechanism for neurotransmission, this work has implications for neurotransmission, extrasynaptic receptor activation, and synaptic plasticity.
Collapse
|
26
|
Valtcheva S, Venance L. Astrocytes gate Hebbian synaptic plasticity in the striatum. Nat Commun 2016; 7:13845. [PMID: 27996006 PMCID: PMC5187441 DOI: 10.1038/ncomms13845] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 11/04/2016] [Indexed: 11/18/2022] Open
Abstract
Astrocytes, via excitatory amino-acid transporter type-2 (EAAT2), are the major sink for released glutamate and contribute to set the strength and timing of synaptic inputs. The conditions required for the emergence of Hebbian plasticity from distributed neural activity remain elusive. Here, we investigate the role of EAAT2 in the expression of a major physiologically relevant form of Hebbian learning, spike timing-dependent plasticity (STDP). We find that a transient blockade of EAAT2 disrupts the temporal contingency required for Hebbian synaptic plasticity. Indeed, STDP is replaced by aberrant non-timing-dependent plasticity occurring for uncorrelated events. Conversely, EAAT2 overexpression impairs the detection of correlated activity and precludes STDP expression. Our findings demonstrate that EAAT2 sets the appropriate glutamate dynamics for the optimal temporal contingency between pre- and postsynaptic activity required for STDP emergence, and highlight the role of astrocytes as gatekeepers for Hebbian synaptic plasticity.
Collapse
Affiliation(s)
- Silvana Valtcheva
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, 75005 Paris, France
- Pierre et Marie Curie University, ED 158, 75005 Paris, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology, College de France, CNRS UMR7241/INSERM U1050, MemoLife Labex, 75005 Paris, France
- Pierre et Marie Curie University, ED 158, 75005 Paris, France
| |
Collapse
|
27
|
Trabelsi Y, Amri M, Becq H, Molinari F, Aniksztejn L. The conversion of glutamate by glutamine synthase in neocortical astrocytes from juvenile rat is important to limit glutamate spillover and peri/extrasynaptic activation of NMDA receptors. Glia 2016; 65:401-415. [PMID: 27862359 DOI: 10.1002/glia.23099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
Abstract
Glutamate transporters (EAATs) are important to maintain spatial and temporal specificity of synaptic transmission. Their efficiency to uptake and transport glutamate into the intracellular space depends on several parameters including the intracellular concentrations of Na+ and glutamate, the elevations of which may slow down the cycling rate of EAATs. In astrocytes, glutamate is maintained at low concentration due to the presence of specific enzymes such as glutamine synthase (GS). GS inhibition results in cytosolic accumulation of glutamate suggesting that the conversion of glutamate by GS is important for EAATs operation. Here we recorded astrocytes from juvenile rat neocortical slices and analyzed the consequences of elevated intracellular glutamate concentrations and of GS inhibition on the time course of synaptically evoked transporter current (STC). In slices from rats treated with methionine sulfoximine (MSO), a GS inhibitor, STC evoked by short burst of high frequency stimulation (HFS; 100 Hz for 100 ms) but not by low frequency stimulation (LFS; 0.1 Hz) was twice slower than STC evoked from saline injected rats. Same results were obtained for astrocytes recorded with pipette containing 3-10 mM glutamate and compared with cells recorded with 0 or1 mM glutamate in the patch pipette. We also showed that HFS elicited significantly larger NMDAR-excitatory postsynaptic currents (EPSCs) with a stronger peri/extrasynaptic component in pyramidal cells from MSO-treated compared with saline treated rats. Taken together our data demonstrate that the conversion of glutamate by GS is fundamental to ensure an efficient clearance of glutamate by EAATs and to prevent glutamate spillover. GLIA 2017;65:401-415.
Collapse
Affiliation(s)
- Yosra Trabelsi
- Institut de Neurobiologie de la Méditerranée (INMED), Aix-Marseille Université, Marseille, 13009, France.,INSERM, UMR_S 901, Marseille, 13009, France
| | - Mohamed Amri
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Tunis, UR11ES09, Tunisie
| | - Hélène Becq
- Institut de Neurobiologie de la Méditerranée (INMED), Aix-Marseille Université, Marseille, 13009, France.,INSERM, UMR_S 901, Marseille, 13009, France
| | - Florence Molinari
- Institut de Neurobiologie de la Méditerranée (INMED), Aix-Marseille Université, Marseille, 13009, France.,INSERM, UMR_S 901, Marseille, 13009, France
| | - Laurent Aniksztejn
- Institut de Neurobiologie de la Méditerranée (INMED), Aix-Marseille Université, Marseille, 13009, France.,INSERM, UMR_S 901, Marseille, 13009, France
| |
Collapse
|
28
|
DiNuzzo M, Giove F, Maraviglia B, Mangia S. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K + Rather than Glutamate. Neurochem Res 2016; 42:202-216. [PMID: 27628293 PMCID: PMC5283516 DOI: 10.1007/s11064-016-2048-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/04/2022]
Abstract
Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na+/K+ ATPase, which hydrolyzes 1 ATP to move 3 Na+ outside and 2 K+ inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na+ and K+ ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na+ and K+ fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na+/K+ ions per glutamate released. We found that astrocytes are stimulated by the extracellular K+ exiting neurons in excess of the 3/2 Na+/K+ ratio underlying Na+/K+ ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K+ uptake, but not astrocytic Na+-coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K+ in stimulating the activation of astrocytes, which is relevant to the understanding of brain activity and energy metabolism at the cellular level.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 24.2.40, 2200, Copenhagen N, Denmark.
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Bruno Maraviglia
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, Department of Radiology, Univeristy of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Capuani C, Melone M, Tottene A, Bragina L, Crivellaro G, Santello M, Casari G, Conti F, Pietrobon D. Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol Med 2016; 8:967-86. [PMID: 27354390 PMCID: PMC4967947 DOI: 10.15252/emmm.201505944] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Migraine is a common disabling brain disorder. A subtype of migraine with aura (familial hemiplegic migraine type 2: FHM2) is caused by loss‐of‐function mutations in α2 Na+,K+ATPase (α2NKA), an isoform almost exclusively expressed in astrocytes in adult brain. Cortical spreading depression (CSD), the phenomenon that underlies migraine aura and activates migraine headache mechanisms, is facilitated in heterozygous FHM2‐knockin mice with reduced expression of α2NKA. The mechanisms underlying an increased susceptibility to CSD in FHM2 are unknown. Here, we show reduced rates of glutamate and K+ clearance by cortical astrocytes during neuronal activity and reduced density of GLT‐1a glutamate transporters in cortical perisynaptic astrocytic processes in heterozygous FHM2‐knockin mice, demonstrating key physiological roles of α2NKA and supporting tight coupling with GLT‐1a. Using ceftriaxone treatment of FHM2 mutants and partial inhibition of glutamate transporters in wild‐type mice, we obtain evidence that defective glutamate clearance can account for most of the facilitation of CSD initiation in FHM2‐knockin mice, pointing to excessive glutamatergic transmission as a key mechanism underlying the vulnerability to CSD ignition in migraine.
Collapse
Affiliation(s)
- Clizia Capuani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marcello Melone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Angelita Tottene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Bragina
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | | | - Mirko Santello
- Institute of Pharmacology and Toxicology, University of Zurich, Zürich, Switzerland
| | - Giorgio Casari
- Vita-Salute San Raffaele University and San Raffaele Scientific Institute, Milano, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy Fondazione di Medicina Molecolare, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, Padova, Italy CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
30
|
Meeker KD, Meabon JS, Cook DG. Partial Loss of the Glutamate Transporter GLT-1 Alters Brain Akt and Insulin Signaling in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 45:509-20. [PMID: 25589729 DOI: 10.3233/jad-142304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The glutamate transporter GLT-1 (also called EAAT2 in humans) plays a critical role in regulating extracellular glutamate levels in the central nervous system (CNS). In Alzheimer's disease (AD), EAAT2 loss is associated with neuropathology and cognitive impairment. In keeping with this, we have reported that partial GLT-1 loss (GLT-1+/-) causes early-occurring cognitive deficits in mice harboring familial AD AβPPswe/PS1ΔE9 mutations. GLT-1 plays important roles in several molecular pathways that regulate brain metabolism, including Akt and insulin signaling in astrocytes. Significantly, AD pathogenesis also involves chronic Akt activation and reduced insulin signaling in the CNS. In this report we tested the hypothesis that GLT-1 heterozygosity (which reduces GLT-1 to levels that are comparable to losses in AD patients) in AβPPswe/PS1ΔE9 mice would induce sustained activation of Akt and disturb components of the CNS insulin signaling cascade. We found that partial GLT-1 loss chronically increased Akt activation (reflected by increased phosphorylation at serine 473), impaired insulin signaling (reflected by decreased IRβ phosphorylation of tyrosines 1150/1151 and increased IRS-1 phosphorylation at serines 632/635 - denoted as 636/639 in humans), and reduced insulin degrading enzyme (IDE) activity in brains of mice expressing familial AβPPswe/PS1ΔE9 AD mutations. GLT-1 loss also caused an apparent compensatory increase in IDE activity in the liver, an organ that has been shown to regulate peripheral amyloid-β levels and expresses GLT-1. Taken together, these findings demonstrate that partial GLT-1 loss can cause insulin/Akt signaling abnormalities that are in keeping with those observed in AD.
Collapse
Affiliation(s)
- Kole D Meeker
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA
| | - James S Meabon
- Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David G Cook
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, USA Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System (VAPSHCS), Seattle, WA, USA Division of Gerontology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
31
|
mGlu5 Receptors and Relapse to Cocaine-Seeking: The Role of Receptor Trafficking in Postrelapse Extinction Learning Deficits. Neural Plast 2016; 2016:9312508. [PMID: 26881139 PMCID: PMC4736983 DOI: 10.1155/2016/9312508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/05/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022] Open
Abstract
We have previously demonstrated that MTEP, an allosteric antagonist of mGlu5, infused into the nucleus accumbens attenuates relapse after abstinence from cocaine self-administration. MTEP infused into the dorsolateral striatum (dlSTR) does not alter relapse but has long-lasting effects on subsequent extinction learning. Here we tested whether systemic MTEP would prevent relapse after abstinence or alter extinction learning. We also investigated the mechanism of action by which intra-dlSTR MTEP on test day alters extinction on subsequent days. Animals self-administered cocaine for 12 days followed by abstinence for 20-21 days. MTEP (0.5–5 mg/kg IP) was administered prior to placement into the operant chamber for a context-primed relapse test. A separate group of animals received intra-dlSTR MTEP prior to the relapse test and were sacrificed day later. Systemic administration of MTEP attenuated abstinent-relapse without significantly affecting extinction learning. Surface biotinylation analysis of protein expression in the dlSTR revealed that, in cocaine animals, intra-dlSTR MTEP administration decreased mGlu5 surface expression and prevented changes in Arc and GluA1/GluA2 observed in their vehicle counterparts. Thus, blockade of mGlu5 receptors may be utilized in future treatment strategies for relapse prevention in humans, although the effects of chronic blockade on extinction learning should be further evaluated.
Collapse
|
32
|
GLT-1 Transport Stoichiometry Is Constant at Low and High Glutamate Concentrations when Chloride Is Substituted by Gluconate. PLoS One 2015; 10:e0136111. [PMID: 26301411 PMCID: PMC4547712 DOI: 10.1371/journal.pone.0136111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022] Open
Abstract
Glutamate is the major excitatory neurotransmitter, but prolonged exposure even at micromolar concentrations causes neuronal death. Extracellular glutamate is maintained at nanomolar level by glutamate transporters, which, however, may reverse transport and release glutamate. If and when the reverse occurs depends on glutamate transport stoichiometry (GTS). Previously we found that in the presence of chloride, the coupled GLT-1 glutamate transporter current and its relationship to radiolabeled glutamate flux significantly decreased when extracellular glutamate concentration increased above 0.2 mM, which implies a change in GTS. Such high concentrations are feasible near GLT-1 expressed close to synaptic release site during excitatory neurotransmission. The aim of this study was to determine GLT-1 GTS at both low (19–75 μM) and high (300–1200 μM) glutamate concentration ranges. GTS experiments were conducted in the absence of chloride to avoid contributions by the GLT-1 uncoupled chloride conductance. Mathematical analysis of the transporter thermodynamic equilibrium allowed us to derive equations revealing the number of a particular type of ion transported per elementary charge based on the measurements of the transporter reversal potential. We found that GLT-1a expressed in COS-7 cells co-transports 1.5 Na+, 0.5 Glu-, 0.5 H+ and counter-transports 0.6 K+ per elementary charge in both glutamate concentration ranges, and at both 37°C and 26°C temperatures. The thermodynamic parameter Q10 = 2.4 for GLT-1 turnover rate of 19 s-1 (37°C, -50 mV) remained constant in the 10 μM–10 mM glutamate concentration range. Importantly, the previously reported decrease in the current/flux ratio at high glutamate concentration was not seen in the absence of chloride in both COS-7 cells and cultured rat neurons. Therefore, only in the absence of chloride, GLT-1 GTS remains constant at all glutamate concentrations. Possible explanations for why apparent GTS might vary in the presence of chloride are discussed.
Collapse
|
33
|
The ubiquitous nature of multivesicular release. Trends Neurosci 2015; 38:428-38. [PMID: 26100141 DOI: 10.1016/j.tins.2015.05.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/20/2015] [Accepted: 05/24/2015] [Indexed: 11/21/2022]
Abstract
'Simplicity is prerequisite for reliability' (E.W. Dijkstra [1]) Presynaptic action potentials trigger the fusion of vesicles to release neurotransmitter onto postsynaptic neurons. Each release site was originally thought to liberate at most one vesicle per action potential in a probabilistic fashion, rendering synaptic transmission unreliable. However, the simultaneous release of several vesicles, or multivesicular release (MVR), represents a simple mechanism to overcome the intrinsic unreliability of synaptic transmission. MVR was initially identified at specialized synapses but is now known to be common throughout the brain. MVR determines the temporal and spatial dispersion of transmitter, controls the extent of receptor activation, and contributes to adapting synaptic strength during plasticity and neuromodulation. MVR consequently represents a widespread mechanism that extends the dynamic range of synaptic processing.
Collapse
|
34
|
Fawley JA, Hofmann ME, Largent-Milnes TM, Andresen MC. Temperature differentially facilitates spontaneous but not evoked glutamate release from cranial visceral primary afferents. PLoS One 2015; 10:e0127764. [PMID: 25992717 PMCID: PMC4439140 DOI: 10.1371/journal.pone.0127764] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
Temperature is fundamentally important to all biological functions including synaptic glutamate release. Vagal afferents from the solitary tract (ST) synapse on second order neurons in the nucleus of the solitary tract, and glutamate release at this first central synapse controls autonomic reflex function. Expression of the temperature-sensitive Transient Receptor Potential Vanilloid Type 1 receptor separates ST afferents into C-fibers (TRPV1+) and A-fibers (TRPV1-). Action potential-evoked glutamate release is similar between C- and A-fiber afferents, but TRPV1 expression facilitates a second form of synaptic glutamate release in C-fibers by promoting substantially more spontaneous glutamate release. The influence of temperature on different forms of glutamate release is not well understood. Here we tested how temperature impacts the generation of evoked and spontaneous release of glutamate and its relation to TRPV1 expression. In horizontal brainstem slices of rats, activation of ST primary afferents generated synchronous evoked glutamate release (ST-eEPSCs) at constant latency whose amplitude reflects the probability of evoked glutamate release. The frequency of spontaneous EPSCs in these same neurons measured the probability of spontaneous glutamate release. We measured both forms of glutamate from each neuron during ramp changes in bath temperature of 4-5 °C. Spontaneous glutamate release from TRPV1+ closely tracked with these thermal changes indicating changes in the probability of spontaneous glutamate release. In the same neurons, temperature changed axon conduction registered as latency shifts but ST-eEPSC amplitudes were constant and independent of TRPV1 expression. These data indicate that TRPV1-operated glutamate release is independent of action potential-evoked glutamate release in the same neurons. Together, these support the hypothesis that evoked and spontaneous glutamate release originate from two pools of vesicles that are independently modulated and are distinct processes.
Collapse
Affiliation(s)
- Jessica A. Fawley
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| | - Mackenzie E. Hofmann
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Tally M. Largent-Milnes
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Michael C. Andresen
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
35
|
Hanson E, Armbruster M, Cantu D, Andresen L, Taylor A, Danbolt NC, Dulla CG. Astrocytic glutamate uptake is slow and does not limit neuronal NMDA receptor activation in the neonatal neocortex. Glia 2015; 63:1784-96. [PMID: 25914127 DOI: 10.1002/glia.22844] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 01/20/2023]
Abstract
Glutamate uptake by astrocytes controls the time course of glutamate in the extracellular space and affects neurotransmission, synaptogenesis, and circuit development. Astrocytic glutamate uptake has been shown to undergo post-natal maturation in the hippocampus, but has been largely unexplored in other brain regions. Notably, glutamate uptake has never been examined in the developing neocortex. In these studies, we investigated the development of astrocytic glutamate transport, intrinsic membrane properties, and control of neuronal NMDA receptor activation in the developing neocortex. Using astrocytic and neuronal electrophysiology, immunofluorescence, and Western blot analysis we show that: (1) glutamate uptake in the neonatal neocortex is slow relative to neonatal hippocampus; (2) astrocytes in the neonatal neocortex undergo a significant maturation of intrinsic membrane properties; (3) slow glutamate uptake is accompanied by lower expression of both GLT-1 and GLAST; (4) glutamate uptake is less dependent on GLT-1 in neonatal neocortex than in neonatal hippocampus; and (5) the slow glutamate uptake we report in the neonatal neocortex corresponds to minimal astrocytic control of neuronal NMDA receptor activation. Taken together, our results clearly show fundamental differences between astrocytic maturation in the developing neocortex and hippocampus, and corresponding changes in how astrocytes control glutamate signaling.
Collapse
Affiliation(s)
- Elizabeth Hanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.,Neuroscience Program, Tufts Sackler School of Biomedical Sciences, Boston, Massachusetts
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - David Cantu
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Lauren Andresen
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.,Neuroscience Program, Tufts Sackler School of Biomedical Sciences, Boston, Massachusetts
| | - Amaro Taylor
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts
| | - Niels Christian Danbolt
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts.,Neuroscience Program, Tufts Sackler School of Biomedical Sciences, Boston, Massachusetts
| |
Collapse
|
36
|
Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat Neurosci 2015; 18:219-26. [PMID: 25581361 DOI: 10.1038/nn.3901] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/14/2014] [Indexed: 02/08/2023]
Abstract
Control of the glutamate time course in the synapse is crucial for excitatory transmission. This process is mainly ensured by astrocytic transporters, high expression of which is essential to compensate for their slow transport cycle. Although molecular mechanisms regulating transporter intracellular trafficking have been identified, the relationship between surface transporter dynamics and synaptic function remains unexplored. We found that GLT-1 transporters were highly mobile on rat astrocytes. Surface diffusion of GLT-1 was sensitive to neuronal and glial activities and was strongly reduced in the vicinity of glutamatergic synapses, favoring transporter retention. Notably, glutamate uncaging at synaptic sites increased GLT-1 diffusion, displacing transporters away from this compartment. Functionally, impairing GLT-1 membrane diffusion through cross-linking in vitro and in vivo slowed the kinetics of excitatory postsynaptic currents, indicative of a prolonged time course of synaptic glutamate. These data provide, to the best of our knowledge, the first evidence for a physiological role of GLT-1 surface diffusion in shaping synaptic transmission.
Collapse
|
37
|
Patel D, Kharkar PS, Nandave M. Emerging roles of system [Formula: see text] antiporter and its inhibition in CNS disorders. Mol Membr Biol 2015; 32:89-116. [PMID: 26508554 DOI: 10.3109/09687688.2015.1096972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 02/05/2023]
Abstract
System [Formula: see text] is an antiporter belonging to the hetero(di)meric amino acid transporter family. It is located on astrocytes as well as on blood-brain barrier within the CNS. It plays a pivotal role in free radical neutralization as well as neuronal signalling by regulating the glutathione production which occurs via the exchange of intracellular glutamate with extracellular cystine at 1:1 molar ratio. Understandably, it is a vital component responsible for the maintenance of neuronal homeostasis (e.g. redox state). Hence, it could be postulated that any perturbation in system [Formula: see text] function may contribute, directly or indirectly, to the pathophysiology of a variety of CNS disorders like Alzheimer's disease, schizophrenia, drug addiction, depression, multiple sclerosis, hypoglycemic neuronal cell death, glioma, and excitotoxicity, making system [Formula: see text] a promising target for treating CNS disorders. In recent times, recognizing the potential of this target, variety of inhibitors has been synthesized by modifying commercially available potent inhibitors including sulfasalazine, erastin, and sorafenib. Although, they have demonstrated efficacy, the in-depth data is still lacking to warrant their use for the treatment of aforementioned CNS disorders. In this review, we discuss the in-depth role of system [Formula: see text] transporter in maintaining normal physiology as well as in the pathophysiology of CNS diseases. Additionally, we have also listed some of the potent inhibitors of system [Formula: see text]. In conclusion, the critical role of system [Formula: see text] in multiple CNS disorders and advanced research on its inhibitors have promising future prospects for better management of the CNS ailments.
Collapse
Affiliation(s)
| | - Prashant S Kharkar
- b Department of Pharmaceutical Chemistry , SPP School of Pharmacy and Technology Management, SVKM's NMIMS University , Mumbai , India
| | | |
Collapse
|
38
|
Campbell SL, Hablitz JJ, Olsen ML. Functional changes in glutamate transporters and astrocyte biophysical properties in a rodent model of focal cortical dysplasia. Front Cell Neurosci 2014; 8:425. [PMID: 25565960 PMCID: PMC4269128 DOI: 10.3389/fncel.2014.00425] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 11/26/2014] [Indexed: 11/13/2022] Open
Abstract
Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD) model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD model in rats. Neocortical freeze lesions were made in postnatal day (PN) 1 rat pups and whole cell electrophysiological recordings and biochemical studies were performed at PN 21–28. Synaptically evoked glutamate transporter currents in astrocytes showed a near 10-fold reduction in amplitude compared to sham operated controls. Astrocyte glutamate transporter currents from lesioned animals were also significantly reduced when challenged exogenously applied glutamate. Reduced astrocytic glutamate transport clearance contributed to increased NMDA receptor-mediated current decay kinetics in lesioned animals. The electrophysiological profile of astrocytes in the lesion group was also markedly changed compared to sham operated animals. Control astrocytes demonstrate large-amplitude linear leak currents in response to voltage-steps whereas astrocytes in lesioned animals demonstrated significantly smaller voltage-activated inward and outward currents. Significant decreases in astrocyte resting membrane potential and increases in input resistance were observed in lesioned animals. However, Western blotting, immunohistochemistry and quantitative PCR demonstrated no differences in the expression of the astrocytic glutamate transporter GLT-1 in lesioned animals relative to controls. These data suggest that, in the absence of changes in protein or mRNA expression levels, functional changes in astrocytic glutamate transporters contribute to neuronal hyperexcitability in the FCD model.
Collapse
Affiliation(s)
- Susan L Campbell
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Michelle L Olsen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
39
|
Resch JM, Albano R, Liu X, Hjelmhaug J, Lobner D, Baker DA, Choi S. Augmented cystine-glutamate exchange by pituitary adenylate cyclase-activating polypeptide signaling via the VPAC1 receptor. Synapse 2014; 68:604-612. [PMID: 25066643 DOI: 10.1002/syn.21772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 01/17/2023]
Abstract
In the central nervous system, cystine import in exchange for glutamate through system xc- is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc- activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuronally derived peptide that has already been demonstrated to modulate multiple aspects of glutamate signaling suggesting PACAP may also target activity of cystine-glutamate exchange via system xc-. In this study, 24-h treatment of primary cortical cultures containing neurons and glia with PACAP concentration-dependently increased system xc- function as measured by radiolabeled cystine uptake. Furthermore, the increase in cystine uptake was completely abolished by the system xc- inhibitor, (S)-4-carboxyphenylglycine (CPG), attributing increases in cystine uptake specifically to system xc- activity. Time course and quantitative PCR results indicate that PACAP signaling may increase cystine-glutamate exchange by increasing expression of xCT, the catalytic subunit of system xc-. Furthermore, the potentiation of system xc- activity by PACAP occurs via a PKA-dependent pathway that is not mediated by the PAC1R, but rather the shared vasoactive intestinal polypeptide receptor VPAC1R. Finally, assessment of neuronal, astrocytic, and microglial-enriched cultures demonstrated that only astrocyte-enriched cultures exhibit enhanced cystine uptake following both PACAP and VIP treatment. These data introduce a novel mechanism by which both PACAP and VIP regulate system xc- activity. Synapse 68:604-612, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jon M Resch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Rebecca Albano
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Xiaoqian Liu
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Julie Hjelmhaug
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Sujean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| |
Collapse
|
40
|
Resch JM, Maunze B, Phillips KA, Choi S. Inhibition of food intake by PACAP in the hypothalamic ventromedial nuclei is mediated by NMDA receptors. Physiol Behav 2014; 133:230-5. [PMID: 24878316 DOI: 10.1016/j.physbeh.2014.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022]
Abstract
Central injections of pituitary adenylate cyclase-activating polypeptide (PACAP) into the ventromedial nuclei (VMN) of the hypothalamus produce hypophagia that is dependent upon the PAC1 receptor; however, the signaling downstream of this receptor in the VMN is unknown. Though PACAP signaling has many targets, this neuropeptide has been shown to influence glutamate signaling in several brain regions through mechanisms involving NMDA receptor potentiation via activation of the Src family of protein tyrosine kinases. With this in mind, we examined the Src-NMDA receptor signaling pathway as a target for PACAP signaling in the VMN that may mediate its effects on feeding behavior. Under nocturnal feeding conditions, NMDA receptor antagonism prior to PACAP administration into the VMN attenuated PACAP-mediated decreases in feeding suggesting that glutamatergic signaling via NMDA receptors is necessary for PACAP-induced hypophagia. Furthermore, PACAP administration into the VMN resulted in increased tyrosine phosphorylation of the GluN2B subunit of the NMDA receptor, and inhibition of Src kinase activity also blocked the effects of PACAP administration into the VMN on feeding behavior. These results indicate that PACAP neurotransmission in the VMN likely augments glutamate signaling by potentiating NMDA receptors activity through the tyrosine phosphorylation events mediated by the Src kinase family, and modulation of NMDA receptor activity by PACAP in the hypothalamus may be a primary mechanism for its regulation of food intake.
Collapse
Affiliation(s)
- Jon M Resch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Brian Maunze
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Kailynn A Phillips
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - SuJean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA.
| |
Collapse
|
41
|
Divito CB, Underhill SM. Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int 2014; 73:172-80. [PMID: 24418112 DOI: 10.1016/j.neuint.2013.12.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 01/04/2023]
Abstract
Excitatory amino acid transporters or EAATs are the major transport mechanism for extracellular glutamate in the nervous system. This family of five carriers not only displays an impressive ability to regulate ambient extracellular glu concentrations but also regulate the temporal and spatial profile of glu after vesicular release. This dynamic form of regulation mediates several characteristic of synaptic, perisynaptic, and spillover activation of ionotropic and metabotropic receptors. EAATs function through a secondary active, electrogenic process but also possess a thermodynamically uncoupled ligand gated anion channel activity, both of which have been demonstrated to play a role in regulation of cellular activity. This review will highlight the inception of EAATs as a focus of research, the transport and channel functionality of the carriers, and then describe how these properties are used to regulate glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Christopher B Divito
- Center for Neuroscience, Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States
| | - Suzanne M Underhill
- Laboratory of Cellular and Molecular Neuroscience, National Institute of Mental Health, National Institute of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
42
|
Abstract
L-Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and plays important roles in a wide variety of brain functions, but it is also a key player in the pathogenesis of many neurological disorders. The control of glutamate concentrations is critical to the normal functioning of the central nervous system, and in this review we discuss how glutamate transporters regulate glutamate concentrations to maintain dynamic signaling mechanisms between neurons. In 2004, the crystal structure of a prokaryotic homolog of the mammalian glutamate transporter family of proteins was crystallized and its structure determined. This has paved the way for a better understanding of the structural basis for glutamate transporter function. In this review we provide a broad perspective of this field of research, but focus primarily on the more recent studies with a particular emphasis on how our understanding of the structure of glutamate transporters has generated new insights.
Collapse
|
43
|
Gibbons M, Smeal R, Takahashi D, Vargas J, Wilcox K. Contributions of astrocytes to epileptogenesis following status epilepticus: opportunities for preventive therapy? Neurochem Int 2013; 63:660-9. [PMID: 23266599 PMCID: PMC4353644 DOI: 10.1016/j.neuint.2012.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/09/2012] [Accepted: 12/13/2012] [Indexed: 12/22/2022]
Abstract
Status epilepticus (SE) is a life threatening condition that often precedes the development of epilepsy. Traditional treatments for epilepsy have been focused on targeting neuronal mechanisms contributing to hyperexcitability, however, approximately 30% of patients with epilepsy do not respond to existing neurocentric pharmacotherapies. A growing body of evidence has demonstrated that profound changes in the morphology and function of astrocytes accompany SE and persist in epilepsy. Astrocytes are increasingly recognized for their diverse roles in modulating neuronal activity, and understanding the changes in astrocytes following SE could provide important clues about the mechanisms underlying seizure generation and termination. By understanding the contributions of astrocytes to the network changes underlying epileptogenesis and the development of epilepsy, we will gain a greater appreciation of the contributions of astrocytes to dynamic circuit changes, which will enable us to develop more successful therapies to prevent and treat epilepsy. This review summarizes changes in astrocytes following SE in animal models and human temporal lobe epilepsy and addresses the functional consequences of those changes that may provide clues to the process of epileptogenesis.
Collapse
Affiliation(s)
- M.B. Gibbons
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT
| | - R.M. Smeal
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT
| | - D.K. Takahashi
- Department of Neurology, Stanford University, Palo Alto, CA
| | - J.R. Vargas
- Department of Neurology, University of Utah, Salt Lake City, UT
| | - K.S. Wilcox
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT
- Department of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT
| |
Collapse
|
44
|
Afzalov R, Pryazhnikov E, Shih PY, Kondratskaya E, Zobova S, Leino S, Salminen O, Khiroug L, Semyanov A. Low micromolar Ba(2+) potentiates glutamate transporter current in hippocampal astrocytes. Front Cell Neurosci 2013; 7:135. [PMID: 24009556 PMCID: PMC3755269 DOI: 10.3389/fncel.2013.00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 08/06/2013] [Indexed: 11/13/2022] Open
Abstract
Glutamate uptake, mediated by electrogenic glutamate transporters largely localized in astrocytes, is responsible for the clearance of glutamate released during excitatory synaptic transmission. Glutamate uptake also determines the availability of glutamate for extrasynaptic glutamate receptors. The efficiency of glutamate uptake is commonly estimated from the amplitude of transporter current recorded in astrocytes. We recorded currents in voltage-clamped hippocampal CA1 stratum radiatum astrocytes in rat hippocampal slices induced by electrical stimulation of the Schaffer collaterals. A Ba(2+)-sensitive K(+) current mediated by inward rectifying potassium channels (Kir) accompanied the transporter current. Surprisingly, Ba(2+) not only suppressed the K(+) current and changed holding current (presumably, mediated by Kir) but also increased the transporter current at lower concentrations. However, Ba(2+) did not significantly increase the uptake of aspartate in cultured astrocytes, suggesting that increase in the amplitude of the transporter current does not always reflect changes in glutamate uptake.
Collapse
Affiliation(s)
- Ramil Afzalov
- Neuroscience Center, University of Helsinki Helsinki, Finland ; RIKEN Brain Science Institute Wako-shi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Iniouchine MY, Sibarov DA, Vol'nova AB. Comparative analysis of changes in membrane currents in neurons and astrocytes in rat hippocampal slices after stimulation of glutamatergic transmission. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 449:65-67. [PMID: 23652428 DOI: 10.1134/s0012496613020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Indexed: 06/02/2023]
Affiliation(s)
- M Yu Iniouchine
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | |
Collapse
|
46
|
Devaraju P, Sun MY, Myers TL, Lauderdale K, Fiacco TA. Astrocytic group I mGluR-dependent potentiation of astrocytic glutamate and potassium uptake. J Neurophysiol 2013; 109:2404-14. [PMID: 23427307 DOI: 10.1152/jn.00517.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
One of the most important functions of astrocytes is removal of glutamate released during synaptic transmission. Surprisingly, the mechanisms by which astrocyte glutamate uptake is acutely modulated remain to be clarified. Astrocytes express metabotropic glutamate receptors (mGluRs) and other G protein-coupled receptors (GPCRs), which are activated during neuronal activity. Here, we test the hypothesis that astrocytic group I mGluRs acutely regulate glutamate uptake by astrocytes in situ. This hypothesis was tested in acute mouse hippocampal slices. Activation of astrocytic mGluRs, using a tetanic high-frequency stimulus (HFS) applied to Schaffer collaterals, led to potentiation of the amplitude of the synaptically evoked glutamate transporter currents (STCs) and associated charge transfer without changes in kinetics. Similar potentiation of STCs was not observed in the presence of group I mGluR antagonists or the PKC inhibitor, PKC 19-36, suggesting that HFS-induced potentiation of astrocyte glutamate uptake is astrocytic group I mGluR and PKC dependent. Pharmacological stimulation of a transgenic GPCR (MrgA1R), expressed exclusively in astrocytes, also potentiated STC amplitude and charge transfer, albeit quicker and shorter lasting compared with HFS-induced potentiation. The amplitude of the slow, inward astrocytic current due to potassium (K(+)) influx was also enhanced following activation of the endogenous mGluRs or the astrocyte-specific MrgA1 Gq GPCRs. Taken together, these findings suggest that astrocytic group I mGluR activation has a synergistic, modulatory effect on the uptake of glutamate and K(+).
Collapse
Affiliation(s)
- Prakash Devaraju
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, USA
| | | | | | | | | |
Collapse
|
47
|
Min R, Santello M, Nevian T. The computational power of astrocyte mediated synaptic plasticity. Front Comput Neurosci 2012; 6:93. [PMID: 23125832 PMCID: PMC3485583 DOI: 10.3389/fncom.2012.00093] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/15/2012] [Indexed: 12/05/2022] Open
Abstract
Research in the last two decades has made clear that astrocytes play a crucial role in the brain beyond their functions in energy metabolism and homeostasis. Many studies have shown that astrocytes can dynamically modulate neuronal excitability and synaptic plasticity, and might participate in higher brain functions like learning and memory. With the plethora of astrocyte mediated signaling processes described in the literature today, the current challenge is to identify, which of these processes happen under what physiological condition, and how this shapes information processing and, ultimately, behavior. To answer these questions will require a combination of advanced physiological, genetical, and behavioral experiments. Additionally, mathematical modeling will prove crucial for testing predictions on the possible functions of astrocytes in neuronal networks, and to generate novel ideas as to how astrocytes can contribute to the complexity of the brain. Here, we aim to provide an outline of how astrocytes can interact with neurons. We do this by reviewing recent experimental literature on astrocyte-neuron interactions, discussing the dynamic effects of astrocytes on neuronal excitability and short- and long-term synaptic plasticity. Finally, we will outline the potential computational functions that astrocyte-neuron interactions can serve in the brain. We will discuss how astrocytes could govern metaplasticity in the brain, how they might organize the clustering of synaptic inputs, and how they could function as memory elements for neuronal activity. We conclude that astrocytes can enhance the computational power of neuronal networks in previously unexpected ways.
Collapse
Affiliation(s)
- Rogier Min
- Department of Physiology, University of Berne Berne, Switzerland
| | | | | |
Collapse
|
48
|
Molecular pathology, classification, and diagnosis of sporadic human prion disease variants. Folia Neuropathol 2012; 4:AN20110031. [PMID: 22356284 PMCID: PMC3284768 DOI: 10.1042/an20110031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Glutamate excitotoxicity is a major pathogenic process implicated in many neurodegenerative conditions, including AD (Alzheimer's disease) and following traumatic brain injury. Occurring predominantly from over-stimulation of ionotropic glutamate receptors located along dendrites, excitotoxic axonal degeneration may also occur in white matter tracts. Recent identification of axonal glutamate receptor subunits within axonal nanocomplexes raises the possibility of direct excitotoxic effects on axons. Individual neuronal responses to excitotoxicity are highly dependent on the complement of glutamate receptors expressed by the cell, and the localization of the functional receptors. To enable isolation of distal axons and targeted excitotoxicity, murine cortical neuron cultures were prepared in compartmented microfluidic devices, such that distal axons were isolated from neuronal cell bodies. Within the compartmented culture system, cortical neurons developed to relative maturity at 11 DIV (days in vitro) as demonstrated by the formation of dendritic spines and clustering of the presynaptic protein synaptophysin. The isolated distal axons retained growth cone structures in the absence of synaptic targets, and expressed glutamate receptor subunits. Glutamate treatment (100 μM) to the cell body chamber resulted in widespread degeneration within this chamber and degeneration of distal axons in the other chamber. Glutamate application to the distal axon chamber triggered a lesser degree of axonal degeneration without degenerative changes in the untreated somal chamber. These data indicate that in addition to current mechanisms of indirect axonal excitotoxicity, the distal axon may be a primary target for excitotoxicity in neurodegenerative conditions.
Collapse
|
49
|
Bridges R, Lutgen V, Lobner D, Baker DA. Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev 2012; 64:780-802. [PMID: 22759795 PMCID: PMC3400835 DOI: 10.1124/pr.110.003889] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
System x(c)(-) represents an intriguing target in attempts to understand the pathological states of the central nervous system. Also called a cystine-glutamate antiporter, system x(c)(-) typically functions by exchanging one molecule of extracellular cystine for one molecule of intracellular glutamate. Nonvesicular glutamate released during cystine-glutamate exchange activates extrasynaptic glutamate receptors in a manner that shapes synaptic activity and plasticity. These findings contribute to the intriguing possibility that extracellular glutamate is regulated by a complex network of release and reuptake mechanisms, many of which are unique to glutamate and rarely depicted in models of excitatory signaling. Because system x(c)(-) is often expressed on non-neuronal cells, the study of cystine-glutamate exchange may advance the emerging viewpoint that glia are active contributors to information processing in the brain. It is noteworthy that system x(c)(-) is at the interface between excitatory signaling and oxidative stress, because the uptake of cystine that results from cystine-glutamate exchange is critical in maintaining the levels of glutathione, a critical antioxidant. As a result of these dual functions, system x(c)(-) has been implicated in a wide array of central nervous system diseases ranging from addiction to neurodegenerative disorders to schizophrenia. In the current review, we briefly discuss the major cellular components that regulate glutamate homeostasis, including glutamate release by system x(c)(-). This is followed by an in-depth discussion of system x(c)(-) as it relates to glutamate release, cystine transport, and glutathione synthesis. Finally, the role of system x(c)(-) is surveyed across a number of psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Richard Bridges
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA
| | | | | | | |
Collapse
|
50
|
Podda MV, Leone L, Piacentini R, Cocco S, Mezzogori D, D'Ascenzo M, Grassi C. Expression of olfactory-type cyclic nucleotide-gated channels in rat cortical astrocytes. Glia 2012; 60:1391-405. [PMID: 22653779 DOI: 10.1002/glia.22360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/03/2012] [Indexed: 12/31/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels are nonselective cation channels activated by cyclic AMP (cAMP) or cyclic GMP (cGMP). They were originally identified in retinal and olfactory receptors, but evidence has also emerged for their expression in several mammalian brain areas. Because cGMP and cAMP control important aspects of glial cell physiology, we wondered whether CNG channels are expressed in astrocytes, the most functionally relevant glial cells in the CNS. Immunoblot and immunofluorescence experiments demonstrated expression of the CNG channel olfactory-type A subunit, CNGA2, in cultured rat cortical astrocytes. In patch-clamp experiments, currents elicited in these cells by voltage ramps from -100 to +100 mV in the presence of the cGMP analogue, dB-cGMP, were significantly reduced by the CNG channel blockers, L-cis-diltiazem (LCD) and Cd(2+) . The reversal potentials of the LCD- and Cd(2+) -sensitive currents were more positive than that of K(+) , as expected for a mixed cation current. Noninactivating, voltage-independent currents were also elicited by extracellular application of the membrane permeant cGMP analogue, 8-Br-cGMP. These effects were blocked by LCD and were mimicked by natriuretic peptide receptor activation and inhibition of phosphodiesterase activity. Voltage-independent, LCD-sensitive currents were also elicited by 8-Br-cGMP in astrocytes of hippocampal and neocortical brain slices. Immunohistochemistry confirmed a broad distribution of CNG channels in astrocytes of the rat forebrain, midbrain, and hindbrain. These findings suggest that CNG channels are downstream targets of cyclic nucleotides in astrocytes, and they may be involved in the glial-mediated regulation of CNS functions under physiological and pathological conditions.
Collapse
Affiliation(s)
- Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|