1
|
Barraza-Flores P, Moghadaszadeh B, Lee W, Isaac B, Sun L, Hickey ET, Rockowitz S, Sliz P, Beggs AH. Zebrafish and cellular models of SELENON-Congenital myopathy exhibit novel embryonic and metabolic phenotypes. Skelet Muscle 2025; 15:7. [PMID: 40087793 PMCID: PMC11909958 DOI: 10.1186/s13395-025-00376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND SELENON-Congenital Myopathy (SELENON-CM) is a rare congenital myopathy caused by mutations of the SELENON gene characterized by axial muscle weakness and progressive respiratory insufficiency. Muscle histopathology may be non-specific, but commonly includes multiminicores or a dystrophic pattern. The SELENON gene encodes selenoprotein N (SelN), a selenocysteine-containing redox enzyme located in the endo/sarcoplasmic reticulum membrane where it colocalizes with mitochondria-associated membranes. However, the molecular mechanism(s) by which SelN deficiency cause SELENON-CM remain poorly understood. A hurdle is the lack of cellular and animal models that show easily assayable phenotypes. METHODS Using CRISPR-Cas9 we generated three zebrafish models of SELENON-CM, which were then studied by spontaneous coiling, hatching, and activity assays. We also performed selenon coexpression analysis using a single cell RNAseq zebrafish embryo-atlas. SelN-deficient myoblasts were generated and assayed for glutathione, reactive oxygen species, carbonylation, and nytrosylation levels. Finally, we tested Selenon-deficient myoblasts' metabolism using a Seahorse cell respirometer. RESULTS We report deep-phenotyping of SelN-deficient zebrafish and muscle cells. SelN-deficient zebrafish exhibit changes in embryonic muscle function and swimming activity in larvae. Analysis of single cell RNAseq data in a zebrafish embryo-atlas revealed coexpression of selenon and genes involved in the glutathione redox pathway. SelN-deficient zebrafish and mouse myoblasts exhibit altered glutathione and redox homeostasis, as well as abnormal patterns of energy metabolism, suggesting roles for SelN in these functions. CONCLUSIONS These data demonstrate a role for SelN in zebrafish early development and myoblast metabolism and provide a basis for cellular and animal model assays for SELENON-CM.
Collapse
Affiliation(s)
- Pamela Barraza-Flores
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Behzad Moghadaszadeh
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Won Lee
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Biju Isaac
- Research Computing, Information Technology Department, Boston Children's Hospital, Boston, MA, USA
| | - Liang Sun
- Research Computing, Information Technology Department, Boston Children's Hospital, Boston, MA, USA
| | - Emily T Hickey
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shira Rockowitz
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Research Computing, Information Technology Department, Boston Children's Hospital, Boston, MA, USA
| | - Piotr Sliz
- Research Computing, Information Technology Department, Boston Children's Hospital, Boston, MA, USA
- Division of Molecular Medicine, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
de Souza LSL, Campos RDO, Braga Filho JDS, de Jesus JDS, Ramos HE, Anunciação SM, Cassemiro JF, Rende PRF, Hecht F. Selenium nutritional status and thyroid dysfunction. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2025; 69:e230348. [PMID: 39992731 PMCID: PMC11849045 DOI: 10.20945/2359-4292-2023-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/30/2024] [Indexed: 02/26/2025]
Abstract
Selenium(Se) is an essential micronutrient for several immune and regulatory functions in the body. In thyroid tissue, Se contributes to the antioxidant system and is a crucial component of deiodinases, which are selenoproteins that participate in thyroid hormone metabolism. Additionally, this micronutrient exerts a significant impact on thyroid pathophysiology, as low levels of Se lead to reduced activity of glutathione peroxidase, a selenoprotein involved in antioxidative processes, thereby resulting in increased oxidative stress and damage to thyroid tissue. Selenium deficiency (SeD) can cause growth retardation and reproductive failure; in women and children, it may result in Keshan's disease and Kashin-Beck's disease. Research has shown an inverse correlation between Se serum levels and autoimmune thyroiditis in areas with mild SeD. In Graves' disease, Se supplementation has been linked to faster achievement of euthyroidism as well as improvements in quality of life, lessened orbital involvement, and slower ocular progression of the disease. Furthermore, several studies suggest an association between serum SeD and the development of thyroid cancer. Maintaining physiological Se concentrations appears to be related to the prevention of thyroid disease, although current data are insufficient to conclusively support or refute the efficacy of supplementation. Through this narrative review, we aim to present the latest information on the role of selenium in thyroid pathophysiology. To identify relevant literature, specific search strategies were employed in the electronic databases PubMed, Lilacs, and SciELO.
Collapse
Affiliation(s)
- Luciana Sant’Ana Leone de Souza
- Departamento de Biorregulação, Instituto de
Saúde e Ciências, Universidade Federal da Bahia, Salvador, BA, Brasil
- Programa de Pós-graduação em Processos
Interativos de Órgãos e Sistemas, Instituto de Ciências e
Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Renata de Oliveira Campos
- Departamento de Biorregulação, Instituto de
Saúde e Ciências, Universidade Federal da Bahia, Salvador, BA, Brasil
- Programa de Pós-graduação em Processos
Interativos de Órgãos e Sistemas, Instituto de Ciências e
Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
- Centro de Ciências e Saúde, Recôncavo da
Universidade Federal da Bahia, Santo Antonio de Jesus, BA, Brasil
| | - Jair de Souza Braga Filho
- Departamento de Biorregulação, Instituto de
Saúde e Ciências, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Joice dos Santos de Jesus
- Departamento de Biorregulação, Instituto de
Saúde e Ciências, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Helton Estrela Ramos
- Departamento de Biorregulação, Instituto de
Saúde e Ciências, Universidade Federal da Bahia, Salvador, BA, Brasil
- Programa de Pós-graduação em Processos
Interativos de Órgãos e Sistemas, Instituto de Ciências e
Saúde, Universidade Federal da Bahia, Salvador, BA, Brasil
- Programa de Pós-graduação em Medicina e
Saúde, Faculdade de Medicina, Universidade Federal da Bahia, Salvador, BA,
Brasil
| | - Sara Moreira Anunciação
- Departamento de Biorregulação, Instituto de
Saúde e Ciências, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Jéssica Fernanda Cassemiro
- Departamento de Biorregulação, Instituto de
Saúde e Ciências, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Pedro Resende Ferreira Rende
- Departamento de Biorregulação, Instituto de
Saúde e Ciências, Universidade Federal da Bahia, Salvador, BA, Brasil
| | - Fábio Hecht
- Instituto de Biofísica Carlos Chagas Filho, Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Birģele Z, Vimba PM, Ševčenko A, Šķesters A, Ancāne G, Valaine L. The Association of Plasma Selenium and Selenoprotein P Levels with Depression Severity and Anxiety Symptoms Among Medical Students in Latvia. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:3. [PMID: 39858985 PMCID: PMC11766458 DOI: 10.3390/medicina61010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025]
Abstract
Background and Objectives: Oxidative stress has been identified as a key process involved in different diseases, particularly depression. Selenium (Se) protects against oxidative stress, one of the pathogenic mechanisms involved in affective disorders. Selenium is incorporated into antioxidant selenoproteins, such as selenoprotein P, which acts as the main selenium-transport protein in plasma and as an extracellular oxidant defense mechanism. This study aimed to determine whether lower selenium and selenoprotein P levels correlate with high levels of depression and anxiety symptoms. Materials and Methods: The research design was a quantitative cross-sectional study among employed fourth-year medical students at Riga Stradins University in Latvia. The respondents were selected using convenience samples. The symptoms of anxiety were assessed using the Generalized Anxiety Disorder-7 (GAD-7) scale, and the symptoms of depression were assessed using the Patient Health Questionnaire-9 (PHQ-9) scale. Results: A total of 32 respondents participated; 90.6% (n = 29) were female. A significant association was found between selenoprotein P and symptoms of depression (p = 0.006), as well as between selenoprotein P and symptoms of anxiety (p = 0.012). The median selenium level was not significantly lower (p = 0.214) in the study group compared to the control group. Conclusions: There is a statistically significant correlation between selenoprotein P and symptoms of depression and anxiety, and there is a tendency for students with symptoms of depression and anxiety to have lower selenium levels. However, alternative unrecognized oxidative stress mechanisms involved in the development of symptoms of depression and anxiety, involving selenium and selenoprotein P pathways, may exist. Consequently, further research assessing possible alternative pathways and the effect size is required.
Collapse
Affiliation(s)
- Zanda Birģele
- Clinic of Psychosomatic medicine and Psychotherapy, Riga Stradiņš University, LV-1046 Riga, Latvia
| | | | | | - Andrejs Šķesters
- Institute of Occupational Safety and Environmental Health, Riga Stradiņš University, LV-1067 Riga, Latvia;
| | - Gunta Ancāne
- Department of Psychosomatic Medicine and Psychotherapy, Riga Stradiņš University, LV-1046 Riga, Latvia; (G.A.); (L.V.)
| | - Laura Valaine
- Department of Psychosomatic Medicine and Psychotherapy, Riga Stradiņš University, LV-1046 Riga, Latvia; (G.A.); (L.V.)
| |
Collapse
|
4
|
Cain A, Krahn N. Overcoming Challenges with Biochemical Studies of Selenocysteine and Selenoproteins. Int J Mol Sci 2024; 25:10101. [PMID: 39337586 PMCID: PMC11431864 DOI: 10.3390/ijms251810101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Selenocysteine (Sec) is an essential amino acid that distinguishes itself from cysteine by a selenium atom in place of a sulfur atom. This single change imparts distinct chemical properties to Sec which are crucial for selenoprotein (Sec-containing protein) function. These properties include a lower pKa, enhanced nucleophilicity, and reversible oxidation. However, studying Sec incorporation in proteins is a complex process. While we find Sec in all domains of life, each domain has distinct translation mechanisms. These mechanisms are unique to canonical translation and are composed of Sec-specific enzymes and an mRNA hairpin to drive recoding of the UGA stop codon with Sec. In this review, we highlight the obstacles that arise when investigating Sec insertion, and the role that Sec has in proteins. We discuss the strategic methods implemented in this field to address these challenges. Though the Sec translation system is complex, a remarkable amount of information has been obtained and specialized tools have been developed. Continued studies in this area will provide a deeper understanding on the role of Sec in the context of proteins, and the necessity that we have for maintaining this complex translation machinery to make selenoproteins.
Collapse
Affiliation(s)
- Antavius Cain
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Li J, Jiang C, Wu L, Tian J, Zhang B. Dietary selenium intake and sarcopenia in American adults. Front Nutr 2024; 11:1449980. [PMID: 39328467 PMCID: PMC11426168 DOI: 10.3389/fnut.2024.1449980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Background The relationship between dietary selenium intake and sarcopenia remains poorly understood. Therefore, this study investigates the associations between dietary selenium intake and sarcopenia among American adults. Methods This cross-sectional study analyzed data from 19,696 participants in the National Health and Nutrition Examination Survey (NHANES) for the periods 1999-2006 and 2011-2018. Appendicular muscle mass, assessed using dual-energy x-ray absorptiometry and adjusted for body mass index, was used as a marker for sarcopenia. Dietary selenium intake was evaluated using the 24-h dietary recall system, and the study accounted for the complex sampling methodology and incorporated dietary sample weights in the analysis. Results Among the 19,696 participants, the prevalence of sarcopenia was found to be 8.46%. When compared to the lowest quintile of dietary selenium intake (Q1, < 80.10 μg/day), the odds ratios for sarcopenia in the second quintile (Q2, 80.10-124.61 μg/day) and the third quintile (Q3, >124.61 μg/day) were 0.80 [95% confidence interval (CI): 0.70-0.92, p = 0.002] and 0.61 (95% CI: 0.51-0.73, p < 0.001), respectively. A negative relationship was observed between dietary selenium intake and sarcopenia (non-linear: p = 0.285). Furthermore, sensitivity analyses revealed a robust association between selenium intake and the prevalence of sarcopenia after further adjusting for blood selenium levels. Conclusion The results suggest an inverse association between dietary selenium intake and the prevalence of sarcopenia among American adults.
Collapse
Affiliation(s)
- Jianfen Li
- Department of General Practice, Jiangmen Central Hospital, Jiangmen, China
| | - Chaohui Jiang
- Department of Hematopathology, Jiangmen Central Hospital, Jiangmen, China
| | - Lingfeng Wu
- Department of General Practice, Jiangmen Central Hospital, Jiangmen, China
| | - Jiangyan Tian
- Department of General Practice, Jiangmen Central Hospital, Jiangmen, China
| | - Bin Zhang
- Department of Cardiovascular Disease and Clinical Experimental Center, Jiangmen Central Hospital, Jiangmen, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Bramble MS, Fourcassié V, Vashist N, Roux-Dalvai F, Zhou Y, Bumoko G, Kasendue ML, Spencer D, Musasa Hanshi-Hatuhu H, Kambale-Mastaki V, Manalo RVM, Mohammed A, McIlwain DR, Cunningham G, Summar M, Boivin MJ, Caldovic L, Vilain E, Mumba-Ngoyi D, Tshala-Katumbay D, Droit A. Glutathione peroxidase 3 is a potential biomarker for konzo. Nat Commun 2024; 15:7811. [PMID: 39242582 PMCID: PMC11379914 DOI: 10.1038/s41467-024-52136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Konzo is a neglected paralytic neurological disease associated with food (cassava) poisoning that affects the world's poorest children and women of childbearing ages across regions of sub-Saharan Africa. Despite understanding the dietary factors that lead to konzo, the molecular markers and mechanisms that trigger this disease remain unknown. To identify potential protein biomarkers associated with a disease status, plasma was collected from two independent Congolese cohorts, a discovery cohort (n = 60) and validation cohort (n = 204), sampled 10 years apart and subjected to multiple high-throughput assays. We identified that Glutathione Peroxidase 3 (GPx3), a critical plasma-based antioxidant enzyme, was the sole protein examined that was both significantly and differentially abundant between affected and non-affected participants in both cohorts, with large reductions observed in those affected with konzo. Our findings raise the notion that reductions in key antioxidant mechanisms may be the biological risk factor for the development of konzo, particularly those mediated through pathways involving the glutathione peroxidase family.
Collapse
Affiliation(s)
- Matthew S Bramble
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA.
- Department of Genomics and Precision Medicine, The George Washington University of Medicine and Health Sciences, Washington, DC, USA.
| | - Victor Fourcassié
- Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Neerja Vashist
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Florence Roux-Dalvai
- Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Yun Zhou
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Guy Bumoko
- Department of Neurology, Kinshasa University, Kinshasa, Democratic Republic of the Congo
| | - Michel Lupamba Kasendue
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - D'Andre Spencer
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Hilaire Musasa Hanshi-Hatuhu
- Department of Neurology, Kinshasa University, Kinshasa, Democratic Republic of the Congo
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Vincent Kambale-Mastaki
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Rafael Vincent M Manalo
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines, Manila, Ermita, Manila, Philippines
| | - Aliyah Mohammed
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - David R McIlwain
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Gary Cunningham
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Marshall Summar
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
| | - Michael J Boivin
- Departments of Psychiatry and Neurology & Ophthalmology, Michigan State University, East Lansing, MI, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Hospital, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University of Medicine and Health Sciences, Washington, DC, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Dieudonne Mumba-Ngoyi
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo
| | - Desire Tshala-Katumbay
- Institut National de Recherche Biomédicale (INRB), Kinshasa, Democratic Republic of the Congo.
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA.
| | - Arnaud Droit
- Computational Biology Laboratory and The Proteomics Platform, CHU de Québec - Université Laval Research Center, Québec City, QC, Canada.
| |
Collapse
|
7
|
Khurana A, Allawadhi P, Singh V, Khurana I, Yadav P, Sathua KB, Allwadhi S, Banothu AK, Navik U, Bharani KK. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J Drug Deliv Sci Technol 2023; 86:104663. [PMID: 37362903 PMCID: PMC10249347 DOI: 10.1016/j.jddst.2023.104663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Deficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NFκB), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-β) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized.
Collapse
Affiliation(s)
- Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kshirod Bihari Sathua
- Department of Pharmacology, College of Pharmaceutical Sciences, Konark Marine Drive Road, Puri, 752002, Odisha, India
| | - Sachin Allwadhi
- Department of Computer Science and Engineering, University Institute of Engineering and Technology (UIET), Maharshi Dayanand University (MDU), Rohtak, 124001, Haryana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, PVNRTVU, Telangana, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, PVNRTVU, Telangana, India
| |
Collapse
|
8
|
Marsan ES, Dreab A, Bayse CA. In silico insights into the dimer structure and deiodinase activity of type III iodothyronine deiodinase from bioinformatics, molecular dynamics simulations, and QM/MM calculations. J Biomol Struct Dyn 2023; 41:4819-4829. [PMID: 35579922 PMCID: PMC9878935 DOI: 10.1080/07391102.2022.2073271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/27/2022] [Indexed: 01/28/2023]
Abstract
The homodimeric family of iodothyronine deiodinases (Dios) regioselectively remove iodine from thyroid hormones. Currently, structural data has only been reported for the monomer of the mus type III thioredoxin (Trx) fold catalytic domain (Dio3Trx), but the mode of dimerization has not yet been determined. Various groups have proposed dimer structures that are similar to the A-type and B-type dimerization modes of peroxiredoxins. Computational methods are used to compare the sequence of Dio3Trx to related proteins known to form A-type and B-type dimers. Sequence analysis and in silico protein-protein docking methods suggest that Dio3Trx is more consistent with proteins that adopt B-type dimerization. Molecular dynamics (MD) simulations of the refined Dio3Trx dimer constructed using the SymmDock and GalaxyRefineComplex databases indicate stable dimer formation along the β4α3 interface consistent with other Trx fold B-type dimers. Free energy calculations show that the dimer is stabilized by interdimer interactions between the β-sheets and α-helices. A comparison of MD simulations of the apo and thyroxine-bound dimers suggests that the active site binding pocket is not affected by dimerization. Determination of the transition state for deiodination of thyroxine from the monomer structure using QM/MM methods provides an activation barrier consistent with previous small model DFT studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eric S Marsan
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Ana Dreab
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| |
Collapse
|
9
|
Coverdale JPC, Harrington CF, Solovyev N. Review: Advances in the Accuracy and Traceability of Metalloprotein Measurements Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Crit Rev Anal Chem 2023; 54:2259-2276. [PMID: 36637361 DOI: 10.1080/10408347.2022.2162811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Advances in inductively coupled plasma mass spectrometry and the methods used to prepare isotopically enriched standards, allow for the high accuracy measurement of metalloproteins by isotope dilution mass spectrometry. This technique has now reached a level of maturity whereby a step change in the accuracy, precision, and traceability of, in particular, clinical, and biomedical measurements is achievable. Current clinical measurements, which require low limits of detection in the presence of complex sample matrices, use indirect methods based on immunochemistry for the study of human disease. However, this approach suffers from poor traceability, requiring comparisons based on provision of matrix-based reference materials, used as analytical standards. This leads to difficulty when changes in the reference material are required, often resulting in a lack of interlaboratory and temporal comparability in clinical results and reference ranges. In this review, we focus on the most important metalloproteins for clinical studies, to illustrate how the attributes of chromatography coupled to inorganic mass spectrometry can be used for the direct measurement of metalloproteins such as hemoglobin, transferrin, and ceruloplasmin. By using this approach, we hope to demonstrate how isotope dilution analysis can be used as a reference method to improve traceability and underpin clinical, biomedical, and other biological measurements.
Collapse
Affiliation(s)
- James P C Coverdale
- Supra-Regional Assay Service, Trace Element Laboratory, Surrey Research Park, Guildford, United Kingdom
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Chris F Harrington
- Supra-Regional Assay Service, Trace Element Laboratory, Surrey Research Park, Guildford, United Kingdom
- Royal Surrey NHS Foundation Trust, Guildford, United Kingdom
| | | |
Collapse
|
10
|
Mudgal V, Garg AK, Dass RS, Rawat M. Interaction of Antioxidant Trace Minerals Affecting Blood Picture Including Antioxidant Profile of Healthy Buffalo (Bubalus bubalis) Calves. Biol Trace Elem Res 2023; 201:156-169. [PMID: 35092580 DOI: 10.1007/s12011-022-03122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023]
Abstract
Copper (Cu) and selenium (Se) are antioxidants and essential trace elements that have mutual interaction and are reported to have beneficial effects at supranutritional levels. The experiment was executed to evaluate the individual impact of supranutritional levels of targeted elements with the effect of their interactions in buffalo calves. Twenty male Murrah buffalo calves of about 8-9 months (bodyweight 112.1 ± 7.69 kg) were distributed into four groups of five calves in each group and fed either a control (C) diet or supplemented with supranutritional levels of Cu (T1), Se (T2), or combination of both (T3) for 120 days. Higher (P = 0.015) values of packed cell volume were observed in group T2 at day 120; otherwise, all other hematological parameters remained comparable among groups. Over the period (day 120 vs. day 0), an enhancement in the percentage of lymphocytes (P = 0.006) with a reduction in neutrophils (P = 0.028) and hemoglobin (P = 0.024) values was observed in the control group. An enhancement in the percentage of monocytes (P = 0.031), with a reduced percentage of neutrophils (P = 0.022), was reported in groups T2 and T3, respectively. Interaction of Cu and Se at supranutritional level (T3) dramatically reduced plasma Cu (P = 0.008) level against the control values, with an improvement in Se markers (i.e., plasma Se, P = 0.041 and enzyme glutathione peroxidase, P = 0.057) over the values in calves fed supplemental Se alone (T2). Additionally, Cu (T1 and T3) was forced to decline (P < 0.05) Zn level in the plasma of buffalo calves. Cu (T1, P < 0.05) and Se (T2 and T3, P ≤ 0.01) supplementation was able to improve their respective plasma levels. The interaction of two trace elements at the supranutritional level further helped in reducing the lipid peroxidation (P = 0.01) values as well. Though antioxidant vitamins and cell-mediated immunity remained unaffected, humoral immunity against antigen P. multocida was high (P = 0.005) in the group T2. The conclusion may be drawn that supranutritional Cu and Se were capable to influence certain blood parameters with an additional interaction effect due to simultaneous supplementation in buffalo calves.
Collapse
Affiliation(s)
- Vishal Mudgal
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India.
- Division of Animal Nutrition and Feed Technology, ICAR - Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India.
| | - Anil Kumar Garg
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India
| | - Ram Sharan Dass
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India
| | - Mayank Rawat
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, Bareilly, UP, India
| |
Collapse
|
11
|
Pincemail J, Meziane S. On the Potential Role of the Antioxidant Couple Vitamin E/Selenium Taken by the Oral Route in Skin and Hair Health. Antioxidants (Basel) 2022; 11:2270. [PMID: 36421456 PMCID: PMC9686906 DOI: 10.3390/antiox11112270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 09/29/2023] Open
Abstract
The relationship between oxidative stress and skin aging/disorders is well established. Many topical and oral antioxidants (vitamins C and E, carotenoids, polyphenols) have been proposed to protect the skin against the deleterious effect induced by increased reactive oxygen species production, particularly in the context of sun exposure. In this review, we focused on the combination of vitamin E and selenium taken in supplements since both molecules act in synergy either by non-enzymatic and enzymatic pathways to eliminate skin lipids peroxides, which are strongly implicated in skin and hair disorders.
Collapse
Affiliation(s)
- Joël Pincemail
- CHU of Liège, Platform Antioxidant Nutrition and Health, Pathology Tower, 4130, Sart Tilman, 4000 Liège, Belgium
| | - Smail Meziane
- Institut Européen des Antioxydants, 54000 Nancy, France
| |
Collapse
|
12
|
Hussein RA, Ahmed M, Kuldyushev N, Schönherr R, Heinemann SH. Selenomethionine incorporation in proteins of individual mammalian cells determined with a genetically encoded fluorescent sensor. Free Radic Biol Med 2022; 192:191-199. [PMID: 36152916 DOI: 10.1016/j.freeradbiomed.2022.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
Selenomethionine (SeMet) randomly replaces methionine (Met) in protein translation. Because of strongly differing redox properties of SeMet and Met, SeMet mis-incorporation may have detrimental effects on protein function, possibly compromising the use of nutritional SeMet supplementation as an anti-oxidant. Studying the functional impact of SeMet in proteins on a cellular level is hampered by the lack of accurate and efficient methods for estimating the SeMet incorporation level in individual viable cells. Here we introduce and apply a method to measure the extent of SeMet incorporation in cellular proteins by utilizing a genetically encoded fluorescent methionine oxidation probe. Supplementation of SeMet in mammalian culture medium resulted in >84% incorporation of SeMet, and SeMet labeling as low as 5% was readily measured. Kinetics and extent of SeMet incorporation on the single-cell level under live-cell imaging conditions provided direct access to protein turn-over kinetics and SeMet redox properties in a cellular context. The method is furthermore suited for experiments utilizing high-throughput fluorescence microplate readers or fluorescence-activated cell sorting (FACS) analysis.
Collapse
Affiliation(s)
- Rama A Hussein
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Marwa Ahmed
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Nikita Kuldyushev
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Roland Schönherr
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany.
| |
Collapse
|
13
|
Mandal A. The Focus on Core Genetic Factors That Regulate Hepatic Injury in Cattle Seems to be Important for the Dairy Sector’s Long-Term Development. Vet Med Sci 2022. [DOI: 10.5772/intechopen.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cattle during the perinatal period, as well as malnutrition, generate oxidative stress which leads to high culling rates of calves after calving across the world. Although metabolic diseases have such a negative impact on the welfare and economic value of dairy cattle, that becomes a serious industrial concern across the world. According to research, genetic factors have a role or controlling fat deposition in the liver by influencing the biological processes of hepatic lipid metabolism, insulin resistance, gluconeogenesis, oxidative stress, endoplasmic reticulum stress, and inflammation, all of which contribute to hepatic damage. This review focuses on the critical regulatory mechanisms of VEGF, mTOR/AKT/p53, TNF-alpha, Nf-kb, interleukin, and antioxidants that regulate lipid peroxidation in the liver via direct or indirect pathways, suggesting that they could be a potential critical therapeutic target for hepatic disease.
Collapse
|
14
|
Cabezas Perez RJ, Ávila Rodríguez MF, Rosero Salazar DH. Exogenous Antioxidants in Remyelination and Skeletal Muscle Recovery. Biomedicines 2022; 10:biomedicines10102557. [PMID: 36289819 PMCID: PMC9599955 DOI: 10.3390/biomedicines10102557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory, oxidative, and autoimmune responses cause severe damage to the nervous system inducing loss of myelin layers or demyelination. Even though demyelination is not considered a direct cause of skeletal muscle disease there is extensive damage in skeletal muscles following demyelination and impaired innervation. In vitro and in vivo evidence using exogenous antioxidants in models of demyelination is showing improvements in myelin formation alongside skeletal muscle recovery. For instance, exogenous antioxidants such as EGCG stimulate nerve structure maintenance, activation of glial cells, and reduction of oxidative stress. Consequently, this evidence is also showing structural and functional recovery of impaired skeletal muscles due to demyelination. Exogenous antioxidants mostly target inflammatory pathways and stimulate remyelinating mechanisms that seem to induce skeletal muscle regeneration. Therefore, the aim of this review is to describe recent evidence related to the molecular mechanisms in nerve and skeletal muscle regeneration induced by exogenous antioxidants. This will be relevant to identifying further targets to improve treatments of neuromuscular demyelinating diseases.
Collapse
|
15
|
Singh A, Singh P, Kumar R, Kaushik A. Exploring nanoselenium to tackle mutated SARS-CoV-2 for efficient COVID-19 management. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1004729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Despite ongoing public health measures and increasing vaccination rates, deaths and disease severity caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new emergent variants continue to threaten the health of people around the world. Therefore, there is an urgent need to develop novel strategies for research, diagnosis, treatment, and government policies to combat the variant strains of SARS-CoV-2. Since the state-of-the-art COVID-19 pandemic, the role of selenium in dealing with COVID-19 disease has been widely discussed due to its importance as an essential micronutrient. This review aims at providing all antiviral activities of nanoselenium (Nano-Se) ever explored using different methods in the literature. We systematically summarize the studied antiviral activities of Nano-Se required to project it as an efficient antiviral system as a function of shape, size, and synthesis method. The outcomes of this article not only introduce Nano-Se to the scientific community but also motivate scholars to adopt Nano-Se to tackle any serious virus such as mutated SARS-CoV-2 to achieve an effective antiviral activity in a desired manner.
Collapse
|
16
|
Noda Y, Okada S, Suzuki T. Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis. Nat Commun 2022; 13:2503. [PMID: 35523818 PMCID: PMC9076623 DOI: 10.1038/s41467-022-30181-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein N (SELENON), a selenocysteine (Sec)-containing protein with high reductive activity, maintains redox homeostasis, thereby contributing to skeletal muscle differentiation and function. Loss-of-function mutations in SELENON cause severe neuromuscular disorders. In the early-to-middle stage of myoblast differentiation, SELENON maintains redox homeostasis and modulates endoplasmic reticulum (ER) Ca2+ concentration, resulting in a gradual reduction from the middle-to-late stages due to unknown mechanisms. The present study describes post-transcriptional mechanisms that regulate SELENON expression during myoblast differentiation. Part of an Alu element in the second intron of SELENON pre-mRNA is frequently exonized during splicing, resulting in an aberrant mRNA that is degraded by nonsense-mediated mRNA decay (NMD). In the middle stage of myoblast differentiation, ADAR1-mediated A-to-I RNA editing occurs in the U1 snRNA binding site at 5' splice site, preventing Alu exonization and producing mature mRNA. In the middle-to-late stage of myoblast differentiation, the level of Sec-charged tRNASec decreases due to downregulation of essential recoding factors for Sec insertion, thereby generating a premature termination codon in SELENON mRNA, which is targeted by NMD.
Collapse
Affiliation(s)
- Yuta Noda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enyacho, Izumo, Shimane, 693-8501, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
17
|
GENG H, CHEN L, SU Y, XU Q, FAN M, HUANG R, LI X, LU X, PAN M. miR-431-5p Regulates Apoptosis of Cardiomyocytes After Acute Myocardial Infarction via Targeting Selenoprotein T. Physiol Res 2022; 71:55-62. [PMID: 35043644 DOI: 10.33549/physiolres.934683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acute myocardial infarction (AMI) represents the acute manifestation of coronary artery disease. In recent years, microRNAs (miRNAs) have been extensively studied in AMI. This study focused on the role of miR-431-5p in AMI and its effect on cardiomyocyte apoptosis after AMI. The expression of miR-431-5p was analyzed by quantitative real-time PCR (qRT-PCR). By interfering with miR-431-5p in hypoxia-reoxygenation (H/R)-induced HL-1 cardiomyocytes, the effect of miR-431-5p on cardiomyocyte apoptosis after AMI was examined. The interaction between miR-431-5p and selenoprotein T (SELT) mRNA was verified by dual-luciferase reporter assay. Cell apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and flow cytometry. Cell viability was examined by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay. The results of qRT-PCR showed that the expression of miR-431-5p in AMI myocardial tissues and H/R-induced HL-1 cardiomyocytes was significantly increased. After interfering with miR-431-5p, the expression of SELT in HL-1 cells was up-regulated, cell apoptosis was decreased, cell viability was increased, and lactate dehydrogenase (LDH) activity was decreased. The dual-luciferase reporter assay confirmed the targeting relationship between miR-431-5p and SELT1 3’ untranslated region (UTR). In H/R-induced HL-1 cells, the simultaneous silencing of SELT and miR-431-5p resulted in a decrease of Bcl-2 expression, an increase of Bax expression, and an increase of cleaved-caspase 3 expression compared with silencing miR-431-5p alone. Also, cell viability was decreased, while LDH activity was increased by the simultaneous silencing of SELT and miR-431-5p. Interfering miR-431-5p protected cardiomyocytes from AMI injury via restoring the expression of SELT, providing new ideas for the treatment of AMI.
Collapse
Affiliation(s)
- H GENG
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - L CHEN
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Y SU
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Q XU
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - M FAN
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - R HUANG
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - X LI
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - X LU
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| | - M PAN
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
18
|
Li W, Li Y, Cui S, Liu J, Tan L, Xia H, Zhang C. Se alleviates homocysteine-induced fibrosis in cardiac fibroblasts via downregulation of lncRNA MEG3. Exp Ther Med 2021; 22:1269. [PMID: 34594406 PMCID: PMC8456485 DOI: 10.3892/etm.2021.10704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is considered to have antioxidant properties, which are beneficial for heart condition. Hyperhomocysteinemia (HHCY) has been suggested to potentially lead to heart failure and is characterized by cardiac fibrosis; however, investigation on the role of Se and HHCY in cardiac fibrosis is rare. Since previous studies demonstrated the important role of the long non-coding RNA maternally expressed 3 (MEG3) in some heart diseases, the present study aimed to determine how Se and MEG3 might exert regulatory effects on HCY-induced fibrosis in cardiac fibroblasts (CFs). Mouse CFs were isolated and treated with HCY and Se. The expression of α-smooth muscle actin (α-SMA), collagen I and III was detected by western blotting to reflect CF fibrosis. Reverse transcription-quantitative PCR was performed to determine the expression levels of MEG3. Inflammation and oxidative stress responses were analyzed by measuring TNF-α, IL-1β (ELISA) and reactive oxygen species levels (using a commercial kit), respectively. Cell Counting Kit-8 was used to evaluate CF proliferation. Total and phosphorylated (p) expression of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was evaluated by western blotting. CFs were transfected with adenovirus expressing MEG3 short-hairpin RNA to knock down MEG3 expression. Se treatment downregulated the expression level of MEG3 in HCY-stimulated CFs, whilst inhibiting the inflammatory and oxidative stress response. Furthermore, Se inhibited the increased proliferation of CFs following HCY treatment. In addition, MEG3-knockdown in CFs could improve fibrosis caused by HCY. Furthermore, the ratios of p-JAK2/JAK2 and p-STAT3/STAT3 were decreased following treatment with Se or MEG3 silencing. Taken together, the findings from the present study suggested that Se may alleviate cardiac fibrosis by downregulating the expression of MEG3 and reducing the inflammatory and oxidative stress response in CFs. This suggests that Se may be a potential therapeutic option for treating cardiac fibrosis in the future.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuanhong Li
- Department of Cardiovascular Biology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei 445000, P.R. China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lijiao Tan
- Medical School of Enshi Polytechnic, Enshi, Hubei 445000, P.R. China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Changjiang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Cardiovascular Biology, Minda Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
19
|
Tsilidis KK, Papadimitriou N, Dimou N, Gill D, Lewis SJ, Martin RM, Murphy N, Markozannes G, Zuber V, Cross AJ, Burrows K, Lopez DS, Key TJ, Travis RC, Perez-Cornago A, Hunter DJ, van Duijnhoven FJB, Albanes D, Arndt V, Berndt SI, Bézieau S, Bishop DT, Boehm J, Brenner H, Burnett-Hartman A, Campbell PT, Casey G, Castellví-Bel S, Chan AT, Chang-Claude J, de la Chapelle A, Figueiredo JC, Gallinger SJ, Giles GG, Goodman PJ, Gsur A, Hampe J, Hampel H, Hoffmeister M, Jenkins MA, Keku TO, Kweon SS, Larsson SC, Le Marchand L, Li CI, Li L, Lindblom A, Martín V, Milne RL, Moreno V, Nan H, Nassir R, Newcomb PA, Offit K, Pharoah PDP, Platz EA, Potter JD, Qi L, Rennert G, Sakoda LC, Schafmayer C, Slattery ML, Snetselaar L, Schenk J, Thibodeau SN, Ulrich CM, Van Guelpen B, Harlid S, Visvanathan K, Vodickova L, Wang H, White E, Wolk A, Woods MO, Wu AH, Zheng W, Bueno-de-Mesquita B, Boutron-Ruault MC, Hughes DJ, Jakszyn P, Kühn T, Palli D, Riboli E, Giovannucci EL, Banbury BL, Gruber SB, Peters U, Gunter MJ. Genetically predicted circulating concentrations of micronutrients and risk of colorectal cancer among individuals of European descent: a Mendelian randomization study. Am J Clin Nutr 2021; 113:1490-1502. [PMID: 33740060 PMCID: PMC8168352 DOI: 10.1093/ajcn/nqab003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The literature on associations of circulating concentrations of minerals and vitamins with risk of colorectal cancer is limited and inconsistent. Evidence from randomized controlled trials (RCTs) to support the efficacy of dietary modification or nutrient supplementation for colorectal cancer prevention is also limited. OBJECTIVES To complement observational and RCT findings, we investigated associations of genetically predicted concentrations of 11 micronutrients (β-carotene, calcium, copper, folate, iron, magnesium, phosphorus, selenium, vitamin B-6, vitamin B-12, and zinc) with colorectal cancer risk using Mendelian randomization (MR). METHODS Two-sample MR was conducted using 58,221 individuals with colorectal cancer and 67,694 controls from the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry. Inverse variance-weighted MR analyses were performed with sensitivity analyses to assess the impact of potential violations of MR assumptions. RESULTS Nominally significant associations were noted for genetically predicted iron concentration and higher risk of colon cancer [ORs per SD (ORSD): 1.08; 95% CI: 1.00, 1.17; P value = 0.05] and similarly for proximal colon cancer, and for vitamin B-12 concentration and higher risk of colorectal cancer (ORSD: 1.12; 95% CI: 1.03, 1.21; P value = 0.01) and similarly for colon cancer. A nominally significant association was also noted for genetically predicted selenium concentration and lower risk of colon cancer (ORSD: 0.98; 95% CI: 0.96, 1.00; P value = 0.05) and similarly for distal colon cancer. These associations were robust to sensitivity analyses. Nominally significant inverse associations were observed for zinc and risk of colorectal and distal colon cancers, but sensitivity analyses could not be performed. None of these findings survived correction for multiple testing. Genetically predicted concentrations of β-carotene, calcium, copper, folate, magnesium, phosphorus, and vitamin B-6 were not associated with disease risk. CONCLUSIONS These results suggest possible causal associations of circulating iron and vitamin B-12 (positively) and selenium (inversely) with risk of colon cancer.
Collapse
Affiliation(s)
- Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Nikos Papadimitriou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Niki Dimou
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Sarah J Lewis
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Richard M Martin
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- University Hospitals Bristol National Health Service Foundation Trust National Institute for Health Research Bristol Biomedical Research Centre, University of Bristol, Bristol, United Kingdom
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Verena Zuber
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Medical Research Council Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Kimberley Burrows
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Medical Research Council Integrative Epidemiology Unit, Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - David S Lopez
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, Galveston, TX, USA
| | - Timothy J Key
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ruth C Travis
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Aurora Perez-Cornago
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stéphane Bézieau
- Medical Genetics Service, University Hospital Center (CHU) Nantes, Nantes, France
| | - D Timothy Bishop
- , Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - Juergen Boehm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clinic, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Biomedical Research Network Center for Liver and Digestive Diseases (CIBEREHD), University of Barcelona, Barcelona, Spain
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg, Hamburg, Germany
| | - Albert de la Chapelle
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jane C Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven J Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Dresden University of Technology (TU Dresden), Dresden, Germany
| | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, VA, USA
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Vicente Martín
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Victor Moreno
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology-Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- ONCOBEL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Hongmei Nan
- Department of Epidemiology, Richard M Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- IU Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura'a University, Mecca, Saudi Arabia
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Lihong Qi
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Linda Snetselaar
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - Jeanette Schenk
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen N Thibodeau
- Division of Laboratory Genetics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Sophia Harlid
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Hansong Wang
- University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Anna H Wu
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Bas Bueno-de-Mesquita
- Formerly, Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marie-Christine Boutron-Ruault
- Faculty of Medicine, CESP, University of Paris-Sud, Faculty of Medicine UVSQ, INSERM, University of Paris-Saclay, Villejuif, France
- Centre for Research in Epidemiology and Population Health (CESP), Gustave Roussy, Villejuif, France
| | - David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Blanquerna Faculty of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Tilman Kühn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network-ISPRO, Florence, Italy
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Nutrition, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Barbara L Banbury
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen B Gruber
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
20
|
Calcium and Redox Liaison: A Key Role of Selenoprotein N in Skeletal Muscle. Cells 2021; 10:cells10051116. [PMID: 34066362 PMCID: PMC8148124 DOI: 10.3390/cells10051116] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Selenoprotein N (SEPN1) is a type II glycoprotein of the endoplasmic reticulum (ER) that senses calcium levels to tune the activity of the sarcoplasmic reticulum calcium pump (SERCA pump) through a redox-mediated mechanism, modulating ER calcium homeostasis. In SEPN1-depleted muscles, altered ER calcium homeostasis triggers ER stress, which induces CHOP-mediated malfunction, altering excitation–contraction coupling. SEPN1 is localized in a region of the ER where the latter is in close contact with mitochondria, i.e., the mitochondria-associated membranes (MAM), which are important for calcium mobilization from the ER to mitochondria. Accordingly, SEPN1-depleted models have impairment of both ER and mitochondria calcium regulation and ATP production. SEPN1-related myopathy (SEPN1-RM) is an inherited congenital muscle disease due to SEPN1 loss of function, whose main histopathological features are minicores, i.e., areas of mitochondria depletion and sarcomere disorganization in muscle fibers. SEPN1-RM presents with weakness involving predominantly axial and diaphragmatic muscles. Since there is currently no disease-modifying drug to treat this myopathy, analysis of SEPN1 function in parallel with that of the muscle phenotype in SEPN1 loss of function models should help in understanding the pathogenic basis of the disease and possibly point to novel drugs for therapy. The present essay recapitulates the novel biological findings on SEPN1 and how these reconcile with the muscle and bioenergetics phenotype of SEPN1-related myopathy.
Collapse
|
21
|
Solovyev N, Drobyshev E, Blume B, Michalke B. Selenium at the Neural Barriers: A Review. Front Neurosci 2021; 15:630016. [PMID: 33613188 PMCID: PMC7892976 DOI: 10.3389/fnins.2021.630016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
Selenium (Se) is known to contribute to several vital physiological functions in mammals: antioxidant defense, fertility, thyroid hormone metabolism, and immune response. Growing evidence indicates the crucial role of Se and Se-containing selenoproteins in the brain and brain function. As for the other essential trace elements, dietary Se needs to reach effective concentrations in the central nervous system (CNS) to exert its functions. To do so, Se-species have to cross the blood-brain barrier (BBB) and/or blood-cerebrospinal fluid barrier (BCB) of the choroid plexus. The main interface between the general circulation of the body and the CNS is the BBB. Endothelial cells of brain capillaries forming the so-called tight junctions are the primary anatomic units of the BBB, mainly responsible for barrier function. The current review focuses on Se transport to the brain, primarily including selenoprotein P/low-density lipoprotein receptor-related protein 8 (LRP8, also known as apolipoprotein E receptor-2) dependent pathway, and supplementary transport routes of Se into the brain via low molecular weight Se-species. Additionally, the potential role of Se and selenoproteins in the BBB, BCB, and neurovascular unit (NVU) is discussed. Finally, the perspectives regarding investigating the role of Se and selenoproteins in the gut-brain axis are outlined.
Collapse
Affiliation(s)
| | - Evgenii Drobyshev
- Institut für Ernährungswissenschaft, Universität Potsdam, Potsdam, Germany
| | - Bastian Blume
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich – German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
22
|
tRNA Biology in the Pathogenesis of Diabetes: Role of Genetic and Environmental Factors. Int J Mol Sci 2021; 22:ijms22020496. [PMID: 33419045 PMCID: PMC7825315 DOI: 10.3390/ijms22020496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
The global rise in type 2 diabetes results from a combination of genetic predisposition with environmental assaults that negatively affect insulin action in peripheral tissues and impair pancreatic β-cell function and survival. Nongenetic heritability of metabolic traits may be an important contributor to the diabetes epidemic. Transfer RNAs (tRNAs) are noncoding RNA molecules that play a crucial role in protein synthesis. tRNAs also have noncanonical functions through which they control a variety of biological processes. Genetic and environmental effects on tRNAs have emerged as novel contributors to the pathogenesis of diabetes. Indeed, altered tRNA aminoacylation, modification, and fragmentation are associated with β-cell failure, obesity, and insulin resistance. Moreover, diet-induced tRNA fragments have been linked with intergenerational inheritance of metabolic traits. Here, we provide a comprehensive review of how perturbations in tRNA biology play a role in the pathogenesis of monogenic and type 2 diabetes.
Collapse
|
23
|
Hsueh YM, Huang YL, Chen HH, Shiue HS, Lin YC, Hsieh RL. Alcohol Consumption Moderated the Association Between Levels of High Blood Lead or Total Urinary Arsenic and Bone Loss. Front Endocrinol (Lausanne) 2021; 12:782174. [PMID: 34925242 PMCID: PMC8678633 DOI: 10.3389/fendo.2021.782174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Metal exposure and lifestyle are important risk factors for osteoporosis. Our study aimed to investigate the association between red blood cell lead and cadmium, total urinary arsenic, and plasma selenium levels and bone mineral density (BMD). In addition, we explored whether alcohol and coffee consumption modified the association between BMD and metals and metalloids. In total, 437 participants who underwent adult or senile physical examinations were recruited. Bone loss was defined as a calcaneus BMD T-score of <-1. Blood cadmium and lead and plasma selenium levels were measured using inductively coupled plasma mass spectrometry. Levels of urinary arsenic species were determined using high-performance liquid chromatography-hydride generator-atomic absorption spectrometry. The total urinary arsenic level was defined as the sum of the levels of urinary arsenic species. The BMD T-scores decreased significantly with increasing blood lead levels. The BMD T-scores also showed a downward trend with increasing total urinary arsenic levels. The odds ratio (OR) and 95% confidence interval (CI) for bone loss in patients with blood lead levels >57.58 versus 35.74 μg/dL were 1.98 and 1.17-3.34. In addition, the greater the lead or arsenic exposure and alcohol intake was the higher the OR for bone loss with multivariate ORs of 2.57 (95% CI 1.45-4.56) and 2.96 (95% CI 1.67-5.22), respectively. To the best of our knowledge, this study is the first to demonstrate that high total urinary arsenic or blood lead levels and frequent or occasional alcohol consumption had a significant multiplicative interaction for increasing the OR for bone loss.
Collapse
Affiliation(s)
- Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Ru-Lan Hsieh,
| |
Collapse
|
24
|
The Effect of Methylselenocysteine and Sodium Selenite Treatment on microRNA Expression in Liver Cancer Cell Lines. Pathol Oncol Res 2020; 26:2669-2681. [PMID: 32656599 PMCID: PMC7471166 DOI: 10.1007/s12253-020-00870-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The unique character of selenium compounds, including sodium selenite and Se-methylselenocysteine (MSC), is that they exert cytotoxic effects on neoplastic cells, providing a great potential for treating cancer cells being highly resistant to cytostatic drugs. However, selenium treatment may affect microRNA (miRNA) expression as the pattern of circulating miRNAs changed in a placebo-controlled selenium supplement study. This necessitates exploring possible changes in the expression profiles of miRNAs. For this, miRNAs being critical for liver function were selected and their expression was measured in hepatocellular carcinoma (HLE and HLF) and cholangiocarcinoma cell lines (TFK-1 and HuH-28) using individual TaqMan MicroRNA Assays following selenite or MSC treatments. For establishing tolerable concentrations, IC50 values were determined by performing SRB proliferation assays. The results revealed much lower IC50 values for selenite (from 2.7 to 11.3 μM) compared to MSC (from 79.5 to 322.6 μM). The treatments resulted in cell line-dependent miRNA expression patterns, with all miRNAs found to show fold change differences; however, only a few of these changes were statistically different in treated cells compared to untreated cells below IC50. Namely, miR-199a in HLF, miR-143 in TFK-1 upon MSC treatment, miR-210 in HLF and TFK-1, miR-22, -24, -122, -143 in HLF upon selenite treatment. Fold change differences revealed that miR-122 with both selenium compounds, miR-199a with MSC and miR-22 with selenite were affected. The miRNAs showing minimal alterations included miR-125b and miR-194. In conclusion, our results revealed moderately altered miRNA expression in the cell lines (less alterations following MSC treatment), being miR-122, -199a the most affected and miR-125b, -194 the least altered miRNAs upon selenium treatment.
Collapse
|
25
|
Perri G, Mendonça N, Jagger C, Walsh J, Eastell R, Mathers JC, Hill TR. Dietary Selenium Intakes and Musculoskeletal Function in Very Old Adults: Analysis of the Newcastle 85+ Study. Nutrients 2020; 12:E2068. [PMID: 32664662 PMCID: PMC7400825 DOI: 10.3390/nu12072068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background: Selenium is a trace element essential for health. Severe selenium deficiencies are associated with poor musculoskeletal (MSK) function. However, the effects of moderate deficiency on MSK function, especially in older adults, is unclear. Objectives: To determine the associations between selenium intake and MSK function in very old adults. Methods: Selenium intake at baseline and, hand-grip strength (HGS) and timed-up-and-go (TUG) at four phases over 5 years, were available in 791 participants in the Newcastle 85+ Study, a community-based, longitudinal cohort of ≥85 year old individuals. We investigated relationships between selenium intake and HGS and TUG in cross-sectional analyses at baseline using multivariate analyses and, prospectively using linear mixed models to explore HGS and TUG changes over 5 years in association with baseline selenium intake. Results: At baseline, 53% of participants had selenium intakes that were classified as low. These individuals had 2.80 kg lower HGS and were 2.30 s slower performing the TUG, cross-sectionally. In multivariate, baseline analyses, selenium intake had no significant impact on HGS or TUG. Selenium intake had no significant effect on MSK function, prospectively. Conclusion: Low selenium intake is common among very old adults and, in cross-sectional analyses, is associated with poorer MSK function.
Collapse
Affiliation(s)
- Giorgia Perri
- The MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Newcastle upon Tyne NE2 4HH, UK; (J.W.); (R.E.); (J.C.M.); (T.R.H.)
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Nuno Mendonça
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- EpiDoC Unit, NOVA Medical School, Universidade Nova de Lisboa (NMS-UNL), 1150-082 Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Carol Jagger
- Population Health Sciences Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK;
| | - Jennifer Walsh
- The MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Newcastle upon Tyne NE2 4HH, UK; (J.W.); (R.E.); (J.C.M.); (T.R.H.)
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S5 7AU, UK
| | - Richard Eastell
- The MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Newcastle upon Tyne NE2 4HH, UK; (J.W.); (R.E.); (J.C.M.); (T.R.H.)
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S5 7AU, UK
| | - John C. Mathers
- The MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Newcastle upon Tyne NE2 4HH, UK; (J.W.); (R.E.); (J.C.M.); (T.R.H.)
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Tom R. Hill
- The MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Newcastle upon Tyne NE2 4HH, UK; (J.W.); (R.E.); (J.C.M.); (T.R.H.)
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| |
Collapse
|
26
|
Higher Serum Selenoprotein P Level as a Novel Inductor of Metabolic Complications in Psoriasis. Int J Mol Sci 2020; 21:ijms21134594. [PMID: 32605214 PMCID: PMC7370132 DOI: 10.3390/ijms21134594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Selenoprotein P (SeP), a member of hepatokines, is involved in the development of various metabolic diseases closely related to psoriasis, but it has not been explored in that dermatosis so far. The study aimed to evaluate the clinical value of serum SeP concentrations in patients with psoriasis and its interplay between disease activity, metabolic or inflammatory parameters and systemic therapy. The study included thirty-three patients with flared plaque-type psoriasis and fifteen healthy volunteers. Blood samples were collected before and after three months of treatment with methotrexate or acitretin. Serum SeP levels were evaluated using the immune–enzymatic method. SeP concentration was significantly higher in patients with psoriasis than in the controls (p < 0.05). Further, in patients with severe psoriasis, SeP was significantly increased, compared with the healthy volunteers before treatment, and significantly decreased after (p < 0.05, p = 0.041, respectively). SeP positively correlated with C-reactive protein and platelets and negatively with red blood counts (p = 0.008, p = 0.013, p = 0.022, respectively). Therapy resulted in a significant decrease in SeP level. Selenoprotein P may be a novel indicator of inflammation and the metabolic complications development in psoriatics, especially with severe form or with concomitant obesity. Classic systemic therapy has a beneficial effect on reducing the risk of comorbidities by inhibiting SeP.
Collapse
|
27
|
Stolwijk JM, Garje R, Sieren JC, Buettner GR, Zakharia Y. Understanding the Redox Biology of Selenium in the Search of Targeted Cancer Therapies. Antioxidants (Basel) 2020; 9:E420. [PMID: 32414091 PMCID: PMC7278812 DOI: 10.3390/antiox9050420] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential trace nutrient required for optimal human health. It has long been suggested that selenium has anti-cancer properties. However, clinical trials have shown inconclusive results on the potential of Se to prevent cancer. The suggested role of Se in the prevention of cancer is centered around its role as an antioxidant. Recently, the potential of selenium as a drug rather than a supplement has been uncovered. Selenium compounds can generate reactive oxygen species that could enhance the treatment of cancer. Transformed cells have high oxidative distress. As normal cells have a greater capacity to meet oxidative challenges than tumor cells, increasing the flux of oxidants with high dose selenium treatment could result in cancer-specific cell killing. If the availability of Se is limited, supplementation of Se can increase the expression and activities of Se-dependent proteins and enzymes. In cell culture, selenium deficiency is often overlooked. We review the importance of achieving normal selenium biology and how Se deficiency can lead to adverse effects. We examine the vital role of selenium in the prevention and treatment of cancer. Finally, we examine the properties of Se-compounds to better understand how each can be used to address different research questions.
Collapse
Affiliation(s)
- Jeffrey M. Stolwijk
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA;
| | - Rohan Garje
- Department of Internal Medicine, Division of Medical Oncology and Hematology, The University of Iowa Hospital and Clinics—Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA;
| | - Jessica C. Sieren
- Departments of Radiology and Biomedical Engineering, The University of Iowa, Iowa City, IA 52242, USA;
| | - Garry R. Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, USA;
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA
| | - Yousef Zakharia
- Department of Internal Medicine, Division of Medical Oncology and Hematology, The University of Iowa Hospital and Clinics—Holden Comprehensive Cancer Center, Iowa City, IA 52242, USA;
| |
Collapse
|
28
|
Tsioubri M, Gasparatos D, Economou-Eliopoulos M. Selenium Uptake by Lettuce ( Lactuca sativa L.) and Berseem ( Trifolium alexandrinum L.) as Affected by the Application of Sodium Selenate, Soil Acidity and Organic Matter Content. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9050605. [PMID: 32397565 PMCID: PMC7284916 DOI: 10.3390/plants9050605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Selenium deficiency in humans and animals can be reduced through dietary supplementation. Therefore, Se biofortification strategy is important in food plants and pastures. In this study, the effects of selenium (Se) addition (4 mg Se/kg) as sodium selenate (Na2SeO4) on lettuce (Lactuca Sativa L.) and berseem cultivation (Trifolium alexandrinum L.) were investigated. The experiment was conducted under greenhouse conditions with two different soil types, an acidic (pH = 6.3) and an alkaline (pH = 8.0) soil with different organic matter content, in a completely randomized design. The results indicated higher Se content in berseem cultivated on acidic soil. It was also observed a significant reduction (~ 45%) in plant biomass of lettuce in the acidic soil combined with Se application. The results showed that leaf Se content was negatively correlated with soil organic matter. The decreased Se content in plants cultivated on the alkaline soil with high organic matter content support that the effect of pH on Se uptake decreased as the soil organic matter content increased.
Collapse
Affiliation(s)
- Myrto Tsioubri
- Department of Natural Resources Management and Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens; Greece;
| | - Dionisios Gasparatos
- Department of Natural Resources Management and Engineering, Agricultural University of Athens, Iera Odos 75, 11855 Athens; Greece;
| | - Maria Economou-Eliopoulos
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Zografou, 15784 Athens, Greece;
| |
Collapse
|
29
|
LRRC19-A Bridge between Selenium Adjuvant Therapy and Renal Clear Cell Carcinoma: A Study Based on Datamining. Genes (Basel) 2020; 11:genes11040440. [PMID: 32316597 PMCID: PMC7230350 DOI: 10.3390/genes11040440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common and fatal subtype of renal cancer. Antagonistic associations between selenium and cancer have been reported in previous studies. Selenium compounds, as anti-cancer agents, have been reported and approved for clinical trials. The main active form of selenium in selenoproteins is selenocysteine (Sec). The process of Sec biosynthesis and incorporation into selenoproteins plays a significant role in biological processes, including anti-carcinogenesis. However, a comprehensive selenoprotein mRNA analysis in KIRC remains absent. In the present study, we examined all 25 selenoproteins and identified key selenoproteins, glutathione peroxidase 3 (GPX3) and type 1 iodothyronine deiodinase (DIO1), with the associated prognostic biomarker leucine-rich repeat containing 19 (LRRC19) in clear cell renal cell carcinoma cases from The Cancer Genome Atlas (TCGA) database. We performed validations for the key gene expression levels by two individual clear cell renal cell carcinoma cohorts, GSE781 and GSE6344, datasets from the Gene Expression Omnibus (GEO) database. Multivariate survival analysis demonstrated that low expression of LRRC19 was an independent risk factor for OS. Gene set enrichment analysis (GSEA) identified tyrosine metabolism, metabolic pathways, peroxisome, and fatty acid degradation as differentially enriched with the high LRRC19 expression in KIRC cases, which are involved in selenium therapy of clear cell renal cell carcinoma. In conclusion, low expression of LRRC19 was identified as an independent risk factor, which will advance our understanding concerning the selenium adjuvant therapy of clear cell renal cell carcinoma.
Collapse
|
30
|
Hofstee P, Cuffe JS, Perkins AV. Analysis of Selenoprotein Expression in Response to Dietary Selenium Deficiency During Pregnancy Indicates Tissue Specific Differential Expression in Mothers and Sex Specific Changes in the Fetus and Offspring. Int J Mol Sci 2020; 21:ijms21062210. [PMID: 32210049 PMCID: PMC7139809 DOI: 10.3390/ijms21062210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
The human selenoproteome is comprised of ~25 genes, which incorporate selenium, in the form of selenocysteine, into their structure. Since it is well known that selenium is important to maternal health and foetal development during pregnancy, this study aimed at defining the impact of selenium deficiency on maternal, placental, foetal and offspring selenoprotein gene expression. Female C57BL/6 mice were randomly allocated to control (>190 μg/kg) or low selenium (<50 μg/kg) diets four weeks prior to mating and throughout gestation. At embryonic day (E)18.5, pregnant mice were sacrificed followed by collection of maternal and foetal tissues. A subset of mice littered down, and offspring were monitored from postnatal day (PN) 8, weaned at PN24 and sacrificed at PN180, followed by tissue collection. Following RNA extraction, the expression of 14 selenoproteins was assessed with qPCR in liver, kidneys, muscle and placenta. Selenium deficiency downregulated expression (Ptrt < 0.05) of many selenoproteins in maternal tissues and the placenta. However, foetal selenoprotein expression was upregulated (Ptrt < 0.05) in all tissues, especially the kidneys. This was not reflected at PN180; however, a sexually dimorphic relationship in selenoprotein expression was observed in offspring. This study demonstrates the selenoproteome is sensitive to dietary selenium levels, which may be exacerbated by pregnancy. We concluded that transcriptional regulation of selenoproteins is complex and multifaceted, with expression exhibiting tissue-, age- and sex-specificities.
Collapse
Affiliation(s)
- Pierre Hofstee
- School of Medical Science, Menzies Health Institute Queensland, Griffith University Gold, Coast Campus, Southport, QLD 4215, Australia;
| | - James S.M. Cuffe
- The School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (J.S.M.C.); (A.V.P.); Tel.: +61-755529774 (A.V.P.)
| | - Anthony V. Perkins
- School of Medical Science, Menzies Health Institute Queensland, Griffith University Gold, Coast Campus, Southport, QLD 4215, Australia;
- Correspondence: (J.S.M.C.); (A.V.P.); Tel.: +61-755529774 (A.V.P.)
| |
Collapse
|
31
|
Regulation of FKBP51 and FKBP52 functions by post-translational modifications. Biochem Soc Trans 2020; 47:1815-1831. [PMID: 31754722 DOI: 10.1042/bst20190334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.
Collapse
|
32
|
Rajput B, Pruitt KD, Murphy TD. RefSeq curation and annotation of stop codon recoding in vertebrates. Nucleic Acids Res 2019; 47:594-606. [PMID: 30535227 PMCID: PMC6344875 DOI: 10.1093/nar/gky1234] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022] Open
Abstract
Recoding of stop codons as amino acid-specifying codons is a co-translational event that enables C-terminal extension of a protein. Synthesis of selenoproteins requires recoding of internal UGA stop codons to the 21st non-standard amino acid selenocysteine (Sec) and plays a vital role in human health and disease. Separately, canonical stop codons can be recoded to specify standard amino acids in a process known as stop codon readthrough (SCR), producing extended protein isoforms with potential novel functions. Conventional computational tools cannot distinguish between the dual functionality of stop codons as stop signals and sense codons, resulting in misannotation of selenoprotein gene products and failure to predict SCR. Manual curation is therefore required to correctly represent recoded gene products and their functions. Our goal was to provide accurately curated and annotated datasets of selenoprotein and SCR transcript and protein records to serve as annotation standards and to promote basic and biomedical research. Gene annotations were curated in nine vertebrate model organisms and integrated into NCBI's Reference Sequence (RefSeq) dataset, resulting in 247 selenoprotein genes encoding 322 selenoproteins, and 93 genes exhibiting SCR encoding 94 SCR isoforms.
Collapse
Affiliation(s)
- Bhanu Rajput
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA
| |
Collapse
|
33
|
Swart R, Schutte AE, van Rooyen JM, Mels CMC. Selenium and large artery structure and function: a 10-year prospective study. Eur J Nutr 2018; 58:3313-3323. [DOI: 10.1007/s00394-018-1875-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
34
|
Mudgal V, Garg AK, Dass RS, Rawat M. Selenium and copper interaction at supra-nutritional level affecting blood parameters including immune response against P. multocida antigen in Murrah buffalo (Bubalus bubalis) calves. J Trace Elem Med Biol 2018; 50:415-423. [PMID: 30262314 DOI: 10.1016/j.jtemb.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 01/13/2023]
Abstract
Minerals play important role in the diet of an animal. Bio-availability of minerals largely gets affected by absolute as well as the relative amount of each mineral present in the diet of an animal. Copper and selenium are two such an essential elements affect utilization of each other in the gastrointestinal tract. The present study elucidates the utilization of copper and selenium at supra-nutritional levels (higher than nutritional requirements). Male Murrah buffalo (Bubalus bubalis) calves (n = 10, 8-9 months, 111.7 ± 12.55 kg body weight) were divided equally into two groups and fed either a standard (Control) diet or the same diet supplemented with 0.3 ppm selenium (Se) and 10 ppm copper (Cu) (Treatment). Supplementation was made using liquid solutions of two inorganic mineral sources after mixing in the concentrate mixture and study lasts for a period of 80 days. Blood samples were collected just before starting supplementation (designated as 0 day of study) and at day 40 and 80 after starting supplementation. Blood samples were subjected to haematological parameters, plasma minerals and various oxidative stress-related parameters were determined with the cell-mediated and humoral immune response against antigen P. multocida (P52 strain). Supra-nutritional Se with Cu had higher blood monocytes (P < 0.05) and plasma selenium (P < 0.01) levels, while other hematological parameters and plasma minerals (except zinc, which was lower (P = 0.025) at day 80 in the treatment group) remained unaffected. Among markers for oxidative stress in blood, levels of lipid peroxidation were lesser (P < 0.01), at day 80 and overall mean values of the enzyme glutathione peroxidase and catalase were higher (P < 0.05) in the supra-nutritional group against control values. The overall mean activity of other oxidative stress markers including reduced glutathione, ceruloplasmin as well as the concentration of α tocopherol, retinol, and β carotene remained unaffected due to supra-nutritional Se and Cu. Although cell-mediated immune response remained comparable (P > 0.05) between groups, higher (P < 0.05) overall mean antibody titer values, as well as the values at day 80, was reported in supra-nutritional Se + Cu group. The study concluded that supra-nutritional Se with Cu in the ration of growing Murrah buffalo calves was helpful to reduce the oxidative stress and to enhance the humoral immune response. Simultaneously, higher plasma Se level and number of monocytes in blood highlighted the additional role of selenium and copper in a ration of growing buffalo calves as compared to its normal recommended dose.
Collapse
Affiliation(s)
- Vishal Mudgal
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India.
| | - Anil Kumar Garg
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Ram Sharan Dass
- Mineral and Vitamin Nutrition Laboratory, Centre for Advanced Faculty Training in Animal Nutrition, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| | - Mayank Rawat
- Biological Standardization Division, ICAR-Indian Veterinary Research Institute, Izatnagar, 243 122, UP, India
| |
Collapse
|
35
|
Tang J, He A, Yan H, Jia G, Liu G, Chen X, Cai J, Tian G, Shang H, Zhao H. Damage to the myogenic differentiation of C2C12 cells by heat stress is associated with up-regulation of several selenoproteins. Sci Rep 2018; 8:10601. [PMID: 30006533 PMCID: PMC6045685 DOI: 10.1038/s41598-018-29012-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
This study was conducted to profile the selenoprotein encoding genes or proteins in mouse C2C12 cells and integrate their roles in the skeletal cell damage induced by heat stress (HS). Cells were cultured at 37.0 °C or 41.5 °C for 4, 6 or 8 days. The mRNA expression of 24 selenoprotein encoding genes and abundance of 5 selenoproteins were investigated. HS suppressed myogenic differentiation and impaired the development of muscle myotubes. HS down-regulated (P < 0.01) mRNA abundance of MYOD and MYOGENIN, and decreased (P < 0.01) MYOGENIN protein expression, HS elevated (P < 0.01) HSP70 and (P < 0.01) the ratio of BCL-2 to BAX at both mRNA and protein level. Meanwhile, HS up-regulated (P < 0.01–0.05) expressions of 18, 11 and 8 selenoprotein encoding genes after 4, 6 and 8 days of hyperthermia, and only down-regulated (P < 0.01) DIO2 after 6 and 8 days of hyperthermia, respectively. Furthermore, HS influenced expression of selenoproteins and up-regulated (P < 0.01–0.05) GPX1, GPX4 and SEPN1 after 6 days of HS. The damage to development of mouse skeletal muscle myotubes by HS accompanied with the up-regulation of both selenoprotein encoding genes and proteins, which suggested a potential protective effect of selenoprotein on hyperthermia associated damage in C2C12 cells.
Collapse
Affiliation(s)
- Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Trace Element Research Center, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Aihua He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hui Yan
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Haiying Shang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China. .,Trace Element Research Center, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
36
|
Tang JY, He AH, Jia G, Liu GM, Chen XL, Cai JY, Shang HY, Liao JQ, Zhao H. Protective Effect of Selenoprotein X Against Oxidative Stress-Induced Cell Apoptosis in Human Hepatocyte (LO2) Cells via the p38 Pathway. Biol Trace Elem Res 2018; 181:44-53. [PMID: 28429287 DOI: 10.1007/s12011-017-1025-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/12/2017] [Indexed: 01/25/2023]
Abstract
Oxidative stress, as mediated by ROS (reactive oxygen species), is a significant factor in initiating the cells damaged by affecting cellular macromolecules and impairing their biological functions; SelX, a selenoprotein also known as MsrB1 belonging to the methionine sulfoxide reductase (Msr) family, is the redox repairing enzyme and involved in redox-related functions. In order to more precisely analyze the relationship between oxidative stress, cell oxidative damage, and SelX, we stably overexpressed porcine Selx full-length cDNA in human normal hepatocyte (LO2) cells. Cell viability, cell apoptosis rate, intracellular ROS, and the expression levels of mRNA or protein of apoptosis-related genes under H2O2-induced oxidative stress were detected. We found that overexpression of SelX can prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the protective effects of SelX is the inhibition of LO2 cell apoptosis. The results revealed that overexpressed SelX reduced the H2O2-induced intracellular ROS generation, inhibited the H2O2-induced upregulation of Bax and downregulation of Bcl-2, and increased the mRNA and protein ratio of Bcl-2/Bax. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and that its protective effect is partly via the p38 pathway by acting as a ROS scavenger.
Collapse
Affiliation(s)
- Jia-Yong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Trace Element Research Center, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China
| | - Ai-Hua He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guang-Mang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiao-Ling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing-Yi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hai-Ying Shang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jin-Qiu Liao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
- Trace Element Research Center, Sichuan Agricultural University, No 211 Huimin Road, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
37
|
Stupin A, Cosic A, Novak S, Vesel M, Jukic I, Popovic B, Karalic K, Loncaric Z, Drenjancevic I. Reduced Dietary Selenium Impairs Vascular Function by Increasing Oxidative Stress in Sprague-Dawley Rat Aortas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E591. [PMID: 28574428 PMCID: PMC5486277 DOI: 10.3390/ijerph14060591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
Abstract
This study aimed to determine whether low dietary Se content affects the function and mechanisms mediating the vascular relaxation of rat aortas, and to test the role of oxidative stress in observed differences. Male Sprague Dawley (SD) rats were maintained for 10 weeks on low Se (low-Se group; N = 20) or normal Se content (norm-Se group; N = 20) rat chow. Dose responses to acetylcholine (ACh; 10-9-10-5M) and the response to reduced pO₂ were tested in noradrenaline-precontracted aortic rings in the absence/presence of the nitric oxide synthase (NOS) inhibitor nitro-l-arginine methyl ester (l-NAME), the cyclooxygenase 1 and 2 (COX-1, 2) inhibitor Indomethacin, and the antioxidative agent Tempol in tissue bath. mRNA expression of glutathione peroxidase 1 (GPx1), catalase (CAT), and Cu/Zn superoxide dismutase (SOD) was measured in rat aortas. Oxidative stress (Thiobarbituric Acid Reactive Substances; TBARS), antioxidative plasma capacity (ferric reducing ability of plasma assay; FRAP), and protein levels of GPx1 were measured in plasma and serum samples, respectively. Reduced ACh-induced relaxation (AChIR) (dominantly mediated by NO) in the low-Se group compared to the norm-Se group was restored by Tempol administration. Hypoxia-induced relaxation (HIR) (dominantly mediated by COX-1, 2), TBARS, and FRAP as well as GPx1 serum concentrations were similar between the groups. mRNA GPx1 expression in rat aortas was significantly decreased in the low-Se compared to the norm-Se group. These data suggest that low dietary Se content increases the local oxidative stress level, which subsequently affects the NO-mediated vascular response.
Collapse
Affiliation(s)
- Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| | - Anita Cosic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| | - Sanja Novak
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| | - Monika Vesel
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| | - Brigita Popovic
- Department of Agroecology, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia.
| | - Krunoslav Karalic
- Department of Agroecology, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia.
| | - Zdenko Loncaric
- Department of Agroecology, Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia.
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia.
| |
Collapse
|
38
|
Zheng X, Hu X, Ge T, Li M, Shi M, Luo J, Lai H, Nie T, Li F, Li H. MicroRNA-328 is involved in the effect of selenium on hydrogen peroxide-induced injury in H9c2 cells. J Biochem Mol Toxicol 2017; 31. [PMID: 28544404 DOI: 10.1002/jbt.21920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 01/29/2023]
Abstract
Oxidative stress induces apoptosis in cardiac cells, and antioxidants attenuate the injury. MicroRNAs (miRNAs) are also involved in cell death; therefore, this study aimed to investigate the role of miRNAs in the effect of selenium on oxidative stress-induced apoptosis. The effects of sodium selenite were analyzed via cell viability, superoxide dismutase (SOD) activity, and malondialdehyde (MDA) concentration. Flow cytometry was used to evaluate cell apoptosis. Fura-2AM was used to calculate intracellular Ca2+ concentration. Sodium selenite could ameliorate hydrogen peroxide (H2 O2 )-induced cell apoptosis and improve expression levels of glutathione peroxidase and thioredoxin reductase. Pretreatment with sodium selenite improved SOD activity and reduced MDA concentration. Treatments with H2 O2 or sodium selenite decreased miR-328 levels. MiR-328 overexpression enhanced cell apoptosis, reduced ATP2A2 levels, and increased intracellular Ca2+ concentration, while inhibition produced opposite effects. MiR-328 might be involved in the effect of sodium selenite on H2 O2 -induced cell death in H9c2 cells.
Collapse
Affiliation(s)
- Xiaolin Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Xiaoyan Hu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Tangdong Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Mengdi Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Minxia Shi
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Jincheng Luo
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Hehuan Lai
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Tingting Nie
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Fenglan Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, 150081, People's Republic of China
| |
Collapse
|
39
|
Sun LH, Pi DA, Zhao L, Wang XY, Zhu LY, Qi DS, Liu YL. Response of Selenium and Selenogenome in Immune Tissues to LPS-Induced Inflammatory Reactions in Pigs. Biol Trace Elem Res 2017; 177:90-96. [PMID: 27726062 DOI: 10.1007/s12011-016-0863-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
Circulating concentration of the essential trace element selenium (Se) was significantly lower in inflammatory disorders. Although Se plays physiological roles mainly through the function of 25 selenoproteins, the response of the selenogenome in immune tissues during inflammatory reactions remains unclear. The objective of this study was to determine the Se retention and selenogenome expression in immune tissues during the lipopolysaccharide (LPS)-induced inflammatory response in porcine. A total of 12 male pigs were randomly divided into two groups and injected with LPS or saline. After 4 h postinjection, blood samples were collected and pigs were euthanized. Pigs challenged with LPS had 36.8 and 16.6 % lower (P < 0.05) Se concentrations in the serum and spleen, respectively, than those injected with saline. Moreover, the activities of GPX decreased (P < 0.05) by 23.4, 26.6, and 30.4 % in the serum, thymus, and lymph node, respectively, in the pigs injected with LPS. Furthermore, the LPS challenge altered (P < 0.05) the mRNA expression of 14, 16, 10, and 6 selenoprotein genes in the liver, spleen, thymus, and lymph node, respectively. Along with 10 previously reported selenoprotein genes, the response of Txnrd2, Txnrd3, Sep15, Selh, Seli, Seln, Selo, Selt, Selx, and Sephs2 to inflammatory reaction in immune tissues were newly illustrated in this study. In conclusion, the LPS-induced inflammatory response impaired Se metabolism and was associated with dysregulation of the selenogenome expression in immune tissues.
Collapse
Affiliation(s)
- Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ding-An Pi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Ling Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiu-Ying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Luo-Yi Zhu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yu-Lan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
40
|
Ivory K, Nicoletti C. Selenium is a source of aliment and ailment: Do we need more? Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Liu J, Yang Y, Zeng X, Bo L, Jiang S, Du X, Xie Y, Jiang R, Zhao J, Song W. Investigation of selenium pretreatment in the attenuation of lung injury in rats induced by fine particulate matters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4008-4017. [PMID: 27921246 DOI: 10.1007/s11356-016-8173-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Selenium (Se) is vital for health because of its antioxidative and anti-inflammation functions. The aim of this study was to determine if dietary selenium could inhibit the rat lung injury induced by ambient fine particulate matter (PM2.5). Sprague-Dawley rats were randomly allocated in seven groups (n = 8). The rats in PM2.5 exposure group were intratracheally instilled with 40 mg/kg of body weight (b.w.) of PM2.5 suspension. The rats in Se prevention groups were pretreated with 17.5, 35, or 70 μg/kg b.w. of Se for 4 weeks, respectively. Then, the rats were exposed to 40 mg/kg b.w. of PM2.5 in the fifth week. The bronchoalveolar lavage fluid (BALF) was collected to count the neutrophil numbers and to analyze the cytokines (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), soluble intercellular adhesion molecule-1 (sICAM-1)) related to inflammation, the markers related to oxidative stress (total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA)), and the indicators related to cell damage (lactate dehydrogenase (LDH), total protein (TP), alkaline phosphatase (AKP)). The lung lobe that has not undergone bronchoalveolar lavage was processed for light microscopic examination. The results showed that the proportions of neutrophils in the BALF and the pathologic scores of the lung in PM2.5-exposed groups were higher than that in the control group (P < 0.05). Se pretreatment caused a dose-dependent decrease in TNF-α, IL-1β, sICAM-1, LDH, TP, AKP, and MDA when compared with the PM2.5-only exposure group. Meanwhile, the dose-dependent increase in T-AOC, T-SOD, and GSH-Px activities were observed in rats pretreated with Se. In conclusion, Se pretreatment may protect rat lungs against inflammation and oxidative stress induced by PM2.5, which suggests that Se plays an important role as a kind of potential preventative agent to inhibit the PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Jie Liu
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Yingying Yang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Xuejiao Zeng
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Liang Bo
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Shuo Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Xihao Du
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200032, China
| | - Rongfang Jiang
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China
| | - Jinzhuo Zhao
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China.
| | - Weimin Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University, 138 Yixueyuan Road, Box 249, Shanghai, 200032, China.
| |
Collapse
|
42
|
Han J, Liang H, Yi J, Tan W, He S, Wang S, Li F, Wu X, Ma J, Shi X, Guo X, Bai C. Long-Term Selenium-Deficient Diet Induces Liver Damage by Altering Hepatocyte Ultrastructure and MMP1/3 and TIMP1/3 Expression in Growing Rats. Biol Trace Elem Res 2017; 175:396-404. [PMID: 27339256 DOI: 10.1007/s12011-016-0781-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/12/2016] [Indexed: 01/25/2023]
Abstract
The effects of selenium (Se)-deficient diet on the liver were evaluated by using growing rats which were fed with normal and Se-deficient diets, respectively, for 109 days. The results showed that rats fed with Se-deficient diet led to a decrease in Se concentration in the liver, particularly among male rats from the low-Se group. This causes alterations to the ultrastructure of hepatocytes with condensed chromatin and swelling mitochondria observed after low Se intake. Meanwhile, pathological changes and increased fibrosis in hepatic periportal were detected by hematoxylin and eosin and Masson's trichrome staining in low-Se group. Furthermore, through immunohistochemistry (IHC) staining, higher expressions of metalloproteinases (MMP1/3) and their tissue inhibitors of metalloproteinases (TIMP1/3) were observed in the hepatic periportal of rats from the low-Se group. However, higher expressions of MMP1/3 and lower expressions of TIMP1/3 were detected in hepatic central vein and hepatic sinusoid. In addition, upregulated expressions of MMP1/3 and downregulated expressions of TIMP1/3 at the messenger RNA (mRNA) and protein levels also appeared to be relevant to low Se intake. In conclusion, Se-deficient diet could cause low Se concentration in the liver, alterations of hepatocyte ultrastructure, differential expressions of MMP1/3 and TIMP1/3 as well as fibrosis in the liver hepatic periportal.
Collapse
Affiliation(s)
- Jing Han
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Hua Liang
- Department of Pathology, The First Affiliated Hospital Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jianhua Yi
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Wuhong Tan
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shulan He
- Department of Epidemiology and Biostatistics, School of Public Health, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Sen Wang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Feng Li
- Department of Anesthesiology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiaofang Wu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jing Ma
- Institute for Endemic Disease Prevention and Control, Xining, Qinghai, 811602, People's Republic of China
| | - Xiaowei Shi
- Department of Preventive Health Care, The first Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Chuanyi Bai
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
43
|
Fontelles CC, Ong TP. Selenium and Breast Cancer Risk: Focus on Cellular and Molecular Mechanisms. Adv Cancer Res 2017; 136:173-192. [PMID: 29054418 DOI: 10.1016/bs.acr.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selenium (Se) is a micronutrient with promising breast cancer prevention and treatment potential. There is extensive preclinical evidence of Se mammary carcinogenesis inhibition. Evidence from epidemiological studies is, however, unclear and intervention studies are rare. Here, we examine Se chemoprotection, chemoprevention, and chemotherapy effects in breast cancer, focusing on associated cellular and molecular mechanisms. Se exerts its protective actions through multiple mechanisms that involve antioxidant activities, induction of apoptosis, and inhibition of DNA damage, cell proliferation, angiogenesis, and invasion. New aspects of Se actions in breast cancer have emerged such as the impact of genetic polymorphisms on Se metabolism and response, new functions of selenoproteins, epigenetic modulation of gene expression, and long-term influence of early-life exposure on disease risk. Opportunity exists to design interventional studies with Se for breast cancer prevention and treatment taking into consideration these key aspects.
Collapse
|
44
|
Tang J, Huang X, Wang L, Li Q, Xu J, Jia G, Liu G, Chen X, Shang H, Zhao H. Supranutritional dietary selenium depressed expression of selenoprotein genes in three immune organs of broilers. Anim Sci J 2016; 88:331-338. [DOI: 10.1111/asj.12645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/26/2016] [Accepted: 04/07/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Jiayong Tang
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu Sichuan China
| | - Xiaofeng Huang
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu Sichuan China
| | - Longqiong Wang
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu Sichuan China
| | - Qiang Li
- Sichuan Provincial General Station for Animal Husbandry; Chengdu China
| | - Jinyang Xu
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu Sichuan China
| | - Gang Jia
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu Sichuan China
| | - Guangmang Liu
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu Sichuan China
| | - Xiaoling Chen
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu Sichuan China
| | - Haiying Shang
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu Sichuan China
| | - Hua Zhao
- Animal Nutrition Institute; Sichuan Agricultural University; Chengdu Sichuan China
| |
Collapse
|
45
|
Cheng Z, Zhi X, Sun G, Guo W, Huang Y, Sun W, Tian X, Zhao F, Hu K. Sodium selenite suppresses hepatitis B virus transcription and replication in human hepatoma cell lines. J Med Virol 2015; 88:653-63. [PMID: 26331371 PMCID: PMC7167125 DOI: 10.1002/jmv.24366] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the most serious and prevalent health problems worldwide. Current anti‐HBV medications have a number of drawbacks, such as adverse effects and drug resistance; thus, novel potential anti‐HBV reagents are needed. Selenium (Se) has been shown to be involved in both human immunodeficiency virus and hepatitis C virus infections, but its role in HBV infection remains unclear. To address this, sodium selenite (Na2SeO3) was applied to three HBV cell models: HepG2.2.15 cells, and HuH‐7 cells transfected with either 1.1 or 1.3× HBV plasmids. Cytotoxicity of Na2SeO3 was examined by Cell Counting Kit‐8. Levels of viral antigen expression, transcripts, and encapsidated viral DNA were measured by enzyme‐linked immunosorbent assay, northern blot, and Southern blot, respectively. There was no obvious cytotoxicity in either HepG2.2.15 or HuH‐7 cells with <2.5 µM Na2SeO3. Below this concentration, Na2SeO3 suppressed HBsAg and HBeAg production, HBV transcript level, and amount of genomic DNA in all three tested models, and suppression level was enhanced in line with increases in Na2SeO3 concentration or treatment time. Moreover, the inhibitory effect of Na2SeO3 on HBV replication can be further enhanced by combined treatment with lamivudine, entecavir, or adefovir. Thus, the present study clearly proves that Na2SeO3 suppresses HBV protein expression, transcription, and genome replication in hepatoma cell models in a dose‐ and time‐dependent manner. J. Med. Virol. 88:653–663, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhikui Cheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaoguang Zhi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ge Sun
- Sino-Germany Biomedical Center, Hubei University of Technology, Wuhan, 430068, China
| | - Wei Guo
- Department of Infectious Disease and Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Tongji, China
| | - Yayun Huang
- Sino-Germany Biomedical Center, Hubei University of Technology, Wuhan, 430068, China
| | - Weihua Sun
- Sino-Germany Biomedical Center, Hubei University of Technology, Wuhan, 430068, China
| | - Xiaohui Tian
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Kanghong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,Sino-Germany Biomedical Center, Hubei University of Technology, Wuhan, 430068, China
| |
Collapse
|
46
|
Effect of Selenium Supplementation on Redox Status of the Aortic Wall in Young Spontaneously Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:609053. [PMID: 26473024 PMCID: PMC4592724 DOI: 10.1155/2015/609053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 03/10/2015] [Indexed: 01/18/2023]
Abstract
Selenium (Se) is an exogenous antioxidant that performs its function via the expression of selenoproteins. The aim of this study was to explore the effect of varying Se intake on the redox status of the aortic wall in young spontaneously hypertensive rats (SHR). Sixteen male Wistar Kyoto (WKY) rats and nineteen male SHR, 16-week-old, were tested after being given diets with different Se content for eight weeks. They were divided into 4 groups: control groups of WKY NSe and SHR NSe on an adequate Se diet and groups of WKY HSe and SHR HSe that received Se supplementation. The Se nutritional status was assessed by measuring whole blood glutathione peroxidase-1 (GPx-1) activity. Serum concentration of lipid hydroperoxides and serum level of antibodies against advanced glycation end products (anti-AGEs abs) were determined. Expression of GPx-1 and endothelial nitric oxide synthase (eNOS) were examined in aortic wall. Se supplementation significantly increased GPx-1 activity of whole blood and in the aortas of WKY and SHR. Decreased lipid peroxidation level, eNOS-3 expression in the aortic wall, and serum level of anti-AGEs abs were found in SHR HSe compared with SHR NSe.
In conclusion, Se supplementation improved the redox status of the aortic wall in young SHR.
Collapse
|
47
|
Solovyev ND. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J Inorg Biochem 2015; 153:1-12. [PMID: 26398431 DOI: 10.1016/j.jinorgbio.2015.09.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 12/21/2022]
Abstract
Multiple biological functions of selenium manifest themselves mainly via 25 selenoproteins that have selenocysteine at their active centre. Selenium is vital for the brain and seems to participate in the pathology of disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and epilepsy. Since selenium was shown to be involved in diverse functions of the central nervous system, such as motor performance, coordination, memory and cognition, a possible role of selenium and selenoproteins in brain signalling pathways may be assumed. The aim of the present review is to analyse possible relations between selenium and neurotransmission. Selenoproteins seem to be of special importance in the development and functioning of GABAergic (GABA, γ-aminobutyric acid) parvalbumin positive interneurons of the cerebral cortex and hippocampus. Dopamine pathway might be also selenium dependent as selenium shows neuroprotection in the nigrostriatal pathway and also exerts toxicity towards dopaminergic neurons under higher concentrations. Recent findings also point to acetylcholine neurotransmission involvement. The role of selenium and selenoproteins in neurotransmission might not only be limited to their antioxidant properties but also to inflammation, influencing protein phosphorylation and ion channels, alteration of calcium homeostasis and brain cholesterol metabolism. Moreover, a direct signalling function was proposed for selenoprotein P through interaction with post-synaptic apoliprotein E receptors 2 (ApoER2).
Collapse
Affiliation(s)
- Nikolay D Solovyev
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 198504, Russian Federation.
| |
Collapse
|
48
|
Misra S, Boylan M, Selvam A, Spallholz JE, Björnstedt M. Redox-active selenium compounds--from toxicity and cell death to cancer treatment. Nutrients 2015; 7:3536-56. [PMID: 25984742 PMCID: PMC4446766 DOI: 10.3390/nu7053536] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 04/24/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022] Open
Abstract
Selenium is generally known as an antioxidant due to its presence in selenoproteins as selenocysteine, but it is also toxic. The toxic effects of selenium are, however, strictly concentration and chemical species dependent. One class of selenium compounds is a potent inhibitor of cell growth with remarkable tumor specificity. These redox active compounds are pro-oxidative and highly cytotoxic to tumor cells and are promising candidates to be used in chemotherapy against cancer. Herein we elaborate upon the major forms of dietary selenium compounds, their metabolic pathways, and their antioxidant and pro-oxidant potentials with emphasis on cytotoxic mechanisms. Relative cytotoxicity of inorganic selenite and organic selenocystine compounds to different cancer cells are presented as evidence to our perspective. Furthermore, new novel classes of selenium compounds specifically designed to target tumor cells are presented and the potential of selenium in modern oncology is extensively discussed.
Collapse
Affiliation(s)
- Sougat Misra
- Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm 141 86, Sweden.
| | - Mallory Boylan
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, P.O. Box 41270, Lubbock, TX 79409-1270, USA.
| | - Arun Selvam
- Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm 141 86, Sweden.
| | - Julian E Spallholz
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, P.O. Box 41270, Lubbock, TX 79409-1270, USA.
| | - Mikael Björnstedt
- Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm 141 86, Sweden.
| |
Collapse
|
49
|
Hori E, Yoshida S, Haratake M, Ura S, Fuchigami T, Nakayama M. An effective method for profiling the selenium-binding proteins using its reactive metabolic intermediate. J Biol Inorg Chem 2015; 20:781-9. [DOI: 10.1007/s00775-015-1265-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
|
50
|
Interaction between cadmium (Cd), selenium (Se) and oxidative stress biomarkers in healthy mothers and its impact on birth anthropometric measures. Int J Hyg Environ Health 2015; 218:66-90. [DOI: 10.1016/j.ijheh.2014.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/19/2014] [Accepted: 08/26/2014] [Indexed: 01/13/2023]
|