1
|
Tena-Garitaonaindia M, Rubio JM, Martínez-Plata E, Martínez-Augustin O, Sánchez de Medina F. Pharmacological bases of combining nonsteroidal antiinflammatory drugs and paracetamol. Biomed Pharmacother 2025; 187:118069. [PMID: 40306178 DOI: 10.1016/j.biopha.2025.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Paracetamol and nonsteroidal antiinflammatory drugs (NSAIDs), particularly ibuprofen, are frequently administered together. A systematic review of clinical studies using combined or alternating regimes of NSAIDs was performed up to May 2023. Clinical evidence (77 studies) confirms that in many cases efficacy is enhanced by paracetamol + NSAID combinations, but quite a few studies show no added benefit. Synergism is more commonly found with combined regimens in analgesia for surgery, and with alternating regimes in antipyresis. In some instances the advantage may be related to the short duration of the effect of paracetamol. Mechanistically, central and peripheral actions associated with inhibition of cyclooxygenase have been documented for both paracetamol and NSAIDs, which are relevant for analgesia, antipyresis and closure of patent ductus arteriosus in neonates. In addition, paracetamol may achieve analgesia via different central pathways independently of cyclooxygenase. Hence, increased analgesia may result from NSAID and paracetamol acting at least partly via different mechanisms, while enhancement of antipyresis probably is explained simply by augmented or more prolongued inhibition of cyclooxygenase. Because of the inconsistencies found in the available evidence, added benefit should not be assumed for paracetamol/NSAID combinations. In addition, combining paracetamol and NSAIDs may lead to increased dosing errors, and may result in increased toxicity as a result of enhanced cyclooxygenase interference, a possibility that has barely been scrutinized. We conclude that combining paracetamol and NSAIDs may be justified in analgesia, but further studies are warranted to establish when and how an enhanced effect is achieved with this strategy.
Collapse
Affiliation(s)
- Mireia Tena-Garitaonaindia
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Rubio
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Fermín Sánchez de Medina
- Department of Pharmacology, School of Pharmacy, Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Toth SH, Stoica AD, Sevcencu C. Redesigning Ibuprofen for Improved Oral Delivery and Reduced Side Effects. Bioconjug Chem 2025. [PMID: 40292773 DOI: 10.1021/acs.bioconjchem.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Ibuprofen (IBP) is one of the most widely used nonsteroidal anti-inflammatory drugs (NSAIDs). Being well-known for its efficacy, long history of use, and reduced adverse events compared to other NSAIDs, IBP is authorized as an analgesic and antipyretic drug. IBP's mechanism of action consists of inhibiting cyclooxygenases, which are crucial oxidoreductases in prostaglandin synthesis and generation of inflammation and pain. However, despite being effective and relatively safe, IBP can still induce a dose-dependent toxicity which manifests mainly in the gastrointestinal system as ulcerations and altered mucosal blood flow and cytotoxicity characterized by mitochondrial dysfunction and increased membrane permeability in enterocytes and hepatocytes. Therefore, ongoing research is performed to improve the IBP's activity and treatment outcome, and one way to achieve such improvements is through reducing IBP's toxicity by designing less harmful but still effective novel IBP conjugates. The aim of this review is to summarize the latest achievements with IBP conjugation techniques that created such valuable IBP formulations less toxic than but as effective as the parent drug.
Collapse
Affiliation(s)
- Szilvia H Toth
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, 400006, Romania
- Doctoral School of Integrative Biology, Babes-Bolyai University, Cluj-Napoca, 40006, Romania
| | - Anca D Stoica
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, 400006, Romania
| | - Cristian Sevcencu
- National Institute of Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, 400293, Romania
- Doctoral School of Integrative Biology, Babes-Bolyai University, Cluj-Napoca, 40006, Romania
| |
Collapse
|
3
|
Xie ZF, Liu HM, Zhao JF, Gao Y, Zhao YL, Zheng JY, Pei XW, Zhang N, Tian G. AMD1, a cardiotoxicity target for Maduramicin. BMC Pharmacol Toxicol 2025; 26:55. [PMID: 40069794 PMCID: PMC11895246 DOI: 10.1186/s40360-025-00897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE The aim of this study was to investigate AMD1 cardiotoxicity function for Maduramicin (Mad). METHODS SD rats were divided into control (Control) group and Mad treatment (3.5 mg/kg) group (Mad). After treatment with Mad for seven days, the levels of LDH and CK-MB in serum were detected, H&E staining and TUNEL staining were performed. In vitro, 1.0 μm Mad was used for the subsequently experiment, observing cell apoptosis from Flow cytometry. Caspase-3 and AMD1 were detected in Western blotting. Flow cytometry and Western blotting were also performed after use of siRNA-AMD1-1. Then, analysis AMD1 potential function in cardiotoxicity from bioinformatics techniques including GO, KEGG, PPI, immune infiltration and molecular docking. RESULT Maduramicin has myocardial toxic effects in vivo and vitro, which with AMD1 raised. When AMD1 was knocked down, toxic effects of Mad were alleviated. Apoptosis, proliferation and inflammation were the major pathophysiological changes in myocardial apoptosis process with AMD1-knockdown. This process involved in IL1A, IL1B, PTGS2, VEGFA, VEGFC and HBEFG, as hub genes related AMD1 cardiotoxicity function for Maduramicin. AMD1 was knocked down, their microenvironment changes: Effector memory CD4 T cell and Natural killer cell were more infiltrated, and Mast cell were less infiltrated. CONCLUSION Mad exerted cardiotoxic effects by upregulating the AMD1 gene, which may be associated with cell apoptosis, proliferation and inflammatory response. AMD1 also had cardiotoxicity function, by the impact of both myocardial cells and the microenvironment they live.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Han-Meng Liu
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Jia-Fan Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yuan-Long Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Jia-Yue Zheng
- Stomatology Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Xiao-Wei Pei
- Department of Physical Medicine and Rehabilitation, Linghai Daling River Hospital, Linghai, Liaoning, 121200, China
| | - Ning Zhang
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Ge Tian
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China.
| |
Collapse
|
4
|
Yu XJ, Chen LL, Ren ZJ, Li YP, Chen JY, Zhao YX, Jiang JB. Aspirin-based PROTACs as COX-2 degraders for anti-inflammation. Bioorg Med Chem 2025; 119:118061. [PMID: 39793401 DOI: 10.1016/j.bmc.2025.118061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
Cyclooxygenase-2 (COX-2) is a key enzyme in the biosynthesis of prostaglandins and plays a special role in the process of inflammatory response. COX-2 is a target of non-steroidal anti-inflammatory drugs (NSAIDs), which can effectively relieve inflammation, pain and fever responses by inhibiting COX-2. Despite the significant study progress of inhibitors targeting COX-2, the development of COX-2 degraders remains insufficient. Proteolysis targeting chimaeras (PROTACs) have recently emerged as a fascinating technology for targeted protein degradation and drug discovery. In this report, we present the design, synthesis and detection of aspirin-based PROTACs that demonstrate effective ubiquitin-proteasome pathway degradation of COX-2 in lipopolysaccharide-stimulated RAW264.7 cells, and the aspirin-based negative PROTACs does not promote the degradation of COX-2. Moreover, we show AspPROTACs could significantly affect proteasome degradation and inflammatory signaling pathways through quantitative proteomic data analysis. These COX-2 degraders offer valuable chemical tools and novel insights for research in anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xuan-Jie Yu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Li-Li Chen
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhi-Jie Ren
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yan-Peng Li
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jia-Yu Chen
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yu-Xi Zhao
- Shenzhen Wininnovate Bio-Tech Co., Ltd, 410034 Shenzhen, China
| | - Jian-Bing Jiang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Zhao X, Wang Q, Wang S, Wang W, Chen X, Lu S. A novel multi-omics approach for identifying key genes in intervertebral disc degeneration. SLAS Technol 2024; 29:100223. [PMID: 39528158 DOI: 10.1016/j.slast.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Many different cell types and complex molecular pathways are involved in intervertebral disc degeneration (IDD). We used a multi-omics approach combining single-cell RNA sequencing (scRNA-seq), differential gene expression analysis, and Mendelian randomization (MR) to clarify the underlying genetic architecture of IDD. We identified 1,164 differentially expressed genes (DEGs) across four important cell types associated with IDD using publicly available single-cell datasets. A thorough gene network analysis identified 122 genes that may be connected to programmed cell death (PCD), a crucial route in the etiology of IDD. SLC40A1, PTGS2, and GABARAPL1 have been identified as noteworthy regulatory genes that may impede the advancement of IDD. Furthermore, distinct cellular subpopulations and dynamic gene expression patterns were revealed by functional enrichment analysis and pseudo-temporal ordering of chondrocytes. Our results highlight the therapeutic potential of GABARAPL1, PTGS2, and SLC40A1 targeting in the treatment of IDD.
Collapse
Affiliation(s)
- Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qijun Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Shuaikang Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Diseases, Beijing, China.
| |
Collapse
|
6
|
Li HM, Chen T, Qian LX, Wang S, Shen C, Li LC, Li YL. Therapeutic effect of iridoid and xanthone glycosides components extracted from Swertia Mussotti on calculous cholecystitis and its clinical complications by targeting COX2. Fitoterapia 2024; 178:106189. [PMID: 39154852 DOI: 10.1016/j.fitote.2024.106189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Swertia Mussotti is used as febrifuge, analgesic and to treat calculous cholecystitis, however, the underling mechanism remains unclear. This study investigates the therapeutic effect of the active fraction named iridoid and xanthone glycoside (IXG) extracted from S. mussotii on six animal models related to calculous cholecystitis and its complications, and to explore its potential target proteins. Four main compounds including swertiamarin (STR), sweroside (SRS), gentiopicroside (GPS) and mangiferin (MGR) were identified from the IXG by UHPLC-TOF-MS. The in vivo experiments results confirmed that IXG significantly decreased the level of total bilirubin (TBIL), direct bilirubin (DBIL) and cyclooxygenase-2 (COX2) in calculous cholecystitis. IXG treatment dramatically reduced the number of twists and the time of clicking foot in 2nd phase induced by glacial acetic acid and formalin, however, no effect was showed on central pain established by hot plate test. IXG also significantly decreased the anal temperature induced by yeast and 2,4-dinitrophenol. These results indicated that IXG alleviate calculous cholecystitis and its clinical symptom. In addition, IXG suppressed the expression of Prostaglandin E2 (PGE2) in vitro. Mechanistically, COX2 was identified as the direct target of IXG in RAW264.7 cells, and downregulated the protein levels of COX2. The results confirmed that IXG ameliorates calculous cholecystitis and its clinical symptom (pain and fever) by suppressing the production of PGE2 through targeting COX2.
Collapse
Affiliation(s)
- Hong-Mei Li
- Research Center for Biological Resources in Qinghai-Tibet Plateau, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China; Savaid Medical School, University of Chinese Academy of Science, Beijing 100049, China
| | - Tao Chen
- Research Center for Biological Resources in Qinghai-Tibet Plateau, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China; Savaid Medical School, University of Chinese Academy of Science, Beijing 100049, China
| | - Li-Xia Qian
- The School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Shuo Wang
- Research Center for Biological Resources in Qinghai-Tibet Plateau, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Cheng Shen
- Research Center for Biological Resources in Qinghai-Tibet Plateau, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China
| | - Liang-Cheng Li
- The School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Yu-Lin Li
- Research Center for Biological Resources in Qinghai-Tibet Plateau, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810001, China.
| |
Collapse
|
7
|
McQueen LW, Ladak SS, Layton GR, Wozniak M, Solomon C, El-Dean Z, Murphy GJ, Zakkar M. Spatial Transcriptomic Profiling of Human Saphenous Vein Exposed to Ex Vivo Arterial Haemodynamics-Implications for Coronary Artery Bypass Graft Patency and Vein Graft Disease. Int J Mol Sci 2024; 25:10368. [PMID: 39408698 PMCID: PMC11476946 DOI: 10.3390/ijms251910368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Vein graft disease is the process by which saphenous vein grafts, utilised for revascularisation during coronary artery bypass graft surgery, undergo an inflammation-driven intimal hyperplasia and accelerated atherosclerosis process in subsequent years after implantation. The role of the arterial circulation, particularly the haemodynamic properties' impact on graft patency, have been investigated but have not to date been explored in depth at the transcriptomic level. We have undertaken the first-in-man spatial transcriptomic analysis of the long saphenous vein in response to ex vivo acute arterial haemodynamic stimulation, utilising a combination of a custom 3D-printed perfusion bioreactor and the 10X Genomics Visium Spatial Gene Expression technology. We identify a total of 413 significant genes (372 upregulated and 41 downregulated) differentially expressed in response to arterial haemodynamic conditions. These genes were associated with pathways including NFkB, TNF, MAPK, and PI3K/Akt, among others. These are established pathways involved in the initiation of an early pro-inflammatory response, leukocyte activation and adhesion signalling, tissue remodelling, and cellular differentiation. Utilising unsupervised clustering analysis, we have been able to classify subsets of the expression based on cell type and with spatial resolution. These findings allow for further characterisation of the early saphenous vein graft transcriptional landscape during the earliest stage of implantation that contributes to vein graft disease, in particular validation of pathways and druggable targets that could contribute towards the therapeutic inhibition of processes underpinning vein graft disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mustafa Zakkar
- Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK; (L.W.M.); (S.S.L.); (G.R.L.); (M.W.); (C.S.); (Z.E.-D.); (G.J.M.)
| |
Collapse
|
8
|
Peng J, Gu Y, Liu J, Yi H, Ruan D, Huang H, Shu Y, Zong Z, Wu R, Li H. Identification of SOCS3 and PTGS2 as new biomarkers for the diagnosis of gout by cross-species comprehensive analysis. Heliyon 2024; 10:e30020. [PMID: 38707281 PMCID: PMC11066387 DOI: 10.1016/j.heliyon.2024.e30020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Gout is the most common inflammatory arthritis in adults. Gout is an arthritic disease caused by the deposition of monosodium urate crystal (MSU) in the joints, which can lead to acute inflammation and damage adjacent tissue. Hyperuricemia is the main risk factor for MSU crystal deposition and gout. With the increasing burden of gout disease, the identification of potential biomarkers and novel targets for diagnosis is urgently needed. METHODS For the analysis of this subject paper, we downloaded the human gout data set GSE160170 and the gout mouse model data set GSE190138 from the GEO database. To obtain the differentially expressed genes (DEGs), we intersected the two data sets. Using the cytohubba algorithm, we identified the key genes and enriched them through GO and KEGG. The gene expression trends of three subgroups (normal control group, intermittent gout group and acute gout attack group) were analyzed by Series Test of Cluster (STC) analysis, and the key genes were screened out, and the diagnostic effect was verified by ROC curve. The expression of key genes in dorsal root nerve and spinal cord of gout mice was analyzed. Finally, the clinical samples of normal control group, hyperuricemia group, intermittent gout group and acute gout attack group were collected, and the expression of key genes at protein level was verified by ELISA. RESULT We obtained 59 co-upregulated and 28 co-downregulated genes by comparing the DEGs between gout mouse model data set and human gout data set. 7 hub DEGs(IL1B, IL10, NLRP3, SOCS3, PTGS2) were screened out via Cytohubba algorithm. The results of both GO and KEGG enrichment analyses indicate that 7 hub genes play a significant role in regulating the inflammatory response, cytokine production in immune response, and the TNF signaling pathway. The most representative hub genes SOCS3 and PTGS2 were screened out by Series Test of Cluster, and ROC analysis results showed the AUC values were both up to 1.000. In addition, we found that PTGS2 expression was significantly elevated in the dorsal root ganglia and spinal cord in monosodium urate(MSU)-induced gout mouse model. The ELISA results revealed that the expression of SOCS3 and PTGS2 was notably higher in the acute gout attack and intermittent gout groups compared to the normal control group. This difference was statistically significant, indicating a clear distinction between the groups. CONCLUSION Through cross-species comprehensive analysis and experimental verification, SOCS3 and PTGS2 were proved to be new biomarkers for diagnosing gout and predicting disease progression.
Collapse
Affiliation(s)
- Jie Peng
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Department of Sports Medicine, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yawen Gu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Jiang Liu
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 MinDe Road, 330006, Nanchang, China
| | - Hao Yi
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 MinDe Road, 330006, Nanchang, China
| | - Dong Ruan
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, 330006, Nanchang, China
| | - Haoyu Huang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 MinDe Road, 330006, Nanchang, China
| | - Yuan Shu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 MinDe Road, 330006, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| | - Hui Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006, Nanchang, China
| |
Collapse
|
9
|
M Ezzat S, M Merghany R, M Abdel Baki P, Ali Abdelrahim N, M Osman S, A Salem M, Peña-Corona SI, Cortés H, Kiyekbayeva L, Leyva-Gómez G, Sharifi-Rad J, Calina D. Nutritional Sources and Anticancer Potential of Phenethyl Isothiocyanate: Molecular Mechanisms and Therapeutic Insights. Mol Nutr Food Res 2024; 68:e2400063. [PMID: 38600885 DOI: 10.1002/mnfr.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 04/12/2024]
Abstract
Phenethyl isothiocyanate (PEITC), a compound derived from cruciferous vegetables, has garnered attention for its anticancer properties. This review synthesizes existing research on PEITC, focusing on its mechanisms of action in combatting cancer. PEITC has been found to be effective against various cancer types, such as breast, prostate, lung, colon, and pancreatic cancers. Its anticancer activities are mediated through several mechanisms, including the induction of apoptosis (programmed cell death), inhibition of cell proliferation, suppression of angiogenesis (formation of new blood vessels that feed tumors), and reduction of metastasis (spread of cancer cells to new areas). PEITC targets crucial cellular signaling pathways involved in cancer progression, notably the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Protein Kinase B (Akt), and Mitogen-Activated Protein Kinase (MAPK) pathways. These findings suggest PEITC's potential as a therapeutic agent against cancer. However, further research is necessary to determine the optimal dosage, understand its bioavailability, and assess potential side effects. This will be crucial for developing PEITC-based treatments that are both effective and safe for clinical use in cancer therapy.
Collapse
Affiliation(s)
- Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Rana M Merghany
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Bohouth Street, Dokki, Giza, Egypt
| | - Passent M Abdel Baki
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo, 11562, Egypt
| | - Nariman Ali Abdelrahim
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Sohaila M Osman
- Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin El Kom, Menoufia, 32511, Egypt
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, 200349, Romania
| |
Collapse
|
10
|
Okumura T, Raja Xavier JP, Pasternak J, Yang Z, Hang C, Nosirov B, Singh Y, Admard J, Brucker SY, Kommoss S, Takeda S, Staebler A, Lang F, Salker MS. Rel Family Transcription Factor NFAT5 Upregulates COX2 via HIF-1α Activity in Ishikawa and HEC1a Cells. Int J Mol Sci 2024; 25:3666. [PMID: 38612478 PMCID: PMC11012216 DOI: 10.3390/ijms25073666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) and cyclooxygenase 2 (COX2; PTGS2) both participate in diverse pathologies including cancer progression. However, the biological role of the NFAT5-COX2 signaling pathway in human endometrial cancer has remained elusive. The present study explored whether NFAT5 is expressed in endometrial tumors and if NFAT5 participates in cancer progression. To gain insights into the underlying mechanisms, NFAT5 protein abundance in endometrial cancer tissue was visualized by immunohistochemistry and endometrial cancer cells (Ishikawa and HEC1a) were transfected with NFAT5 or with an empty plasmid. As a result, NFAT5 expression is more abundant in high-grade than in low-grade endometrial cancer tissue. RNA sequencing analysis of NFAT5 overexpression in Ishikawa cells upregulated 37 genes and downregulated 20 genes. Genes affected included cyclooxygenase 2 and hypoxia inducible factor 1α (HIF1A). NFAT5 transfection and/or treatment with HIF-1α stabilizer exerted a strong stimulating effect on HIF-1α promoter activity as well as COX2 expression level and prostaglandin E2 receptor (PGE2) levels. Our findings suggest that activation of NFAT5-HIF-1α-COX2 axis could promote endometrial cancer progression.
Collapse
Affiliation(s)
- Toshiyuki Okumura
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Janet P. Raja Xavier
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Jana Pasternak
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Zhiqi Yang
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Cao Hang
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Bakhtiyor Nosirov
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Yogesh Singh
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Sara Y. Brucker
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Stefan Kommoss
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo 113-8421, Japan;
| | - Annette Staebler
- Institute of Pathology, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Florian Lang
- Institute of Physiology, Eberhard Karls University, D-72074 Tübingen, Germany;
| | - Madhuri S. Salker
- Department of Women’s Health, Tübingen University Hospital, D-72076 Tübingen, Germany; (T.O.); (J.P.R.X.); (J.P.); (C.H.); (Y.S.); (S.Y.B.); (S.K.)
| |
Collapse
|
11
|
de Sales-Neto JM, Rodrigues-Mascarenhas S. Immunosuppressive effects of the mycotoxin patulin in macrophages. Arch Microbiol 2024; 206:166. [PMID: 38485821 DOI: 10.1007/s00203-024-03928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Patulin (PAT) is a fungi-derived secondary metabolite produced by numerous fungal species, especially within Aspergillus, Byssochlamys, and Penicillium genera, amongst which P. expansum is the foremost producer. Similar to other fungi-derived metabolites, PAT has been shown to have diverse biological features. Initially, PAT was used as an effective antimicrobial agent against Gram-negative and Gram-positive bacteria. Then, PAT has been shown to possess immunosuppressive properties encompassing humoral and cellular immune response, immune cell function and activation, phagocytosis, nitric oxide and reactive oxygen species production, cytokine release, and nuclear factor-κB and mitogen-activated protein kinases activation. Macrophages are a heterogeneous population of immune cells widely distributed throughout organs and connective tissue. The chief function of macrophages is to engulf and destroy foreign bodies through phagocytosis; this ability was fundamental to his discovery. However, macrophages play other well-established roles in immunity. Thus, considering the central role of macrophages in the immune response, we review the immunosuppressive effects of PAT in macrophages and provide the possible mechanisms of action.
Collapse
Affiliation(s)
- José Marreiro de Sales-Neto
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil
| | - Sandra Rodrigues-Mascarenhas
- Laboratory of Immunobiotechnology, Biotechnology Center, Federal University of Paraíba, João Pessoa, CEP: 58051-900, PB, BR, Brazil.
| |
Collapse
|
12
|
Nazanin M, Razi M, Tolouei-Azar J. Effect of running exercise training on inflammatory mediators and cytokines expression in testicular tissue; effect of exercise intensity. Life Sci 2024; 339:122397. [PMID: 38185243 DOI: 10.1016/j.lfs.2023.122397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
The aim of this study is to investigate the impact of running exercise training protocols (ETPs) with varying intensities on inflammatory responses, with a specific focus on the interactions between inflammatory mediators, cytokines, and Leydig cell steroidogenic activity, as well as testosterone secretion. To this end, 24 Wistar rats were subdivided into sedentary control, low (LICT), moderate (MICT), and high (HICT) intensity continuous running ETP groups. After 8 weeks, the expression levels of Toll-like receptor-4 (TLR-4), nuclear factor-kappa-B (NF-KB), interleukin-6 (IL-6), interleukin-10 (IL-10), Tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and the testicular nitric oxide (NO) content were assessed and compared between groups. Moreover, the mean distributions of Leydig cells/mm2 of interstitial connective tissue, their steroidogenic activity, and serum level of testosterone were assessed. The LICT did not show any significant (p > 0.05) change in the expression levels of all aforementioned biomarkers. In contrast, both the MICT and HICT groups demonstrated a significant (p < 0.05) increase in the expression levels of TLR-4, NFK-B, IL-6, TNF-α, iNOS, and COX-2 at both the mRNA and protein levels. The testicular NO has increased in HICT and MICT groups. Despite a decrease in the distribution of Leydig cells in both the MICT and HICT groups, the HICT group exhibited a significant (p < 0.05) reduction in Leydig cell steroidogenic activity and serum testosterone levels. In conclusion, our findings revealed that ETPs can influence Leydig cell steroidogenic activity and testosterone secretion, contingent on their intensity. These effects are attributed to alterations in the expression levels of pro-inflammatory mediators and cytokines.
Collapse
Affiliation(s)
- Mozaffari Nazanin
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran.
| | - Mazdak Razi
- Department of Basic Sciences, Division of Histology & Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Javad Tolouei-Azar
- Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Daneshgah Blv, Urmia, Iran
| |
Collapse
|
13
|
Tripathi N, Saraf P, Bhardwaj N, Shrivastava SK, Jain SK. Identifying inflammation-related targets of natural lactones using network pharmacology, molecular modeling and in vitro approaches. J Biomol Struct Dyn 2024:1-16. [PMID: 38334283 DOI: 10.1080/07391102.2024.2310783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Natural lactones have been used in traditional and folklore medicine for centuries owing to their anti-inflammatory properties. The study uses a multifaceted approach to identify lead anti-inflammatory lactones from the SISTEMATX natural products database. The study analyzed the natural lactone database, revealing 18 lactones linked to inflammation targets. The primary targets were PTGES, PTGS1, COX-2, ALOX5 and IL1B. STX 12273 was the best hit, with the lowest binding energy and potential for inhibiting the COX-2 enzyme. The study suggested natural lactone, STX 12273, from the SISTEMATX database with anti-inflammatory potential and postulated its use for inflammation treatment or prevention.
Collapse
Affiliation(s)
- Nancy Tripathi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Poorvi Saraf
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Nivedita Bhardwaj
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Shreyans K Jain
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
14
|
Martín-Vázquez E, Cobo-Vuilleumier N, López-Noriega L, Lorenzo PI, Gauthier BR. The PTGS2/COX2-PGE 2 signaling cascade in inflammation: Pro or anti? A case study with type 1 diabetes mellitus. Int J Biol Sci 2023; 19:4157-4165. [PMID: 37705740 PMCID: PMC10496497 DOI: 10.7150/ijbs.86492] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/24/2023] [Indexed: 09/15/2023] Open
Abstract
Prostaglandins are lipid mediators involved in physiological processes, such as constriction or dilation of blood vessels, but also pathophysiological processes, which include inflammation, pain and fever. They are produced by almost all cell types in the organism by activation of Prostaglandin endoperoxide synthases/Cyclooxygenases. The inducible Prostaglandin Endoperoxide Synthase 2/Cyclooxygenase 2 (PTGS2/COX2) plays an important role in pathologies associated with inflammatory signaling. The main product derived from PTGS2/COX2 expression and activation is Prostaglandin E2 (PGE2), which promotes a wide variety of tissue-specific effects, pending environmental inputs. One of the major sources of PGE2 are infiltrating inflammatory cells - the production of this molecule increases drastically in damaged tissues. Immune infiltration is a hallmark of type 1 diabetes mellitus, a multifactorial disease that leads to autoimmune-mediated pancreatic beta cell destruction. Controversial effects for the PTGS2/COX2-PGE2 signaling cascade in pancreatic islet cells subjected to diabetogenic conditions have been reported, allocating PGE2 as both, cause and consequence of inflammation. Herein, we review the main effects of this molecular pathway in a tissue-specific manner, with a special emphasis on beta cell mass protection/destruction and its potential role in the prevention or development of T1DM. We also discuss strategies to target this pathway for future therapies.
Collapse
Affiliation(s)
- Eugenia Martín-Vázquez
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Livia López-Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigacion Biomedica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
15
|
Hernandez-Lara MA, Yadav SK, Conaway S, Shah SD, Penn RB, Deshpande DA. Crosstalk between diacylglycerol kinase and protein kinase A in the regulation of airway smooth muscle cell proliferation. Respir Res 2023; 24:155. [PMID: 37301818 PMCID: PMC10257838 DOI: 10.1186/s12931-023-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Diacylglycerol kinase (DGK) regulates intracellular signaling and functions by converting diacylglycerol (DAG) into phosphatidic acid. We previously demonstrated that DGK inhibition attenuates airway smooth muscle (ASM) cell proliferation, however, the mechanisms mediating this effect are not well established. Given the capacity of protein kinase A (PKA) to effect inhibition of ASM cells growth in response to mitogens, we employed multiple molecular and pharmacological approaches to examine the putative role of PKA in the inhibition of mitogen-induced ASM cell proliferation by the small molecular DGK inhibitor I (DGK I). METHODS We assayed cell proliferation using CyQUANT™ NF assay, protein expression and phosphorylation using immunoblotting, and prostaglandin E2 (PGE2) secretion by ELISA. ASM cells stably expressing GFP or PKI-GFP (PKA inhibitory peptide-GFP chimera) were stimulated with platelet-derived growth factor (PDGF), or PDGF + DGK I, and cell proliferation was assessed. RESULTS DGK inhibition reduced ASM cell proliferation in cells expressing GFP, but not in cells expressing PKI-GFP. DGK inhibition increased cyclooxygenase II (COXII) expression and PGE2 secretion over time to promote PKA activation as demonstrated by increased phosphorylation of (PKA substrates) VASP and CREB. COXII expression and PKA activation were significantly decreased in cells pre-treated with pan-PKC (Bis I), MEK (U0126), or ERK2 (Vx11e) inhibitors suggesting a role for PKC and ERK in the COXII-PGE2-mediated activation of PKA signaling by DGK inhibition. CONCLUSIONS Our study provides insight into the molecular pathway (DAG-PKC/ERK-COXII-PGE2-PKA) regulated by DGK in ASM cells and identifies DGK as a potential therapeutic target for mitigating ASM cell proliferation that contributes to airway remodeling in asthma.
Collapse
Affiliation(s)
- Miguel A. Hernandez-Lara
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Santosh Kumar Yadav
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Stanley Conaway
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Sushrut D. Shah
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Raymond B. Penn
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Deepak A. Deshpande
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
16
|
Abraúl M, Alves A, Hilário S, Melo T, Conde T, Domingues MR, Rey F. Evaluation of Lipid Extracts from the Marine Fungi Emericellopsis cladophorae and Zalerion maritima as a Source of Anti-Inflammatory, Antioxidant and Antibacterial Compounds. Mar Drugs 2023; 21:199. [PMID: 37103339 PMCID: PMC10142463 DOI: 10.3390/md21040199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/28/2023] Open
Abstract
Marine environments occupy more than 70% of the earth's surface, integrating very diverse habitats with specific characteristics. This heterogeneity of environments is reflected in the biochemical composition of the organisms that inhabit them. Marine organisms are a source of bioactive compounds, being increasingly studied due to their health-beneficial properties, such as antioxidant, anti-inflammatory, antibacterial, antiviral, or anticancer. In the last decades, marine fungi have stood out for their potential to produce compounds with therapeutic properties. The objective of this study was to determine the fatty acid profile of isolates from the fungi Emericellopsis cladophorae and Zalerion maritima and assess the anti-inflammatory, antioxidant, and antibacterial potential of their lipid extracts. The analysis of the fatty acid profile, using GC-MS, showed that E. cladophorae and Z. maritima possess high contents of polyunsaturated fatty acids, 50% and 34%, respectively, including the omega-3 fatty acid 18:3 n-3. Emericellopsis cladophorae and Z. maritima lipid extracts showed anti-inflammatory activity expressed by the capacity of their COX-2 inhibition which was 92% and 88% of inhibition at 200 µg lipid mL-1, respectively. Emericellopsis cladophorae lipid extracts showed a high percentage of inhibition of COX -2 activity even at low concentrations of lipids (54% of inhibition using 20 µg lipid mL-1), while a dose-dependent behaviour was observed in Z. maritima. The antioxidant activity assays of total lipid extracts demonstrated that the lipid extract from E. cladophorae did not show antioxidant activity, while Z. maritima gave an IC20 value of 116.6 ± 6.2 µg mL-1 equivalent to 92.1 ± 4.8 µmol Trolox g-1 of lipid extract in the DPPH• assay, and 101.3 ± 14.4 µg mL-1 equivalent to 106.6 ± 14.8 µmol Trolox g-1 of lipid extract in the ABTS•+ assay. The lipid extract of both fungal species did not show antibacterial properties at the concentrations tested. This study is the first step in the biochemical characterization of these marine organisms and demonstrates the bioactive potential of lipid extracts from marine fungi for biotechnological applications.
Collapse
Affiliation(s)
- Mariana Abraúl
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Artur Alves
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sandra Hilário
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tiago Conde
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria Rosário Domingues
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Felisa Rey
- ECOMARE—Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM—Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- LAQV-REQUIMTE, Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Alshawwa SZ, El-Masry TA, Elekhnawy E, Alotaibi HF, Sallam AS, Abdelkader DH. Fabrication of Celecoxib PVP Microparticles Stabilized by Gelucire 48/16 via Electrospraying for Enhanced Anti-Inflammatory Action. Pharmaceuticals (Basel) 2023; 16:258. [PMID: 37259403 PMCID: PMC9960083 DOI: 10.3390/ph16020258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 01/13/2025] Open
Abstract
Electrospraying (ES) technology is considered an efficient micro/nanoparticle fabrication technique with controlled dimensions and diverse morphology. Gelurice® 48/16 (GLR) has been employed to stabilize the aqueous dispersion of Celecoxib (CXB) for enhancing its solubility and oral bioavailability. Our formula is composed of CXB loaded in polyvinylpyllodine (PVP) stabilized with GLR to formulate microparticles (MPs) (CXB-GLR-PVP MPs). CXB-GLR-PVP MPs display excellent in vitro properties regarding particle size (548 ± 10.23 nm), zeta potential (-20.21 ± 2.45 mV), and drug loading (DL, 1.98 ± 0.059 mg per 10 mg MPs). CXB-GLR-PVP MPs showed a significant (p < 0.05) higher % cumulative release after ten minutes (50.31 ± 4.36) compared to free CXB (10.63 ± 2.89). CXB exhibited good dispersibility, proved by X-ray diffractometry (XRD), adequate compatibility of all components, confirmed by Fourier-Transform Infrared Spectroscopy (FTIR), and spherical geometry as revealed in scanning electron microscopy (SEM). Concerning our anti-inflammatory study, there was a significant decrease in the scores of the inflammatory markers' immunostaining in the CXB-GLR-PVP MPs treated group. Also, the amounts of the oxidative stress biomarkers, as well as mRNA expression of interleukins (IL-1β and IL-6), considerably declined (p < 0.05) in CXB-GLR-PVP MPs treated group alongside an enhancement in the histological features was revealed. CXB-GLR-PVP MPs is an up-and-coming delivery system that could be elucidated in future clinical investigations.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Thanaa A. El-Masry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Dalia H. Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
18
|
Verde C, Giordano D, Bruno S. NO and Heme Proteins: Cross-Talk between Heme and Cysteine Residues. Antioxidants (Basel) 2023; 12:antiox12020321. [PMID: 36829880 PMCID: PMC9952723 DOI: 10.3390/antiox12020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Heme proteins are a diverse group that includes several unrelated families. Their biological function is mainly associated with the reactivity of the heme group, which-among several other reactions-can bind to and react with nitric oxide (NO) and other nitrogen compounds for their production, scavenging, and transport. The S-nitrosylation of cysteine residues, which also results from the reaction with NO and other nitrogen compounds, is a post-translational modification regulating protein activity, with direct effects on a variety of signaling pathways. Heme proteins are unique in exhibiting this dual reactivity toward NO, with reported examples of cross-reactivity between the heme and cysteine residues within the same protein. In this work, we review the literature on this interplay, with particular emphasis on heme proteins in which heme-dependent nitrosylation has been reported and those for which both heme nitrosylation and S-nitrosylation have been associated with biological functions.
Collapse
Affiliation(s)
- Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
- Biopharmanet-TEC, University of Parma, 43124 Parma, Italy
- Correspondence:
| |
Collapse
|
19
|
de Solla SR, King LE, Gilroy ÈAM. Environmental exposure to non-steroidal anti-inflammatory drugs and potential contribution to eggshell thinning in birds. ENVIRONMENT INTERNATIONAL 2023; 171:107638. [PMID: 36542999 DOI: 10.1016/j.envint.2022.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/17/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Abnormally thin eggshells can reduce avian reproductive success, and have caused rapid population declines. The best known examples of this phenomenon are the widespread population crashes in birds, mostly raptors, fish eating birds, and scavengers, caused by the pesticide DDT and its isomers in the 1960s. A variety of other chemicals have been reported to cause eggshell thinning. Non-steroidal anti-inflammatory drugs (NSAIDs), which are extensively and increasingly used in human and veterinary medicine, may be one particularly concerning group of chemicals that demonstrate an ability to impair eggshell development, based both on laboratory studies and on their known mechanism of action. In this review, we outline environmental and wildlife exposure to NSAIDs, describe the process of eggshell formation, and discuss pathways affected by NSAIDs. We list pharmaceuticals, including NSAIDs, and other compounds demonstrated to reduce eggshell thickness, and highlight their main mechanisms of action. Dosing studies empirically demonstrated that NSAIDs reduce eggshell thickness through cyclooxygenase inhibition, which suppresses prostaglandin synthesis and reduces the calcium available for the mineralization of eggshell. Using the US EPA's CompTox Chemicals Dashboard, we show that NSAIDs are predicted to strongly inhibit cyclooxygenases. NSAIDs have been observed both in the putative diet of scavenging birds, and we report examples of NSAIDs detected in eggs or tissues of wild and captive Old World vultures. We suggest that NSAIDs in the environment represent a hazard that could impair reproduction in wild birds.
Collapse
Affiliation(s)
- Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada.
| | - Laura E King
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| | - Ève A M Gilroy
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, ON L7S 1A1, Canada
| |
Collapse
|
20
|
Sychev DA, Morozova TE, Shatskiy DA, Shikh NV, Shikh EV, Andrushchyshina TB, Lukina MV, Kachanova AA, Sozaeva ZA, Abdullaev SP, Denisenko NP, Ryzhikova KA. Effect of CYP2C9, PTGS-1 and PTGS-2 gene polymorphisms on the efficiency and safety of postoperative analgesia with ketoprofen. Drug Metab Pers Ther 2022; 37:361-368. [PMID: 35705023 DOI: 10.1515/dmpt-2021-0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Patients undergoing cardiac surgery develop post-sternotomy pain syndrome. The aim of this study was evaluation of the influence of CYP2C9, PTGS-1 and PTGS-2 genes polymorphisms on the efficacy and safety of postoperative analgesia with ketoprofen in patients with coronary artery disease after cardiac surgery. METHODS The study included 90 patients undergoing cardiac surgery. A real-time polymerase chain reaction was used for the detection of single nucleotide polymorphisms (SNP). Pain intensity was measured by the Numeric Rating Scale (NRS). Dyspeptic symptoms were evaluated using the Gastrointestinal Symptom Rating Scale (GSRS). Acute kidney injury (AKI) was determined by Kidney Disease Improving Global Outcomes criteria. RESULTS Pain intensity by the NRS score was significantly higher in patients with CYP2C9*3 АA genotype compared to АC genotype: 7 [1,10] and 6 [2,7] (p=0.003); 7 [1,10] and 6 [2,7] (p=0.04); 6 [0; 10] and 5 [2,6] (p=0.04); 5 [0; 8] and 3 [0; 8] (p=0.02), on days 1, 2, 3 and 5 in the postoperative period, respectively. GSRS score was higher in patients with CYP2C9*2 CT genotype compared to CС genotype: 19 [15; 42] and 18 [15,36] (p=0.04), respectively. There were no significant differences in the pain intensity, dyspepsia severity and AKI frequency in patients with homozygous and heterozygous genotypes for PTGS-1 rs10306135, PTGS-1 rs12353214, PTGS-2 rs20417. CONCLUSIONS CYP2C9*3 and CYP2C9*2 gene polymorphisms may affect efficacy and safety of postoperative analgesia with ketoprofen in patients with coronary artery disease after cardiac surgery.
Collapse
Affiliation(s)
- Dmitry A Sychev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - Tatiana E Morozova
- Department of Clinical Pharmacology and Internal Diseases, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Dmitry A Shatskiy
- Department of Clinical Pharmacology and Internal Diseases, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Nadezhda V Shikh
- Department of Clinical Pharmacology and Internal Diseases, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Evgeniya V Shikh
- Department of Clinical Pharmacology and Internal Diseases, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Tatiana B Andrushchyshina
- Department of Clinical Pharmacology and Internal Diseases, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Maria V Lukina
- Department of Clinical Pharmacology and Internal Diseases, Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Anastasia A Kachanova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - Zhannet A Sozaeva
- Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - Sherzod P Abdullaev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - Natalia P Denisenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - Kristina A Ryzhikova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| |
Collapse
|
21
|
Hardaway AL, Goudarzi M, Berk M, Chung YM, Zhang R, Li J, Klein E, Sharifi N. 5-Hydroxyeicosatetraenoic Acid Controls Androgen Reduction in Diverse Types of Human Epithelial Cells. Endocrinology 2022; 164:bqac191. [PMID: 36412122 PMCID: PMC9923800 DOI: 10.1210/endocr/bqac191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Androgens regulate broad physiologic and pathologic processes, including external genitalia development, prostate cancer progression, and anti-inflammatory effects in both cancer and asthma. In prostate cancer, several lines of evidence have implicated dietary and endogenous fatty acids in cell invasion, angiogenesis, and treatment resistance. However, the role of fatty acids in steroidogenesis and the mechanisms by which alterations in this pathway occur are not well understood. Here, we show that, of a panel of fatty acids tested, arachidonic acid and its specific metabolite 5-hydroxyeicosatetraenoic acid (5-HETE) regulate androgen metabolism. Arachidonic acid is metabolized to 5-HETE and reduces androgens by inducing aldo-keto reductase (AKR) family members AKR1C2 and AKR1C3 expression in human prostate, breast, and lung epithelial cells. Finally, we provide evidence that these effects require the expression of the antioxidant response sensor, nuclear factor erythroid 2-related factor 2 (Nrf2). Our findings identify an interconnection between conventional fatty acid metabolism and steroid metabolism that has broad relevance to androgen physiology and inflammatory regulation.
Collapse
Affiliation(s)
- Aimalie L Hardaway
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Maryam Goudarzi
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Michael Berk
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yoon-Mi Chung
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jianneng Li
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Eric Klein
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
22
|
Qi LJ, Wang RZ, Gao S, Chen XJ, Zhang X, Zhang YP. Molecular Mechanisms Underlying the Effects of Bimin Kang Mixture on Allergic Rhinitis: Network Pharmacology and RNA Sequencing Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7034078. [PMID: 36337846 PMCID: PMC9635970 DOI: 10.1155/2022/7034078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022]
Abstract
Background Allergic rhinitis (AR) is a highly prevalent chronic inflammatory disease of the respiratory tract. Previous studies have demonstrated that Bimin Kang Mixture (BMK) is effective in alleviating AR symptoms and reducing the secretion of inflammatory factors and mucin; however, the precise mechanisms underlying these effects remain unclear. Methods We built target networks for each medication component using a network pharmacology technique and used RNA-seq transcriptome analysis to screen differentially expressed genes (DEGs) for AR patients and control groups. The overlapping targets in the two groups were assessed using PPI networks, GO, and KEGG enrichment analyses. The binding ability of essential components to dock with hub target genes was investigated using molecular docking. Finally, we demonstrate how BMK can treat AR by regulating the NF-κB signaling pathway through animal experiments. Results Effective targets from network pharmacology were combined with DEGs from RNA-seq, with 20 intersections as key target genes. The construction of the PPI network finally identified 5 hub target genes, and all hub target genes were in the NF-κB signaling pathway. Molecular docking suggests that citric acid, deoxyandrographolide, quercetin, luteolin, and kaempferol are structurally stable and can spontaneously attach to IL-1β, CXCL2, CXCL8, CCL20, and PTGS2 receptors. Animal experiments have shown that BMK inhibits NF-κB transcription factor activation, reduces the expression of proinflammatory cytokines and chemokines IL-1β, CXCL2, IL-8, and COX-2, and exerts anti-inflammatory and anti-allergic effects. Conclusion BMK by regulating the NF-κB signaling pathway improves inflammatory cell infiltration, regulates mucosal immune balance, and reduces airway hypersensitivity. These findings provide theoretical support for the clinical efficacy of BMK for AR treatment.
Collapse
Affiliation(s)
- Li-Jie Qi
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Ren-Zhong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Shang Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xiang-Jing Chen
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Xin Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, China
| | - Yi-Peng Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| |
Collapse
|
23
|
Network Pharmacology and Experimental Verification Revealed the Mechanism of Yiqi Jianpi Recipe on Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8823231. [PMID: 36118092 PMCID: PMC9473879 DOI: 10.1155/2022/8823231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/19/2022] [Accepted: 08/13/2022] [Indexed: 11/26/2022]
Abstract
Objective The study aimed to explore the active ingredients, targets, and mechanism of action of Yiqi Jianpi recipe (YQJPR) in the treatment of COPD based on the network pharmacology and COPD rat models. Methods The active ingredients and targets of YQJPR were collected by TCMSP. Disease-related protein targets were obtained from GeneCards. The Venn diagram was used to show the key therapeutic targets of COPD in YQJPR. The PPI network was established by STRING, and cytoHubba plug-in was used to screen the core targets within the network. GO functional enrichment and KEGG pathway enrichment analysis were performed to describe the functions and pathways of the core targets. Cytoscape software was used to construct the ingredient-target network and the core target-enrichment pathway network. The chemical constituents of YQJPR were analyzed by HPLC-MS/MS. Results The network pharmacology showed 152 active ingredients and 225 targets in YQJPR for the treatment of COPD. The key active ingredients were quercetin, luteolin, kaempferol, tanshinone IIA, and baicalein. The contents of quercetin and luteolin in YQJPR were quantitatively measured by HPLC-MS/MS. 22 core genes were screened, including AKT1, IL-6, JUN, VEGFA, and CASP3, which were mainly involved in BPs such as cell proliferation and differentiation, oxidative/chemical stress, and regulation of DNA-binding transcription factor activity and regulated viral infection, tumor, HIF-1, MAPK, TNF, and IL-17 pathways. Animal experiments showed that YQJPR could significantly reduce the expression of p-ERK1/2, p-Akt, c-Myc, cleaved caspase-3, and p-Stat3 in lung tissue (p < 0.05). HE staining showed that, compared with the model group, YQJPR significantly improved lung tissue morphology and reduced lung inflammation in rats. Conclusion The effects of YQJPR on COPD may involve multiple components, pathways, and targets. This study provides new ideas for further and more comprehensive exploration of the therapeutic effect of YQJPR on COPD in the future.
Collapse
|
24
|
Sanchez M, Hamel D, Bajon E, Duhamel F, Bhosle VK, Zhu T, Rivera JC, Dabouz R, Nadeau-Vallée M, Sitaras N, Tremblay DÉ, Omri S, Habelrih T, Rouget R, Hou X, Gobeil F, Joyal JS, Sapieha P, Mitchell G, Ribeiro-Da-Silva A, Mohammad Nezhady MA, Chemtob S. The Succinate Receptor SUCNR1 Resides at the Endoplasmic Reticulum and Relocates to the Plasma Membrane in Hypoxic Conditions. Cells 2022; 11:2185. [PMID: 35883628 PMCID: PMC9321536 DOI: 10.3390/cells11142185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
The GPCR SUCNR1/GPR91 exerts proangiogenesis upon stimulation with the Krebs cycle metabolite succinate. GPCR signaling depends on the surrounding environment and intracellular localization through location bias. Here, we show by microscopy and by cell fractionation that in neurons, SUCNR1 resides at the endoplasmic reticulum (ER), while being fully functional, as shown by calcium release and the induction of the expression of the proangiogenic gene for VEGFA. ER localization was found to depend upon N-glycosylation, particularly at position N8; the nonglycosylated mutant receptor localizes at the plasma membrane shuttled by RAB11. This SUCNR1 glycosylation is physiologically regulated, so that during hypoxic conditions, SUCNR1 is deglycosylated and relocates to the plasma membrane. Downstream signal transduction of SUCNR1 was found to activate the prostaglandin synthesis pathway through direct interaction with COX-2 at the ER; pharmacologic antagonism of the PGE2 EP4 receptor (localized at the nucleus) was found to prevent VEGFA expression. Concordantly, restoring the expression of SUCNR1 in the retina of SUCNR1-null mice renormalized vascularization; this effect is markedly diminished after transfection of the plasma membrane-localized SUCNR1 N8A mutant, emphasizing that ER localization of the succinate receptor is necessary for proper vascularization. These findings uncover an unprecedented physiologic process where GPCR resides at the ER for signaling function.
Collapse
Affiliation(s)
- Melanie Sanchez
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
| | - David Hamel
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - Emmanuel Bajon
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
| | - François Duhamel
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - Vikrant K. Bhosle
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
- Cell Biology Program, The Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | - Tang Zhu
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
| | - Jose Carlos Rivera
- Department of Ophthalmology, Research Center of Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada; (J.C.R.); (S.O.); (P.S.)
| | - Rabah Dabouz
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
| | - Mathieu Nadeau-Vallée
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - Nicholas Sitaras
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - David-Étienne Tremblay
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - Samy Omri
- Department of Ophthalmology, Research Center of Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada; (J.C.R.); (S.O.); (P.S.)
| | - Tiffany Habelrih
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
| | - Raphael Rouget
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
| | - Xin Hou
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
| | - Fernand Gobeil
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Jean-Sébastien Joyal
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
- Department of Ophthalmology, Research Center of Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada; (J.C.R.); (S.O.); (P.S.)
| | - Przemyslaw Sapieha
- Department of Ophthalmology, Research Center of Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada; (J.C.R.); (S.O.); (P.S.)
| | - Grant Mitchell
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
| | - Alfredo Ribeiro-Da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
| | - Mohammad Ali Mohammad Nezhady
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
- Program of Molecular Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Research Center-CHU Ste-Justine, Departments of Pediatrics, Ophthalmology, and Pharmacology, Faculty of Medicine, Université de Montréal, 3175, Chemin Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| | - Sylvain Chemtob
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3A 1A3, Canada; (M.S.); (V.K.B.); (R.D.); (R.R.); (A.R.-D.-S.)
- Department of Pharmacology, Université de Montréal, Montréal, QC H3C 3J7, Canada; (D.H.); (F.D.); (M.N.-V.); (N.S.); (D.-É.T.); (T.H.)
- Department of Pediatrics, Research Center-CHU Ste-Justine, Montréal, QC H3T 1C5, Canada; (E.B.); (T.Z.); (X.H.); (J.-S.J.); (G.M.)
- Department of Ophthalmology, Research Center of Hôpital Maisonneuve-Rosemont, Université de Montréal, Montréal, QC H1T 2M4, Canada; (J.C.R.); (S.O.); (P.S.)
- Research Center-CHU Ste-Justine, Departments of Pediatrics, Ophthalmology, and Pharmacology, Faculty of Medicine, Université de Montréal, 3175, Chemin Côte Ste-Catherine, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
25
|
Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y. The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Ther 2022; 7:92. [PMID: 35314676 PMCID: PMC8935608 DOI: 10.1038/s41392-022-00932-0] [Citation(s) in RCA: 300] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/18/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
AbstractMesenchymal stromal/stem cells (MSCs) possess multi-lineage differentiation and self-renewal potentials. MSCs-based therapies have been widely utilized for the treatment of diverse inflammatory diseases, due to the potent immunoregulatory functions of MSCs. An increasing body of evidence indicates that MSCs exert their therapeutic effects largely through their paracrine actions. Growth factors, cytokines, chemokines, extracellular matrix components, and metabolic products were all found to be functional molecules of MSCs in various therapeutic paradigms. These secretory factors contribute to immune modulation, tissue remodeling, and cellular homeostasis during regeneration. In this review, we summarize and discuss recent advances in our understanding of the secretory behavior of MSCs and the intracellular communication that accounts for their potential in treating human diseases.
Collapse
|
26
|
Sim HI, Kim DH, Kim M. Cellular messenger molecules mediating addictive drug-induced cognitive impairment: cannabinoids, ketamine, methamphetamine, and cocaine. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00408-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cognitive impairment is a commonly reported symptom with increasing life spans. Numerous studies have focused on identifying precise targets to relieve or reduce cognitive impairment; however, its underlying mechanism remains elusive. Most patients or animals exposed to addictive drugs exhibit cognitive impairment. Accordingly, the present review discusses the molecular changes induced by addictive drugs to clarify potential mechanisms that mediate cognitive impairments.
Main body
We investigated changes in cognitive function using four drugs: cannabinoids, ketamine, methamphetamine, and cocaine. Chronic administration of most addictive drugs reduces overall cognitive functions, such as working, spatial, and long-term recognition memories. Levels of several transcription factors involved in neuronal differentiation, as well as functional components of neurotransmitter receptors in neuronal cells, are reportedly altered. In addition, inflammatory factors showed a generally increasing trend. These impairments could be mediated by neuroinflammation, synaptic activity, and neuronal plasticity.
Conclusion
This review outlines the effects of acute or chronic drug use and potential molecular alterations in the central nervous system. In the central nervous system, addictive drug-induced changes in molecular pathways associated with cognitive function might play a pivotal role in elucidating the pathogenesis of cognitive impairment.
Collapse
|
27
|
Chen S, Han B, Geng X, Li P, Lavin MF, Yeo AJ, Li C, Sun J, Peng C, Shao H, Du Z. Microcrystalline silica particles induce inflammatory response via pyroptosis in primary human respiratory epithelial cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:385-400. [PMID: 34766707 DOI: 10.1002/tox.23405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The mechanism of the sterile inflammatory response in the respiratory tract induced by exposure to sterile particles has not been fully elucidated. The aim of our study is to explore the earlier events in initiating inflammatory response at molecular and cellular level in primary cultured human airway epithelial cells (AEC) exposed to silica particles in order to provide information for earlier diagnosis and prevention of silica particle-induced toxicity as well as possible information on the genesis of silicosis. We isolated primary AEC from three healthy adults and treated them with silica particles at different concentrations for 48 h. We found evidence for silica-induced inflammasome activation by the co-localization of Caspase-1 and NLRP3, as well as increased levels of IL-1β and IL-18. Lactate dehydrogenase and NucGreen analysis proved the occurrence of pyroptosis. High throughput mRNA sequencing showed that the inflammatory response and NF-κB signaling pathways were significantly enriched in gene ontology and Kyoto encyclopedia of genes and genomes analysis, and pyroptosis-related genes were up-regulated. The miR-455-3p and five lncRNAs (LOC105375913, NEAT1, LOC105375181, LOC100506098, and LOC105369370) were verified as key factors related to the mechanism by ceRNA network analysis. LOC105375913 was first discovered to be associated with inflammation in AEC. These data suggest that microcrystalline silica can induce significant inflammation and pyroptosis in human primary AEC through NLRP3 inflammasome pathway and NF-κB signaling pathway at both the gene and protein levels, and the possible mechanism could be miR-455-3p mediated ceRNA hypothesis. Our data provide a method for the studies of the respiratory toxicity of fine particulate matter and the pathogenesis of early silicosis. The miR-455-3p and five lncRNAs related ceRNA network might be the toxicity mechanism of microcrystalline silica particles to AEC.
Collapse
Affiliation(s)
- Shangya Chen
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Basic Research & International Cooperation, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Bing Han
- Department of Head and Neck Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiao Geng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peng Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Martin F Lavin
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Australia
| | - Abrey J Yeo
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- The University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Australia
| | - Chao Li
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiayin Sun
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Cheng Peng
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Australia
| | - Hua Shao
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhongjun Du
- Department of Toxicology, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
28
|
Che L, Wu JS, Du ZB, He YQ, Yang L, Lin JX, Lei Z, Chen XX, Guo DB, Li WG, Lin YC, Lin ZN. Targeting Mitochondrial COX-2 Enhances Chemosensitivity via Drp1-Dependent Remodeling of Mitochondrial Dynamics in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:cancers14030821. [PMID: 35159089 PMCID: PMC8834292 DOI: 10.3390/cancers14030821] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary New therapeutic strategies are urgently needed to improve the anti-cancer effect for hepatocellular carcinoma (HCC). Overexpression of cyclooxygenase-2 (COX-2) is found in several types of cancers and correlates with a poor prognosis. However, it remains unclear how the mitochondrial translocation of COX-2 is involved in mitochondrial dynamics and sensitizes HCC cells to multipattern anti-tumor therapy. We explored the impact of targeting mitochondrial COX-2 (mito-COX-2) intervention toward mitochondrial dynamics on platinum-based chemotherapeutics in HCC cells and xenograft nude mouse models. Our study indicates that the mito-COX-2 represents a candidate predictive biomarker and potential target to regulate anti-cancer sensitization of HCC, and possibly for other types of COX-2-high-expression cancers. Abstract Mitochondria are highly dynamic organelles and undergo constant fission and fusion, which are both essential for the maintenance of cell physiological functions. Dysregulation of dynamin-related protein 1 (Drp1)-dependent mitochondrial dynamics is associated with tumorigenesis and the chemotherapeutic response in hepatocellular carcinoma (HCC). The enzyme cyclooxygenase-2 (COX-2) is overexpressed in most cancer types and correlates with a poor prognosis. However, the roles played by the translocation of mitochondrial COX-2 (mito-COX-2) and the interaction between mito-COX-2 and Drp1 in chemotherapeutic responses remain to be elucidated in the context of HCC. Bioinformatics analysis, paired HCC patient specimens, xenograft nude mice, immunofluorescence, transmission electron microscopy, molecular docking, CRISPR/Cas9 gene editing, proximity ligation assay, cytoplasmic and mitochondrial fractions, mitochondrial immunoprecipitation assay, and flow cytometry analysis were performed to evaluate the underlying mechanism of how mito-COX-2 and p-Drp1Ser616 interaction regulates the chemotherapeutic response via mitochondrial dynamics in vitro and in vivo. We found that COX-2 and Drp1 were frequently upregulated and confer a poor prognosis in HCC. We also found that the proportion of mito-COX-2 and p-Drp1Ser616 was increased in HCC cell lines. In vitro, we demonstrated that the enhanced mitochondrial translocation of COX-2 promotes its interaction with p-Drp1Ser616 via PTEN-induced putative kinase 1 (PINK1)-mediated Drp1 phosphorylation activation. This increase was associated with higher colony formation, cell proliferation, and mitochondrial fission. These findings were confirmed by knocking down COX-2 in HCC cells using CRISPR/Cas9 technology. Furthermore, inhibition of Drp1 using pharmacologic inhibitors (Mdivi-1) or RNA interference (siDNM1L) decreased mito-COX-2/p-Drp1Ser616 interaction-mediated mitochondrial fission, and increased apoptosis in HCC cells treated with platinum drugs. Moreover, inhibiting mito-COX-2 acetylation with the natural phytochemical resveratrol resulted in reducing cell proliferation and mitochondrial fission, occurring through upregulation of mitochondrial deacetylase sirtuin 3 (SIRT3), which, in turn, increased the chemosensitivity of HCC to platinum drugs in vitro and in vivo. Our results suggest that targeting interventions to PINK1-mediated mito-COX-2/p-Drp1Ser616-dependent mitochondrial dynamics increases the chemosensitivity of HCC and might help us to understand how to use the SIRT3-modulated mito-COX-2/p-Drp1Ser616 signaling axis to develop an effective clinical intervention in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Jia-Shen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Ze-Bang Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Yu-Qiao He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Lei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Jin-Xian Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Zhao Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Xiao-Xuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Dong-Bei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
| | - Wen-Gang Li
- Department of Hepatobiliary Surgery and Pancreatic & Organ Transplantation Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China;
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
- Correspondence: (Y.-C.L.); (Z.-N.L.); Tel.: +86-592-2880615 (Y.-C.L.); Fax: +86-592-2881578 (Y.-C.L.)
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China; (L.C.); (J.-S.W.); (Z.-B.D.); (Y.-Q.H.); (L.Y.); (J.-X.L.); (Z.L.); (X.-X.C.); (D.-B.G.)
- Correspondence: (Y.-C.L.); (Z.-N.L.); Tel.: +86-592-2880615 (Y.-C.L.); Fax: +86-592-2881578 (Y.-C.L.)
| |
Collapse
|
29
|
Yadav SK, Sharma P, Shah SD, Panettieri RA, Kambayashi T, Penn RB, Deshpande DA. Autocrine regulation of airway smooth muscle contraction by diacylglycerol kinase. J Cell Physiol 2022; 237:603-616. [PMID: 34278583 PMCID: PMC8763953 DOI: 10.1002/jcp.30528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023]
Abstract
Diacylglycerol kinase (DGK), a lipid kinase, catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid, thereby terminating DAG-mediated signaling by Gq-coupled receptors that regulate contraction of airway smooth muscle (ASM). A previous study from our laboratory demonstrated that DGK inhibition or genetic ablation leads to reduced ASM contraction and provides protection for allergen-induced airway hyperresponsiveness. However, the mechanism by which DGK regulates contractile signaling in ASM is not well established. Herein, we investigated the role of prorelaxant cAMP-protein kinase A (PKA) signaling in DGK-mediated regulation of ASM contraction. Pretreatment of human ASM cells with DGK inhibitor I activated PKA as demonstrated by the phosphorylation of PKA substrates, VASP, Hsp20, and CREB, which was abrogated when PKA was inhibited pharmacologically or molecularly using overexpression of the PKA inhibitor peptide, PKI. Furthermore, inhibition of DGK resulted in induction of cyclooxygenase (COX) and generation of prostaglandin E2 (PGE2 ) with concomitant activation of Gs-cAMP-PKA signaling in ASM cells in an autocrine/paracrine fashion. Inhibition of protein kinase C (PKC) or extracellular-signal-regulated kinase (ERK) attenuated DGK-mediated production of PGE2 and activation of cAMP-PKA signaling in human ASM cells, suggesting that inhibition of DGK activates the COX-PGE2 pathway in a PKC-ERK-dependent manner. Finally, DGK inhibition-mediated attenuation of contractile agonist-induced phosphorylation of myosin light chain 20 (MLC-20), a marker of ASM contraction, involves COX-mediated cAMP production and PKA activation in ASM cells. Collectively these findings establish a novel mechanism by which DGK regulates ASM contraction and further advances DGK as a potential therapeutic target to provide effective bronchoprotection in asthma.
Collapse
Affiliation(s)
- Santosh K. Yadav
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 19107
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 19107
| | - Sushrut D. Shah
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 19107
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine & Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond B. Penn
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 19107
| | - Deepak A. Deshpande
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 19107
| |
Collapse
|
30
|
Herrera-Vargas AK, García-Rodríguez E, Olea-Flores M, Mendoza-Catalán MA, Flores-Alfaro E, Navarro-Tito N. Pro-angiogenic activity and vasculogenic mimicry in the tumor microenvironment by leptin in cancer. Cytokine Growth Factor Rev 2021; 62:23-41. [PMID: 34736827 DOI: 10.1016/j.cytogfr.2021.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022]
Abstract
The acquired ability to induce the formation of a functional vasculature is a hallmark of cancer. Blood vessels in tumors are formed through various mechanisms, among the most important in cancer biology, angiogenesis, and vasculogenic mimicry have been described. Leptin is one of the main adipokines secreted by adipocytes in normal breast tissue and the tumor microenvironment. Here, we provide information on the relationship between leptin and the development of angiogenesis and vasculogenic mimicry in different types of cancer. Here, we report that leptin activates different pathways such as JAK-STAT3, MAPK/ERK, PKC, JNK, p38, and PI3K-Akt to induce the expression of various angiogenic factors and vasculogenic mimicry. In vivo models, leptin induces blood vessel formation through the PI3K-Akt-mTOR pathway. Interestingly, the relationship between leptin and vasculogenic mimicry was more significant in breast cancer. The information obtained suggests that leptin could be playing an essential role in tumor survival and metastasis through the induction of vascular mechanisms such as angiogenesis and vasculogenic mimicry; thus, leptin-induced pathways could be suggested as a promising therapeutic target.
Collapse
Affiliation(s)
- Ana K Herrera-Vargas
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO, 39090, Mexico.
| | - Eugenia Flores-Alfaro
- Laboratorio de Epidemiología Clínica y Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, GRO 39087, Mexico.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
31
|
Tian W, Zhao J, Choo BK, Kim IS, Ahn D, Tae HJ, Islam MS, Park BY. Camellia japonica diminishes acetaminophen-induced acute liver failure by attenuating oxidative stress in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:57192-57206. [PMID: 34086174 DOI: 10.1007/s11356-021-14530-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
This experiment was to explore the possible defensive properties and potential molecular mechanisms of Camellia japonica (CJ) against APAP-stimulated acute liver failure (ALF) in mice. In this study, we investigated the effects of CJ on APAP-induced hepatotoxicity. Mice were orally treated with CJ before or after challenge with APAP. Both pretreatment and post-treatment with CJ attenuated APAP-induced hepatotoxicity, as confirmed by significantly reduced serum toxicity biomarkers and improved hepatic pathological damage. Pretreatment with CJ drastically decreased the rise of hepatic inflammatory cytokines levels and weakened neutrophil infiltration. Furthermore, pretreatment with CJ dramatically decreased the levels of hepatic oxidative stress markers such as hepatic malondialdehyde (MDA) and 4-Hydroxynonenal (4-HNE) expression and rescued the reduced hepatic level of GSH caused by APAP overdose. Additionally, CJ pretreatment markedly attenuated cyclooxygenase-2 (COX-2) activation, transcription factor nuclear factor-kappa B (NF-κB) phosphorylation, c-Jun-N-terminal kinase (JNK) phosphorylation, and activated AMP-activated protein kinase (AMPK) signaling pathway in the liver. The present study thus reveals that CJ attenuated APAP-induced ALF by inhibiting COX-2 activation, NF-κB, and JNK phosphorylation and activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Weishun Tian
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Jing Zhao
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Byung-Kil Choo
- Department of Crop Science and Biotechnology, Jeonbuk National University, Jeonju, 54896, Korea
| | - In-Shik Kim
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Dongchoon Ahn
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Md Sadikul Islam
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea
| | - Byung-Yong Park
- College of Veterinary Medicine and Bio-safety Research Institute, Jeonbuk National University, Iksan, 54596, South Korea.
| |
Collapse
|
32
|
Sheppe AEF, Santelices J, Czyz DM, Edelmann MJ. Yersinia pseudotuberculosis YopJ Limits Macrophage Response by Downregulating COX-2-Mediated Biosynthesis of PGE2 in a MAPK/ERK-Dependent Manner. Microbiol Spectr 2021; 9:e0049621. [PMID: 34319170 PMCID: PMC8552654 DOI: 10.1128/spectrum.00496-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an essential immunomodulatory lipid released by cells in response to infection with many bacteria, yet its function in macrophage-mediated bacterial clearance is poorly understood. Yersinia overall inhibits the inflammatory circuit, but its effect on PGE2 production is unknown. We hypothesized that one of the Yersinia effector proteins is responsible for the inhibition of PGE2 biosynthesis. We identified that yopB-deficient Y. enterocolitica and Y. pseudotuberculosis deficient in the secretion of virulence proteins via a type 3 secretion system (T3SS) failed to inhibit PGE2 biosynthesis in macrophages. Consistently, COX-2-mediated PGE2 biosynthesis is upregulated in cells treated with heat-killed or T3SS-deficient Y. pseudotuberculosis but diminished in the presence of a MAPK/ERK inhibitor. Mutants expressing catalytically inactive YopJ induce similar levels of PGE2 as heat-killed or ΔyopB Y. pseudotuberculosis, reversed by YopJ complementation. Shotgun proteomics discovered host pathways regulated in a YopJ-mediated manner, including pathways regulating PGE2 synthesis and oxidative phosphorylation. Consequently, this study identified that YopJ-mediated inhibition of MAPK signal transduction serves as a mechanism targeting PGE2, an alternative means of inflammasome inhibition by Yersinia. Finally, we showed that EP4 signaling supports macrophage function in clearing intracellular bacteria. In summary, our unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription, thereby enhancing the intracellular survival of yersiniae. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic molecule to improve the outcomes of specific bacterial infections. Since other pathogens encode YopJ homologs, this mechanism is expected to be present in other infections. IMPORTANCE PGE2 is a critical immunomodulatory lipid, but its role in bacterial infection and pathogen clearance is poorly understood. We previously demonstrated that PGE2 leads to macrophage polarization toward the M1 phenotype and stimulates inflammasome activation in infected macrophages. Finally, we also discovered that PGE2 improved the clearance of Y. enterocolitica. The fact that Y. enterocolitica hampers PGE2 secretion in a type 3 secretion system (T3SS)-dependent manner and because PGE2 appears to assist macrophage in the clearance of this bacterium indicates that targeting of the eicosanoid pathway by Yersinia might be an adaption used to counteract host defenses. Our study identified a mechanism used by Yersinia that obstructs PGE2 biosynthesis in human macrophages. We showed that Y. pseudotuberculosis interferes with PGE2 biosynthesis by using one of its T3SS effectors, YopJ. Specifically, YopJ targets the host COX-2 enzyme responsible for PGE2 biosynthesis, which happens in a MAPK/ER-dependent manner. Moreover, in a shotgun proteomics study, we also discovered other pathways that catalytically active YopJ targets in the infected macrophages. YopJ was revealed to play a role in limiting host LPS responses, including repression of EGR1 and JUN proteins, which control transcriptional activation of proinflammatory cytokine production such as interleukin-1β. Since YopJ has homologs in other bacterial species, there are likely other pathogens that target and inhibit PGE2 biosynthesis. In summary, our study's unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Austin E. F. Sheppe
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - John Santelices
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
33
|
Zheng Y, Liu Y, Li H, Wang X, Zhang M, Shen X, Cheng H, Xu J, Wang X, Liu H, Ding Z, Zhao X. Novel insights into the immune regulatory effects of Megalobrama amblycephala intelectin on the phagocytosis and killing activity of macrophages. Mol Immunol 2021; 137:145-154. [PMID: 34247100 DOI: 10.1016/j.molimm.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Previous studies have found that the expression level of Megalobrama amblycephala intelectin (MaINTL) increased significantly post Aeromonas hydrophila infection, and recombinant MaINTL (rMaINTL) protein could activate macrophages and enhance the phagocytosis and killing activity of macrophages. In order to reveal the immune regulatory mechanisms of MaINTL, primary M. amblycephala macrophages were treated with endotoxin-removed rMaINTL and GST-tag proteins, then total RNA were extracted and used for comparative Digital Gene Expression Profiling (DGE). 1247 differentially expressed genes were identified by comparing rMaINTL and GST-tag treated macrophage groups, including 482 up-regulated unigenes and 765 down-regulated unigenes. In addition, eleven randomly selected differentially expressed genes were verified by qRT-PCR, and most of them shared the similar expression patterns as that of DGE results. GO enrichment revealed that the differentially expressed genes were mainly concentrated in the membrane part and cytoskeleton of cellular component, the binding and signal transducer activity of molecular function, the cellular process, regulation of biological process, signaling and localization of biological process, most of which might related with the phagocytosis and killing activity of macrophages. KEGG analysis revealed the activation and involvement of differentially expressed genes in immune related pathways, such as Tumor necrosis factor (TNF) signaling pathway, Interleukin 17 (IL-17) signaling pathway, Toll-like receptor signaling pathway, and NOD like receptor signaling pathway, etc. In these pathways, TNF-ɑ, Activator protein-1 (AP-1), Myeloid differentiation primary response protein MyD88 (MyD88), NF-kappa-B inhibitor alpha (ikBɑ) and other key signaling factors were significantly up-regulated. These results will be helpful to clarify the immune regulatory mechanisms of fish intelectin on macrophages, thus providing a theoretical basis for the prevention and control of fish bacterial diseases.
Collapse
Affiliation(s)
- Yancui Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yunlong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hongping Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Minying Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xingqiang Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Xiaoheng Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
34
|
Antiviral Efficacy of the Anesthetic Propofol against Dengue Virus Infection and Cellular Inflammation. J Immunol Res 2021; 2021:6680913. [PMID: 33869639 PMCID: PMC8032536 DOI: 10.1155/2021/6680913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/28/2021] [Accepted: 03/21/2021] [Indexed: 02/06/2023] Open
Abstract
Propofol, 2,6-diisopropylphenol, is a short-acting intravenous sedative agent used in adults and children. Current studies show its various antimicrobial as well as anti-inflammatory effects. Dengue virus (DENV) is an emerging infectious pathogen transmitted by mosquitoes that causes mild dengue fever and progressive severe dengue diseases. In the absence of safe vaccines and antiviral agents, adjuvant treatments and supportive care are generally administered. This study investigated the antiviral effects of propofol against DENV infection and cellular inflammation by using an in vitro cell model. Treatment with propofol significantly inhibited DENV release 24 h postinfection in BHK-21 cells. Furthermore, it also blocked viral protein expression independent of the translational blockade. Propofol neither caused inhibitory effects on endosomal acidification nor prevented dsRNA replication. Either the proinflammatory TNF-α or the antiviral STAT1 signaling was reduced by propofol treatment. These results provide evidence to show the potential antiviral effects of the sedative propofol against DENV infection and cellular inflammation.
Collapse
|
35
|
Eligini S, Colli S, Habib A, Aldini G, Altomare A, Banfi C. Cyclooxygenase-2 Glycosylation Is Affected by Peroxynitrite in Endothelial Cells: Impact on Enzyme Activity and Degradation. Antioxidants (Basel) 2021; 10:496. [PMID: 33806920 PMCID: PMC8005028 DOI: 10.3390/antiox10030496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
The exposure of human endothelial cells to 3-morpholinosydnonimine (SIN-1) induced the expression of cyclooxygenase-2 (COX-2) in a dose- and time-dependent manner. Interestingly, after a prolonged incubation (>8 h) several proteoforms were visualized by Western blot, corresponding to different states of glycosylation of the protein. This effect was specific for SIN-1 that generates peroxynitrite and it was not detected with other nitric oxide-donors. Metabolic labeling experiments using 35S or cycloheximide suggested that the formation of hypoglycosylated COX-2 was dependent on de novo synthesis of the protein rather than the deglycosylation of the native protein. Moreover, SIN-1 reduced the activity of the hexokinase, the enzyme responsible for the first step of glycolysis. The hypoglycosylated COX-2 induced by SIN-1 showed a reduced capacity to generate prostaglandins and the activity was only partially recovered after immunoprecipitation. Finally, hypoglycosylated COX-2 showed a more rapid rate of degradation compared to COX-2 induced by IL-1α and an alteration in the localization with an accumulation mainly detected in the nuclear membrane. Our results have important implication to understand the effect of peroxynitrite on COX-2 expression and activity, and they may help to identify new pharmacological tools direct to increase COX-2 degradation or to inhibit its activity.
Collapse
Affiliation(s)
- Sonia Eligini
- Centro Cardiologico Monzino I.R.C.C.S., 20138 Milan, Italy;
| | - Susanna Colli
- Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
- INSERM-UMR1149, Centre de Recherche sur l’Inflammation, and Sorbonne Paris Cité, Laboratoire d’Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université de Paris, 75018 Paris, France
| | - Giancarlo Aldini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (G.A.); (A.A.)
| | - Alessandra Altomare
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (G.A.); (A.A.)
| | - Cristina Banfi
- Centro Cardiologico Monzino I.R.C.C.S., 20138 Milan, Italy;
| |
Collapse
|
36
|
Seeger DR, Golovko SA, Grove BD, Golovko MY. Cyclooxygenase inhibition attenuates brain angiogenesis and independently decreases mouse survival under hypoxia. J Neurochem 2021; 158:246-261. [PMID: 33389746 PMCID: PMC8249483 DOI: 10.1111/jnc.15291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Although cyclooxygenase (COX) role in cancer angiogenesis has been studied, little is known about its role in brain angioplasticity. In the present study, we chronically infused mice with ketorolac, a non‐specific COX inhibitor that does not cross the blood–brain barrier (BBB), under normoxia or 50% isobaric hypoxia (10% O2 by volume). Ketorolac increased mortality rate under hypoxia in a dose‐dependent manner. Using in vivo multiphoton microscopy, we demonstrated that chronic COX inhibition completely attenuated brain angiogenic response to hypoxia. Alterations in a number of angiogenic factors that were reported to be COX‐dependent in other models were assayed at 24‐hr and 10‐day hypoxia. Intriguingly, hypoxia‐inducible factor 1 was unaffected under COX inhibition, and vascular endothelial growth factor receptor type 2 (VEGFR2) and C‐X‐C chemokine receptor type 4 (CXCR4) were significantly but slightly decreased. However, a number of mitogen‐activated protein kinases (MAPKs) were significantly reduced upon COX inhibition. We conclude that additional, angiogenic factor‐independent mechanism might contribute to COX role in brain angioplasticity, probably including mitogenic COX effect on endothelium. Our data indicate that COX activity is critical for systemic adaptation to chronic hypoxia, and BBB COX is essential for hypoxia‐induced brain angioplasticity. These data also indicate a potential risk for using COX inhibitors under hypoxia conditions in clinics. Further studies are required to elucidate a complete mechanism for brain long‐term angiogenesis regulation through COX activity.
Collapse
Affiliation(s)
- Drew R Seeger
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Bryon D Grove
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
37
|
Aversano A, Rossi FW, Cammarota F, De Paulis A, Izzo P, De Rosa M. Nitrodi thermal water downregulates protein S‑nitrosylation in RKO cells. Int J Mol Med 2020; 46:1359-1366. [PMID: 32945437 PMCID: PMC7447308 DOI: 10.3892/ijmm.2020.4676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/23/2020] [Indexed: 11/07/2022] Open
Abstract
Balneotherapy and spa therapy have been used in the treatment of ailments since time immemorial. Moreover, there is evidence to suggest that the beneficial effects of thermal water continue for months following the completion of treatment. The mechanisms through which thermal water exerts its healing effects remain unknown. Both balneological and hydroponic therapy at 'the oldest spa in the world', namely, the Nitrodi spring on the Island of Ischia (Southern Italy) are effective in a number of diseases and conditions. The aim of the present study was to investigate the molecular basis underlying the therapeutic effects of Nitrodi spring water in low-grade inflammation and stress-related conditions. For this purpose, an in vitro model was devised in which RKO colorectal adenocarcinoma cells were treated with phosphate-buffered saline or phosphate-buffered saline prepared with Nitrodi water for 4 h daily, 5 days a week for 6 weeks. The RKO cells were then subjected to the following assays: 3-(4,5- Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, Transwell migration assay, western blot analysis, the fluorimetric detection of protein S-nitrosothiols and S-nitrosylation western blot analysis. The results revealed that Nitrodi spring water promoted cell migration and cell viability, and downregulated protein S-nitrosylation, probably also the nitrosylated active form of the cyclooxygenase (COX)-2 protein. These results concur with all the previously reported therapeutic properties of Nitrodi spring water, and thus rein-force the concept that this natural resource is an important complementary therapy to traditional medicine.
Collapse
Affiliation(s)
- Antonietta Aversano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Francesca Cammarota
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Amato De Paulis
- Department of Translational Medical Sciences, University of Naples Federico II, I-80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| | - Marina De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, I-80131 Naples, Italy
| |
Collapse
|
38
|
Differential Expression of Neuroinflammatory mRNAs in the Rat Sciatic Nerve Following Chronic Constriction Injury and Pain-Relieving Nanoemulsion NSAID Delivery to Infiltrating Macrophages. Int J Mol Sci 2019; 20:ijms20215269. [PMID: 31652890 PMCID: PMC6862677 DOI: 10.3390/ijms20215269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The neuroinflammatory response to peripheral nerve injury is associated with chronic pain and significant changes in the molecular expression profiles of mRNAs in neurons, glia and infiltrating immune cells. Chronic constriction injury (CCI) of the rat sciatic nerve provides an opportunity to mimic neuropathic injury and quantitatively assess behavior and differential gene expression in individual animals. Previously, we have shown that a single intravenous injection of nanoemulsion containing celecoxib (0.24 mg/kg) reduces inflammation of the sciatic nerve and relieves pain-like behavior for up to 6 days. Here, we use this targeted therapy to explore the impact on mRNA expression changes in both pain and pain-relieved states. Sciatic nerve tissue recovered from CCI animals is used to evaluate the mRNA expression profiles utilizing quantitative PCR. We observe mRNA changes consistent with the reduced recruitment of macrophages evident by a reduction in chemokine and cytokine expression. Furthermore, genes associated with adhesion of macrophages, as well as changes in the neuronal and glial mRNAs are observed. Moreover, genes associated with neuropathic pain including Maob, Grin2b/NMDAR2b, TrpV3, IL-6, Cacna1b/Cav2.2, Itgam/Cd11b, Scn9a/Nav1.7, and Tac1 were all found to respond to the celecoxib loaded nanoemulsion during pain relief as compared to those animals that received drug-free vehicle. These results demonstrate that by targeting macrophage production of PGE2 at the site of injury, pain relief includes partial reversal of the gene expression profiles associated with chronic pain.
Collapse
|
39
|
Aflatoxin B1 enhances pyroptosis of hepatocytes and activation of Kupffer cells to promote liver inflammatory injury via dephosphorylation of cyclooxygenase-2: an in vitro, ex vivo and in vivo study. Arch Toxicol 2019; 93:3305-3320. [PMID: 31612242 DOI: 10.1007/s00204-019-02572-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Aflatoxin B1 (AFB1), a food contaminant derived from Aspergillus fungi, has been reported to cause hepatic immunotoxicity via inflammatory infiltration and cytokines release. As a pro-inflammatory factor, cyclooxygenase-2 (COX-2) is widely involved in liver inflammation induced by xenobiotics. However, the mechanism by which AFB1-induced COX-2 regulates liver inflammatory injury via hepatocytes-Kupffer cells (KCs) crosstalk remains unclear and requires further elucidation. Here, we established a COX-2 upregulated model with AFB1 treatment in vivo (C57BL/6 mice, 1 mg/kg body weight, i.g, 4 weeks) and in vitro (human liver HepaRG cells, 1 μM for 24 h). In vivo, AFB1-treated mice exhibited NLRP3 inflammasome activation, inflammatory infiltration, and increased recruitment of KCs. In vitro, dephosphorylated COX-2 by protein phosphatase 2A (PP2A)-B55δ promoted NLRP3 inflammasome activation, including mitochondrial translocation of NLRP3, caspase 1 cleavage, and IL-1β release. Moreover, phosphorylated COX-2 at serine 601 (p-COX-2Ser601) underwent endoplasmic reticulum (ER) retention for proteasome degradation. Furthermore, pyroptosis and inflammatory response induced by AFB1 were relieved with COX-2 genetic (siPTGS2) intervention or pharmaceutic (celecoxib, 30 mg/kg body weight, i.g, 4 weeks) inhibition of COX-2 via NLRP3 inflammasome suppression in vivo and in vitro. Ex vivo, in a co-culture system with murine primary hepatocytes and KCs, activated KCs induced by damaged signals from pyroptotic hepatocytes, formed a feedback loop to amplify NLRP3-dependent pyroptosis of hepatocytes via pro-inflammatory signaling, leading to liver inflammatory injury. Taken together, our data suggest a novel mechanism that protein quality control of COX-2 determines the intracellular distribution and activation of NLRP3 inflammasome, which promotes liver inflammatory injury via hepatocytes-KCs crosstalk.
Collapse
|
40
|
Erkes DA, Field CO, Capparelli C, Tiago M, Purwin TJ, Chervoneva I, Berger AC, Hartsough EJ, Villanueva J, Aplin AE. The next-generation BET inhibitor, PLX51107, delays melanoma growth in a CD8-mediated manner. Pigment Cell Melanoma Res 2019; 32:687-696. [PMID: 31063649 PMCID: PMC6697571 DOI: 10.1111/pcmr.12788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/26/2019] [Accepted: 04/28/2019] [Indexed: 12/30/2022]
Abstract
Epigenetic agents such as bromodomain and extra-terminal region inhibitors (BETi) slow tumor growth via tumor intrinsic alterations; however, their effects on antitumor immunity remain unclear. A recent advance is the development of next-generation BETi that are potent and display a favorable half-life. Here, we tested the BETi, PLX51107, for immune-based effects on tumor growth in BRAF V600E melanoma syngeneic models. PLX51107 delayed melanoma tumor growth and increased activated, proliferating, and functional CD8+ T cells in tumors leading to CD8+ T-cell-mediated tumor growth delay. PLX51107 decreased Cox2 expression, increased dendritic cells, and lowered PD-L1, FasL, and IDO-1 expression in the tumor microenvironment. Importantly, PLX51107 delayed the growth of tumors that progressed on anti-PD-1 therapy; a response associated with decreased Cox2 levels, decreased PD-L1 expression on non-immune cells, and increased intratumoral CD8+ T cells. Thus, next-generation BETi represent a potential first-line and secondary treatment strategy for metastatic melanoma by eliciting effects, at least in part, on antitumor CD8+ T cells.
Collapse
Affiliation(s)
- Dan A. Erkes
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Conroy O. Field
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Claudia Capparelli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Manoela Tiago
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J. Purwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam C. Berger
- Department of Surgical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Edward J. Hartsough
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19107
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, Melanoma Research Center, The Wistar Institute, PA 19104, USA
| | - Andrew E. Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
41
|
Elwakeel E, Brüne B, Weigert A. PGE 2 in fibrosis and cancer: Insights into fibroblast activation. Prostaglandins Other Lipid Mediat 2019; 143:106339. [PMID: 31100473 DOI: 10.1016/j.prostaglandins.2019.106339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Fibroblasts are the essential cellular architects of connective tissue and as such are crucial cells in contributing to organ homeostasis. While fulfilling important repair functions during tissue regeneration upon wounding, chronic fibroblast activation provokes pathological organ fibrosis and promotes neoplastic disease progression. Identifying targets that may serve to therapeutically terminate fibroblast activation is therefore desirable. Among the mediators that may be relevant in this context is the prostanoid prostaglandin E2 (PGE2) that is produced during inflammatory settings, where pathological fibrosis occurs. Here, we summarize current, in part controversial, concepts on the impact of PGE2 on fibroblast activation in fibrotic diseases including cancer, and discuss these findings in the context of the evolving concept of fibroblast heterogeneity.
Collapse
Affiliation(s)
- Eiman Elwakeel
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany.
| |
Collapse
|
42
|
Abstract
The tumor immune landscape gained considerable interest based on the knowledge that genetic aberrations in cancer cells alone are insufficient for tumor development. Macrophages are basically supporting all hallmarks of cancer and owing to their tremendous plasticity they may exert a whole spectrum of anti-tumor and pro-tumor activities. As part of the innate immune response, macrophages are armed to attack tumor cells, alone or in concert with distinct T cell subsets. However, in the tumor microenvironment, they sense nutrient and oxygen gradients, receive multiple signals, and respond to this incoming information with a phenotype shift. Often, their functional output repertoire is shifted to become tumor-supportive. Incoming and outgoing signals are chemically heterogeneous but also comprise lipid mediators. Here, we review the current understanding whereby arachidonate metabolites derived from the cyclooxygenase and lipoxygenase pathways shape the macrophage phenotype in a tumor setting. We discuss these findings in the context of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) expression and concomitant prostaglandin E2 (PGE2) formation. We elaborate the multiple actions of this lipid in affecting macrophage biology, which are sensors for and generators of this lipid. Moreover, we summarize properties of 5-lipoxygenases (ALOX5) and 15-lipoxygenases (ALOX15, ALOX15B) in macrophages and clarify how these enzymes add to the role of macrophages in a dynamically changing tumor environment. This review will illustrate the potential routes how COX-2/mPGES-1 and ALOX5/-15 in macrophages contribute to the development and progression of a tumor.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Elisabeth Strack
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ryan G Snodgrass
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I/Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.
| |
Collapse
|
43
|
Alizadeh R, Aghsaie Fard Z. Renal impairment and analgesia: From effectiveness to adverse effects. J Cell Physiol 2019; 234:17205-17211. [PMID: 30916404 DOI: 10.1002/jcp.28506] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
Abstract
Kidney pain is one of the clinically significant features of renal dysfunction. Mild to severe pain is seen in the lower back area. Painkillers are mostly recommended in these cases to relieve the symptom. Yet, several analgesics are associated with side effects that can worsen the state of the disease. This review is based on the studies conducted in these aspects analgesics used to treat kidney pain and their effectiveness, renal consequences of postoperative analgesia, and pharmacogenetics of these palliatives are briefly summarized in this paper.
Collapse
Affiliation(s)
- Reza Alizadeh
- Department of Anesthesiology and Intensive Care, AJA University of Medical Sciences, Tehran, Iran
| | - Ziba Aghsaie Fard
- Department of Internal Medicine, School of Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Destefanis F, Fiorito V, Altruda F, Tolosano E. Investigating the Connection Between Endogenous Heme Accumulation and COX2 Activity in Cancer Cells. Front Oncol 2019; 9:162. [PMID: 30941311 PMCID: PMC6433962 DOI: 10.3389/fonc.2019.00162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Heme, an iron-containing porphyrin, is fundamental for a variety of functions in cell homeostasis. Nevertheless, recent data indicate that dysregulation of heme metabolism might promote tumorigenesis. The intracellular heme pool is finely regulated through the control of heme synthesis, degradation, incorporation into hemoproteins and trafficking across membranes. All these processes might be potentially targeted to alter endogenous heme content in order to counteract cancer growth. Nevertheless, these putative therapeutic interventions have to take into account the possibility of undesired side effects, such as the over-activation of heme-dependent enzymes involved in cancer. Among them, cyclooxygenase-2 is a prostaglandin-producing hemoprotein, induced during inflammation and in different types of tumor, particularly in colorectal cancer. The aim of this study was to evaluate whether modulation of endogenous heme may affect cyclooxygenase-2 expression and activity, taking advantage of two different approaches able to alter heme levels: the silencing of the heme exporter Feline Leukemia Virus subgroup C receptor 1 and the induction of heme synthesis by 5-aminolevulinic acid administration. Our data demonstrate that the down-regulation of the heme exporter in colorectal cancer cells does not affect cyclooxygenase-2 expression and activity. Conversely, 5-aminolevulinic acid administration results in decreased cyclooxygenase-2 expression. However, the overall cyclooxygenase-2 enzymatic activity is maintained. The present work sheds light on the complex modulation of cyclooxygenase-2 by endogenous heme and support the idea that targeting heme metabolism could be a valuable therapeutic option against cancer.
Collapse
Affiliation(s)
- Francesca Destefanis
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Veronica Fiorito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
45
|
Prieto P, Jaén RI, Calle D, Gómez-Serrano M, Núñez E, Fernández-Velasco M, Martín-Sanz P, Alonso S, Vázquez J, Cerdán S, Peinado MÁ, Boscá L. Interplay between post-translational cyclooxygenase-2 modifications and the metabolic and proteomic profile in a colorectal cancer cohort. World J Gastroenterol 2019; 25:433-446. [PMID: 30700940 PMCID: PMC6350170 DOI: 10.3748/wjg.v25.i4.433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common cause of cancer death worldwide. It is broadly described that cyclooxygenase-2 (COX-2) is mainly overexpressed in CRC but less is known regarding post-translational modifications of this enzyme that may regulate its activity, intracellular localization and stability. Since metabolic and proteomic profile analysis is essential for cancer prognosis and diagnosis, our hypothesis is that the analysis of correlations between these specific parameters and COX-2 state in tumors of a high number of CRC patients could be useful for the understanding of the basis of this cancer in humans. AIM To analyze COX-2 regulation in colorectal cancer and to perform a detailed analysis of their metabolic and proteomic profile. METHODS Biopsies from both healthy and pathological colorectal tissues were taken under informed consent from patients during standard colonoscopy procedure in the University Hospital of Bellvitge (Barcelona, Spain) and Germans Trias i Pujol University Hospital (Campus Can Ruti) (Barcelona, Spain). Western blot analysis was used to determine COX-2 levels. Deglycosylation assays were performed in both cells and tumor samples incubating each sample with peptide N-glycosidase F (PNGase F). Prostaglandin E2 (PGE2) levels were determined using a specific ELISA. 1H high resolution magic angle spinning (HRMAS) analysis was performed using a Bruker AVIII 500 MHz spectrometer and proteomic analysis was performed in a nano-liquid chromatography-tandem mass spectrometer (nano LC-MS/MS) using a QExactive HF orbitrap MS. RESULTS Our data show that COX-2 has a differential expression profile in tumor tissue of CRC patients vs the adjacent non-tumor area, which correspond to a glycosylated and less active state of the protein. This fact was associated to a lesser PGE2 production in tumors. These results were corroborated in vitro performing deglycosylation assays in HT29 cell line where COX-2 protein profile was modified after PNGase F incubation, showing higher PGE2 levels. Moreover, HRMAS analysis indicated that tumor tissue has altered metabolic features vs non-tumor counterparts, presenting increased levels of certain metabolites such as taurine and phosphocholine and lower levels of lactate. In proteomic experiments, we detected an enlarged number of proteins in tumors that are mainly implicated in basic biological functions like mitochondrial activity, DNA/RNA processing, vesicular trafficking, metabolism, cytoskeleton and splicing. CONCLUSION In our colorectal cancer cohort, tumor tissue presents a differential COX-2 expression pattern with lower enzymatic activity that can be related to an altered metabolic and proteomic profile.
Collapse
Affiliation(s)
- Patricia Prieto
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Rafael I Jaén
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Daniel Calle
- Laboratorio de Imagen Médica, Hospital Universitario Gregorio Marañón, Madrid 28007, Spain
| | - María Gómez-Serrano
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Estefanía Núñez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - María Fernández-Velasco
- Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPaz), Madrid 28046, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Paloma Martín-Sanz
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Sergio Alonso
- Programa de Medicina Predictiva y Personalizada del Cáncer (PMPPC), Fundación Instituto de investigación en ciencias de la salud Germans Trias i Pujol, Ctra Can Ruti, Badalona 08916, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Sebastián Cerdán
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
| | - Miguel Ángel Peinado
- Programa de Medicina Predictiva y Personalizada del Cáncer (PMPPC), Fundación Instituto de investigación en ciencias de la salud Germans Trias i Pujol, Ctra Can Ruti, Badalona 08916, Spain
| | - Lisardo Boscá
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| |
Collapse
|
46
|
Jaén RI, Prieto P, Casado M, Martín-Sanz P, Boscá L. Post-translational modifications of prostaglandin-endoperoxide synthase 2 in colorectal cancer: An update. World J Gastroenterol 2018; 24:5454-5461. [PMID: 30622375 PMCID: PMC6319129 DOI: 10.3748/wjg.v24.i48.5454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023] Open
Abstract
The biosynthesis of prostanoids is involved in both physiological and pathological processes. The expression of prostaglandin-endoperoxide synthase 2 (PTGS2; also known as COX-2) has been traditionally associated to the onset of several pathologies, from inflammation to cardiovascular, gastrointestinal and oncologic events. For this reason, the search of selective PTGS2 inhibitors has been a focus for therapeutic interventions. In addition to the classic non-steroidal anti-inflammatory drugs, selective and specific PTGS2 inhibitors, termed coxibs, have been generated and widely used. PTGS2 activity is less restrictive in terms of substrate specificity than the homeostatic counterpart PTGS1, and it accounts for the elevated prostanoid synthesis that accompanies several pathologies. The main regulation of PTGS2 occurs at the transcription level. In addition to this, the stability of the mRNA is finely regulated through the interaction with several cytoplasmic elements, ranging from specific microRNAs to proteins that control mRNA degradation. Moreover, the protein has been recognized to be the substrate for several post-translational modifications that affect both the enzyme activity and the targeting for degradation via proteasomal and non-proteasomal mechanisms. Among these modifications, phosphorylation, glycosylation and covalent modifications by reactive lipidic intermediates and by free radicals associated to the pro-inflammatory condition appear to be the main changes. Identification of these post-translational modifications is relevant to better understand the role of PTGS2 in several pathologies and to establish a correct analysis of the potential function of this protein in diseases progress. Finally, these modifications can be used as biomarkers to establish correlations with other parameters, including the immunomodulation dependent on molecular pathological epidemiology determinants, which may provide a better frame for potential therapeutic interventions.
Collapse
Affiliation(s)
- Rafael I Jaén
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
| | - Patricia Prieto
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
| | - Marta Casado
- Department of Biomedicine, Instituto de Biomedicina de Valencia (CSIC), Valencia 46010, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, y Hepáticas y Digestivas, ISCIII, Madrid 28029, Spain
| | - Paloma Martín-Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, y Hepáticas y Digestivas, ISCIII, Madrid 28029, Spain
- Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria 35001, Spain
| | - Lisardo Boscá
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, y Hepáticas y Digestivas, ISCIII, Madrid 28029, Spain
- Unidad Asociada IIBM-ULPGC, Universidad de las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria 35001, Spain
| |
Collapse
|