1
|
McCurry MD, D'Agostino GD, Walsh JT, Bisanz JE, Zalosnik I, Dong X, Morris DJ, Korzenik JR, Edlow AG, Balskus EP, Turnbaugh PJ, Huh JR, Devlin AS. Gut bacteria convert glucocorticoids into progestins in the presence of hydrogen gas. Cell 2024; 187:2952-2968.e13. [PMID: 38795705 PMCID: PMC11179439 DOI: 10.1016/j.cell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation. We also uncover an unexpected role for hydrogen gas production by gut commensals in promoting 21-dehydroxylation, suggesting that hydrogen modulates secondary metabolism in the gut. Levels of certain bacterial progestins, including allopregnanolone, better known as brexanolone, an FDA-approved drug for postpartum depression, are substantially increased in feces from pregnant humans. Thus, bacterial conversion of corticoids into progestins may affect host physiology, particularly in the context of pregnancy and women's health.
Collapse
Affiliation(s)
- Megan D McCurry
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel D D'Agostino
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine T Walsh
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan E Bisanz
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Ines Zalosnik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xueyang Dong
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - David J Morris
- Emeritus Professor of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
| | - Joshua R Korzenik
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Andrea G Edlow
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emily P Balskus
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - A Sloan Devlin
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Bhat MA, Mishra AK, Tantray JA, Alatawi HA, Saeed M, Rahman S, Jan AT. Gut Microbiota and Cardiovascular System: An Intricate Balance of Health and the Diseased State. Life (Basel) 2022; 12:1986. [PMID: 36556351 PMCID: PMC9780831 DOI: 10.3390/life12121986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Gut microbiota encompasses the resident microflora of the gut. Having an intricate relationship with the host, it plays an important role in regulating physiology and in the maintenance of balance between health and disease. Though dietary habits and the environment play a critical role in shaping the gut, an imbalance (referred to as dysbiosis) serves as a driving factor in the occurrence of different diseases, including cardiovascular disease (CVD). With risk factors of hypertension, diabetes, dyslipidemia, etc., CVD accounts for a large number of deaths among men (32%) and women (35%) worldwide. As gut microbiota is reported to have a direct influence on the risk factors associated with CVDs, this opens up new avenues in exploring the possible role of gut microbiota in regulating the gross physiological aspects along the gut-heart axis. The present study elaborates on different aspects of the gut microbiota and possible interaction with the host towards maintaining a balance between health and the occurrence of CVDs. As the gut microbiota makes regulatory checks for these risk factors, it has a possible role in shaping the gut and, as such, in decreasing the chances of the occurrence of CVDs. With special emphasis on the risk factors for CVDs, this paper includes information on the prominent bacterial species (Firmicutes, Bacteriodetes and others) towards an advance in our understanding of the etiology of CVDs and an exploration of the best possible therapeutic modules for implementation in the treatment of different CVDs along the gut-heart axis.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Javeed Ahmad Tantray
- Department of Zoology, Central University of Kashmir, Ganderbal 191131, Jammu and Kashmir, India
| | - Hanan Ali Alatawi
- Department of Biological Sciences, University College of Haqel, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 55476, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur 842001, Bihar, India
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India
| |
Collapse
|
3
|
Gabarre P, Loens C, Tamzali Y, Barrou B, Jaisser F, Tourret J. Immunosuppressive therapy after solid organ transplantation and the gut microbiota: Bidirectional interactions with clinical consequences. Am J Transplant 2022; 22:1014-1030. [PMID: 34510717 DOI: 10.1111/ajt.16836] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/23/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Our understanding of the involvement of the gut microbiota (GM) in human health has expanded exponentially over the last few decades, particularly in the fields of metabolism, inflammation, and immunology. Immunosuppressive treatment (IST) prescribed to solid organ transplant (SOT) recipients produces GM changes that affect these different processes. This review aims at describing the current knowledge of how IST changes the GM. Overall, SOT followed by IST results in persistent changes in the GM, with a consistent increase in proteobacteria including opportunistic pathobionts. In mice, Tacrolimus induces dysbiosis and metabolic disorders, and alters the intestinal barrier. The transfer of the GM from Tacrolimus-treated hosts confers immunosuppressive properties, suggesting a contributory role for the GM in this drug's efficacy. Steroids induce dysbiosis and intestinal barrier alterations, and also seem to depend partly on the GM for their immunosuppressive and metabolic effects. Mycophenolate Mofetil, frequently responsible for digestive side effects such as diarrhea and colitis, is associated with pro-inflammatory dysbiosis and increased endotoxemia. Alemtuzumab, m-TOR inhibitors, and belatacept have shown more marginal impact on the GM. Most of these observations are descriptive. Future studies should explore the underlying mechanism of IST-induced dysbiosis in order to better understand their efficacy and safety characteristics.
Collapse
Affiliation(s)
- Paul Gabarre
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Christopher Loens
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Yanis Tamzali
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Benoit Barrou
- Assistance Publique - Hôpitaux Paris APHP, Medical and Surgical Unit of Kidney Transplantation Unit, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Jérôme Tourret
- Centre de Recherche des Cordeliers, Team "Diabetes, metabolic diseases and comorbidities", Sorbonne Université, Université de Paris, INSERM, Paris, France.,Assistance Publique - Hôpitaux Paris APHP, Medical and Surgical Unit of Kidney Transplantation Unit, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Role of the microbiota in hypertension and antihypertensive drug metabolism. Hypertens Res 2021; 45:246-253. [PMID: 34887530 DOI: 10.1038/s41440-021-00804-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/17/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022]
Abstract
Recent evidence suggests that the gut microbiota plays an important role in the development and pathogenesis of hypertension. Dysbiosis, an imbalance in the composition and function of the gut microbiota, was shown to be associated with hypertension in both animal models and humans. In this review, we provide insights into host-microbiota interactions and summarize the evidence supporting the importance of the microbiota in blood pressure (BP) regulation. Metabolites produced by the gut microbiota, especially short-chain fatty acids (SCFAs), modulate BP and vascular responses. Harmful gut-derived metabolites, such as trimethylamine N-oxide and several uremic toxins, exert proatherosclerotic, prothrombotic, and proinflammatory effects. High-salt intake alters the composition of the microbiota, and this microbial alteration contributes to the pathogenesis of salt-sensitive hypertension. In addition, the microbiota may impact the metabolism of drugs and steroid hormones in the host. The drug-metabolizing activities of the microbiota affect the pharmacokinetic parameters of antihypertensive drugs and contribute to the pathogenesis of licorice-induced pseudohyperaldosteronism. Furthermore, the oral microbiota plays a role in BP regulation by producing nitric oxide, which lowers BP via its vasodilatory effects. Thus, antihypertensive intervention strategies targeting the microbiota, such as the use of prebiotics, probiotics, and postbiotics (e.g., SCFAs), are considered new therapeutic options for the treatment of hypertension.
Collapse
|
5
|
Morris DJ, Brem AS, Odermatt A. Modulation of 11β-hydroxysteroid dehydrogenase functions by the cloud of endogenous metabolites in a local microenvironment: The glycyrrhetinic acid-like factor (GALF) hypothesis. J Steroid Biochem Mol Biol 2021; 214:105988. [PMID: 34464733 DOI: 10.1016/j.jsbmb.2021.105988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
11β-Hydroxysteroid dehydrogenase (11β-HSD)-dependent conversion of cortisol to cortisone and corticosterone to 11-dehydrocorticosterone are essential in regulating transcriptional activities of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Inhibition of 11β-HSD by glycyrrhetinic acid metabolites, bioactive components of licorice, causes sodium retention and potassium loss, with hypertension characterized by low renin and aldosterone. Essential hypertension is a major disease, mostly with unknown underlying mechanisms. Here, we discuss a putative mechanism for essential hypertension, the concept that endogenous steroidal compounds acting as glycyrrhetinic acid-like factors (GALFs) inhibit 11β-HSD dehydrogenase, and allow for glucocorticoid-induced MR and GR activation with resulting hypertension. Initially, several metabolites of adrenally produced glucocorticoids and mineralocorticoids were shown to be potent 11β-HSD inhibitors. Such GALFs include modifications in the A-ring and/or at positions 3, 7 and 21 of the steroid backbone. These metabolites may be formed in peripheral tissues or by gut microbiota. More recently, metabolites of 11β-hydroxy-Δ4androstene-3,17-dione and 7-oxygenated oxysterols have been identified as potent 11β-HSD inhibitors. In a living system, 11β-HSD isoforms are not exposed to a single substrate but to several substrates, cofactors, and various inhibitors simultaneously, all at different concentrations depending on physical state, tissue and cell type. We propose that this "cloud" of steroids and steroid-like substances in the microenvironment determines the 11β-HSD-dependent control of MR and GR activity. A dysregulated composition of this cloud of metabolites in the respective microenvironment needs to be taken into account when investigating disease mechanisms, for forms of low renin, low aldosterone hypertension.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Andrew S Brem
- Division of Kidney Diseases and Hypertension, Warren Alpert Medical School of Brown University, Providence, RI, USA.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
6
|
Changes in Gut Microbiota Induced by Doxycycline Influence in Vascular Function and Development of Hypertension in DOCA-Salt Rats. Nutrients 2021; 13:nu13092971. [PMID: 34578849 PMCID: PMC8464928 DOI: 10.3390/nu13092971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
Previous experiments in animals and humans show that shifts in microbiota and its metabolites are linked to hypertension. The present study investigates whether doxycycline (DOX, a broad-spectrum tetracycline antibiotic) improves dysbiosis, prevent cardiovascular pathology and attenuate hypertension in deoxycorticosterone acetate (DOCA)-salt rats, a renin-independent model of hypertension. Male Wistar rats were randomly assigned to three groups: control, DOCA-salt hypertensive rats, DOCA-salt treated with DOX for 4 weeks. DOX decreased systolic blood pressure, improving endothelial dysfunction and reducing aortic oxidative stress and inflammation. DOX decreased lactate-producing bacterial population and plasma lactate levels, improved gut barrier integrity, normalized endotoxemia, plasma noradrenaline levels and restored the Treg content in aorta. These data demonstrate that DOX through direct effects on gut microbiota and its non-microbial effects (anti-inflammatory and immunomodulatory) reduces endothelial dysfunction and the increase in blood pressure in this low-renin form of hypertension.
Collapse
|
7
|
Okamura M, Ueno T, Tanaka S, Murata Y, Kobayashi H, Miyamoto A, Abe M, Fukuda N. Increased expression of acyl-CoA oxidase 2 in the kidney with plasma phytanic acid and altered gut microbiota in spontaneously hypertensive rats. Hypertens Res 2021; 44:651-661. [PMID: 33504992 DOI: 10.1038/s41440-020-00611-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 01/31/2023]
Abstract
We performed a DNA microarray analysis of the renal medulla and cortex from spontaneously hypertensive rats (SHRs), stroke-prone SHRs (SHRSPs), and Wistar-Kyoto (WKY) rats to identify pivotal molecules in the kidney associated with the onset of hypertension and found increased expression of acyl-CoA oxidase 2 (Acox2) mRNA. Real-time polymerase chain reaction revealed that Acox2 mRNA expression in the renal medulla and cortex of SHRs and SHRSPs was increased in comparison to WKY rats. These findings indicate that increased renal ACOX2 (an enzyme that induces the β-oxidation of fatty acids) is associated with the onset of hypertension. Immunostaining of ACOX2 in the distal tubules from SHRs was stronger than that in the distal tubules from WKY rats. Western blot analysis showed increased expression of ACOX2 protein in renal medulla from SHRs. Regarding the overexpression of ACOX2, plasma levels of phytanic acid in SHRs were significantly higher than those in WKY rats. There were no differences in other short-chain fatty acids. Plasma phytanic acid was affected by the gut microbiota through the conversion from phytol by yeast in the intestinal tract. We compared the gut microbiota profile in three strains of 5-week-old rats by the terminal-restriction fragment length polymorphism method. The gut microbiota profile and ratio of Firmicutes/Bacteroides differed between SHRs and WKY rats. These findings suggest that the increased expression of ACOX2 in the kidney along with increases in plasma phytanic acid and the altered gut microbiota may be involved in the oxidation in the kidney and the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Masahiro Okamura
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takahiro Ueno
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Sho Tanaka
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yusuke Murata
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hiroki Kobayashi
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Aoi Miyamoto
- Laboratory of Clinical Pharmacokinetics, School of Pharmacy, Nihon University, Chiba, Japan
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Noboru Fukuda
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan. .,Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
8
|
Ly LK, Doden HL, Ridlon JM. Gut feelings about bacterial steroid-17,20-desmolase. Mol Cell Endocrinol 2021; 525:111174. [PMID: 33503463 PMCID: PMC8886824 DOI: 10.1016/j.mce.2021.111174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Advances in technology are only beginning to reveal the complex interactions between hosts and their resident microbiota that have co-evolved over centuries. In this review, we present compelling evidence that implicates the host-associated microbiome in the generation of 11β-hydroxyandrostenedione, leading to the formation of potent 11-oxy-androgens. Microbial steroid-17,20-desmolase cleaves the side-chain of glucocorticoids (GC), including cortisol (and its derivatives of cortisone, 5α-dihydrocortisol, and also (allo)- 3α, 5α-tetrahydrocortisol, but not 3α-5β-tetrahydrocortisol) and drugs (prednisone and dexamethasone). In addition to side-chain cleavage, we discuss the gut microbiome's robust potential to transform a myriad of steroids, mirroring much of the host's metabolism. We also explore the overlooked role of intestinal steroidogenesis and efflux pumps as a potential route for GC transport into the gut. Lastly, we propose several health implications from microbial steroid-17,20-desmolase function, including aberrant mineralocorticoid, GC, and androgen receptor signaling in colonocytes, immune cells, and prostate cells, which may exacerbate disease states.
Collapse
Affiliation(s)
- Lindsey K Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Heidi L Doden
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason M Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL, 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
9
|
Yang T, Chakraborty S, Mandal J, Mei X, Joe B. Microbiota and Metabolites as Factors Influencing Blood Pressure Regulation. Compr Physiol 2021; 11:1731-1757. [PMID: 33792901 DOI: 10.1002/cphy.c200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The study of microbes has rapidly expanded in recent years due to a surge in our understanding that humans host a plethora of commensal microbes, which reside in their bodies and depending upon their composition, contribute to either normal physiology or pathophysiology. This article provides a general foundation for learning about host-commensal microbial interactions as an emerging area of research. The article is divided into two sections. The first section is dedicated to introducing commensal microbiota and its known effects on the host. The second section is on metabolites, which are biochemicals that the host and the microbes use for bi-directional communication with each other. Together, the sections review what is known about how microbes interact with the host to impact cardiovascular physiology, especially blood pressure regulation. © 2021 American Physiological Society. Compr Physiol 11:1731-1757, 2021.
Collapse
Affiliation(s)
- Tao Yang
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Saroj Chakraborty
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Juthika Mandal
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Xue Mei
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
10
|
Abstract
Vertebrates synthesize a diverse set of steroids and bile acids that undergo bacterial biotransformations. The endocrine literature has principally focused on the biochemistry and molecular biology of host synthesis and tissue-specific metabolism of steroids. Host-associated microbiota possess a coevolved set of steroid and bile acid modifying enzymes that match the majority of host peripheral biotransformations in addition to unique capabilities. The set of host-associated microbial genes encoding enzymes involved in steroid transformations is known as the sterolbiome. This review focuses on the current knowledge of the sterolbiome as well as its importance in medicine and agriculture.
Collapse
|
11
|
Ly LK, Rowles JL, Paul HM, Alves JMP, Yemm C, Wolf PM, Devendran S, Hudson ME, Morris DJ, Erdman JW, Ridlon JM. Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. J Steroid Biochem Mol Biol 2020; 199:105567. [PMID: 31870912 PMCID: PMC7333170 DOI: 10.1016/j.jsbmb.2019.105567] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023]
Abstract
The adrenal gland has traditionally been viewed as a source of "weak androgens"; however, emerging evidence indicates 11-oxy-androgens of adrenal origin are metabolized in peripheral tissues to potent androgens. Also emerging is the role of gut bacteria in the conversion of C21 glucocorticoids to 11-oxygenated C19 androgens. Clostridium scindens ATCC 35,704 is a gut microbe capable of converting cortisol into 11-oxy-androgens by cleaving the side-chain. The desA and desB genes encode steroid-17,20-desmolase. Our prior study indicated that the urinary tract bacterium, Propionimicrobium lymphophilum ACS-093-V-SCH5 encodes desAB and converts cortisol to 11β-hydroxyandrostenedione. We wanted to determine how widespread this function occurs in the human microbiome. Phylogenetic and sequence similarity network analyses indicated that the steroid-17,20-desmolase pathway is taxonomically rare and located in gut and urogenital microbiomes. Two microbes from each of these niches, C. scindens and Propionimicrobium lymphophilum, respectively, were screened for activity against endogenous (cortisol, cortisone, and allotetrahydrocortisol) and exogenous (prednisone, prednisolone, dexamethasone, and 9-fluorocortisol) glucocorticoids. LC/MS analysis showed that both microbes were able to side-chain cleave all glucocorticoids, forming 11-oxy-androgens. Pure recombinant DesAB from C. scindens showed the highest activity against prednisone, a commonly prescribed glucocorticoid. In addition, 0.1 nM 1,4-androstadiene-3,11,17-trione, bacterial side-chain cleavage product of prednisone, showed significant proliferation relative to vehicle in androgen-dependent growth LNCaP prostate cancer cells after 24 h (2.3 fold; P < 0.01) and 72 h (1.6 fold; P < 0.01). Taken together, DesAB-expressing microbes may be an overlooked source of androgens in the body, potentially contributing to various disease states, such as prostate cancer.
Collapse
Affiliation(s)
- Lindsey K Ly
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joe L Rowles
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hans Müller Paul
- Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA; Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - João M P Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Camdon Yemm
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Patricia M Wolf
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Saravanan Devendran
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew E Hudson
- Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, Urbana, IL, USA; Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jason M Ridlon
- Microbiome Metabolic Engineering Theme, Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center of Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
12
|
Morris DJ, Brem AS. Role of gut metabolism of adrenal corticosteroids and hypertension: clues gut-cleansing antibiotics give us. Physiol Genomics 2019; 51:83-89. [PMID: 30681907 DOI: 10.1152/physiolgenomics.00115.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intestinal bacteria can metabolize sterols, bile acids, steroid hormones, dietary proteins, fiber, foodstuffs, and short chain fatty acids. The metabolic products generated by some of these intestinal bacteria have been linked to a number of systemic diseases including obesity with Type 2 diabetes mellitus, some forms of inflammation, and more recently, systemic hypertension. In this review, we primarily focus on the potential role selected gut bacteria play in metabolizing the endogenous glucocorticoids corticosterone and cortisol. Those generated steroid metabolites, when reabsorbed in the intestine back into the circulation, produce biological effects most notably as inhibitors of 11β-hydroxysteroid dehydrogenase (11β-HSD) types 1 and 2. Inhibition of the dehydrogenase actions of 11β-HSD, particularly in kidney and vascular tissue, allows both corticosterone and cortisol the ability to bind to and activate mineralocorticoid receptors with attended changes in sodium handling and vascular resistance leading to increases in blood pressure. In several animal models of hypertension, administration of gut-cleansing antibiotics results in transient resolution of hypertension and transfer of intestinal contents from a hypertensive animal to a normotensive animal produces hypertension in the recipient. Moreover, fecal samples from hypertensive humans transplanted into germ-free mice resulted in hypertension in the recipient mice. Thus, it appears that the intestinal microbiome may not just be an innocent bystander but certain perturbations in the type and number of bacteria may directly or indirectly affect hypertension and other diseases.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University , Providence, Rhode Island
| | - Andrew S Brem
- Division of Kidney Diseases and Hypertension, Rhode Island Hospital, Warren Alpert Medical School of Brown University , Providence, Rhode Island
| |
Collapse
|
13
|
Katsi V, Didagelos M, Skevofilax S, Armenis I, Kartalis A, Vlachopoulos C, Karvounis H, Tousoulis D. GUT Microbiome-GUT Dysbiosis-Arterial Hypertension: New Horizons. Curr Hypertens Rev 2019; 15:40-46. [PMID: 29895255 DOI: 10.2174/1573402114666180613080439] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 01/18/2023]
Abstract
Arterial hypertension is a progressive cardiovascular syndrome arising from complex and interrelated etiologies. The human microbiome refers to the community of microorganisms that live in or on the human body. They influence human physiology by interfering in several processes such as providing nutrients and vitamins in Phase I and Phase II drug metabolism. The human gut microbiota is represented mainly by Firmicutes and Bacteroidetes and to a lesser degree by Actinobacteria and Proteobacteria, with each individual harbouring at least 160 such species. Gut microbiota contributes to blood pressure homeostasis and the pathogenesis of arterial hypertension through production, modification, and degradation of a variety of microbial-derived bioactive metabolites. Animal studies and to a lesser degree human research has unmasked relative mechanisms, mainly through the effect of certain microbiome metabolites and their receptors, outlining this relationship. Interventions to utilize these pathways, with probiotics, prebiotics, antibiotics and fecal microbiome transplantation have shown promising results. Personalized microbiome-based disease prediction and treatment responsiveness seem futuristic. Undoubtedly, a long way of experimental and clinical research should be pursued to elucidate this novel, intriguing and very promising horizon.
Collapse
Affiliation(s)
- Vasiliki Katsi
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Matthaios Didagelos
- 1st Cardiology Department, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Iakovos Armenis
- Cardiology Department, Skylitseio General Hospital, Chios, Greece
| | | | - Charalambos Vlachopoulos
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Haralambos Karvounis
- 1st Cardiology Department, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Tousoulis
- 1st Cardiology Department, Hippokration General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
14
|
Honour JW, Conway E, Hodkinson R, Lam F. The evolution of methods for urinary steroid metabolomics in clinical investigations particularly in childhood. J Steroid Biochem Mol Biol 2018; 181:28-51. [PMID: 29481855 DOI: 10.1016/j.jsbmb.2018.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/15/2022]
Abstract
The metabolites of cortisol, and the intermediates in the pathways from cholesterol to cortisol and the adrenal sex steroids can be analysed in a single separation of steroids by gas chromatography (GC) coupled to MS to give a urinary steroid profile (USP). Steroids individually and in profile are now commonly measured in plasma by liquid chromatography (LC) coupled with MS/MS. The steroid conjugates in urine can be determined after hydrolysis and derivative formation and for the first time without hydrolysis using GC-MS, GC-MS/MS and liquid chromatography with mass spectrometry (LC-MS/MS). The evolution of the technology, practicalities and clinical applications are examined in this review. The patterns and quantities of steroids changes through childhood. Information can be obtained on production rates, from which children with steroid excess and deficiency states can be recognised when presenting with obesity, adrenarche, adrenal suppression, hypertension, adrenal tumours, intersex condition and early puberty, as examples. Genetic defects in steroid production and action can be detected by abnormalities from the GC-MS of steroids in urine. New mechanisms of steroid synthesis and metabolism have been recognised through steroid profiling. GC with tandem mass spectrometry (GC-MS/MS) has been used for the tentative identification of unknown steroids in urine from newborn infants with congenital adrenal hyperplasia. Suggestions are made as to areas for future research and for future applications of steroid profiling. As routine hospital laboratories become more familiar with the problems of chromatographic and MS analysis they can consider steroid profiling in their test repertoire although with LC-MS/MS of urinary steroids this is unlikely to become a routine test because of the availability, cost and purity of the internal standards and the complexity of data interpretation. Steroid profiling with quantitative analysis by mass spectrometry (MS) after chromatography now provides the most versatile of tests of adrenal function in childhood.
Collapse
Affiliation(s)
- John W Honour
- Institute for Women's Health, University College London, 74 Huntley Street, London, WC1E 6AU, UK.
| | - E Conway
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| | - R Hodkinson
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| | - F Lam
- Clinical Biochemistry, HSL Analytics LLP, Floor 2, 1 Mabledon Place, London, WC1H 9AX, UK
| |
Collapse
|
15
|
Abstract
Hypertension is a major risk factor for cardiovascular diseases. Optimizing blood pressure results in an overall health outcome. Over the years, the gut microbiota has been found to play a significant role in host metabolic processes, immunity, and physiology. Dietary strategies have therefore become a target for restoring disturbed gut microbiota to treat metabolic diseases. Probiotics and their fermented products have been shown in many studies to lower blood pressure by suppressing nitrogen oxide production in microphages, reducing reactive oxygen species, and enhancing dietary calcium absorption. Other studies have shown that hypertension could be caused by many factors including hypercholesterolemia, chronic inflammation, and inconsistent modulation of the renin-angiotensin system. This review discusses the antihypertensive roles of probiotics and their fermented products via the reduction of serum cholesterol levels, anti-inflammation, and inhibition of angiotensin-converting enzyme. The ability of recombinant probiotics to reduce high blood pressure has also been discussed.
Collapse
|
16
|
Sircana A, De Michieli F, Parente R, Framarin L, Leone N, Berrutti M, Paschetta E, Bongiovanni D, Musso G. Gut microbiota, hypertension and chronic kidney disease: Recent advances. Pharmacol Res 2018; 144:390-408. [PMID: 29378252 DOI: 10.1016/j.phrs.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
A large number of different microbial species populates intestine. Extensive research has studied the entire microbial population and their genes (microbiome) by using metagenomics, metatranscriptomics and metabolomic analysis. Studies suggest that the imbalances of the microbial community causes alterations in the intestinal homeostasis, leading to repercussions on other systems: metabolic, nervous, cardiovascular, immune. These studies have also shown that alterations in the structure and function of the gut microbiota play a key role in the pathogenesis and complications of Hypertension (HTN) and Chronic Kidney Disease (CKD). Increased blood pressure (BP) and CKD are two leading risk factors for cardiovascular disease and their treatment represents a challenge for the clinicians. In this Review, we discuss mechanisms whereby gut microbiota (GM) and its metabolites act on downstream cellular targets to contribute to the pathogenesis of HTN and CKD, and potential therapeutic implications.
Collapse
Affiliation(s)
- Antonio Sircana
- Unità Operativa di Cardiologia, Azienda Ospedaliero Universitaria, Sassari, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Franco De Michieli
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Renato Parente
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Luciana Framarin
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Nicola Leone
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Mara Berrutti
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Elena Paschetta
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Daria Bongiovanni
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Giovanni Musso
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy.
| |
Collapse
|
17
|
Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem 2017; 56:1-15. [PMID: 29427903 DOI: 10.1016/j.jnutbio.2017.12.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiome has emerged as a critical regulator of human physiology. Deleterious changes to the composition or number of gut bacteria, commonly referred to as gut dysbiosis, has been linked to the development and progression of numerous diet-related diseases, including cardiovascular disease (CVD). Most CVD risk factors, including aging, obesity, certain dietary patterns, and a sedentary lifestyle, have been shown to induce gut dysbiosis. Dysbiosis is associated with intestinal inflammation and reduced integrity of the gut barrier, which in turn increases circulating levels of bacterial structural components and microbial metabolites that may facilitate the development of CVD. The aim of the current review is to summarize the available data regarding the role of the gut microbiome in regulating CVD function and disease processes. Particular emphasis is placed on nutrition-related alterations in the microbiome, as well as the underlying cellular mechanisms by which the microbiome may alter CVD risk.
Collapse
Affiliation(s)
- Micah L Battson
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Dustin M Lee
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Tiffany L Weir
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523
| | - Christopher L Gentile
- Department of Food Science & Human Nutrition, Colorado State University, Fort Collins, CO 80523.
| |
Collapse
|
18
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
19
|
Abstract
A new concept is emerging in biomedical sciences: the gut microbiota is a virtual 'organ' with endocrine function. Here, we explore the literature pertaining to the role of gut microbial metabolism of endogenous adrenocorticosteroids as a contributing factor in the etiology of essential hypertension. A body of literature demonstrates that bacterial products of glucocorticoid metabolism are absorbed into the portal circulation, and pass through the kidney before excretion into urine. Apparent mineralocorticoid excess (AME) syndrome patients were found to have congenital mutations resulting in non-functional renal 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2) and severe hypertension often lethal in childhood. 11β-HSD2 acts as a "guardian" enzyme protecting the mineralocorticoid receptor from excess cortisol, preventing sodium and water retention in the normotensive state. Licorice root, whose active ingredient, glycerrhetinic acid (GA), inhibits renal 11β-HSD2, and thereby causes hypertension in some individuals. Bacterially derived glucocorticoid metabolites may cause hypertension in some patients by a similar mechanism. Parallel observations in gut microbiology coupled with screening of endogenous steroids as inhibitors of 11β-HSD2 have implicated particular gut bacteria in essential hypertension through the production of glycerrhetinic acid-like factors (GALFs). A protective role of GALFs produced by gut bacteria in the etiology of colorectal cancer is also explored.
Collapse
Affiliation(s)
- David J Morris
- Department of Pathology and Laboratory Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States.
| | - Jason M Ridlon
- Department of Animal Sciences, Division of Nutritional Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL, United States; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
20
|
Galla S, Chakraborty S, Mell B, Vijay-Kumar M, Joe B. Microbiotal-Host Interactions and Hypertension. Physiology (Bethesda) 2017; 32:224-233. [PMID: 28404738 DOI: 10.1152/physiol.00003.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
Hypertension, or elevated blood pressure (BP), has been extensively researched over decades and clearly demonstrated to be caused due to a combination of host genetic and environmental factors. Although much research remains to be conducted to pin-point the precise genetic elements on the host genome that control BP, new lines of evidence are emerging to indicate that, besides the host genome, the genomes of all indigenous commensal micro-organisms, collectively referred to as the microbial metagenome or microbiome, are important, but largely understudied, determinants of BP. Unlike the rigid host genome, the microbiome or the "second genome" can be altered by diet or microbiotal transplantation in the host. This possibility is attractive from the perspective of exploiting the microbiotal composition for clinical management of inherited hypertension. Thus, focusing on the limited current literature supporting a role for the microbiome in BP regulation, this review highlights the need to further explore the role of the co-existence of host and the microbiota as an organized biological unit called the "holobiont" in the context of BP regulation.
Collapse
Affiliation(s)
- Sarah Galla
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| | - Saroj Chakraborty
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| | - Blair Mell
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences and Medicine, The Pennsylvania State University, University Park, Pennsylvania
| | - Bina Joe
- Physiological Genomics Laboratory, Center for Hypertension and Personalized Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio; and
| |
Collapse
|
21
|
Abstract
PURPOSE OF THE REVIEW Evidence is rapidly accumulating implicating gut dysbiosis in hypertension (HTN). However, we are far from understanding whether this is a cause or consequence of HTN, and how to best translate this fundamental knowledge to advance the management of HTN. This review aims to summarize recent advances in the field, illustrate the connections between the gut and hypertension, and establish that the gut microbiota (GM)-gut interaction is centrally positioned for consideration as an innovative approach for HTN therapeutics. RECENT FINDINGS Animal models of HTN have shown that gut pathology occurs in HTN, and provides some clues to mechanisms linking the dysbiosis, gut pathology, and HTN. Circumstantial evidence links gut dysbiosis and HTN. Gut pathology, apparent in animal HTN models, has not been fully investigated in hypertensive patients. Objective evidence and an understanding of mechanisms could have a major impact for new antihypertensive therapies and/or improved applications of current ones.
Collapse
Affiliation(s)
- Elaine M Richards
- Departments of Physiology and Functional Genomics, University of Florida, PO Box 100274, Gainesville, FL, 32610-0274, USA
| | - Carl J Pepine
- Department of Medicine, Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida, USA
| | - Mohan K Raizada
- Departments of Physiology and Functional Genomics, University of Florida, PO Box 100274, Gainesville, FL, 32610-0274, USA.
| | - Seungbum Kim
- Departments of Physiology and Functional Genomics, University of Florida, PO Box 100274, Gainesville, FL, 32610-0274, USA
| |
Collapse
|
22
|
Tomasova L, Konopelski P, Ufnal M. Gut Bacteria and Hydrogen Sulfide: The New Old Players in Circulatory System Homeostasis. Molecules 2016; 21:E1558. [PMID: 27869680 PMCID: PMC6273628 DOI: 10.3390/molecules21111558] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/31/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022] Open
Abstract
Accumulating evidence suggests that gut bacteria play a role in homeostasis of the circulatory system in mammals. First, gut bacteria may affect the nervous control of the circulatory system via the sensory fibres of the enteric nervous system. Second, gut bacteria-derived metabolites may cross the gut-blood barrier and target blood vessels, the heart and other organs involved in the regulation of the circulatory system. A number of studies have shown that hydrogen sulfide (H₂S) is an important biological mediator in the circulatory system. Thus far, research has focused on the effects of H₂S enzymatically produced by cardiovascular tissues. However, some recent evidence indicates that H₂S released in the colon may also contribute to the control of arterial blood pressure. Incidentally, sulfate-reducing bacteria are ubiquitous in mammalian colon, and H₂S is just one among a number of molecules produced by the gut flora. Other gut bacteria-derived compounds that may affect the circulatory system include methane, nitric oxide, carbon monoxide, trimethylamine or indole. In this paper, we review studies that imply a role of gut microbiota and their metabolites, such as H₂S, in circulatory system homeostasis.
Collapse
Affiliation(s)
- Lenka Tomasova
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02 091, Poland.
- Institute of Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 845 05, Slovakia.
| | - Piotr Konopelski
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02 091, Poland.
| | - Marcin Ufnal
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw 02 091, Poland.
| |
Collapse
|
23
|
Chaudhury A. Raised Cecal Veillonella (Firmicutes)/S 24-7 (Bacteriodetes) May Not Cause Salt-Sensitive Hypertension. Front Physiol 2016; 7:118. [PMID: 27065886 PMCID: PMC4814461 DOI: 10.3389/fphys.2016.00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022] Open
|