1
|
Long X, Cheng S, Lan X, Wei W, Jiang D. Trends in nanobody radiotheranostics. Eur J Nucl Med Mol Imaging 2025; 52:2225-2238. [PMID: 39800806 DOI: 10.1007/s00259-025-07077-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/04/2025] [Indexed: 04/23/2025]
Abstract
As the smallest antibody fragment with specific binding affinity, nanobody-based nuclear medicine has demonstrated significant potential to revolutionize the field of precision medicine, supported by burgeoning preclinical investigations and accumulating clinical evidence. However, the visualization of nanobodies has also exposed their suboptimal biodistribution patterns, which has spurred collaborative efforts to refine their pharmacokinetic and pharmacodynamic profiles for improved therapeutic efficacy. In this review, we present clinical results that exemplify the benefits of nanobody-based molecular imaging in cancer diagnosis. Moreover, we emphasize the indispensable role of molecular imaging as a tool for evaluating and optimizing nanobodies, thereby expanding their therapeutic potential in cancer treatment in the foreseeable future.
Collapse
Affiliation(s)
- Xingru Long
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200233, China.
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 1277 Jiefang Ave., Wuhan, Hubei, 430022, China.
| |
Collapse
|
2
|
Chen JH, Zhang LW, Lin ZJ, Chen XF, Chen LC, Wang CX, Lin KY, Guo YS. The Association Between the Albumin-Bilirubin Score and Contrast-Associated Acute Kidney Injury in Patients Undergoing Elective Percutaneous Coronary Intervention. Angiology 2025; 76:487-495. [PMID: 38227840 DOI: 10.1177/00033197241228051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The albumin-bilirubin (ALBI) score is considered an effective and convenient scoring system for assessing liver function. We hypothesized that the ALBI score was predictive of contrast-associated acute kidney injury (CA-AKI) and long-term mortality in patients undergoing elective percutaneous coronary intervention (PCI). We retrospectively observed 5629 patients undergoing elective PCI. Contrast-associated acute kidney injury is defined as a 50% or 0.3 mg/dl increase in baseline serum creatinine levels within 48 h of contrast exposure. The incidence of CA-AKI was 6.2% (n = 350). After adjusting for potential confounding factors, multivariate analysis showed that the ALBI score was an independent predictor of CA-AKI (P = .002). A restricted cubic spline analysis confirmed approximately linear relationships between the ALBI score and risks of CA-AKI. Furthermore, at a median follow-up of 2.8 years, multivariate Cox regression analysis indicated that the ALBI score was an independent risk factor for long-term mortality (P < .001). The ALBI score was closely related to the occurrence of CA-AKI and long-term mortality in patients who underwent elective PCI. This score might be useful for risk stratification in high-risk patient groups to predict CA-AKI.
Collapse
Affiliation(s)
- Jun-Han Chen
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
- Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Li-Wei Zhang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
- Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Zhi-Jie Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
- Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Xiao-Fang Chen
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
- Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Li-Chuan Chen
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
- Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Chang-Xi Wang
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
- Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Kai-Yang Lin
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
- Fujian Heart Failure Center Alliance, Fuzhou, China
| | - Yan-Song Guo
- Department of Cardiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Cardiovascular Disease, Fujian Provincial Center for Geriatrics, Fujian Provincial Clinical Research Center for Severe Acute Cardiovascular Diseases, Fuzhou, China
- Fujian Heart Failure Center Alliance, Fuzhou, China
| |
Collapse
|
3
|
Xiong J, Li H, Zhang JM, Li SQ, Ge C, Zheng HX, Tan XQ, Zheng JW, He XJ, Zhu SY. Maternal serum albumin in the late trimester and birth weight: a cross-sectional study from Jiangxi, China. PLoS One 2025; 20:e0319494. [PMID: 40233027 PMCID: PMC11999123 DOI: 10.1371/journal.pone.0319494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/03/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND The links of maternal serum albumin (ALB) concentration in the late trimester and infant birth weight remain equivocal. Accordingly, we focused on the investigation of the correlation of maternal serum albumin concentration and infant birth weight among women during pregnancy in Jiangxi, China. METHODS 1214 subjects were recruited for the present cross-sectional study. Infants of low birth weight (LBW) had a weight <2500g when they are born. Albumin was categorized as <30, 30-<35 and ≥35 g/L, with a concentration of <30g/L indicating hypoproteinemia. Low birth weight and the correlations of maternal serum albumin concentration in the late trimester and infant birth weight were evaluated binary logistic regression analyses and linear regression on the basis of multiple variables, separately. RESULTS The overall prevalence of hypoproteinemia was 7.83%. Maternal serum albumin concentration in the late trimester was positively correlated to infant birth weight (β, 0.03; 95% confidence interval [CI]: 0.02, 0.04), as indicated by multivariate linear regression analyses. Besides, a negative correlation of maternal serum albumin concentration in the late trimester and low birth weight (odds ratio [OR], 0.84; 95 percent CI: 0.78, 0.91) was reported through multivariable binary logistic regression analyses, which showed consistency with the above result. In comparison to individuals in ALB < 30 g/L group of maternal serum albumin, the adjusted β and OR values of albumin for infant birth weight and low birth weight were 0.40 (95 percent CI: 0.26, 0.54) and 0.18 (95 percent CI: 0.09, 0.39), separately. Results of smoothing curve fitting confirmed the linear correlation of maternal serum albumin and infant birth weight and low birth weight. Maternal serum albumin and infant birth weight were consistent in the subgroups below: smoking habit, antenatal visits, sex of the newborn, education, maternal age, parity, hemoglobin, pre pregnancy body mass index (BMI) and gestation age at delivery. CONCLUSION A higher maternal serum albumin in the late trimester is associated with a lower risk of infant birth weight. The data suggests that maternal serum albumin in the late trimester may serve as a simple and effective tool for the assessment of the low birth weight risk in clinical practice.
Collapse
Affiliation(s)
- Jun Xiong
- The Second Affiliated Hospital of Nanchang University, NanChang, China
| | - Huan Li
- Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jian-Min Zhang
- Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Shi-Qi Li
- Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Chang Ge
- Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Hui-Xin Zheng
- Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiao-Qing Tan
- Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jia-Wei Zheng
- Nanchang University, Nanchang, China
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiao-Ju He
- The Second Affiliated Hospital of Nanchang University, NanChang, China
| | - Shu-Ying Zhu
- The Second Affiliated Hospital of Nanchang University, NanChang, China
| |
Collapse
|
4
|
Hall AM. Protein handling in kidney tubules. Nat Rev Nephrol 2025; 21:241-252. [PMID: 39762367 DOI: 10.1038/s41581-024-00914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 03/23/2025]
Abstract
The kidney proximal tubule reabsorbs and degrades filtered plasma proteins to reclaim valuable nutrients and maintain body homeostasis. Defects in this process result in proteinuria, one of the most frequently used biomarkers of kidney disease. Filtered proteins enter proximal tubules via receptor-mediated endocytosis and are processed within a highly developed apical endo-lysosomal system (ELS). Proteinuria is a strong risk factor for chronic kidney disease progression and genetic disorders of the ELS cause hereditary kidney diseases, so deepening understanding of how the proximal tubule handles proteins is crucial for translational nephrology. Moreover, the ELS is both an entry point for nephrotoxins that induce tubular damage and a target for novel therapies to prevent it. Cutting-edge research techniques, such as functional intravital imaging and computational modelling, are shedding light on spatial and integrative aspects of renal tubular protein processing in vivo, how these are altered under pathological conditions and the consequences for other tubular functions. These insights have potentially important implications for understanding the origins of systemic complications arising in proteinuric states, and might lead to the development of new ways of monitoring and treating kidney diseases.
Collapse
Affiliation(s)
- Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
McArdle Z, Singh RR, Walton SL, Moritz KM, Denton KM, Schreuder MF. Renal hypertrophy and hyperfiltration is enhanced in early acquired compared with a congenital solitary function kidney model in sheep. Clin Sci (Lond) 2025; 139:339-355. [PMID: 40014426 DOI: 10.1042/cs20243031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/02/2025] [Accepted: 02/19/2025] [Indexed: 03/01/2025]
Abstract
A congenital solitary functioning kidney (C-SFK) or an early acquired SFK (EA-SFK), due to childhood unilateral nephrectomy (UNX), increases the risk of hypertension and kidney disease early in life. Evidence suggests that children with an EA-SFK may have a higher risk of future kidney disease compared with those with a C-SFK, but the precise underlying mechanisms need further investigation. C-SFK was induced by fetal UNX at 100 days gestation (term=150 days) in male sheep fetuses, and a sham procedure was performed. At approximately one month of age, EA-SFK was induced by UNX in male lambs. At eight months of age, total kidney weight was similar in all groups due to marked hypertrophy in the C-SFK and EA-SFK groups. Blood pressure was similar in EA-SFK and sham groups but ~12 mmHg higher in the C-SFK group compared with sham. Compared with the sham group, glomerular filtration rate (GFR) was ~9% less in the EA-SFK group and ~26% less in the C-SFK. GFR was ~23% higher in EA-SFK compared with the C-SFK group. Albuminuria was ~67% higher in C-SFK sheep but similar in the EA-SFK group compared with sham sheep. However, like the C-SFK group, the renal blood flow response to nitric oxide blockade was attenuated in the EA-SFK group compared with sham. In conclusion, long-term studies are needed to determine whether the higher hyperfiltration and disturbed vasodilator balance observed in EA-SFK sheep will cause an accelerated decline in renal function with aging.
Collapse
Affiliation(s)
- Zoe McArdle
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Reetu R Singh
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Sarah L Walton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Michiel F Schreuder
- Department of Paediatric Nephrology, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Fogo AB, Harris RC. Crosstalk between glomeruli and tubules. Nat Rev Nephrol 2025; 21:189-199. [PMID: 39643696 DOI: 10.1038/s41581-024-00907-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Models of kidney injury have classically concentrated on glomeruli as the primary site of injury leading to glomerulosclerosis or on tubules as the primary site of injury leading to tubulointerstitial fibrosis. However, current evidence on the mechanisms of progression of chronic kidney disease indicates that a complex interplay between glomeruli and tubules underlies progressive kidney injury. Primary glomerular injury can clearly lead to subsequent tubule injury. For example, damage to the glomerular filtration barrier can expose tubular cells to serum proteins, including complement and cytokines, that would not be present in physiological conditions and can promote the development of tubulointerstitial fibrosis and progressive decline in kidney function. In addition, although less well-studied, increasing evidence suggests that tubule injury, whether primary or secondary, can also promote glomerular damage. This feedback from the tubule to the glomerulus might be mediated by changes in the reabsorptive capacity of the tubule, which can affect the glomerular filtration rate, or by mediators released by injured proximal tubular cells that can induce damage in both podocytes and parietal epithelial cells. Examining the crosstalk between the various compartments of the kidney is important for understanding the mechanisms underlying kidney pathology and identifying potential therapeutic interventions.
Collapse
Affiliation(s)
- Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Tennessee Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
7
|
Porter AW, Vorndran HE, Marciszyn A, Mutchler SM, Subramanya AR, Kleyman TR, Hendershot LM, Brodsky JL, Buck TM. Excess dietary sodium restores electrolyte and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron. Am J Physiol Renal Physiol 2025; 328:F173-F189. [PMID: 39556479 DOI: 10.1152/ajprenal.00192.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an acute kidney injury (AKI)-like phenotype, typified by tubular injury, elevation of kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers apoptosis, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in these rodents and that these and other phenotypes might be rectified by sodium supplementation. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and kidney injury markers in a sex-specific manner but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model and indicate that GRP170 function in kidney epithelia is essential to both maintain electrolyte balance and ER homeostasis.NEW & NOTEWORTHY Loss of the endoplasmic reticulum chaperone, GRP170, results in widespread kidney injury and induction of the unfolded protein response (UPR). We now show that sodium supplementation is able to at least partially restore electrolyte imbalance and reduce kidney injury markers in a sex-dependent manner.
Collapse
Affiliation(s)
- Aidan W Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Division of Pediatric Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hannah E Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Stephanie M Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Thomas R Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
Kulkarni K, Hussain T. Megalin: A Sidekick or Nemesis of the Kidney? J Am Soc Nephrol 2025; 36:293-300. [PMID: 39607686 PMCID: PMC11801750 DOI: 10.1681/asn.0000000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Megalin is an endocytic receptor in the proximal tubules that reabsorbs filtered proteins in the kidneys. Recycling of megalin after endocytosis and its expression on the apical plasma membrane of the proximal tubule are critical for its function. The expression of megalin in the kidney undergoes dynamic changes under physiologic and pathophysiologic conditions. Receptors and various effector signaling components regulate megalin expression and, potentially, function. Genetic manipulation and rare mutations in megalin suggest that a lack of or deficiency in megalin expression/function promotes tubular proteinuria and albuminuria. However, the role of megalin in kidney diseases associated with obesity, diabetes, hypertension, and nephrotoxicity remains unclear. To address these questions, animal and human studies have indicated megalin as a protective, injurious, and potentially urinary marker of nephropathy. This article reviews the literature on the regulation of megalin expression and the role of megalin in the pathophysiology of the kidney under experimental and clinical conditions. Moreover, this review articulates the need for studies that can clarify whether megalin can serve as a therapeutic target, in one way or the other, to treat kidney disease.
Collapse
Affiliation(s)
- Kalyani Kulkarni
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | | |
Collapse
|
9
|
Satarug S. Antioxidative Function of Zinc and Its Protection Against the Onset and Progression of Kidney Disease Due to Cadmium. Biomolecules 2025; 15:183. [PMID: 40001486 PMCID: PMC11853145 DOI: 10.3390/biom15020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Chronic kidney disease (CKD) is now the world's top seventh cause of death from a non-communicable disease, and its incidence is projected to increase further as its major risk factors, including obesity, diabetes, hypertension, and non-alcoholic fatty liver disease (NAFLD), continue to rise. Current evidence has linked the increased prevalence of CKD, diabetes, hypertension, and NAFLD to chronic exposure to the metal pollutant cadmium (Cd). Exposure to Cd is widespread because diet is the main exposure route for most people. Notably, however, the health risk of dietary Cd exposure is underappreciated, and the existing tolerable exposure guidelines for Cd do not afford health protection. New health-protective exposure guidelines are needed. From one's diet, Cd is absorbed by the intestinal epithelium from where it passes through the liver and accumulates within the kidney tubular epithelial cells. Here, it is bound to metallothionine (MT), and as it is gradually released, it induces tubular damage, tubulointerstitial inflammation and fibrosis, and nephron destruction. The present review provides an update on our knowledge of the exposure levels of Cd that are found to be associated with CKD, NAFLD, and mortality from cardiovascular disease. It discusses the co-existence of hypertension and CKD in people environmentally exposed to Cd. It highlights nuclear and mitochondrial targeting and zinc deficiency as the universal cytotoxic mechanisms of Cd. Special emphasis is placed on the novel antioxidative function of zinc involving de novo heme biosynthesis and the induced expression of heme oxygenase-1 (HO-1). Other exogenous biomolecules with promising anti-Cd toxicity are highlighted.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
10
|
Ponticelli C. Membranous Nephropathy. J Clin Med 2025; 14:761. [PMID: 39941432 PMCID: PMC11818350 DOI: 10.3390/jcm14030761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 02/16/2025] Open
Abstract
Membranous nephropathy is a glomerular disease that may be caused by exogenous risk factors in genetically predisposed individuals (primary MN) or may be associated with other autoimmune diseases, drug exposure, or cytotoxic agents (secondary MN). Primary membranous nephropathy (PMN) is an autoimmune disease in which antigens-mainly the phospholipase A2 receptor-are located in the podocytes and are targeted by circulating antibodies, leading to in situ formation of immune complexes that activate the complement system. Clinically, the disease is characterized by nephrotic syndrome (NS) and associated complications. The outcome of PMN can vary, but untreated patients with NS may progress to end-stage kidney disease (ESKD) in 35-40% of cases within 10 years. Treatment primarily aims to prevent NS complications and progression to ESKD. The most commonly used immunosuppressive drugs are rituximab, corticosteroids, cyclophosphamide, and calcineurin inhibitors. Most patients may experience an improvement of proteinuria, which can sometimes be followed by NS relapse. Fewer than 50% of patients with PMN achieve complete and stable remission. In addition to immunosuppressive therapy, antiproteinuric, anti-lipemic, and anticoagulant medicaments are often required.
Collapse
|
11
|
Ilatovskaya DV, Behr A, Staruschenko A, Hall G, Palygin O. Mechanistic Insights Into Redox Damage of the Podocyte in Hypertension. Hypertension 2025; 82:14-25. [PMID: 39534957 PMCID: PMC11655258 DOI: 10.1161/hypertensionaha.124.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Podocytes are specialized cells within the glomerular filtration barrier, which are crucial for maintaining glomerular structural integrity and convective ultrafiltration. Podocytes exhibit a unique arborized morphology with foot processes interfacing by slit diaphragms, ladder-like, multimolecular sieves, which provide size and charge selectivity for ultrafiltration and transmembrane signaling. Podocyte dysfunction, resulting from oxidative stress, dysregulated prosurvival signaling, or structural damage, can drive the development of proteinuria and glomerulosclerosis in hypertensive nephropathy. Functionally, podocyte injury leads to actin cytoskeleton rearrangements, foot process effacement, dysregulated slit diaphragm protein expression, and impaired ultrafiltration. Notably, the renin-angiotensin system plays a pivotal role in podocyte function, with beneficial AT2R (angiotensin receptor 2)-mediated nitric oxide (NO) signaling to counteract AT1R (angiotensin receptor 1)-driven calcium (Ca2+) influx and oxidative stress. Disruption of this balance contributes significantly to podocyte dysfunction and drives albuminuria, a marker of kidney damage and overall disease progression. Oxidative stress can also lead to sustained ion channel-mediated Ca2+ influx and precipitate cytoskeletal disorganization. The complex interplay between GPCR (G-protein coupled receptor) signaling, ion channel activation, and redox injury pathways underscores the need for additional research aimed at identifying targeted therapies to protect podocytes and preserve glomerular function. Earlier detection of albuminuria and podocyte injury through routine noninvasive diagnostics will also be critical in populations at the highest risk for the development of hypertensive kidney disease. In this review, we highlight the established mechanisms of oxidative stress-mediated podocyte damage in proteinuric kidney diseases, with an emphasis on a hypertensive renal injury. We will also consider emerging therapies that have the potential to selectively protect podocytes from redox-related injury.
Collapse
Affiliation(s)
- Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Amanda Behr
- Department of Medical Illustration, College of Allied Health Sciences, Augusta University, Augusta, GA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| | - Gentzon Hall
- Division of Nephrology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC
- Department of Medicine, Division of Nephrology, Duke Molecular Physiology Institute, Duke University, Durham, NC
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
12
|
Xu L, Chen S, Fan Q, Zhu Y, Mei H, Wang J, Yu H, Chen Y, Liu F. N6-methyladenosine regulates metabolic remodeling in kidney aging through transcriptional regulator GLIS1. BMC Biol 2024; 22:302. [PMID: 39736678 DOI: 10.1186/s12915-024-02100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Age-related kidney impairment, characterized by tubular epithelial cell senescence and renal fibrosis, poses a significant global public health threat. Although N6-methyladenosine (m6A) methylation is implicated in various pathological processes, its regulatory mechanism in kidney aging remains unclear. METHODS An m6A-mRNA epitranscriptomic microarray was performed to identify genes with abnormal m6A modifications in aged human kidney tissues. Histological, immunohistochemical, and immunofluorescent staining, western blot, and RT-qPCR were employed to examine the biological functions of targeted genes and m6A methyltransferases both in vivo and in vitro. RNA immunoprecipitation, chromatin immunoprecipitation, ribosomal immunoprecipitation, and luciferase reporter assays were used to investigate the specific interactions between m6A methyltransferases, targeted genes, and their downstream signals. RESULTS Significantly lower m6A modification levels were observed in aged human kidney tissues. GLIS1, identified as a "metabolic remodeling factor," showed significantly reduced protein levels with abnormal m6A modifications. The downregulation of GLIS1 induced cell senescence and renal fibrosis by shifting metabolic remodeling from fatty acid oxidation (FAO) to glycolysis. Additionally, the methylated GLIS1 mRNA was regulated by the abnormal expression of METTL3 and YTHDF1. Silencing METTL3/YTHDF1 weakened the translation of GLIS1 and disrupted the balance between FAO and glycolysis. CONCLUSIONS Our findings suggest that the m6A modification of GLIS1, activated by METTL3 and reduced in a YTHDF1-dependent manner, leads to kidney aging by regulating the metabolic shift from FAO to glycolysis. This mechanism provides a promising therapeutic target for kidney aging.
Collapse
Affiliation(s)
- Li Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, China
| | - Shuo Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Gynecologic Oncology Research Office, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangzhou, 510150, China
| | - Qiuling Fan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yonghong Zhu
- Department of Nephrology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510245, Guangdong, China
| | - Hang Mei
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hongyuan Yu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Ying Chen
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Fan Liu
- Department of Orthodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
13
|
Tsao HM, Lai TS, Chang YC, Hsiung CN, Tsai IJ, Chou YH, Wu VC, Lin SL, Chen YM. A multi-trait GWAS identifies novel genes influencing albuminuria. Nephrol Dial Transplant 2024; 40:123-132. [PMID: 38772745 DOI: 10.1093/ndt/gfae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Albuminuria is common and is associated with increased risks of end-stage kidney disease and cardiovascular diseases, yet its underlying mechanism remains obscure. Previous genome-wide association studies (GWAS) for albuminuria did not consider gene pleiotropy and primarily focused on European ancestry populations. This study adopted a multi-trait analysis of GWAS (MTAG) approach to jointly analyze two vital kidney traits, estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR) to identify and prioritize the genes associated with UACR. METHODS Data from the Taiwan Biobank from 2012 to 2023 were analyzed. GWAS of UACR and eGFR were performed separately and the summary statistics from these GWAS were jointly analyzed using MTAG. The polygenic risk scores (PRS) of UACR were constructed for validation. The UACR-associated loci were further fine-mapped and prioritized based on their deleteriousness, eQTL associations and relatedness to Mendelian kidney diseases. RESULTS MTAG analysis of the UACR revealed 15 genetic loci, including 12 novel loci. The PRS for UACR was significantly associated with urinary albumin level (P < .001) and microalbuminuria (P = .001-.045). A list of priority genes was generated. Twelve genes with high priority included the albumin endocytic receptor gene LRP2 and ciliary gene IFT172. CONCLUSIONS The findings of this multi-trait GWAS suggest that primary cilia play a role in sensing mechanical stimuli, leading to albumin endocytosis. The priority list of genes warrants further translational investigation to reduce albuminuria.
Collapse
Affiliation(s)
- Hsiao-Mei Tsao
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tai-Shuan Lai
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Program in Precision Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - I-Jung Tsai
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shuei-Liong Lin
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Bei-Hu branch, Taipei, Taiwan
| |
Collapse
|
14
|
Ferrannini E, Solini A, Natali A. Association between glycosuria and albuminuria in patients with type 2 diabetes from the CREDENCE trial: a mechanistic link? BMJ Open Diabetes Res Care 2024; 12:e004654. [PMID: 39631845 DOI: 10.1136/bmjdrc-2024-004654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
| | - Anna Solini
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Min K, Matsumoto Y, Asakura M, Ishihara M. Rediscovery of the implication of albuminuria in heart failure: emerging classic index for cardiorenal interaction. ESC Heart Fail 2024; 11:3470-3487. [PMID: 38725278 PMCID: PMC11631258 DOI: 10.1002/ehf2.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 12/12/2024] Open
Abstract
The development of new drugs and device therapies has led to remarkable advancements in heart failure (HF) treatment in the past couple of decades. However, it becomes increasingly evident that guideline-directed medical therapy cannot be one-size-fits-all across a wide range of ejection fractions (EFs) and various aetiologies. Therefore, classifications solely relying on EF and natriuretic peptide make optimization of treatment challenging, and there is a growing exploration of new indicators that enable efficient risk stratification of HF patients. Particularly when considering HF as a multi-organ interaction syndrome, the cardiorenal interaction plays a central role in its pathophysiology, and albuminuria has gained great prominence as its biomarker, independent from glomerular filtration rate. Albuminuria has been shown to exhibit a linear correlation with cardiovascular disease and HF prognosis in multiple epidemiological studies, ranging from normal (<30 mg/g) to high levels (>300 mg/g). However, on the other hand, it is only recently that the details of the pathological mechanisms that give rise to albuminuria have begun to be elucidated, including the efficient compaction/tightening of the glomerular basement membrane by podocytes and mesangial cells. Interestingly, renal disease, diabetes, and HF damage these components associated with albuminuria, and experimental models have demonstrated that recently developed HF drugs reduce albuminuria by ameliorating these pathological phenotypes. In this review, facing the rapid expansion of horizons in HF treatment, we aim to clarify the current understanding of the pathophysiology of albuminuria and explore the comprehensive understanding of albuminuria by examining the clinically established evidence to date, the pathophysiological mechanisms leading to its occurrence, and the outcomes of clinical studies utilizing various drug classes committed to specific pathological mechanisms to put albuminuria as a novel axis to depict the pathophysiology of HF.
Collapse
Affiliation(s)
- Kyung‐Duk Min
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| | - Yuki Matsumoto
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| | - Masanori Asakura
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal MedicineHyogo Medical University1‐1 Mukogawa‐choNishinomiya663‐8501HyogoJapan
| |
Collapse
|
16
|
Jiang Z, Zhu X, Jiang H, Zhao D, Su F. Prognostic nutritional index and albuminuria in adults aged 20 years and above: a cross-sectional analysis in the United States. Front Nutr 2024; 11:1462789. [PMID: 39600722 PMCID: PMC11588494 DOI: 10.3389/fnut.2024.1462789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background and objective Albuminuria is an important early marker of kidney damage and progression of chronic kidney disease and is also linked to several chronic systemic diseases. The Prognostic Nutritional Index (PNI) is widely used in the assessment of multiple diseases. However, research dealing with the relationship between PNI and albuminuria remains scarce. This research project aims to examine this association. Methods and materials The present study employed data from the National Health and Nutrition Examination Survey (NHANES) between 2017 and 2020, including 7,737 adult participants who met the study criteria. PNI was analyzed as a quartile-categorized variable. Multivariable regression models and smoothing curve fitting were adopted to examine the relationship between PNI and albuminuria. In order to ascertain the stability of the association across different populations, subgroup analyses were performed. Results The study found a statistically significant inverse relationship between higher PNI levels and the prevalence of albuminuria. The fully adjusted model indicates that a one-unit increase in PNI is associated with a 4% reduced odds of albuminuria prevalence [0.96 (0.93, 0.98)]. Quartile analysis showed a stable inverse relationship, with the highest PNI quartile having the significantly lower odds of albuminuria prevalence [0.76 (0.62, 0.94), p for trend = 0.0004]. Smooth curve fitting and two-piecewise linear regression models indicated a nonlinear relationship between PNI and albuminuria, with a turning point at 42. Subgroup analysis confirmed the reliability of the inverse relationship between PNI and albuminuria across all groups. Conclusion The findings of this study indicated that higher PNI levels are significantly inversely related to the odds prevalence of albuminuria. PNI could serve as an important predictor for the occurrence of albuminuria. Further prospective studies are needed to validate this association.
Collapse
Affiliation(s)
- Zhimeng Jiang
- Graduate School of Hebei North University, Zhangjiakou, China
- Department of Gastroenterology, Air Force Medical Center, Chinese People’s Liberation Army, Beijing, China
| | - Xingyu Zhu
- Graduate School of Hebei North University, Zhangjiakou, China
- Department of Cardiovascular Medicine, Air Force Medical Center, Chinese People’s Liberation Army, Beijing, China
| | - Huixin Jiang
- Haiyuan College of Kunming Medical University, Kunming, China
| | - Donglin Zhao
- Graduate School of Hebei North University, Zhangjiakou, China
- Department of Gastroenterology, Air Force Medical Center, Chinese People’s Liberation Army, Beijing, China
| | - Feifei Su
- Department of Cardiovascular Medicine, Air Force Medical Center, Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
17
|
Satarug S. Urinary N-acetylglucosaminidase in People Environmentally Exposed to Cadmium Is Minimally Related to Cadmium-Induced Nephron Destruction. TOXICS 2024; 12:775. [PMID: 39590955 PMCID: PMC11598048 DOI: 10.3390/toxics12110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Exposure to even low levels of the environmental pollutant cadmium (Cd) increases the risk of kidney damage and malfunction. The body burden of Cd at which these outcomes occur is not, however, reliably defined. Here, multiple-regression and mediation analyses were applied to data from 737 non-diabetic Thai nationals, of which 9.1% had an estimated glomerular filtration rate (eGFR) ≤ 60 mL/min/1.73 m2 (a low eGFR). The excretion of Cd (ECd), and renal-effect biomarkers, namely β2-microglobulin (Eβ2M), albumin (Ealb), and N-acetylglucosaminidase (ENAG), were normalized to creatinine clearance (Ccr) as ECd/Ccr Eβ2M/Ccr, Ealb/Ccr, and ENAG/Ccr. After adjustment for potential confounders, the risks of having a low eGFR and albuminuria rose twofold per doubling ECd/Ccr rates and they both varied directly with the severity of β2-microglobulinuria. Doubling ECd/Ccr rates also increased the risk of having a severe tubular injury, evident from ENAG/Ccr increments [POR = 4.80, p = 0.015]. ENAG/Ccr was strongly associated with ECd/Ccr in both men (β = 0.447) and women (β = 0.394), while showing a moderate inverse association with eGFR only in women (β = -0.178). A moderate association of ENAG/Ccr and ECd/Ccr was found in the low- (β = 0.287), and the high-Cd body burden groups (β = 0.145), but ENAG/Ccr was inversely associated with eGFR only in the high-Cd body burden group (β = -0.223). These discrepancies together with mediation analysis suggest that Cd-induced nephron destruction, which reduces GFR and the tubular release of NAG by Cd, involves different mechanisms and kinetics.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
18
|
Ralph DL, Ha D, Lei H, Priver TS, Smith SD, McFarlin BE, Schwindt S, Pandya D, Koepsell H, Pastor-Soler NM, Edwards A, McDonough AA. Potassium-Alkali-Enriched Diet, Hypertension, and Proteinuria following Uninephrectomy. J Am Soc Nephrol 2024; 35:1330-1350. [PMID: 38913441 PMCID: PMC11452139 DOI: 10.1681/asn.0000000000000420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
Key Points A K-alkali–enriched diet blunted post-uninephrectomy hypertension and facilitated acid clearance by suppressing Na+ reabsorption. Uninephrectomy-associated proteinuria could be attributed to elevated single-nephron GFR and downregulation of megalin, which reduced fractional protein endocytosis. Background Losing or donating a kidney is associated with risks of developing hypertension and albuminuria. Few studies address mechanisms or interventions. We investigate the potential benefits of a K+- alkali–enriched diet and the mechanisms underlying proteinuria. Methods Male Sprague Dawley rats were fed either a 2% NaCl+0.95% KCl diet (HNa-LK) or a 0.74% NaCl+3% K+-alkali diet (HK-alk) for 3 weeks before uninephrectomy and then maintained on respective diets for 12 weeks. BP (by tail-cuff), urine, blood, and kidney proteins were analyzed before and after uninephrectomy. Results Before uninephrectomy, HK-alk–fed versus HNa-LK–fed rats exhibited similar BPs and plasma [K+], [Na+], but lower proximal (NHE3, sodium bicarbonate cotransporter 1, NaPi2) and higher distal (NCC, ENaC, and pendrin) transporter abundance, a pattern facilitating K+ and HCO3− secretion. After uninephrectomy, single-nephron GFR increased 50% and Li+ clearance doubled with both diets; in HK-alk versus HNa-LK, the increase in BP was less and ammoniagenesis was lower, abundance of proximal tubule transporters remained lower, ENaC-α fell, and NCCp increased, consistent with K+ conservation. After uninephrectomy, independent of diet, albuminuria increased eight-fold and abundance of endocytic receptors was reduced (megalin by 44%, disabled homolog 2 by 25%–35%) and kidney injury molecule-1 was increased. Conclusions The K-alkali–enriched diet blunted post-uninephrectomy hypertension and facilitated acid clearance by suppressing proximal Na+ transporters and increasing K+-alkali secretion. Furthermore, uninephrectomy-associated proteinuria could be attributed, at least in part, to elevated single-nephron GFR coupled with downregulation of megalin, which reduced fractional protein endocytosis and Vmax. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_07_31_ASN0000000000000420.mp3
Collapse
Affiliation(s)
- Donna L. Ralph
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Darren Ha
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hillmin Lei
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Taylor S. Priver
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Scotti D. Smith
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brandon E. McFarlin
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Seth Schwindt
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Drishti Pandya
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hermann Koepsell
- Institute for Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Nuria M. Pastor-Soler
- Division of Nephrology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Alicia A. McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
19
|
Shi Z, Li X, Zhang L, Xie J, Zhong F, Guo Z, Gao Z, Wang J, Mahto RK, Li Y, Wang S, Chang B, Stanton RC, Yang J. Alterations of urine microRNA-7977/G6PD level in patients with diabetic kidney disease and its association with dysfunction of albumin-induced autophagy in proximal epithelial tubular cells. Am J Physiol Endocrinol Metab 2024; 327:E512-E523. [PMID: 39140974 PMCID: PMC11482262 DOI: 10.1152/ajpendo.00399.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Diabetic kidney disease (DKD) remains as one of the leading long-term complications of type 2 diabetic mellitus (T2DM). Studies have shown that decreased expression of glucose-6-phosphate dehydrogenase (G6PD) plays an important role in DKD. However, the upstream and downstream pathways of G6PD downregulation leading to DKD have not been elucidated. We conducted a series of studies including clinical study, animal studies, and in vitro studies to explore this. First, a total of 90 subjects were evaluated including 30 healthy subjects, 30 patients with T2DM, and 30 patients with DKD. The urinary G6PD activity and its association with the clinical markers were analyzed. Multivariate linear regression analysis was used to analyze the risk factors of urinary G6PD in these patients. Then, microRNAs that were differentially expressed in urine and could bind and degrade G6PD were screened and verified in patients with DKD. After that, high glucose (HG)-cultured human kidney cells (HK-2) and Zucker diabetic fatty (ZDF) rats were used to test the roles of miR-7977/G6PD/albumin-induced autophagy in DKD. Beclin and P62 were used as markers of kidney autophagy indicators. A dual-luciferase reporter assay system was used to test the binding of G6PD by mir-7977. The plasma and urinary G6PD activity were decreased significantly in patients with DKD, accompanied by increased urinary mir-7977 level. The fasting plasma glucose (FPG), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and urinary albumin excretion were independent predictors of urinary G6PD activity, according to multiple linear regression analysis. The increased expression of miR-7977 and decreased expression of G6PD were also found in the kidney of ZDF rats with early renal tubular damage. The correlation analysis showed that beclin protein expression levels were positively correlated with kidney G6PD activity, whereas P62 protein expression was negatively correlated with kidney G6PD activity in rats. In HK-2 cells cultured with normal situation, a low level of albumin could induce autophagy along with the stimulation of G6PD, although this was impaired under high glucose. Overexpression of G6PD reversed albumin-induced autophagy in HK-2 cells under high glucose. Further study revealed that G6PD was a downstream target of miR-7977. Inhibition of miR-7977 expression led to significantly increased expression of G6PD and reversed the effects of high glucose on albumin-induced autophagy. In conclusion, our study supports a new mechanism of G6PD downregulation in DKD. Therapeutic measures targeting the miR-7977/G6PD/autophagy signaling pathway may help in the prevention and treatment of DKD.NEW & NOTEWORTHY This study provides new evidence that reduced glucose-6-phosphate dehydrogenase (G6PD) may damage the endocytosis of renal tubular epithelial cells by reducing albumin-induced autophagy. More importantly, for the first time, our study has provided evidence from humans that the decrease in urinary G6PD activity is positively associated with renal injury, and abnormal glucose and lipid metabolism may be important reasons for reduced G6PD levels. Increased miR-7977 may at least in part explain the downregulation of G6PD.
Collapse
Affiliation(s)
- Zhenzhen Shi
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology; Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
- Characteristics Medical Center of Chinese People's Armed Police Force, Tianjin, People's Republic of China
| | - Xinran Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology; Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Liyi Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jinlan Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Feifei Zhong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhenhong Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhongai Gao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jingyu Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Roshan Kumar Mahto
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuan Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shenglan Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Baocheng Chang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Robert C Stanton
- Kidney and Hypertension Section, Joslin Diabetes Center, Boston, Massachusetts, United States
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Juhong Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology; Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|
20
|
Martins AC, Oshiro MY, Albericio F, de la Torre BG. Food and Drug Administration (FDA) Approvals of Biological Drugs in 2023. Biomedicines 2024; 12:1992. [PMID: 39335511 PMCID: PMC11428688 DOI: 10.3390/biomedicines12091992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
An increase in total drug (small molecules and biologics) approvals by the Food and Drug Administration (FDA) was seen in 2023 compared with the previous year. Cancer remained the disease most targeted by monoclonal antibodies (mAbs), followed by autoimmune conditions. Our data reveal the prevalence of approvals for biologics even during years when the total number of authorizations was low, such as in 2022. Over half the drugs that received the green light in 2023 benefited from expedited programs, as the incidence of many diseases increased. In addition, over half of the biologics approved received Orphan Drug Designation from the FDA. This narrative review delves into details of the most significant approvals in 2023, including mAbs, enzymes, and proteins, explaining their mechanisms of action, differences from previous drugs, placebo, and standards of care, and outcomes in clinical trials. Given the varying number of drugs authorized annually by the U.S. health authority, this review also examines the limits of external influences over the FDA's decisions and independence regarding drug approvals and withdrawals.
Collapse
Affiliation(s)
- Alexander C Martins
- School of Health Sciences, UAM, Universidade Anhembi-Morumbi, São Paulo 03101-001, Brazil
- Medical Information Department, Thermo Fisher Scientific, São Paulo 4542011, Brazil
| | - Mariana Y Oshiro
- School of Health Sciences, UAM, Universidade Anhembi-Morumbi, São Paulo 03101-001, Brazil
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Beatriz G de la Torre
- KRISP, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
21
|
Tan SPF, Tillmann A, Murby SJ, Rostami-Hodjegan A, Scotcher D, Galetin A. Albumin-Mediated Drug Uptake by Organic Anion Transporter 1/3 Is Real: Implications for the Prediction of Active Renal Secretion Clearance. Mol Pharm 2024; 21:4603-4617. [PMID: 39166754 PMCID: PMC11372837 DOI: 10.1021/acs.molpharmaceut.4c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Modulation of the transport-mediated active uptake by human serum albumin (HSA) for highly protein-bound substrates has been reported and improved the in vitro-to-in vivo extrapolation (IVIVE) of hepatic clearance. However, evidence for the relevance of such a phenomenon in the case of renal transporters is sparse. In this study, transport of renal organic anion transporter 1 or 3 (OAT1/3) substrates into conditionally immortalized proximal tubular epithelial cells transduced with OAT1/3 was measured in the presence and absence of 1 and 4% HSA while keeping the unbound substrate concentration constant (based on measured fraction unbound, fu,inc). In the presence of 4% HSA, the unbound intrinsic active uptake clearance (CLint,u,active) of six highly protein-bound substrates increased substantially relative to the HSA-free control (3.5- to 122-fold for the OAT1 CLint,u,active, and up to 28-fold for the OAT3 CLint,u,active). The albumin-mediated uptake effect (fold increase in CLint,u,active) was more pronounced with highly bound substrates compared to no effect seen for weakly protein-bound substrates adefovir (OAT1-specific) and oseltamivir carboxylate (OAT3-specific). The relationship between OAT1/3 CLint,u,active and fu,inc agreed with the facilitated-dissociation model; a relationship was established between the albumin-mediated fold change in CLint,u,active and fu,inc for both the OAT1 and OAT3, with implications for IVIVE modeling. The relative activity factor and the relative expression factor based on global proteomic quantification of in vitro OAT1/3 expression were applied for IVIVE of renal clearance. The inclusion of HSA improved the bottom-up prediction of the level of OAT1/3-mediated secretion and renal clearance (CLsec and CLr), in contrast to the underprediction observed with the control (HSA-free) scenario. For the first time, this study confirmed the presence of the albumin-mediated uptake effect with renal OAT1/3 transporters; the extent of the effect was more pronounced for highly protein-bound substrates. We recommend the inclusion of HSA in routine in vitro OAT1/3 assays due to considerable improvements in the IVIVE of CLsec and CLr.
Collapse
Affiliation(s)
- Shawn Pei Feng Tan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Annika Tillmann
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Susan J Murby
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
- Certara Predictive Technologies (CPT), Certara Inc., 1 Concourse Way, Sheffield S1 2BJ, U.K
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
22
|
Xin W, Gong S, Chen Y, Yao M, Qin S, Chen J, Zhang A, Yu W, Zhou S, Zhang B, Gu J, Zhao J, Huang Y. Self-Assembling P38 Peptide Inhibitor Nanoparticles Ameliorate the Transition from Acute to Chronic Kidney Disease by Suppressing Ferroptosis. Adv Healthc Mater 2024; 13:e2400441. [PMID: 38775779 DOI: 10.1002/adhm.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Accumulating evidence highlights p38 as a crucial factor highly activated during the process of acute kidney injury (AKI), but the application of p38 inhibitor in AKI is quite limited due to the low efficiency and poor kidney-targeting ability. Herein, a novel self-assembling peptide nanoparticle with specific p38-inhibiting activity is constructed, which linked mitogen-activated protein kinase kinase 3b (MKK3b), the functional domain of p38, with the cell-penetrating TAT sequence, ultimately self-assembling into TAT-MKK3b nanoparticles (TMNPs) through tyrosinase oxidation. Subsequent in vitro and in vivo studies demonstrated that TMNPs preferably accumulated in the renal tubular epithelial cells (RTECs) through forming protein coronas by binding to albumin, and strongly improved the reduced renal function of ischemia-reperfusion injury (IRI)-induced AKI and its transition to chronic kidney disease (CKD). Mechanically, TMNPs inhibited ferroptosis via its solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) axis-inducing capacity and synergistic potent antioxidant property in AKI. The findings indicated that the multifunctional TMNPs exhibited renal targeting, ROS-scavenging, and ferroptosis-mitigating capabilities, which may serve as a promising therapeutic agent for the treatment of AKI and its progression to CKD.
Collapse
Affiliation(s)
- Wang Xin
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Shuiqin Gong
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Mengying Yao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Shaozong Qin
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jing Chen
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Aihong Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Wenrui Yu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Siyan Zhou
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Bo Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jun Gu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Science, Peking University, Beijing, 100871, China
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Yinghui Huang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| |
Collapse
|
23
|
Tang M, Berg AH, Zheng H, Rhee EP, Allegretti AS, Nigwekar SU, Karumanchi SA, Lash JP, Kalim S. Glycated Albumin and Adverse Clinical Outcomes in Patients With CKD: A Prospective Cohort Study. Am J Kidney Dis 2024; 84:329-338. [PMID: 38518919 PMCID: PMC11344690 DOI: 10.1053/j.ajkd.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 03/24/2024]
Abstract
RATIONALE & OBJECTIVE Hemoglobin A1c (HbA1c) is widely used to estimate glycemia, yet it is less reliable in patients with chronic kidney disease (CKD). There is growing interest in the complementary use of glycated albumin (GA) to improve glycemic monitoring and risk stratification. However, whether GA associates with clinical outcomes in a non-dialysis-dependent CKD population remains unknown. STUDY DESIGN Prospective cohort study. SETTING & PARTICIPANTS 3,110 participants with CKD from the Chronic Renal Insufficiency Cohort study. EXPOSURE Baseline GA levels. OUTCOME Incident end-stage kidney disease (ESKD), cardiovascular disease (CVD) events, and all-cause mortality. ANALYTICAL APPROACH Cox proportional hazards regression. RESULTS Participant characteristics included mean age 59.0±10.8 SD years; 1,357 (43.6%) female; and 1,550 (49.8%) with diabetes. The median GA was 18.7% (IQR, 15.8%-23.3%). During an average 7.9-year follow-up, there were 980 ESKD events, 968 CVD events, and 1,084 deaths. Higher GA levels were associated with greater risks of all outcomes, regardless of diabetes status: hazard ratios for ESKD, CVD, and death among participants with the highest quartile compared with quartile 2 (reference) were 1.42 (95% CI, 1.19-1.69), 1.67 (95% CI, 1.39-2.01), and 1.63 (95% CI, 1.37-1.94), respectively. The associations with CVD and death appeared J-shaped, with increased risk also seen at the lowest GA levels. Among patients with coexisting CKD and diabetes, the associations of GA with outcomes remained significant even after adjusting for HbA1c. For each outcome, we observed a significant increase in the fraction of new prognostic information when both GA and HbA1c were added to models. LIMITATIONS Lack of longitudinal GA measurements; and HbA1c measurements were largely unavailable in participants without diabetes. CONCLUSIONS Among patients with CKD, GA levels were independently associated with risks of ESKD, CVD, and mortality, regardless of diabetes status. GA added prognostic value to HbA1c among patients with coexisting CKD and diabetes. PLAIN-LANGUAGE SUMMARY Hemoglobin A1c (HbA1c) is widely used to estimate glycemia, yet it is less reliable in patients with chronic kidney disease (CKD). There is growing interest in the complementary use of glycated albumin (GA) to improve glycemic monitoring and risk stratification. However, whether GA associates with clinical outcomes in a non-dialysis-dependent CKD population remains unknown. In this cohort study of 3,110 individuals with non-dialysis-dependent CKD, GA levels were independently associated with risks of end-stage kidney disease, cardiovascular disease (CVD), and mortality. The associations with CVD and mortality appeared to be J-shaped. Among patients with coexisting CKD and diabetes, GA added prognostic value to HbA1c. Thus, GA may be a valuable complementary test to HbA1c in patients with CKD.
Collapse
Affiliation(s)
- Mengyao Tang
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Anders H Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hui Zheng
- Center for Biostatistics, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eugene P Rhee
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew S Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sagar U Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - S Ananth Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - James P Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
24
|
Marumo T, Yoshida N, Inoue N, Yamanouchi M, Ubara Y, Urakami S, Fujii T, Takazawa Y, Ohashi K, Kawarazaki W, Nishimoto M, Ayuzawa N, Hirohama D, Nagae G, Fujimoto M, Arai E, Kanai Y, Hoshino J, Fujita T. Aberrant proximal tubule DNA methylation underlies phenotypic changes related to kidney dysfunction in patients with diabetes. Am J Physiol Renal Physiol 2024; 327:F397-F411. [PMID: 38961842 DOI: 10.1152/ajprenal.00124.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Epigenetic mechanisms are considered to contribute to diabetic nephropathy by maintaining memory of poor glycemic control during the early stages of diabetes. However, DNA methylation changes in the human kidney are poorly characterized, because of the lack of cell type-specific analysis. We examined DNA methylation in proximal tubules (PTs) purified from patients with diabetic nephropathy and identified differentially methylated CpG sites, given the critical role of proximal tubules in the kidney injury. Hypermethylation was observed at CpG sites annotated to genes responsible for proximal tubule functions, including gluconeogenesis, nicotinamide adenine dinucleotide synthesis, transporters of glucose, water, phosphate, and drugs, in diabetic kidneys, whereas genes involved in oxidative stress and the cytoskeleton exhibited demethylation. Methylation levels of CpG sites annotated to ACTN1, BCAR1, MYH9, UBE4B, AFMID, TRAF2, TXNIP, FOXO3, and HNF4A were correlated with the estimated glomerular filtration rate, whereas methylation of the CpG site in RUNX1 was associated with interstitial fibrosis and tubular atrophy. Hypermethylation of G6PC and HNF4A was accompanied by decreased expression in diabetic kidneys. Proximal tubule-specific hypomethylation of metabolic genes related to HNF4A observed in control kidneys was compromised in diabetic kidneys, suggesting a role for aberrant DNA methylation in the dedifferentiation process. Multiple genes with aberrant DNA methylation in diabetes overlapped genes with altered expressions in maladaptive proximal tubule cells, including transcription factors PPARA and RREB1. In conclusion, DNA methylation derangement in the proximal tubules of patients with diabetes may drive phenotypic changes, characterized by inflammatory and fibrotic features, along with impaired function in metabolism and transport.NEW & NOTEWORTHY Cell type-specific DNA methylation patterns in the human kidney are not known. We examined DNA methylation in proximal tubules of patients with diabetic nephropathy and revealed that oxidative stress, cytoskeleton, and metabolism genes were aberrantly methylated. The results indicate that aberrant DNA methylation in proximal tubules underlies kidney dysfunction in diabetic nephropathy. Aberrant methylation could be a target for reversing memory of poor glycemic control.
Collapse
Affiliation(s)
- Takeshi Marumo
- Department of Pharmacology, School of Medicine, International University of Health and Welfare, Chiba, Japan
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Naoto Yoshida
- Department of Pharmacology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Noriko Inoue
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
| | | | | | | | - Takeshi Fujii
- Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | | | - Kenichi Ohashi
- Department of Human Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wakako Kawarazaki
- Department of Pharmacology, School of Medicine, International University of Health and Welfare, Chiba, Japan
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Daigoro Hirohama
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Genta Nagae
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Junichi Hoshino
- Nephrology Center, Toranomon Hospital, Tokyo, Japan
- Deparment of Nephrology, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Hong H, Zheng J, Shi H, Zhou S, Chen Y, Li M. Prediction Model for Early-Stage CKD Using the Naples Prognostic Score and Plasma Indoleamine 2,3-dioxygenase Activity. J Inflamm Res 2024; 17:4669-4681. [PMID: 39051048 PMCID: PMC11268581 DOI: 10.2147/jir.s460643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Changes in inflammation, immunity, and nutritional status can promote the development of chronic kidney disease (CKD), and the Naples prognostic score (NPS) reflects changes in these three general clinical parameters. Indoleamine 2.3-dioxygenase (IDO) can block the function of inflammatory cells and inhibit the production of inflammatory cytokines. We examined use of the NPS and IDO activity to predict early-stage CKD. Patients and Methods Clinical and demographic parameters and the NPS were recorded for 47 CKD patients and 30 healthy controls. A one-way ANOVA or the rank sum test was used to compare variables in the different groups. Spearman or Pearson correlation coefficients were calculated, and logistic regression was used to identify significant factors. Receiver operating characteristic (ROC) analysis was also performed. Results The NPS had a positive correlation with plasma IDO activity and IDO activity was lowest in controls, and increased with CKD stage. ROC analysis indicated that NPS had an area under the curve (AUC) of 0.779 when comparing controls with all CKD patients. A prediction model for CKD (-4.847 + [1.234 × NPS] + [6.160 × plasma IDO activity]) demonstrated significant differences between controls and patients with early-stage CKD, and for patients with different stages of CKD. This model had AUC values of 0.885 (control vs CKD1-4), 0.876 (control vs CKD2), 0.818 (CKD2 vs CKD3), and 0.758 (CKD3 vs CKD4). Conclusion A prediction model based on the NPS and IDO provided good to excellent predictions of early-stage CKD.
Collapse
Affiliation(s)
- Hao Hong
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, Soochow, People’s Republic of China
| | - Junyao Zheng
- Laboratory Nephrology, The First Affiliated Hospital of Soochow University, Soochow, People’s Republic of China
| | - Haimin Shi
- Laboratory Nephrology, The First Affiliated Hospital of Soochow University, Soochow, People’s Republic of China
| | - Suya Zhou
- Laboratory Nephrology, Jinshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yue Chen
- Laboratory Nephrology, The First People’s Hospital of Kunshan, Soochow, People’s Republic of China
| | - Ming Li
- Laboratory Nephrology, The First Affiliated Hospital of Soochow University, Soochow, People’s Republic of China
| |
Collapse
|
26
|
Yang J, Liu X. Controversy between biopsy and risk in children with proteinuria: is there a paradigm war? BMC Nephrol 2024; 25:221. [PMID: 38992620 PMCID: PMC11238415 DOI: 10.1186/s12882-024-03660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Proteinuria is a prevalent symptom of pediatric nephrology, while kidney biopsy remains the gold standard for kidney tissue analysis, and it is currently controversial. We report the rare case that the mutation in the AMN gene was considered to cause chronically isolated proteinuria and also suggest that renal biopsy should be chosen with caution in children with chronic isolated non-nephrotic levels of proteinuria and that genetic testing may be feasible for the early precise diagnosis. CASE PRESENTATION A 35-month-old boy presented with excessive urine foaming for more than half a month; his proteinuria was considered non-nephrotic range and urine protein electrophoresis was suggestive of mixed proteinuria; other than that, the investigations are non-specific. Given the child's chronic isolated proteinuria and good renal function, we chose to refine the genetic test rather than a renal biopsy; a compound heterozygous variant was found in the AMN gene of this child which was caused by a point mutation in the father, and a partial chromosomal deletion in the mother. CONCLUSIONS Cubilin(encoded by CUBN), amnionless(encoded by AMN), and megalin form a multiligand receptor complex; CUBN or AMN gene variants have been implicated as a hereditary cause of megaloblastic anemia, proteinuria, and neurological impairment. In the past few decades, chronic isolated proteinuria caused by CUBN gene variants is benign, non-progressive, and has normal renal function. However, the child is the first reported case of isolated proteinuria of AMN gene mutation, indicating that the earlier diagnostic genetic sequencing in an otherwise well, not nephrotic proteinuria child may be a convenient, cost-effective, and harmless option, challenging the traditional paradigm.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Street, Xi Cheng District, Beijing, 100045, China
| | - Xiaorong Liu
- Department of Nephrology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No. 56 Nanlishi Street, Xi Cheng District, Beijing, 100045, China.
| |
Collapse
|
27
|
Zhao F, Wang J, Zhang Y, Hu J, Li C, Liu S, Li R, Du R. In vivo Fate of Targeted Drug Delivery Carriers. Int J Nanomedicine 2024; 19:6895-6929. [PMID: 39005963 PMCID: PMC11246094 DOI: 10.2147/ijn.s465959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
This review aimed to systematically investigate the intracellular and subcellular fate of various types of targeting carriers. Upon entering the body via intravenous injection or other routes, a targeting carrier that can deliver therapeutic agents initiates their journey. If administered intravenously, the carrier initially faces challenges presented by the blood circulation before reaching specific tissues and interacting with cells within the tissue. At the subcellular level, the car2rier undergoes processes, such as drug release, degradation, and metabolism, through specific pathways. While studies on the fate of 13 types of carriers have been relatively conclusive, these studies are incomplete and lack a comprehensive analysis. Furthermore, there are still carriers whose fate remains unclear, underscoring the need for continuous research. This study highlights the importance of comprehending the in vivo and intracellular fate of targeting carriers and provides valuable insights into the operational mechanisms of different carriers within the body. By doing so, researchers can effectively select appropriate carriers and enhance the successful clinical translation of new formulations.
Collapse
Affiliation(s)
- Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinru Hu
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
28
|
Schnell J, Miao Z, Achieng M, Fausto CC, Wang V, Kuyper FD, Thornton ME, Grubbs B, Kim J, Lindström NO. Stepwise developmental mimicry generates proximal-biased kidney organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601028. [PMID: 39005387 PMCID: PMC11244853 DOI: 10.1101/2024.06.28.601028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The kidney maintains body fluid homeostasis by reabsorbing essential compounds and excreting waste. Proximal tubule cells, crucial for renal reabsorption of a range of sugars, ions, and amino acids, are highly susceptible to damage, leading to pathologies necessitating dialysis and kidney transplants. While human pluripotent stem cell-derived kidney organoids are used for modeling renal development, disease, and injury, the formation of proximal nephron cells in these 3D structures is incomplete. Here, we describe how to drive the development of proximal tubule precursors in kidney organoids by following a blueprint of in vivo human nephrogenesis. Transient manipulation of the PI3K signaling pathway activates Notch signaling in the early nephron and drives nephrons toward a proximal precursor state. These "proximal-biased" (PB) organoid nephrons proceed to generate proximal nephron precursor cells. Single-cell transcriptional analyses across the organoid nephron differentiation, comparing control and PB types, confirm the requirement of transient Notch signaling for proximal development. Indicative of functional maturity, PB organoids demonstrate dextran and albumin uptake, akin to in vivo proximal tubules. Moreover, PB organoids are highly sensitive to nephrotoxic agents, display an injury response, and drive expression of HAVCR1 / KIM1 , an early proximal-specific marker of kidney injury. Injured PB organoids show evidence of collapsed tubules, DNA damage, and upregulate the injury-response marker SOX9 . The PB organoid model therefore has functional relevance and potential for modeling mechanisms underpinning nephron injury. These advances improve the use of iPSC-derived kidney organoids as tools to understand developmental nephrology, model disease, test novel therapeutics, and for understanding human renal physiology.
Collapse
|
29
|
Sims-Lucas S, Goetzman ES, Kleyman TR. Cystic fibrosis-related metabolic defects: crosstalk between ion channels and organs. J Clin Invest 2024; 134:e182329. [PMID: 38949023 PMCID: PMC11213462 DOI: 10.1172/jci182329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cystic fibrosis is a debilitating disease characterized by a poor medical prognosis due to devastating lung injury. Recent medical advances targeting the major genetic mutation ΔF508 of the cystic fibrosis transmembrane conductance regulator (CFTR) protein have dramatically increased the lifespan of patients with this mutation. This development has led to major changes in the field and has pushed research beyond the ion transport nature of cystic fibrosis and toward multiorgan physiological reprogramming. In this issue of the JCI, Bae, Kim, and colleagues utilized a large animal pig model prior to the onset of disease. They revealed metabolic reprogramming and organ crosstalk that occurred prior to disease progression. These findings provide paradigm-shifting insight into this complex disease.
Collapse
Affiliation(s)
| | | | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Edwards A. Renal handling of albumin in rats with early stage diabetes: A theoretical analysis. J Physiol 2024; 602:3575-3592. [PMID: 38857419 PMCID: PMC11250707 DOI: 10.1113/jp286245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
In early diabetic nephropathy (DN), recent studies have shown that albuminuria stems mostly from alterations in tubular function rather than from glomerular damage. Several factors in DN, including hyperfiltration, hypertrophy and reduced abundance of the albumin receptors megalin and cubilin, affect albumin endocytosis in the proximal tubule (PT). To assess their respective contribution, we developed a model of albumin handling in the rat PT that couples the transport of albumin to that of water and solutes. Our simulations suggest that, under basal conditions, ∼75% of albumin is retrieved in the S1 segment. The model predicts negligible uptake in S3, as observed experimentally. It also accurately predicts the impact of acute hyperglycaemia on urinary albumin excretion. Simulations reproduce observed increases in albumin excretion in early DN by considering the combined effects of increased glomerular filtration rate (GFR), osmotic diuresis, hypertrophy, and megalin and cubilin downregulation, without stipulating changes in glomerular permselectivity. The results indicate that in isolation, glucose-elicited osmotic diuresis and glucose transporter upregulation raise albumin excretion only slightly. Enlargement of PT diameter not only augments uptake via surface area expansion, but also reduces fluid velocity and thus shear stress-induced stimulation of endocytosis. Overall, our model predicts that downregulation of megalin and cubilin and hyperfiltration both contribute significantly to increasing albumin excretion in rats with early-stage diabetes. The results also suggest that acute sodium-glucose cotransporter 2 inhibition lowers albumin excretion only if GFR decreases sufficiently, and that angiotensin II receptor blockers mitigate urinary albumin loss in early DN in large part by upregulating albumin receptor abundance. KEY POINTS: The urinary excretion of albumin is increased in early diabetic nephropathy (DN). It is difficult to experimentally disentangle the multiple factors that affect the renal handling of albumin in DN. We developed a mathematical model of albumin transport in the rat proximal tubule (PT) to examine the impact of elevated plasma glucose, hyperfiltration, PT hypertrophy and reduced abundance of albumin receptors on albumin uptake and excretion in DN. Our model predicts that glucose-elicited osmotic diuresis per se raises albumin excretion only slightly. Conversely, increases in PT diameter and length favour reduced albumin excretion. Our results suggest that downregulation of the receptors megalin and cubilin in PT cells and hyperfiltration both contribute significantly to increasing albumin excretion in DN. The model helps to better understand the mechanisms underlying urinary loss of albumin in early-stage diabetes, and the impact of specific treatments thereupon.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
31
|
Dąbkowski K, Kreft E, Sałaga-Zaleska K, Chyła-Danił G, Mickiewicz A, Gruchała M, Kuchta A, Jankowski M. Human In Vitro Oxidized Low-Density Lipoprotein (oxLDL) Increases Urinary Albumin Excretion in Rats. Int J Mol Sci 2024; 25:5498. [PMID: 38791535 PMCID: PMC11122078 DOI: 10.3390/ijms25105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hypercholesterolemia-associated oxidative stress increases the formation of oxidized low-density lipoprotein (oxLDL), which can affect endothelial cell function and potentially contribute to renal dysfunction, as reflected by changes in urinary protein excretion. This study aimed to investigate the impact of exogenous oxLDL on urinary excretion of albumin and nephrin. LDL was isolated from a patient with familial hypercholesterolemia (FH) undergoing lipoprotein apheresis (LA) and was oxidized in vitro with Cu (II) ions. Biochemical markers of LDL oxidation, such as TBARS, conjugated dienes, and free ε-amino groups, were measured. Wistar rats were treated with a single intraperitoneal injection of PBS, LDL, or oxLDL (4 mg of protein/kg b.w.). Urine was collected one day before and two days after the injection. We measured blood lipid profiles, urinary protein excretion (specifically albumin and nephrin), and markers of systemic oxidative stress (8-OHdG and 8-iso-PGF2α). The results showed that injection of oxLDL increased urinary albumin excretion by approximately 28% (310 ± 27 μg/24 h vs. 396 ± 26 μg/24 h, p = 0.0003) but had no effect on nephrin excretion. Neither PBS nor LDL had any effect on urinary albumin or nephrin excretion. Additionally, oxLDL did not affect systemic oxidative stress. In conclusion, hypercholesterolemia may adversely affect renal function through oxidatively modified LDL, which interferes with the renal handling of albumin and leads to the development of albuminuria.
Collapse
Affiliation(s)
- Kamil Dąbkowski
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| | - Ewelina Kreft
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| | - Kornelia Sałaga-Zaleska
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| | - Gabriela Chyła-Danił
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| | - Agnieszka Mickiewicz
- 1st Department of Cardiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (A.M.); (M.G.)
| | - Marcin Gruchała
- 1st Department of Cardiology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (A.M.); (M.G.)
| | - Agnieszka Kuchta
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| | - Maciej Jankowski
- Department of Clinical Chemistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.D.); (E.K.); (K.S.-Z.); (G.C.-D.); (A.K.)
| |
Collapse
|
32
|
Morel L, Scindia Y. Functional consequence of Iron dyshomeostasis and ferroptosis in systemic lupus erythematosus and lupus nephritis. Clin Immunol 2024; 262:110181. [PMID: 38458303 PMCID: PMC11672638 DOI: 10.1016/j.clim.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Systemic lupus erythematosus (SLE) and its renal manifestation Lupus nephritis (LN) are characterized by a dysregulated immune system, autoantibodies, and injury to the renal parenchyma. Iron accumulation and ferroptosis in the immune effectors and renal tubules are recently identified pathological features in SLE and LN. Ferroptosis is an iron dependent non-apoptotic form of regulated cell death and ferroptosis inhibitors have improved disease outcomes in murine models of SLE, identifying it as a novel druggable target. In this review, we discuss novel mechanisms by which iron accumulation and ferroptosis perpetuate immune cell mediated pathology in SLE/LN. We highlight intra-renal dysregulation of iron metabolism and ferroptosis as an underlying pathogenic mechanism of renal tubular injury. The basic concepts of iron biology and ferroptosis are also discussed to expose the links between iron, cell metabolism and ferroptosis, that identify intracellular pro-ferroptotic enzymes and their protein conjugates as potential targets to improve SLE/LN outcomes.
Collapse
Affiliation(s)
- Laurence Morel
- Department of Microbiology, Immunology, and Molecular Genetics, UT Health San Antonio, San Antonio, TX, USA
| | - Yogesh Scindia
- Department of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
33
|
Ding L, Guo H, Zhang C, Jiang B, Zhang S, Zhang J. Association between dietary inflammation index and albuminuria: results from the National Health and Nutrition Examination Survey. Front Nutr 2024; 11:1361890. [PMID: 38685954 PMCID: PMC11056555 DOI: 10.3389/fnut.2024.1361890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Background The Dietary Inflammation Index (DII) is a tool for evaluating the potential for dietary inflammation, and inflammation is a major cause of exacerbation in chronic kidney disease. Our study aimed to investigate the relationship between DII and albuminuria. Methods Data were obtained from the 2005-2018 National Health and Nutrition Examination Survey (NHANES) after excluding pregnant, minors, and missing data of urinary albumin-creatinine ratio (ACR), estimated glomerular filtration rate (eGFR), and DII were enrolled in our study. Albuminuria was defined as ACR > 30 mg/g. DII was calculated and divided into tertiles. After fully adjusted, multivariate logistic regression analysis and subgroup analysis were performed to investigate the association between DII and albuminuria. Results A total of 22,607 participants including 2,803 (12.40%) with and 19,804 (87.60%) without albuminuria were enrolled in our study. The albuminuria increased with the increasing DII tertiles (Tertile 1: 10.81%; Tertile 2: 12.41%; Tertile 3:13.97%, P < 0.001). After fully adjusting for covariates, multivariate logistic regression showed that the higher the DII, the greater the odds of albuminuria (OR = 1.19; 95% CI, 1.00-1.41, P < 0.001). Subgroup analysis and interaction test of participants found that the positive correlation between DII and albuminuria was not significantly related to gender, age, BMI, hypertension, diabetes, and eGFR (P for interaction >0.05). Conclusion Elevated DII is associated with high odds of albuminuria. Further large-scale prospective studies are still needed to analyze the role of DII in albuminuria.
Collapse
Affiliation(s)
- Ling Ding
- Department of Laboratory Medicine, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China
| | | | | | | | | | | |
Collapse
|
34
|
Satarug S. Is Chronic Kidney Disease Due to Cadmium Exposure Inevitable and Can It Be Reversed? Biomedicines 2024; 12:718. [PMID: 38672074 PMCID: PMC11048639 DOI: 10.3390/biomedicines12040718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Cadmium (Cd) is a metal with no nutritional value or physiological role. However, it is found in the body of most people because it is a contaminant of nearly all food types and is readily absorbed. The body burden of Cd is determined principally by its intestinal absorption rate as there is no mechanism for its elimination. Most acquired Cd accumulates within the kidney tubular cells, where its levels increase through to the age of 50 years but decline thereafter due to its release into the urine as the injured tubular cells die. This is associated with progressive kidney disease, which is signified by a sustained decline in the estimated glomerular filtration rate (eGFR) and albuminuria. Generally, reductions in eGFR after Cd exposure are irreversible, and are likely to decline further towards kidney failure if exposure persists. There is no evidence that the elimination of current environmental exposure can reverse these effects and no theoretical reason to believe that such a reversal is possible. This review aims to provide an update on urinary and blood Cd levels that were found to be associated with GFR loss and albuminuria in the general populations. A special emphasis is placed on the mechanisms underlying albumin excretion in Cd-exposed persons, and for an accurate measure of the doses-response relationships between Cd exposure and eGFR, its excretion rate must be normalised to creatinine clearance. The difficult challenge of establishing realistic Cd exposure guidelines such that human health is protected, is discussed.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
35
|
Tanner GA. The Glomerular Sieving Coefficient of Albumin Is Really Very Low. Nephron Clin Pract 2024; 148:584-586. [PMID: 39186923 DOI: 10.1159/000538281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/07/2024] [Indexed: 08/28/2024] Open
Affiliation(s)
- George A Tanner
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
36
|
Romero-González G, Rodríguez-Chitiva N, Cañameras C, Paúl-Martínez J, Urrutia-Jou M, Troya M, Soler-Majoral J, Graterol Torres F, Sánchez-Bayá M, Calabia J, Bover J. Albuminuria, Forgotten No More: Underlining the Emerging Role in CardioRenal Crosstalk. J Clin Med 2024; 13:777. [PMID: 38337471 PMCID: PMC10856688 DOI: 10.3390/jcm13030777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Kidneys have an amazing ability to adapt to adverse situations, both acute and chronic. In the presence of injury, the kidney is able to activate mechanisms such as autoregulation or glomerular hyperfiltration to maintain the glomerular filtration rate (GFR). While these adaptive mechanisms can occur in physiological situations such as pregnancy or high protein intake, they can also occur as an early manifestation of diseases such as diabetes mellitus or as an adaptive response to nephron loss. Although over-activation of these mechanisms can lead to intraglomerular hypertension and albuminuria, other associated mechanisms related to the activation of inflammasome pathways, including endothelial and tubular damage, and the hemodynamic effects of increased activity of the renin-angiotensin-aldosterone system, among others, are recognized pathways for the development of albuminuria. While the role of albuminuria in the progression of chronic kidney disease (CKD) is well known, there is increasing evidence of its negative association with cardiovascular events. For example, the presence of albuminuria is associated with an increased likelihood of developing heart failure (HF), even in patients with normal GFR, and the role of albuminuria in atherosclerosis has recently been described. Albuminuria is associated with adverse outcomes such as mortality and HF hospitalization. On the other hand, it is increasingly known that the systemic effects of congestion are mainly preceded by increased central venous pressure and transmitted retrogradely to organs such as the liver or kidney. With regard to the latter, a new entity called congestive nephropathy is emerging, in which increased renal venous pressure can lead to albuminuria. Fortunately, the presence of albuminuria is modifiable and new treatments are now available to reverse this common risk factor in the cardiorenal interaction.
Collapse
Affiliation(s)
- Gregorio Romero-González
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- International Renal Research Institute of Vicenza, 36100 Vicenza, Italy
| | - Néstor Rodríguez-Chitiva
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Carles Cañameras
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
| | - Javier Paúl-Martínez
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Marina Urrutia-Jou
- Nephrology Department, University Hospital Joan XXIII, 43005 Tarragona, Spain;
| | - Maribel Troya
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Jordi Soler-Majoral
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Fredzzia Graterol Torres
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Maya Sánchez-Bayá
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Jordi Calabia
- Nephrology Department, University Hospital Josep Trueta, IdIBGi Research Institute, Universitat de Girona, 17007 Girona, Spain;
| | - Jordi Bover
- Nephrology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain; (G.R.-G.); (N.R.-C.); (C.C.); (J.P.-M.); (M.T.); (J.S.-M.); (F.G.T.); (M.S.-B.)
- REMAR-IGTP Group (Kidney-Affecting Diseases Research Group), Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| |
Collapse
|
37
|
Ji Q, Zhu H, Qin Y, Zhang R, Wang L, Zhang E, Zhou X, Meng R. GP60 and SPARC as albumin receptors: key targeted sites for the delivery of antitumor drugs. Front Pharmacol 2024; 15:1329636. [PMID: 38323081 PMCID: PMC10844528 DOI: 10.3389/fphar.2024.1329636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Albumin is derived from human or animal blood, and its ability to bind to a large number of endogenous or exogenous biomolecules makes it an ideal drug carrier. As a result, albumin-based drug delivery systems are increasingly being studied. With these in mind, detailed studies of the transport mechanism of albumin-based drug carriers are particularly important. As albumin receptors, glycoprotein 60 (GP60) and secreted protein acidic and rich in cysteine (SPARC) play a crucial role in the delivery of albumin-based drug carriers. GP60 is expressed on vascular endothelial cells and enables albumin to cross the vascular endothelial cell layer, and SPARC is overexpressed in many types of tumor cells, while it is minimally expressed in normal tissue cells. Thus, this review supplements existing articles by detailing the research history and specific biological functions of GP60 or SPARC and research advances in the delivery of antitumor drugs using albumin as a carrier. Meanwhile, the deficiencies and future perspectives in the study of the interaction of albumin with GP60 and SPARC are also pointed out.
Collapse
Affiliation(s)
- Qingzhi Ji
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Huimin Zhu
- Sheyang County Comprehensive Inspection and Testing Center, Yancheng, China
| | - Yuting Qin
- School of Pharmacy, Yancheng Teachers University, Yancheng, China
| | - Ruiya Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Lei Wang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Erhao Zhang
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School, Nantong University, Nantong, China
| | - Run Meng
- Department of Immunology, Medical School, Nantong University, Nantong, China
| |
Collapse
|
38
|
Porter A, Vorndran HE, Marciszyn A, Mutchler SM, Subramanya AR, Kleyman TR, Hendershot LM, Brodsky JL, Buck TM. Excess dietary sodium partially restores salt and water homeostasis caused by loss of the endoplasmic reticulum molecular chaperone, GRP170, in the mouse nephron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575426. [PMID: 38260467 PMCID: PMC10802592 DOI: 10.1101/2024.01.13.575426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The maintenance of fluid and electrolyte homeostasis by the kidney requires proper folding and trafficking of ion channels and transporters in kidney epithelia. Each of these processes requires a specific subset of a diverse class of proteins termed molecular chaperones. One such chaperone is GRP170, which is an Hsp70-like, endoplasmic reticulum (ER)-localized chaperone that plays roles in protein quality control and protein folding in the ER. We previously determined that loss of GRP170 in the mouse nephron leads to hypovolemia, electrolyte imbalance, and rapid weight loss. In addition, GRP170-deficient mice develop an AKI-like phenotype, typified by tubular injury, elevation of clinical kidney injury markers, and induction of the unfolded protein response (UPR). By using an inducible GRP170 knockout cellular model, we confirmed that GRP170 depletion induces the UPR, triggers an apoptotic response, and disrupts protein homeostasis. Based on these data, we hypothesized that UPR induction underlies hyponatremia and volume depletion in rodents, but that these and other phenotypes might be rectified by supplementation with high salt. To test this hypothesis, control and GRP170 tubule-specific knockout mice were provided with a diet containing 8% sodium chloride. We discovered that sodium supplementation improved electrolyte imbalance and reduced clinical kidney injury markers, but was unable to restore weight or tubule integrity. These results are consistent with UPR induction contributing to the kidney injury phenotype in the nephron-specific GR170 knockout model, and that the role of GRP170 in kidney epithelia is essential to both maintain electrolyte balance and cellular protein homeostasis.
Collapse
Affiliation(s)
- Aidan Porter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
- Division of Pediatric Nephrology, University of Pittsburgh, Pittsburgh, PA
| | - Hannah E. Vorndran
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Allison Marciszyn
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Stephanie M. Mutchler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Arohan R. Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
| | - Thomas R. Kleyman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | - Linda M. Hendershot
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 30105
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Teresa M. Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
39
|
Dylewski JF, Haddad G, Blaine J. Exploiting the neonatal crystallizable fragment receptor to treat kidney disease. Kidney Int 2024; 105:54-64. [PMID: 38707675 PMCID: PMC11068363 DOI: 10.1016/j.kint.2023.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 05/07/2024]
Abstract
The neonatal Fc receptor (FcRn) was initially discovered as the receptor that allowed passive immunity in newborns by transporting maternal IgG through the placenta and enterocytes. Since its initial discovery, FcRn has been found to exist throughout all stages of life and in many different cell types. Beyond passive immunity, FcRn is necessary for intrinsic albumin and IgG recycling and is important for antigen processing and presentation. Given its multiple important roles, FcRn has been utilized in many disease treatments including a new class of agents that were developed to inhibit FcRn for treatment of a variety of autoimmune diseases. Certain cell populations within the kidney also express high levels of this receptor. Specifically, podocytes, proximal tubule epithelial cells, and vascular endothelial cells have been found to utilize FcRn. In this review, we summarize what is known about FcRn and its function within the kidney. We also discuss how FcRn has been used for therapeutic benefit, including how newer FcRn inhibiting agents are being used to treat autoimmune diseases. Lastly, we will discuss what renal diseases may respond to FcRn inhibitors and how further work studying FcRn within the kidney may lead to therapies for kidney diseases.
Collapse
Affiliation(s)
- James F. Dylewski
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Nephrology, Denver Health Medical Center, Denver, CO, USA
| | - George Haddad
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Judith Blaine
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
40
|
Satarug S. Is Environmental Cadmium Exposure Causally Related to Diabetes and Obesity? Cells 2023; 13:83. [PMID: 38201287 PMCID: PMC10778334 DOI: 10.3390/cells13010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Cadmium (Cd) is a pervasive toxic metal, present in most food types, cigarette smoke, and air. Most cells in the body will assimilate Cd, as its charge and ionic radius are similar to the essential metals, iron, zinc, and calcium (Fe, Zn, and Ca). Cd preferentially accumulates in the proximal tubular epithelium of the kidney, and is excreted in urine when these cells die. Thus, excretion of Cd reflects renal accumulation (body burden) and the current toxicity of Cd. The kidney is the only organ other than liver that produces and releases glucose into the circulation. Also, the kidney is responsible for filtration and the re-absorption of glucose. Cd is the least recognized diabetogenic substance although research performed in the 1980s demonstrated the diabetogenic effects of chronic oral Cd administration in neonatal rats. Approximately 10% of the global population are now living with diabetes and over 80% of these are overweight or obese. This association has fueled an intense search for any exogenous chemicals and lifestyle factors that could induce excessive weight gain. However, whilst epidemiological studies have clearly linked diabetes to Cd exposure, this appears to be independent of adiposity. This review highlights Cd exposure sources and levels associated with diabetes type 2 and the mechanisms by which Cd disrupts glucose metabolism. Special emphasis is on roles of the liver and kidney, and cellular stress responses and defenses, involving heme oxygenase-1 and -2 (HO-1 and HO-2). From heme degradation, both HO-1 and HO-2 release Fe, carbon monoxide, and a precursor substrate for producing a potent antioxidant, bilirubin. HO-2 appears to have also anti-diabetic and anti-obese actions. In old age, HO-2 deficient mice display a symptomatic spectrum of human diabetes, including hyperglycemia, insulin resistance, increased fat deposition, and hypertension.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
41
|
Pisapia F, O’Brien D, Tasinato E, Garner KL, Brown CDA. Development of a Highly Differentiated Human Primary Proximal Tubule MPS Model (aProximate MPS Flow). Bioengineering (Basel) 2023; 11:7. [PMID: 38275575 PMCID: PMC10813028 DOI: 10.3390/bioengineering11010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The kidney proximal tubule (PT) mediates renal drug elimination in vivo and is a major site of drug-induced toxicity. To reliably assess drug efficacy, it is crucial to construct a model in which PT functions are replicated. Current animal studies have proven poorly predictive of human outcome. To address this, we developed a physiologically relevant micro-physiological system (MPS) model of the human PT, the aProximate MPS Flow platform (Patent No: G001336.GB). In this model, primary human PT cells (hPTCs) are subjected to fluidic media flow and a shear stress of 0.01-0.2 Pa. We observe that these cells replicate the polarity of hPTCs and exhibit a higher expression of all the key transporters of SLC22A6 (OAT1), SLC22A8 (OAT3), SLC22A2 (OCT2), SLC47A1 (MATE1), SLC22A12 (URAT1), SLC2A9 (GLUT9), ABCB1 (MDR1), ABCC2 (MRP2), LRP2 (megalin), CUBN (cubilin), compared with cells grown under static conditions. Immunofluorescence microscopy confirmed an increase in OAT1, OAT3, and cilia protein expression. Increased sensitivity to nephrotoxic protein cisplatin was observed; creatinine and FITC-albumin uptake was significantly increased under fluidic shear stress conditions. Taken together, these data suggest that growing human PT cells under media flow significantly improves the phenotype and function of hPTC monolayers and has benefits to the utility and near-physiology of the model.
Collapse
Affiliation(s)
- Francesca Pisapia
- Newcells Biotech Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK; (D.O.); (E.T.); (C.D.A.B.)
| | - Donovan O’Brien
- Newcells Biotech Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK; (D.O.); (E.T.); (C.D.A.B.)
| | - Elena Tasinato
- Newcells Biotech Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK; (D.O.); (E.T.); (C.D.A.B.)
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Kathryn L. Garner
- Newcells Biotech Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK; (D.O.); (E.T.); (C.D.A.B.)
| | - Colin D. A. Brown
- Newcells Biotech Ltd., The Biosphere, Draymans Way, Newcastle Helix, Newcastle upon Tyne NE4 5BX, UK; (D.O.); (E.T.); (C.D.A.B.)
| |
Collapse
|
42
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. The pathogenesis of albuminuria in cadmium nephropathy. Curr Res Toxicol 2023; 6:100140. [PMID: 38116328 PMCID: PMC10726218 DOI: 10.1016/j.crtox.2023.100140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Background Urinary cadmium excretion (ECd) rises with renal tissue content of the metal. Whereas glomerulopathies are sometimes associated with massive albuminuria, tubular accumulation of Cd typically causes modest albuminuria. Since β2-microglobulinuria (Eβ2M) is an established marker of proximal tubular dysfunction, we hypothesized that a comparison of albuminuria (Ealb) to Eβ2M in Cd-exposed subjects would provide evidence of similar mishandling of both proteins. Methods To depict excretion rates per functional nephron, ECd, Ealb, and Eβ2M were normalized to creatinine clearance (Ccr), a surrogate for the glomerular filtration rate (GFR). Estimation of GFR itself (eGFR) was accomplished with CKD-EPI formulas (2009). Linear and logistic regression analyses were performed to relate Ealb/Ccr, Eβ2M/Ccr, and eGFR to several independent variables. Simple linear regressions of eGFR, Ealb/Ccr, and Eβ2M/Ccr on ECd/Ccr were examined before and after adjustment of dependent variables for age. All regressions were performed after log-transformation of ratios and standardization of all variables. Increments in Ealb/Ccr and Eβ2M/Ccr and decrements in eGFR were quantified through four quartiles of ECd/Ccr. Results As age or ECd/Ccr rose, Ealb/Ccr and Eβ2M/Ccr also rose, and eGFR fell. In linear regressions, slopes relating Ealb/Ccr and Eβ2M/Ccr to ECd/Ccr were similar. After adjustment of dependent variables for age, coefficients of determination (R2) for all regressions rose by a multiple, and slopes approached unity. Ealb/Ccr and Eβ2M/Ccr were similarly associated with each other. Mean Ealb/Ccr and Eβ2M/Ccr rose and mean eGFR fell in stepwise fashion through quartiles of ECd/Ccr. Whereas Eβ2M/Ccr did not vary with blood pressure, Ealb/Ccr rose in association with hypertension in two of the four quartiles. Conclusions Our data indicate that Cd in renal tissue affected tubular reabsorption of albumin and β2M similarly in a large cohort of exposed subjects. The results suggest that Cd reduced receptor-mediated endocytosis and subsequent lysosomal degradation of each protein by a shared mechanism.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Australia
| | - David A. Vesey
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Australia
- Department of Kidney and Transplant Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C. Gobe
- Centre for Kidney Disease Research, Translational Research Institute, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Kenneth R. Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
43
|
Sang D, Luo X, Liu J. Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. NANO-MICRO LETTERS 2023; 16:44. [PMID: 38047998 PMCID: PMC10695915 DOI: 10.1007/s40820-023-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The ultrasmall gold nanoparticles (AuNPs), serving as a bridge between small molecules and traditional inorganic nanoparticles, create significant opportunities to address many challenges in the health field. This review discusses the recent advances in the biological interactions and imaging of ultrasmall AuNPs. The challenges and the future development directions of the ultrasmall AuNPs are presented.
Collapse
Affiliation(s)
- Dongmiao Sang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
44
|
Molitoris BA, Dunn KW, Sandoval RM. Proximal tubule role in albumin homeostasis: controversy, species differences, and the contributions of intravital microscopy. Kidney Int 2023; 104:1065-1069. [PMID: 37981429 DOI: 10.1016/j.kint.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 11/21/2023]
Affiliation(s)
- Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Kenneth W Dunn
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ruben M Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
45
|
Devuyst O, Ronco P. Tubular handling of filtered albumin. Kidney Int 2023; 104:1073-1075. [PMID: 37981431 DOI: 10.1016/j.kint.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 11/21/2023]
Affiliation(s)
- Olivier Devuyst
- Mechanisms of Inherited Kidney Disorders Group, Institute of Physiology, University of Zurich, Zurich, Switzerland.
| | - Pierre Ronco
- Sorbonne Université and Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche, S1155, Paris, France.
| |
Collapse
|
46
|
Birn H, Nielsen R, Weyer K. Tubular albumin uptake: is there evidence for a quantitatively important, receptor-independent mechanism? Kidney Int 2023; 104:1069-1073. [PMID: 37981430 DOI: 10.1016/j.kint.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 11/21/2023]
Affiliation(s)
- Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kathrin Weyer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
47
|
Azushima K, Kovalik JP, Yamaji T, Ching J, Chng TW, Guo J, Liu JJ, Nguyen M, Sakban RB, George SE, Tan PH, Lim SC, Gurley SB, Coffman TM. Abnormal lactate metabolism is linked to albuminuria and kidney injury in diabetic nephropathy. Kidney Int 2023; 104:1135-1149. [PMID: 37843477 DOI: 10.1016/j.kint.2023.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 10/17/2023]
Abstract
Diabetic nephropathy (DN) is characterized by abnormal kidney energy metabolism, but its causes and contributions to DN pathogenesis are not clear. To examine this issue, we carried out targeted metabolomics profiling in a mouse model of DN that develops kidney disease resembling the human disorder. We found a distinct profile of increased lactate levels and impaired energy metabolism in kidneys of mice with DN, and treatment with an angiotensin-receptor blocker (ARB) reduced albuminuria, attenuated kidney pathology and corrected many metabolic abnormalities, restoring levels of lactate toward normal while increasing kidney ATP content. We also found enhanced expression of lactate dehydrogenase isoforms in DN. Expression of both the LdhA and LdhB isoforms were significantly increased in kidneys of mice, and treatment with ARB significantly reduced their expression. Single-cell sequencing studies showed specific up-regulation of LdhA in the proximal tubule, along with enhanced expression of oxidative stress pathways. There was a significant correlation between albuminuria and lactate in mice, and also in a Southeast Asian patient cohort consisting of individuals with type 2 diabetes and impaired kidney function. In the individuals with diabetes, this association was independent of ARB and angiotensin-converting enzyme inhibitor use. Furthermore, urinary lactate levels predicted the clinical outcomes of doubling of serum creatinine or development of kidney failure, and there was a significant correlation between urinary lactate levels and biomarkers of tubular injury and epithelial stress. Thus, we suggest that kidney metabolic disruptions leading to enhanced generation of lactate contribute to the pathogenesis of DN and increased urinary lactate levels may be a potential biomarker for risk of kidney disease progression.
Collapse
Affiliation(s)
- Kengo Azushima
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore; Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore
| | - Takahiro Yamaji
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore; Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore
| | - Tze Wei Chng
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Jing Guo
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Mien Nguyen
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore
| | - Rashidah Binte Sakban
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore
| | - Simi E George
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore
| | - Puay Hoon Tan
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Diabetes Centre, Khoo Teck Puat Hospital, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Lee Kong Chian School of Medicine, Singapore; Nanyang Technological University, Singapore
| | - Susan B Gurley
- Department of Medicine, Division of Nephrology and Hypertension, Keck School of Medicine of USC, Los Angeles, California, USA
| | - Thomas M Coffman
- Cardiovascular and Metabolic Disorders Signature Research Program, Duke-NUS Medical School, Singapore; Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
48
|
Bohovyk R, Khedr S, Levchenko V, Stefanenko M, Semenikhina M, Kravtsova O, Isaeva E, Geurts AM, Klemens CA, Palygin O, Staruschenko A. Protease-Activated Receptor 1-Mediated Damage of Podocytes in Diabetic Nephropathy. Diabetes 2023; 72:1795-1808. [PMID: 37722138 PMCID: PMC10658073 DOI: 10.2337/db23-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
There is clinical evidence that increased urinary serine proteases are associated with the disease severity in the setting of diabetic nephropathy (DN). Elevation of serine proteases may mediate [Ca2+]i dynamics in podocytes through the protease-activated receptors (PARs) pathway, including associated activation of nonspecific cation channels. Cultured human podocytes and freshly isolated glomeruli were used for fluorescence and immunohistochemistry stainings, calcium imaging, Western blot analysis, scanning ion conductance microscopy, and patch clamp analysis. Goto-Kakizaki, Wistar, type 2 DN (T2DN), and a novel PAR1 knockout on T2DN rat background rats were used to test the importance of PAR1-mediated signaling in DN settings. We found that PAR1 activation increases [Ca2+]i via TRPC6 channels. Both human cultured podocytes exposed to high glucose and podocytes from freshly isolated glomeruli of T2DN rats had increased PAR1-mediated [Ca2+]i compared with controls. Imaging experiments revealed that PAR1 activation plays a role in podocyte morphological changes. T2DN rats exhibited a significantly higher response to thrombin and urokinase. Moreover, the plasma concentration of thrombin in T2DN rats was significantly elevated compared with Wistar rats. T2DNPar1-/- rats were embryonically lethal. T2DNPar1+/- rats had a significant decrease in glomerular damage associated with DN lesions. Overall, these data provide evidence that, during the development of DN, elevated levels of serine proteases promote an excessive [Ca2+]i influx in podocytes through PAR1-TRPC6 signaling, ultimately leading to podocyte apoptosis, the development of albuminuria, and glomeruli damage. ARTICLE HIGHLIGHTS Increased urinary serine proteases are associated with diabetic nephropathy. During the development of diabetic nephropathy in type 2 diabetes, the elevation of serine proteases could overstimulate protease-activated receptor 1 (PAR1). PAR1 signaling is involved in the development of DN via TRPC6-mediated intracellular calcium signaling. This study provides fundamental knowledge that can be used to develop efficient therapeutic approaches targeting serine proteases or corresponding PAR pathways to prevent or slow the progression of diabetes-associated kidney diseases.
Collapse
Affiliation(s)
- Ruslan Bohovyk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Sherif Khedr
- Department of Physiology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Mariia Stefanenko
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Marharyta Semenikhina
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Christine A. Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
| | - Oleg Palygin
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL
- James A. Haley Veterans’ Hospital, Tampa, FL
| |
Collapse
|
49
|
Claudio P, Gabriella M. Nephrotic syndrome: pathophysiology and consequences. J Nephrol 2023; 36:2179-2190. [PMID: 37466816 DOI: 10.1007/s40620-023-01697-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 07/20/2023]
Abstract
In patients with kidney disease, nephrotic syndrome can lead to several complications including progressive kidney dysfunction. Proteinuria may lead to the formation of cellular or fibrous crescents with reciprocal development of rapidly progressive glomerulonephritis or focal glomerulosclerosis. Proteinuria may also cause overload and dysfunction of tubular epithelial cells, eventually resulting in tubular atrophy and interstitial fibrosis. Hypoalbuminemia is usually associated with increased risk of mortality and kidney dysfunction. Dyslipidemia may increase the risk of atherosclerotic complications, cause podocyte dysfunction and contribute to vascular thrombosis. Urinary loss of anticoagulants and overproduction of coagulation factors may facilitate a hypercoagulable state. Edema, hypogammaglobulinemia, loss of complement factors, and immunosuppressive therapy can favor infection. Treatment of these complications may reduce their impact on the severity of NS. Nephrotic syndrome is a kidney disorder that can worsen the quality of life and increase the risk of kidney disease progression.
Collapse
Affiliation(s)
| | - Moroni Gabriella
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Nephrology and Dialysis Division, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| |
Collapse
|
50
|
Rattner A, Heng JS, Winer BL, Goff LA, Nathans J. Normal and Sjogren's syndrome models of the murine lacrimal gland studied at single-cell resolution. Proc Natl Acad Sci U S A 2023; 120:e2311983120. [PMID: 37812717 PMCID: PMC10589653 DOI: 10.1073/pnas.2311983120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
The lacrimal gland is of central interest in ophthalmology both as the source of the aqueous component of tear fluid and as the site of autoimmune pathology in the context of Sjogren's syndrome (SjS). To provide a foundational description of mouse lacrimal gland cell types and their patterns of gene expression, we have analyzed single-cell transcriptomes from wild-type (Balb/c) mice and from two genetically based SjS models, MRL/lpr and NOD (nonobese diabetic).H2b, and defined the localization of multiple cell-type-specific protein and mRNA markers. This analysis has uncovered a previously undescribed cell type, Car6+ cells, which are located at the junction of the acini and the connecting ducts. More than a dozen secreted polypeptides that are likely to be components of tear fluid are expressed by acinar cells and show pronounced sex differences in expression. Additional examples of gene expression heterogeneity within a single cell type were identified, including a gradient of Claudin4 along the length of the ductal system and cell-to-cell heterogeneity in transcription factor expression within acinar and myoepithelial cells. The patterns of expression of channels, transporters, and pumps in acinar, Car6+, and ductal cells make strong predictions regarding the mechanisms of water and electrolyte secretion. In MRL/lpr and NOD.H2b lacrimal glands, distinctive changes in parenchymal gene expression and in immune cell subsets reveal widespread interferon responses, a T cell-dominated infiltrate in the MRL/lpr model, and a mixed B cell and T cell infiltrate in the NOD.H2b model.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Jacob S. Heng
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Briana L. Winer
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Loyal A. Goff
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Kavli Neurodiscovery Institute, Baltimore, MD21205
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Wilmer Eye Institute, Baltimore, MD21205
| |
Collapse
|