1
|
Glinka DM, MacGregor GG. The PAR2 Antagonist Larazotide Can Mitigate Acute Histamine-Stimulated Epithelial Barrier Disruption in Keratinocytes: A Potential Adjunct Treatment for Atopic Dermatitis. JID INNOVATIONS 2025; 5:100369. [PMID: 40330848 PMCID: PMC12051560 DOI: 10.1016/j.xjidi.2025.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with evidence of defects in the barrier properties of the epidermis. Changes in the permeability properties of the tight junction have been reported in AD, and reversing this leaky tight junction may be a potential treatment for AD. This study aimed to determine the effect of larazotide, an antagonist of the protease-activated receptor 2, on the permeability and barrier properties of the tight junctions in keratinocyte monolayers. Normal human epithelial keratinocytes were grown in culture on permeable supports. The effects of larazotide on transepithelial resistance and permeability properties of keratinocyte monolayers were studied before and after histamine challenge. Larazotide mitigated the disruptive effect of histamine on epithelial permeability by increasing the electrical resistance and decreasing epithelial permeability. Larazotide may be beneficial as a topical therapeutic for AD; however, the permeability properties of the short-peptide larazotide through the uppers layers of the epidermis is currently unknown. In conclusion, the protease-activated receptor 2 antagonist larazotide has a protective effect on keratinocyte monolayers and may be useful as an adjunct therapeutic agent to enhance barrier function and promote epidermal healing in AD.
Collapse
Affiliation(s)
| | - Gordon G. MacGregor
- Alabama College of Osteopathic Medicine, Dothan, Alabama, USA
- Orlando College of Osteopathic Medicine, Winter Garden, Florida, USA
- Yogalytes LLC, Huntsville, Alabama, USA
| |
Collapse
|
2
|
Zhang Y, Lin Z, Yao Q, He J, Feng H, Zhang W, Liu Z, Yuan T, Liu X, Ding L. Milk peptides alleviate irritable bowel syndrome by suppressing colonic mast cell activation and prostaglandin E2 production in mice. Food Res Int 2025; 211:116470. [PMID: 40356133 DOI: 10.1016/j.foodres.2025.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
This study aimed to investigate the effect of milk peptides on irritable bowel syndrome (IBS). The mice were intragastrally administered with casein or whey protein hydrolysates at a dose of 1 g/kg body weight/day for 24 days and were subjected to Citrobacter rodentium infection and water avoidance stress from day 7 to 24. Results indicated that casein and whey protein hydrolysates effectively reduced diarrhea, anxiety, and visceral hypersensitivity in IBS mice. Casein and whey protein hydrolysates regulated gut microbiota composition and increased the abundance of short-chain fatty acid-producing bacteria, such as Alloprevotella and Alistipes. Whey protein hydrolysate significantly increased the mRNA levels of zonula occludens-1 (ZO-1) and claudin-1 in the colon, while casein hydrolysate significantly improved the mRNA levels of occludin. Casein and whey protein hydrolysates both decreased the levels of pro-inflammatory cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), while increased the level of anti-inflammatory cytokine interleukin-10 (IL-10). Importantly, casein and whey protein hydrolysates significantly reduced colonic mast cell activation and decreased prostaglandin E2 (PGE2) production. Moreover, three novel casein-derived cyclooxygenase-2 (COX2)-inhibitory peptides RGPF, FPK, and NPW were identified with IC50 values of 0.36 ± 0.03, 0.64 ± 0.01, and 1.10 ± 0.09 mM, respectively and predicted to form hydrogen bonds and hydrophobic interactions with the residues of the active site of COX2. This study highlighted the potential of milk peptides as bioactive ingredients in functional foods for managing IBS.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China
| | - Zhiqing Lin
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China
| | - Qi Yao
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, PR China
| | - Haotian Feng
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, PR China
| | - Wenyi Zhang
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, PR China
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China
| | - Tian Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Xianyang, Shaanxi Province 712100, PR China; College of Chemistry & Pharmacy, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China.
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, PR China.
| |
Collapse
|
3
|
Chang DH, Wang F, Palecek SP, Lynn DM. Slippery Liquid-Infused Porous Surfaces Infused with Thermotropic Liquid Crystals Enable Droplet-Based, Naked-Eye Reporting of Changes in Peptide Structure and Protease Activity. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27882-27894. [PMID: 40314309 PMCID: PMC12101578 DOI: 10.1021/acsami.5c02541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
We report the design of liquid crystal-infused "slippery" liquid-infused porous surfaces (LC-SLIPS) that permit naked-eye detection and reporting on the structural differences and activities of peptides and protease enzymes in aqueous media. We demonstrate that small (e.g., 20 μL) droplets of aqueous solutions placed in contact with LC-SLIPS exhibit sliding behaviors that vary substantially with the concentrations, structures, and physicochemical properties (e.g., hydrophobicity) of model amphiphilic β- and α/β-peptides dissolved within them. These large differences in sliding times permit naked-eye detection and discrimination of changes in peptide structure, including side-chain substitution, end group structure, backbone structure, and charge that correlate with differences in peptide amphiphilicity. We demonstrate further that LC-SLIPS can be used to monitor other biochemical processes, including digestion by proteases, that affect changes in the structures of amphiphilic peptides and can, thus, be used to develop novel, naked-eye assays that can report sensitively on enzymatic activity. As proof of concept, we show that large and visually observable changes in droplet sliding resulting from the degradation of a model peptide can be used to detect the presence of trypsin in aqueous solutions at levels as low as 12.5 ng/mL. That result, in turn, served as the basis of an LC-SLIPS-based assay that can be used to detect clinically relevant concentrations (from 25 to 25,000 ng/mL) of trypsinogen, a well-established biomarker for acute pancreatitis, in samples of synthetic urine. This "sliding" assay is conceptually straightforward and requires only visual monitoring and/or a hand-held stopwatch for readout, highlighting the potential for low-cost, point-of-care diagnostics applications. Overall, our results demonstrate the ability of LC-SLIPS to capture and report structural information relevant to other therapeutic properties and applications of amphiphilic peptides that could also be useful in the context of drug design and screening.
Collapse
Affiliation(s)
- Douglas H Chang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Fengrui Wang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Uslu-Biçak İ, Nalçaci M, Sözer S. Targeting PAR1 activation in JAK2V617F-driven philadelphia-negative myeloproliferative neoplasms: Unraveling its role in thrombosis and disease progression. Neoplasia 2025; 63:101153. [PMID: 40088673 PMCID: PMC11951995 DOI: 10.1016/j.neo.2025.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs) are clonal disorders marked by high morbidity and mortality, driven by uncontrolled myeloid proliferation from hematopoietic stem/progenitor cells (HSCs) and associated with a significant risk of thrombosis. This study explored the relationship between JAK2V617F and protease-activated receptor 1 (PAR1) by examining PAR1 expression and activation across various hematopoietic stem/progenitor cell (HSPC) subgroups, assessing their contribution to the hypercoagulable state in Ph-MPNs. We investigated the effects of thrombin, a PAR1 antagonist (vorapaxar), and a JAK2 inhibitor (ruxolitinib) on Ph-MPN cells. Mononuclear cells (MNCs) were isolated from Ph-MPN patients (n = 18), cord blood (CB) samples (n = 5) and healthy volunteers (n = 11). Specific subpopulations were sorted and analyzed for PAR1 expression and JAK2V617F status using qRT-PCR. PAR1 expression changes, along with other PAR pathway-related genes, were assessed post-treatment. Our results revealed that most PAR1+ cells (∼95 %) co-expressed CD34+, with a smaller JAK2V617F+ PAR1+ population lacking CD34. PAR1 expression was significantly higher in Ph-MPN MNCs compared to CB (p = 0.0005), particularly in EMP, HSC/EPC, and EPC subsets. Thrombin treatment reduced surface PAR1 expression, while PAR1 antagonist treatment further decrease the expression level. Combined PAR1 antagonist and ruxolitinib treatment significantly downregulated PAR1 expression (p < 0.0001), and several PAR-pathway-related genes were notably downregulated after treatment. This study highlights that elevated PAR1 expression in primitive hematopoietic subpopulations is linked to disease progression and thrombosis in Ph-MPNs, suggesting PAR1 as a potential therapeutic target. Combining PAR1 antagonists with JAK2 inhibitors shows promise in reducing PAR1 expression and mitigating thrombotic events in Ph-MPN patients.
Collapse
Affiliation(s)
- İldeniz Uslu-Biçak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Institute of Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Meliha Nalçaci
- Department of Internal Medicine, Division of Hematology, Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
5
|
Chatterjee A, Paul S, Mukherjee T, Gupta S, Parashar D, Sahu B, Kumar U, Das K. Beyond coagulation: Coagulation protease factor VIIa in cytoprotective response. Int Immunopharmacol 2025; 150:114218. [PMID: 39955915 DOI: 10.1016/j.intimp.2025.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/18/2025]
Abstract
Blood coagulation, the tightly regulated biological process prevents bleeding upon injury to the blood vessels. Vessel injury exposes the sub-endothelial tissue factor (TF) to the blood stream, thereby leading to the binding of coagulation protease, factor VII/activated VII with TF, and thus initiating the extrinsic pathway of blood coagulation. Apart from coagulation, FVIIa also promotes intracellular signaling via the activation of a unique class of G-protein-coupled receptor (GPCR) family protein, protease-activated receptor 1 (PAR1), thereby promoting anti-inflammation and endothelial barrier protection. Blood coagulation and inflammation are intrinsically connected, the activation of one process often leads to the activation of the other. The present review highlights the mechanisms by which FVIIa contributes to cytoprotective responses, either by direct action or through the release of extracellular vesicles (EVs) from vascular endothelium. FVIIa, due to its well-known ability to promote coagulation, is also used as a hemostatic agent in the treatment of several hyper bleeding disorders like hemophilia, thrombocytopenia etc. In addition to its hemostatic role, the topics discussed in the present review open a new therapeutic off-label effect of FVIIa, i.e., providing anti-inflammatory and vascular protective responses in several bleeding disorders and beyond.
Collapse
Affiliation(s)
- Akash Chatterjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur 700032, West Bengal, India
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bhupender Sahu
- Centre for Molecular Biology, Central University of Jammu, Jammu 181143, Jammu and Kashmir, India
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad 201015, Uttar Pradesh, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
6
|
Dai Y, Li C, Cheng S, Wang H, Zhuang X. Bioinformatics and experimental insights into F2RL1 as a key biomarker in cervical cancer diagnosis and prognosis. Sci Rep 2025; 15:5228. [PMID: 39939734 PMCID: PMC11821865 DOI: 10.1038/s41598-025-89746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Cervical cancer(CCa) remains a significant global public health concern, with early diagnosis and treatment being crucial. Moreover, the molecular mechanisms underlying its pathogenesis remain incompletely elucidated. F2RL1 is closely associated with various tumors. However, its relationship with CCa is poorly understood. We accessed data from 309 patients diagnosed with CCa from TCGA database. The Limma package facilitated differential expression analysis to identify differentially expressed mRNAs (DEmRNAs). Survival analysis and ROC analysis were conducted via the XIANTAO database. Immune-related genes were identified with F2RL1-related genes through ImmPort database analysis. Functional enrichment analysis was carried out using GO, KEGG, and GSEA. We gathered cervical cells and serum from participants to test for HPV and TCT, and then used qPCR to check the levels of F2RL1 mRNA expression. We also verified the expression of F2RL1 protein through WB and ELISA techniques. Our investigation has unveiled a fascinating discovery-the levels of F2RL1 expression in CCa tissues are notably elevated when compared to normal tissues, showcasing intriguing variations among various pathological types. Moreover, the presence of high F2RL1 expression is linked to reduce Overall Survival (OS), Progression Free Interval (PFI), Progression Free Survival (PFS). F2RL1 rocked the ROC analysis with an AUC of 0.996. Furthermore, F2RL1 expression levels significantly impact CCa in different N stages, pathological tissue types, treatment statuses, and racial groups, allowing us to develop a predictive model. Additionally, we identified 43 immune-related genes. Enrichment analysis highlighting their association with pathways related to cell movement and T cell activation. Through analysis, we discovered an inverse proportion between F2RL1 expression and the infiltration of most immune cells, particularly TFH and cytotoxic cells, suggesting a potential link to immune evasion in CCa. Molecular biology experiments also confirmed a significant increase in F2RL1 expression in cervical exfoliated cells and serum. Our research uncovers the predictive and early detection significance of F2RL1 in CCa and its correlation with immune infiltration for the first time. F2RL1 is strongly linked to the progression of CCa and could serve as a biomarker for the early diagnosis and prognosis of CCa patients.
Collapse
Affiliation(s)
- Yonggang Dai
- Department of Clinical Laboratoryaboratory, Shandong Provincial Third Hospital, Shandong University, No.11 Middle Wuyingshan Road, Tianqiao, Jinan, 250031, Shandong, China
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chunxiang Li
- Department of Clinical Microbiology Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Shiliang Cheng
- Department of Clinical Laboratoryaboratory, Shandong Provincial Third Hospital, Shandong University, No.11 Middle Wuyingshan Road, Tianqiao, Jinan, 250031, Shandong, China
| | - Hongya Wang
- Department of Clinical Laboratoryaboratory, Shandong Provincial Third Hospital, Shandong University, No.11 Middle Wuyingshan Road, Tianqiao, Jinan, 250031, Shandong, China
| | - Xuewei Zhuang
- Department of Clinical Laboratoryaboratory, Shandong Provincial Third Hospital, Shandong University, No.11 Middle Wuyingshan Road, Tianqiao, Jinan, 250031, Shandong, China.
| |
Collapse
|
7
|
Starikova EA, Mammedova JT, Rubinstein AA, Sokolov AV, Kudryavtsev IV. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr Issues Mol Biol 2025; 47:108. [PMID: 39996829 PMCID: PMC11854423 DOI: 10.3390/cimb47020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Hemostasis is a mechanism that stops bleeding from an injured vessel, involves multiple interlinked steps, culminating in the formation of a "clot" sealing the damaged area. Moreover, it has long been recognized that inflammation also provokes the activation of the coagulation system. However, there has been an increasing amount of evidence revealing the immune function of the hemostasis system. This review collects and analyzes the results of the experimental studies and data from clinical observations confirming the inflammatory function of hemostasis. Here, we summarize the latest knowledge of the pathways in immune system activation under the influence of coagulation factors. The data analyzed allow us to consider the components of hemostasis as receptors recognizing «foreign» or damaged «self» or/and as «self» damage signals that initiate and reinforce inflammation and affect the direction of the adaptive immune response. To sum up, the findings collected in the review allow us to classify the coagulation factors, such as Damage-Associated Molecular Patterns that break down the conventional concepts of the coagulation system.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Department of Microbiology and Virology, Institute of Medical Education Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 Saint Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Department of Molecular Biotechnology, Chemical and Biotechnology Faculty, Saint Petersburg State Institute of Technology, Moskovski Ave., 26, 190013 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
| | - Alexey V. Sokolov
- Laboratory of Systemic Virology, Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, 15/17, Prof. Popova Str., 197376 Saint Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| |
Collapse
|
8
|
Zhu Y, Zhang T, Bai H, Li W, Wang S, Xu X, Yu L. PAR2 Participates in the Development of Cough Hypersensitivity in Guinea Pigs by Regulating TRPA1 Through PKC. Biomolecules 2025; 15:208. [PMID: 40001511 PMCID: PMC11853178 DOI: 10.3390/biom15020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
OBJECTIVE This study was conducted to validate the involvement of the PAR2-PKC-TRPA1 pathway in cough hypersensitivity (CHS) development. METHODS Guinea pigs were divided into a blank control, a citric acid-induced enhanced cough model, and drug intervention groups. The effects of the drugs on capsaicin-induced cough responsiveness in a cough model were observed. The effects of individual and combined treatments (including PAR2 agonists, TRPA1 agonists, PAR2 antagonists, TRPA1 antagonists, PKC agonists, and PKC antagonists) on PAR2, phospho-PKC (pPKC), and TRPA1 expression in bronchial tissues and the vagus ganglion (jugular and nodose) in the cough model and control groups were assessed. Additionally, whole-cell patch-clamp recordings were conducted to evaluate the effects of the drugs on vagus ganglion neuron electrophysiological activity. RESULTS ① Both PAR2 antagonists and TRPA1 antagonists significantly reduced cough frequency in guinea pigs with a cough, and the PAR2 antagonist inhibited coughing induced by the TRPA1 agonist. ② Western blotting and multiplex immunohistochemistry (mIHC) indicated that PAR2, pPKCα, PKCα, and TRPA1 expression in bronchial and vagus ganglion tissues was elevated in the cough model compared with the control, with TRPA1 expression being regulated by PAR2 and PKC being involved in this regulatory process. ③ Whole-cell patch-clamp recordings demonstrated that TRPA1 agonists induced an inward current in nodose ganglion neurons, which was further amplified by PAR2 agonists; this amplification effect was blocked by PKC antagonist. Additionally, PAR2 antagonists inhibited the inward current induced by TRPA1 agonists. ④ At various concentrations, including the optimal antitussive concentration, PAR2 antagonists did not significantly affect pulse amplitude, arterial oxygen saturation, heart rate, body temperature, or respiratory rate in guinea pigs. CONCLUSION PAR2 regulates TRPA1 through PKC in cough syndrome (CHS) pathogenesis, making targeting PAR2 a safe and effective therapeutic strategy for CHS.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| |
Collapse
|
9
|
Chen J, Xie J, Deng F, Cai J, Chen S, Song X, Xia S, Shen Q, Guo X, Tang Y. Expansion of peripheral cytotoxic CD4+ T cells in Alzheimer's disease: New insights from multi-omics evidence. Genomics 2025; 117:110976. [PMID: 39657893 DOI: 10.1016/j.ygeno.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
The significance of the adaptive immune response in Alzheimer's disease (AD) is increasingly recognized. We analyzed scRNA-Seq data from AD patients, revealing a notable rise in CD4 cytotoxic T cells (CD4-CTLs) in peripheral blood mononuclear cells (PBMCs), validated in vivo and in vitro. This rise correlates with cognitive decline in AD patients. We also identified transcription factors TBX21 and MYBL1 as key drivers of CD4-CTL expansion. Further analyses indicate these cells are terminally differentiated, showing clonal expansion, metabolic changes, and unique communication patterns. Mendelian randomization identified risk genes SRGN and ITGB1, suggesting their genetic regulation in CD4-CTLs may contribute to AD. To summarize, our findings characterize the expansion of CD4-CTLs in the PBMCs of AD patients, providing valuable understanding into the possible mechanisms involved in the expansion of CD4-CTLs in AD.
Collapse
Affiliation(s)
- Jiongxue Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Fuyin Deng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jinhua Cai
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Sitai Chen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children Medical Center, Guangzhou 510623, China
| | - Shangzhou Xia
- Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute and Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Qingyu Shen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xinying Guo
- Department of Anesthesiology, Guangzhou Women and Children Medical Center, Guangzhou 510623, China.
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Brain Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-sen Memorial Hospital, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Ono K. Signal Peptides and Their Fragments in Post-Translation: Novel Insights of Signal Peptides. Int J Mol Sci 2024; 25:13534. [PMID: 39769297 PMCID: PMC11678238 DOI: 10.3390/ijms252413534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Signal peptides (SPs), peptide sequences located at the N-terminus of newly synthesized proteins, are primarily known for their role in targeting proteins to the endoplasmic reticulum (ER). It has traditionally been assumed that cleaved SPs are rapidly degraded and digested near the ER. However, recent evidence has demonstrated that cleaved SP fragments can be detected in extracellular fluids such as blood flow, where they exhibit bioactivity. In addition, SP fragments are delivered to extracellular fluids via extracellular vesicles such as exosomes and microvesicles, which are important mediators of intercellular communication. These findings suggest that SPs and their fragments may have physiological roles beyond their classical function. This review aims to provide a comprehensive overview of these novel roles and offer new insights into the potential functions of SPs and their fragments in post-translational regulation and intercellular communication.
Collapse
Affiliation(s)
- Kenji Ono
- Department of Neurotoxicology, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya 467-8601, Japan; ; Tel.: +81-52-853-8992; Fax: +81-52-853-8996
- Department of Brain Function, Division of Stress Adaptation and Protection, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Molecular Pharmacokinetics, Nagoya University Graduate School of Medicine, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
López I, Valdivia IL, Vojtesek B, Fåhraeus R, Coates P. Re-appraising the evidence for the source, regulation and function of p53-family isoforms. Nucleic Acids Res 2024; 52:12112-12129. [PMID: 39404067 PMCID: PMC11551734 DOI: 10.1093/nar/gkae855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 11/12/2024] Open
Abstract
The p53 family of proteins evolved from a common ancestor into three separate genes encoding proteins that act as transcription factors with distinct cellular roles. Isoforms of each member that lack specific regions or domains are suggested to result from alternative transcription start sites, alternative splicing or alternative translation initiation, and have the potential to exponentially increase the functional repertoire of each gene. However, evidence supporting the presence of individual protein variants at functional levels is often limited and is inferred by mRNA detection using highly sensitive amplification techniques. We provide a critical appraisal of the current evidence for the origins, expression, functions and regulation of p53-family isoforms. We conclude that despite the wealth of publications, several putative isoforms remain poorly established. Future research with improved technical approaches and the generation of isoform-specific protein detection reagents is required to establish the physiological relevance of p53-family isoforms in health and disease. In addition, our analyses suggest that p53-family variants evolved partly through convergent rather than divergent evolution from the ancestral gene.
Collapse
Affiliation(s)
- Ignacio López
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
- Cell Biology Unit, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| | - Irene Larghero Valdivia
- Biochemistry, Faculty of Science, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| | - Robin Fåhraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
- Inserm UMRS 1131, Institut de Génétique Moléculaire, Université de Paris Cité, 27 rue Juliette Dodu, Hôpital St. Louis, Paris F-75010, France
- Department of Medical Biosciences, Building 6M, Umeå University, Umeå 90185, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno 65653, Czech Republic
| |
Collapse
|
12
|
Li S, Niu J, Smits R. RNF43 and ZNRF3: Versatile regulators at the membrane and their role in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189217. [PMID: 39551397 DOI: 10.1016/j.bbcan.2024.189217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/19/2024]
Abstract
RNF43 and ZNRF3 are recognized as important regulators of Wnt/β-catenin signaling by maintaining Wnt-receptors at minimal essential levels. In various cancer types, particularly gastrointestinal tumors, mutations in these genes lead to abnormal Wnt-dependent activation of β-catenin signaling. However, recent findings implicate RNF43/ZNRF3 also in the regulation of other tumor-related proteins, including EGFR, BRAF, and the BMP-signaling pathway, which may have important implications for tumor biology. Additionally, we describe in detail how phosphorylation and ubiquitination may finetune RNF43 and ZNRF3 activity. We also address the variety of mutations observed in cancers and the mechanism through which they support tumor growth, and challenge the prevailing view that specific missense mutations in the R-spondin and RING domains may possess dominant-negative activity in contributing to tumor formation.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Jiahui Niu
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands
| | - Ron Smits
- Department of Gastroenterology and Hepatology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, the Netherlands..
| |
Collapse
|
13
|
Villano G, Pontisso P. Protease activated receptor 2 as a novel druggable target for the treatment of metabolic dysfunction-associated fatty liver disease and cancer. Front Immunol 2024; 15:1397441. [PMID: 39464875 PMCID: PMC11502361 DOI: 10.3389/fimmu.2024.1397441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is spreading worldwide, largely due to unhealthy lifestyles that contribute to the rise in diabetes, metabolic syndrome, and obesity. In this situation, the progression of injury to metabolic steatohepatitis can evolve to cirrhosis and, eventually, to hepatocellular carcinoma (HCC). It is well known that serine protease enzymes with different functions in cellular homeostasis act as signaling molecules that regulate liver inflammation by activating the protease-activated receptors (PARs) family members, expressed on the cellular plasma membrane. Among them, PAR2 plays a central role in the activation of signaling pathways in response to changes in the extracellular microenvironment. Experimental data have provided evidence that PAR2 is involved not only in inflammatory response but also in insulin resistance, lipid metabolism, and cancer. The major aims of this narrative review are addressed to assess PAR2 involvement in inflammation, metabolism, and liver disease progression and to explore possible therapeutic strategies, based on PAR2 inhibition, in order to prevent its biological effects in the context of MAFLD and cancer.
Collapse
Affiliation(s)
- Gianmarco Villano
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
14
|
Langhans B, Kalthoff S, Zhou T, Weismüller TJ, Lenzen H, Nischalke HD, Strassburg CP, Lutz P, Dold L. Role of PAR1 -506 deletion/insertion polymorphism in primary sclerosing cholangitis. Hepatol Res 2024; 54:942-948. [PMID: 38509789 DOI: 10.1111/hepr.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
AIM Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease characterized by inflammation of the intra- and extrahepatic bile ducts. Pathogenesis of PSC is still enigmatic but is likely to be multifactorial. Recently, we identified an interleukin-6 (IL-6)-dependent signal transducer and activator of transcription 3 (STAT3) activation in CD4+ TH1 and TH17 cells in PSC. The IL-6/STAT3 pathway was shown to be regulated by protease-activated receptor 1 (PAR1) contributing to inflammation. The role of the PAR1 -506 deletion/insertion (Del/Ins) polymorphism in PSC has not yet been investigated. METHODS Two hundred eighty four PSC patients (200 patients with inflammatory bowel diseases [IBD] and 84 without IBD) and 309 healthy controls were genotyped for PAR1 rs11267092 (-506 Del/Ins -13 bp). Results were correlated with clinical characteristics and transplant-free survival. RESULTS The frequency of PAR1 -506 Ins allele carriers (Del/Ins and Ins/Ins) was significantly higher in PSC patients (57.0%) compared to healthy controls (39.8%). Furthermore, carriers of PAR1 -506 Ins allele were more likely to have PSC than noncarriers (odds ratio 2.01; 95% confidence interval, 1.45-2.79). Patients with PSC carrying the PAR1 -506 Ins allele showed significantly higher alanine aminotransferase serum levels (p = 0.0357) and a trend toward shorter transplant-free survival time compared to noncarriers (8.9 ± 6.6 years vs. 10.5 ± 7.1 years; p = 0.076). CONCLUSIONS Our study shows that PAR1 -506 Ins is significantly more frequent in people with PSC. As PAR1 -506 Ins allele carriers tended to have a shorter transplant-free survival, PAR1 might play a role in the development and course of PSC.
Collapse
Affiliation(s)
- Bettina Langhans
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Sandra Kalthoff
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
| | - Taotao Zhou
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
| | - Tobias J Weismüller
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
- Department of Gastroenterology, Hepatology and Oncology, Vivantes Humboldt-Hospital, Berlin, Germany
| | - Henrike Lenzen
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | - Philipp Lutz
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Leona Dold
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| |
Collapse
|
15
|
Bhoj PS, Nocito C, Togre NS, Winfield M, Lubinsky C, Khan S, Mogadala N, Seliga A, Unterwald EM, Persidsky Y, Sriram U. Tissue Kallikrein-1 Suppresses Type I Interferon Responses and Reduces Depressive-Like Behavior in the MRL/lpr Lupus-Prone Mouse Model. Int J Mol Sci 2024; 25:10080. [PMID: 39337564 PMCID: PMC11432477 DOI: 10.3390/ijms251810080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Excessive production and response to Type I interferons (IFNs) is a hallmark of systemic lupus erythematosus (SLE). Neuropsychiatric lupus (NPSLE) is a common manifestation of human SLE, with major depression as the most common presentation. Clinical studies have demonstrated that IFNα can cause depressive symptoms. We have shown that the kallikrein-kinin system (KKS) [comprised of kallikreins (Klks) and bradykinins] and angiotensin-converting enzyme inhibitors suppressed Type I IFN responses in dendritic cells from lupus-prone mice and human peripheral blood mononuclear cells. Tissue Klk genes are decreased in patients with lupus, and giving exogenous Klk1 ameliorated kidney pathology in mice. We retro-orbitally administered mouse klk1 gene-carrying adenovirus in the Murphy Roths Large lymphoproliferative (MRL/lpr) lupus-prone mice at early disease onset and analyzed immune responses and depressive-like behavior. Klk1 improved depressive-like behavior, suppressed interferon-responsive genes and neuroinflammation, and reduced plasma IFNα levels and proinflammatory cytokines. Klk1 also reduced IFNAR1 and JAK1 protein expression, important upstream molecules in Type I IFN signaling. Klk1 reduced bradykinin B1 receptor expression, which is known to induce proinflammatory response. Together, these findings suggest that Klk1 may be a potential therapeutic candidate to control IFNα production/responses and other inflammatory responses in SLE and NPSLE.
Collapse
Affiliation(s)
- Priyanka S. Bhoj
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (P.S.B.); (C.N.); (N.S.T.); (M.W.); (C.L.); (S.K.); (N.M.); (A.S.); (Y.P.)
| | - Cassandra Nocito
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (P.S.B.); (C.N.); (N.S.T.); (M.W.); (C.L.); (S.K.); (N.M.); (A.S.); (Y.P.)
| | - Namdev S. Togre
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (P.S.B.); (C.N.); (N.S.T.); (M.W.); (C.L.); (S.K.); (N.M.); (A.S.); (Y.P.)
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (P.S.B.); (C.N.); (N.S.T.); (M.W.); (C.L.); (S.K.); (N.M.); (A.S.); (Y.P.)
| | - Cody Lubinsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (P.S.B.); (C.N.); (N.S.T.); (M.W.); (C.L.); (S.K.); (N.M.); (A.S.); (Y.P.)
| | - Sabeeya Khan
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (P.S.B.); (C.N.); (N.S.T.); (M.W.); (C.L.); (S.K.); (N.M.); (A.S.); (Y.P.)
| | - Nikhita Mogadala
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (P.S.B.); (C.N.); (N.S.T.); (M.W.); (C.L.); (S.K.); (N.M.); (A.S.); (Y.P.)
| | - Alecia Seliga
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (P.S.B.); (C.N.); (N.S.T.); (M.W.); (C.L.); (S.K.); (N.M.); (A.S.); (Y.P.)
| | - Ellen M. Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (P.S.B.); (C.N.); (N.S.T.); (M.W.); (C.L.); (S.K.); (N.M.); (A.S.); (Y.P.)
| | - Uma Sriram
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (P.S.B.); (C.N.); (N.S.T.); (M.W.); (C.L.); (S.K.); (N.M.); (A.S.); (Y.P.)
| |
Collapse
|
16
|
Fan M, Fan X, Lai Y, Chen J, Peng Y, Peng Y, Xiang L, Ma Y. Protease-Activated Receptor 2 in inflammatory skin disease: current evidence and future perspectives. Front Immunol 2024; 15:1448952. [PMID: 39301020 PMCID: PMC11410643 DOI: 10.3389/fimmu.2024.1448952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
Protease-activated receptor-2 (PAR2) is a class-A G protein-coupled receptor (GPCR) activated by serine proteases and is expressed by multiple tissues, including the skin. PAR2 is involved in the skin inflammatory response, promoting Th2 inflammation, delaying skin barrier repair, and affecting the differentiation of keratinocytes. It also participates in the transmission of itch and pain sensations in the skin. Increasing evidence indicates that PAR2 plays an important role in the pathogenesis of inflammatory skin diseases such as acne vulgaris, rosacea, psoriasis, and atopic dermatitis. Additional focus will be placed on potential targeted therapies based on PAR2. The Goal of this review is to outline the emerging effects of PAR2 activation in inflammatory skin disease and highlight the promise of PAR2 modulators.
Collapse
Affiliation(s)
- Mengjie Fan
- Department of Dermatology, Huashan Hosptial, Fudan University, Shanghai, China
| | - Xiaoyao Fan
- Department of Dermatology, Huashan Hosptial, Fudan University, Shanghai, China
| | - Yangfan Lai
- Department of Dermatology, Huashan Hosptial, Fudan University, Shanghai, China
| | - Jin Chen
- Department of Dermatology, Huashan Hosptial, Fudan University, Shanghai, China
| | - Yifan Peng
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yao Peng
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hosptial, Fudan University, Shanghai, China
| | - Ying Ma
- Department of Dermatology, Huashan Hosptial, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Li Y, Zhou L, Deng H, Zhang Y, Li G, Yu H, Wu K, Wang F. A switch in the pathway of TRPC3-mediated calcium influx into brain pericytes contributes to capillary spasms after subarachnoid hemorrhage. Neurotherapeutics 2024; 21:e00380. [PMID: 38839450 PMCID: PMC11581875 DOI: 10.1016/j.neurot.2024.e00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024] Open
Abstract
Calcium influx and subsequent elevation of the intracellular calcium concentration ([Ca2+]i) induce contractions of brain pericytes and capillary spasms following subarachnoid hemorrhage. This calcium influx is exerted through cation channels. However, the specific calcium influx pathways in brain pericytes after subarachnoid hemorrhage remain unknown. Transient receptor potential canonical 3 (TRPC3) is the most abundant cation channel potentially involved in calcium influx into brain pericytes and is involved in calcium influx into other cell types either via store-operated calcium entry (SOCE) or receptor-operated calcium entry (ROCE). Therefore, we hypothesized that TRPC3 is associated with [Ca2+]i elevation in brain pericytes, potentially mediating brain pericyte contraction and capillary spasms after subarachnoid hemorrhage. In this study, we isolated rat brain pericytes and demonstrated increased TRPC3 expression and its currents in brain pericytes after subarachnoid hemorrhage. Calcium imaging of brain pericytes revealed that changes in TRPC3 expression mediated a switch from SOCE-dominant to ROCE-dominant calcium influx after subarachnoid hemorrhage, resulting in significantly higher [Ca2+]i levels after SAH. TRPC3 activity in brain pericytes also contributed to capillary spasms and reduction in cerebral blood flow in an in vivo rat model of subarachnoid hemorrhage. Therefore, we suggest that the switch in TRPC3-mediated calcium influx pathways plays a crucial role in the [Ca2+]i elevation in brain pericytes after subarachnoid hemorrhage, ultimately leading to capillary spasms and a reduction in cerebral blood flow.
Collapse
Affiliation(s)
- Yuncong Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Lei Zhou
- The Key Laboratory of Stem Cell and Regenerative Medicine of Yunnan Province, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650500, China
| | - Hongji Deng
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yongjin Zhang
- Department of Laboratory for Basic Research, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Guibo Li
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Hanfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Kun Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
18
|
Quarta S, Sandre M, Ruvoletto M, Campagnolo M, Emmi A, Biasiolo A, Pontisso P, Antonini A. Inhibition of Protease-Activated Receptor-2 Activation in Parkinson's Disease Using 1-Piperidin Propionic Acid. Biomedicines 2024; 12:1623. [PMID: 39062196 PMCID: PMC11274518 DOI: 10.3390/biomedicines12071623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
In Parkinson's disease, neuroinflammation is a double-edged sword; when inflammation occurs it can have harmful effects, despite its important role in battling infections and healing tissue. Once triggered by microglia, astrocytes acquire a reactive state and shift from supporting the survival of neurons to causing their destruction. Activated microglia and Proteinase-activated receptor-2 (PAR2) are key points in the regulation of neuroinflammation. 1-Piperidin Propionic Acid (1-PPA) has been recently described as a novel inhibitor of PAR2. The aim of our study was to evaluate the effect of 1-PPA in neuroinflammation and microglial activation in Parkinson's disease. Protein aggregates and PAR2 expression were analyzed using Thioflavin S assay and immunofluorescence in cultured human fibroblasts from Parkinson's patients, treated or untreated with 1-PPA. A significant decrease in amyloid aggregates was observed after 1-PPA treatment in all patients. A parallel decrease in PAR2 expression, which was higher in sporadic Parkinson's patients, was also observed both at the transcriptional and protein level. In addition, in mouse LPS-activated microglia, the inflammatory profile was significantly downregulated after 1-PPA treatment, with a remarkable decrease in IL-1β, IL-6, and TNF-α, together with a decreased expression of PAR2. In conclusion, 1-PPA determines the reduction in neuroglia inflammation and amyloid aggregates formation, suggesting that the pharmacological inhibition of PAR2 could be proposed as a novel strategy to control neuroinflammation.
Collapse
Affiliation(s)
- Santina Quarta
- Department of Medicine, University of Padova, 35122 Padova, Italy; (S.Q.); (M.R.); (A.B.)
| | - Michele Sandre
- Parkinson and Movement Disorders Unit, Padua Neuroscience Center (PNC), Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, 35122 Padova, Italy; (M.S.); (M.C.); (A.E.); (A.A.)
| | - Mariagrazia Ruvoletto
- Department of Medicine, University of Padova, 35122 Padova, Italy; (S.Q.); (M.R.); (A.B.)
| | - Marta Campagnolo
- Parkinson and Movement Disorders Unit, Padua Neuroscience Center (PNC), Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, 35122 Padova, Italy; (M.S.); (M.C.); (A.E.); (A.A.)
| | - Aron Emmi
- Parkinson and Movement Disorders Unit, Padua Neuroscience Center (PNC), Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, 35122 Padova, Italy; (M.S.); (M.C.); (A.E.); (A.A.)
| | - Alessandra Biasiolo
- Department of Medicine, University of Padova, 35122 Padova, Italy; (S.Q.); (M.R.); (A.B.)
| | - Patrizia Pontisso
- Department of Medicine, University of Padova, 35122 Padova, Italy; (S.Q.); (M.R.); (A.B.)
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Padua Neuroscience Center (PNC), Center for Neurodegenerative Disease Research (CESNE), Department of Neuroscience, University of Padova, 35122 Padova, Italy; (M.S.); (M.C.); (A.E.); (A.A.)
| |
Collapse
|
19
|
Maeda K, Kuriyama N, Noguchi D, Ito T, Gyoten K, Hayasaki A, Fujii T, Iizawa Y, Murata Y, Tanemura A, Kishiwada M, Mizuno S. Xa inhibitor edoxaban ameliorates hepatic ischemia-reperfusion injury via PAR-2-ERK 1/2 pathway. PLoS One 2024; 19:e0292628. [PMID: 38748746 PMCID: PMC11095713 DOI: 10.1371/journal.pone.0292628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/25/2023] [Indexed: 05/19/2024] Open
Abstract
Hepatic ischemia-reperfusion injury causes liver damage during surgery. In hepatic ischemia-reperfusion injury, the blood coagulation cascade is activated, causing microcirculatory incompetence and cellular injury. Coagulation factor Xa (FXa)- protease-activated receptor (PAR)-2 signaling activates inflammatory reactions and the cytoprotective effect of FXa inhibitor in several organs. However, no studies have elucidated the significance of FXa inhibition on hepatic ischemia-reperfusion injury. The present study elucidated the treatment effect of an FXa inhibitor, edoxaban, on hepatic ischemia-reperfusion injury, focusing on FXa-PAR-2 signaling. A 60 min hepatic partial-warm ischemia-reperfusion injury mouse model and a hypoxia-reoxygenation model of hepatic sinusoidal endothelial cells were used. Ischemia-reperfusion injury mice and hepatic sinusoidal endothelial cells were treated and pretreated, respectively with or without edoxaban. They were incubated during hypoxia/reoxygenation in vitro. Cell signaling was evaluated using the PAR-2 knockdown model. In ischemia-reperfusion injury mice, edoxaban treatment significantly attenuated fibrin deposition in the sinusoids and liver histological damage and resulted in both anti-inflammatory and antiapoptotic effects. Hepatic ischemia-reperfusion injury upregulated PAR-2 generation and enhanced extracellular signal-regulated kinase 1/2 (ERK 1/2) activation; however, edoxaban treatment reduced PAR-2 generation and suppressed ERK 1/2 activation in vivo. In the hypoxia/reoxygenation model of sinusoidal endothelial cells, hypoxia/reoxygenation stress increased FXa generation and induced cytotoxic effects. Edoxaban protected sinusoidal endothelial cells from hypoxia/reoxygenation stress and reduced ERK 1/2 activation. PAR-2 knockdown in the sinusoidal endothelial cells ameliorated hypoxia/reoxygenation stress-induced cytotoxicity and suppressed ERK 1/2 phosphorylation. Thus, edoxaban ameliorated hepatic ischemia-reperfusion injury in mice by protecting against micro-thrombosis in sinusoids and suppressing FXa-PAR-2-induced inflammation in the sinusoidal endothelial cells.
Collapse
Affiliation(s)
- Koki Maeda
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Naohisa Kuriyama
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Daisuke Noguchi
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takahiro Ito
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kazuyuki Gyoten
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Aoi Hayasaki
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takehiro Fujii
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yusuke Iizawa
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Murata
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Akihiro Tanemura
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masashi Kishiwada
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shugo Mizuno
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
20
|
Paul S, Mukherjee T, Das K. Coagulation Protease-Driven Cancer Immune Evasion: Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2024; 16:1568. [PMID: 38672649 PMCID: PMC11048528 DOI: 10.3390/cancers16081568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Blood coagulation and cancer are intrinsically connected, hypercoagulation-associated thrombotic complications are commonly observed in certain types of cancer, often leading to decreased survival in cancer patients. Apart from the common role in coagulation, coagulation proteases often trigger intracellular signaling in various cancers via the activation of a G protein-coupled receptor superfamily protease: protease-activated receptors (PARs). Although the role of PARs is well-established in the development and progression of certain types of cancer, their impact on cancer immune response is only just emerging. The present review highlights how coagulation protease-driven PAR signaling plays a key role in modulating innate and adaptive immune responses. This is followed by a detailed discussion on the contribution of coagulation protease-induced signaling in cancer immune evasion, thereby supporting the growth and development of certain tumors. A special section of the review demonstrates the role of coagulation proteases, thrombin, factor VIIa, and factor Xa in cancer immune evasion. Targeting coagulation protease-induced signaling might be a potential therapeutic strategy to boost the immune surveillance mechanism of a host fighting against cancer, thereby augmenting the clinical consequences of targeted immunotherapeutic regimens.
Collapse
Affiliation(s)
- Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India;
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India
| |
Collapse
|
21
|
Tao C, Li Y, An N, Liu H, Liu Z, Sun Y, Qian Y, Li N, Xing Y, Gao Y. Pathological mechanisms and future therapeutic directions of thrombin in intracerebral hemorrhage: a systematic review. Front Pharmacol 2024; 15:1293428. [PMID: 38698822 PMCID: PMC11063263 DOI: 10.3389/fphar.2024.1293428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/05/2024] [Indexed: 05/05/2024] Open
Abstract
Intracerebral hemorrhage (ICH), a common subtype of hemorrhagic stroke, often causes severe disability or death. ICH induces adverse events that might lead to secondary brain injury (SBI), and there is currently a lack of specific effective treatment strategies. To provide a new direction for SBI treatment post-ICH, the systematic review discussed how thrombin impacts secondary injury after ICH through several potentially deleterious or protective mechanisms. We included 39 studies and evaluated them using SYRCLE's ROB tool. Subsequently, we explored the potential molecular mechanisms of thrombin-mediated effects on SBI post-ICH in terms of inflammation, iron deposition, autophagy, and angiogenesis. Furthermore, we described the effects of thrombin in endothelial cells, astrocytes, pericytes, microglia, and neurons, as well as the harmful and beneficial effects of high and low thrombin concentrations on ICH. Finally, we concluded the current research status of thrombin therapy for ICH, which will provide a basis for the future clinical application of thrombin in the treatment of ICH.
Collapse
Affiliation(s)
- Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Qian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yanwei Xing
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Aleksandrowicz K, Hempel D, Polityńska B, Wojtukiewicz AM, Honn KV, Tang DG, Wojtukiewicz MZ. The Complex Role of Thrombin in Cancer and Metastasis: Focus on Interactions with the Immune System. Semin Thromb Hemost 2024; 50:462-473. [PMID: 37984359 DOI: 10.1055/s-0043-1776875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Thrombin, a pleiotropic enzyme involved in coagulation, plays a crucial role in both procoagulant and anticoagulant pathways. Thrombin converts fibrinogen into fibrin, initiates platelet activation, and promotes clot formation. Thrombin also activates anticoagulant pathways, indirectly inhibiting factors involved in coagulation. Tissue factor triggers thrombin generation, and the overexpression of thrombin in various cancers suggests that it is involved in tumor growth, angiogenesis, and metastasis. Increased thrombin generation has been observed in cancer patients, especially those with metastases. Thrombin exerts its effects through protease-activated receptors (PARs), particularly PAR-1 and PAR-2, which are involved in cancer progression, angiogenesis, and immunological responses. Thrombin-mediated signaling promotes angiogenesis by activating endothelial cells and platelets, thereby releasing proangiogenic factors. These functions of thrombin are well recognized and have been widely described. However, in recent years, intriguing new findings concerning the association between thrombin activity and cancer development have come to light, which justifies a review of this research. In particular, there is evidence that thrombin-mediated events interact with the immune system, and may regulate its response to tumor growth. It is also worth reevaluating the impact of thrombin on thrombocytes in conjunction with its multifaceted influence on tumor progression. Understanding the role of thrombin/PAR-mediated signaling in cancer and immunological responses is crucial, particularly in the context of developing immunotherapies. In this systematic review, we focus on the impact of the thrombin-related immune system response on cancer progression.
Collapse
Affiliation(s)
- Karolina Aleksandrowicz
- Department of Clinical Oncology, Medical University, Białystok, Poland
- Comprehensive Cancer Center, Bialystok, Poland
| | - Dominika Hempel
- Department of Clinical Oncology, Medical University, Białystok, Poland
- Comprehensive Cancer Center, Bialystok, Poland
| | - Barbara Polityńska
- Department of Psychology and Philosophy, Medical University of Białystok, Białystok, Poland
| | - Anna M Wojtukiewicz
- Department of Psychology and Philosophy, Medical University of Białystok, Białystok, Poland
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, Michigan
- Department of Chemistry, Wayne State University, Detroit, Michigan
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Marek Z Wojtukiewicz
- Department of Clinical Oncology, Medical University, Białystok, Poland
- Comprehensive Cancer Center, Bialystok, Poland
| |
Collapse
|
23
|
Hou JJ, Ding L, Yang T, Yang YF, Jin YP, Zhang XP, Ma AH, Qin YH. The proteolytic activity in inflammatory bowel disease: insight from gut microbiota. Microb Pathog 2024; 188:106560. [PMID: 38272327 DOI: 10.1016/j.micpath.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease caused by the destruction of the intestinal mucosal epithelium that affects a growing number of people worldwide. Although the etiology of IBD is complex and still elucidated, the role of dysbiosis and dysregulated proteolysis is well recognized. Various studies observed altered composition and diversity of gut microbiota, as well as increased proteolytic activity (PA) in serum, plasma, colonic mucosa, and fecal supernatant of IBD compared to healthy individuals. The imbalance of intestinal microecology and intestinal protein hydrolysis were gradually considered to be closely related to IBD. Notably, the pivotal role of intestinal microbiota in maintaining proteolytic balance received increasing attention. In summary, we have speculated a mesmerizing story, regarding the hidden role of PA and microbiota-derived PA hidden in IBD. Most importantly, we provided the diagnosis and therapeutic targets for IBD as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Liang Ding
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Tao Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yan-Fei Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Ping Jin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Xiao-Ping Zhang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - A-Huo Ma
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China.
| |
Collapse
|
24
|
Houlahan CB, Kong Y, Johnston B, Cielesh M, Chau TH, Fenwick J, Coleman PR, Hao H, Haltiwanger RS, Thaysen-Andersen M, Passam FH, Larance M. Analysis of the Healthy Platelet Proteome Identifies a New Form of Domain-Specific O-Fucosylation. Mol Cell Proteomics 2024; 23:100717. [PMID: 38237698 PMCID: PMC10879016 DOI: 10.1016/j.mcpro.2024.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Platelet activation induces the secretion of proteins that promote platelet aggregation and inflammation. However, detailed analysis of the released platelet proteome is hampered by platelets' tendency to preactivate during their isolation and a lack of sensitive protocols for low abundance releasate analysis. Here, we detail the most sensitive analysis to date of the platelet releasate proteome with the detection of >1300 proteins. Unbiased scanning for posttranslational modifications within releasate proteins highlighted O-glycosylation as being a major component. For the first time, we detected O-fucosylation on previously uncharacterized sites including multimerin-1 (MMRN1), a major alpha granule protein that supports platelet adhesion to collagen and is a carrier for platelet factor V. The N-terminal elastin microfibril interface (EMI) domain of MMRN1, a key site for protein-protein interaction, was O-fucosylated at a conserved threonine within a new domain context. Our data suggest that either protein O-fucosyltransferase 1, or a novel protein O-fucosyltransferase, may be responsible for this modification. Mutating this O-fucose site on the EMI domain led to a >50% reduction of MMRN1 secretion, supporting a key role of EMI O-fucosylation in MMRN1 secretion. By comparing releasates from resting and thrombin-treated platelets, 202 proteins were found to be significantly released after high-dose thrombin stimulation. Complementary quantification of the platelet lysates identified >3800 proteins, which confirmed the platelet origin of releasate proteins by anticorrelation analysis. Low-dose thrombin treatment yielded a smaller subset of significantly regulated proteins with fewer secretory pathway enzymes. The extensive platelet proteome resource provided here (larancelab.com/platelet-proteome) allows identification of novel regulatory mechanisms for drug targeting to address platelet dysfunction and thrombosis.
Collapse
Affiliation(s)
- Callum B Houlahan
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Yvonne Kong
- Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Bede Johnston
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Michelle Cielesh
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - The Huong Chau
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Jemma Fenwick
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Coleman
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Huilin Hao
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Morten Thaysen-Andersen
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia; Institute for Glyco-Core Research, Nagoya University, Nagoya, Aichi, Japan
| | - Freda H Passam
- The Heart Research Institute, Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
25
|
Dai C, Lin X, Qi Y, Wang Y, Lv Z, Zhao F, Deng Z, Feng X, Zhang T, Pu X. Vitamin D3 improved hypoxia-induced lung injury by inhibiting the complement and coagulation cascade and autophagy pathway. BMC Pulm Med 2024; 24:9. [PMID: 38166725 PMCID: PMC10759436 DOI: 10.1186/s12890-023-02784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Pulmonary metabolic dysfunction can cause lung tissue injury. There is still no ideal drug to protect against hypoxia-induced lung injury, therefore, the development of new drugs to prevent and treat hypoxia-induced lung injury is urgently needed. We aimed to explore the ameliorative effects and molecular mechanisms of vitamin D3 (VD3) on hypoxia-induced lung tissue injury. METHODS Sprague-Dawley (SD) rats were randomly divided into three groups: normoxia, hypoxia, and hypoxia + VD3. The rat model of hypoxia was established by placing the rats in a hypobaric chamber. The degree of lung injury was determined using hematoxylin and eosin (H&E) staining, lung water content, and lung permeability index. Transcriptome data were subjected to differential gene expression and pathway analyses. In vitro, type II alveolar epithelial cells were co-cultured with hepatocytes and then exposed to hypoxic conditions for 24 h. For VD3 treatment, the cells were treated with low and high concentrations of VD3. RESULTS Transcriptome and KEGG analyses revealed that VD3 affects the complement and coagulation cascade pathways in hypoxia-induced rats, and the genes enriched in this pathway were Fgb/Fga/LOC100910418. Hypoxia can cause increases in lung edema, inflammation, and lung permeability disruption, which are attenuated by VD3 treatment. VD3 weakened the complement and coagulation cascade in the lung and liver of hypoxia-induced rats, characterized by lower expression of fibrinogen alpha chain (Fga), fibrinogen beta chain (Fgb), protease-activated receptor 1 (PAR1), protease-activated receptor 3 (PAR3), protease-activated receptor 4 (PAR4), complement (C) 3, C3a, and C5. In addition, VD3 improved hypoxic-induced type II alveolar epithelial cell damage and inflammation by inhibiting the complement and coagulation cascades. Furthermore, VD3 inhibited hypoxia-induced autophagy in vivo and in vitro, which was abolished by the mitophagy inducer, carbonyl cyanide-m-chlorophenylhydrazone (CCCP). CONCLUSION VD3 alleviated hypoxia-induced pulmonary edema by inhibiting the complement and coagulation cascades and autophagy pathways.
Collapse
Affiliation(s)
- Chongyang Dai
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Xue Lin
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610000, People's Republic of China
| | - Yinglian Qi
- Qinghai Normal University, Xining, Qinghai Province, 810008, People's Republic of China
| | - Yaxuan Wang
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhongkui Lv
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Fubang Zhao
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhangchang Deng
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Xiaokai Feng
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, Qinghai University, Xining, Qinghai Province, 810007, People's Republic of China.
| | - Tongzuo Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, 810001, People's Republic of China.
| | - Xiaoyan Pu
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China.
| |
Collapse
|
26
|
Rondeau LE, Da Luz BB, Santiago A, Bermudez-Brito M, Hann A, De Palma G, Jury J, Wang X, Verdu EF, Galipeau HJ, Rolland C, Deraison C, Ruf W, Bercik P, Vergnolle N, Caminero A. Proteolytic bacteria expansion during colitis amplifies inflammation through cleavage of the external domain of PAR2. Gut Microbes 2024; 16:2387857. [PMID: 39171684 PMCID: PMC11346554 DOI: 10.1080/19490976.2024.2387857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Imbalances in proteolytic activity have been linked to the development of inflammatory bowel diseases (IBD) and experimental colitis. Proteases in the intestine play important roles in maintaining homeostasis, but exposure of mucosal tissues to excess proteolytic activity can promote pathology through protease-activated receptors (PARs). Previous research implicates microbial proteases in IBD, but the underlying pathways and specific interactions between microbes and PARs remain unclear. In this study, we investigated the role of microbial proteolytic activation of the external domain of PAR2 in intestinal injury using mice expressing PAR2 with a mutated N-terminal external domain that is resistant to canonical activation by proteolytic cleavage. Our findings demonstrate the key role of proteolytic cleavage of the PAR2 external domain in promoting intestinal permeability and inflammation during colitis. In wild-type mice expressing protease-sensitive PAR2, excessive inflammation leads to the expansion of bacterial taxa that cleave the external domain of PAR2, exacerbating colitis severity. In contrast, mice expressing mutated protease-resistant PAR2 exhibit attenuated colitis severity and do not experience the same proteolytic bacterial expansion. Colonization of wild-type mice with proteolytic PAR2-activating Enterococcus and Staphylococcus worsens colitis severity. Our study identifies a previously unknown interaction between proteolytic bacterial communities, which are shaped by inflammation, and the external domain of PAR2 in colitis. The findings should encourage new therapeutic developments for IBD by targeting excessive PAR2 cleavage by bacterial proteases.
Collapse
Affiliation(s)
- Liam Emile Rondeau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Bruna Barbosa Da Luz
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Alba Santiago
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Miriam Bermudez-Brito
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Amber Hann
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Giada De Palma
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jennifer Jury
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Xuanyu Wang
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Elena Francisca Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Heather Jean Galipeau
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | | | - Alberto Caminero
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
27
|
Ruf L, Bukowska A, Gardemann A, Goette A. Coagulation Factor Xa Has No Effects on the Expression of PAR1, PAR2, and PAR4 and No Proinflammatory Effects on HL-1 Cells. Cells 2023; 12:2849. [PMID: 38132169 PMCID: PMC10741780 DOI: 10.3390/cells12242849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Atrial fibrillation (AF), characterised by irregular high-frequency contractions of the atria of the heart, is of increasing clinical importance. The reasons are the increasing prevalence and thromboembolic complications caused by AF. So-called atrial remodelling is characterised, among other things, by atrial dilatation and fibrotic remodelling. As a result, AF is self-sustaining and forms a procoagulant state. But hypercoagulation not only appears to be the consequence of AF. Coagulation factors can exert influence on cells via protease-activated receptors (PAR) and thereby the procoagulation state could contribute to the development and maintenance of AF. In this work, the influence of FXa on Heart Like-1 (HL-1) cells, which are murine adult atrial cardiomyocytes (immortalized), was investigated. PAR1, PAR2, and PAR4 expression was detected. After incubations with FXa (5-50 nM; 4-24 h) or PAR1- and PAR2-agonists (20 µM; 4-24 h), no changes occurred in PAR expression or in the inflammatory signalling cascade. There were no time- or concentration-dependent changes in the phosphorylation of the MAP kinases ERK1/2 or the p65 subunit of NF-κB. In addition, there was no change in the mRNA expression of the cell adhesion molecules (ICAM-1, VCAM-1, fibronectin). Thus, FXa has no direct PAR-dependent effects on HL-1 cells. Future studies should investigate the influence of FXa on human cardiomyocytes or on other cardiac cell types like fibroblasts.
Collapse
Affiliation(s)
- Lukas Ruf
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Alicja Bukowska
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Gardemann
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Goette
- Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn, Am Busdorf 2, 33098 Paderborn, Germany
| |
Collapse
|
28
|
Carré J, Kerforne T, Hauet T, Macchi L. Tissue Injury Protection: The Other Face of Anticoagulant Treatments in the Context of Ischemia and Reperfusion Injury with a Focus on Transplantation. Int J Mol Sci 2023; 24:17491. [PMID: 38139319 PMCID: PMC10743711 DOI: 10.3390/ijms242417491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
Organ transplantation has enhanced the length and quality of life of patients suffering from life-threatening organ failure. Donors deceased after brain death (DBDDs) have been a primary source of organs for transplantation for a long time, but the need to find new strategies to face organ shortages has led to the broadening of the criteria for selecting DBDDs and advancing utilization of donors deceased after circulatory death. These new sources of organs come with an elevated risk of procuring organs of suboptimal quality. Whatever the source of organs for transplant, one constant issue is the occurrence of ischemia-reperfusion (IR) injury. The latter results from the variation of oxygen supply during the sequence of ischemia and reperfusion, from organ procurement to the restoration of blood circulation, triggering many deleterious interdependent processes involving biochemical, immune, vascular and coagulation systems. In this review, we focus on the roles of thrombo-inflammation and coagulation as part of IR injury, and we give an overview of the state of the art and perspectives on anticoagulant therapies in the field of transplantation, discussing benefits and risks and proposing a strategic guide to their use during transplantation procedures.
Collapse
Affiliation(s)
- Julie Carré
- Service D’Hématologie Biologique, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France;
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
| | - Thomas Kerforne
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- Service D’Anesthésie-Réanimation et Médecine Péri-Opératoire, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
| | - Thierry Hauet
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
- Service de Biochimie, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France
| | - Laurent Macchi
- Service D’Hématologie Biologique, Centre Hospitalo-Universitaire de Poitiers, 86000 Poitiers, France;
- INSERM 1313 Ischémie Reperfusion, Métabolisme, Inflammation Stérile en Transplantation (IRMETIST), Université de Poitiers, 86000 Poitiers, France; (T.K.); (T.H.)
- FHU Survival Optimization in Organ Transplantation (SUPORT), 86000 Poitiers, France
| |
Collapse
|
29
|
Hu M, Scheffel J, Elieh-Ali-Komi D, Maurer M, Hawro T, Metz M. An update on mechanisms of pruritus and their potential treatment in primary cutaneous T-cell lymphoma. Clin Exp Med 2023; 23:4177-4197. [PMID: 37555911 PMCID: PMC10725374 DOI: 10.1007/s10238-023-01141-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023]
Abstract
Primary cutaneous T-cell lymphomas (CTCL), which include mycosis fungoides (MF) and Sézary syndrome (SS), are a group of lymphoproliferative disorders characterized by clonal accumulation of neoplastic T-lymphocytes in the skin. Severe pruritus, one of the most common and distressing symptoms in primary CTCL, can significantly impair emotional well-being, physical functioning, and interpersonal relationships, thus greatly reducing quality of life. Unfortunately, effectively managing pruritus remains challenging in CTCL patients as the underlying mechanisms are, as of yet, not fully understood. Previous studies investigating the mechanisms of itch in CTCL have identified several mediators and their corresponding antagonists used for treatment. However, a comprehensive overview of the mediators and receptors contributing to pruritus in primary CTCL is lacking in the current literature. Here, we summarize and review the mediators and receptors that may contribute to pruritus in primary CTCL to explore the mechanisms of CTCL pruritus and identify effective therapeutic targets using the PubMed and Web of Science databases. Studies were included if they described itch mediators and receptors in MF and SS. Overall, the available data suggest that proteases (mainly tryptase), and neuropeptides (particularly Substance P) may be of greatest interest. At the receptor level, cytokine receptors, MRGPRs, and TRP channels are most likely important. Future drug development efforts should concentrate on targeting these mediators and receptors for the treatment of CTCL pruritus.
Collapse
Affiliation(s)
- Man Hu
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Jörg Scheffel
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Tomasz Hawro
- Department of Dermatology, Allergology and Venereology, Institute and Comprehensive Center for Inflammation Medicine, University Medical Center Schleswig-Holstein, Lübeck, Germany.
| | - Martin Metz
- Institute of Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Hindenburgdamm 27, 12203, Berlin, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany.
| |
Collapse
|
30
|
Yang CC, Lee IT, Lin YJ, Wu WB, Hsiao LD, Yang CM. Thrombin-Induced COX-2 Expression and PGE 2 Synthesis in Human Tracheal Smooth Muscle Cells: Role of PKCδ/Pyk2-Dependent AP-1 Pathway Modulation. Int J Mol Sci 2023; 24:15130. [PMID: 37894811 PMCID: PMC10606820 DOI: 10.3390/ijms242015130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we confirmed that thrombin significantly increases the production of COX-2 and PGE2 in human tracheal smooth muscle cells (HTSMCs), leading to inflammation in the airways and lungs. These molecules are well-known contributors to various inflammatory diseases. Here, we investigated in detail the involved signaling pathways using specific inhibitors and small interfering RNAs (siRNAs). Our results demonstrated that inhibitors targeting proteins such as protein kinase C (PKC)δ, proline-rich tyrosine kinase 2 (Pyk2), c-Src, epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), or activator protein-1 (AP-1) effectively reduced thrombin-induced COX-2 and PGE2 production. Additionally, transfection with siRNAs against PKCδ, Pyk2, c-Src, EGFR, protein kinase B (Akt), or c-Jun mitigated these responses. Furthermore, our observations revealed that thrombin stimulated the phosphorylation of key components of the signaling cascade, including PKCδ, Pyk2, c-Src, EGFR, Akt, and c-Jun. Thrombin activated COX-2 promoter activity through AP-1 activation, a process that was disrupted by a point-mutated AP-1 site within the COX-2 promoter. Finally, resveratrol (one of the most researched natural polyphenols) was found to effectively inhibit thrombin-induced COX-2 expression and PGE2 release in HTSMCs through blocking the activation of Pyk2, c-Src, EGFR, Akt, and c-Jun. In summary, our findings demonstrate that thrombin-induced COX-2 and PGE2 generation involves a PKCδ/Pyk2/c-Src/EGFR/PI3K/Akt-dependent AP-1 activation pathway. This study also suggests the potential use of resveratrol as an intervention for managing airway inflammation.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taoyuan 333008, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yan-Jyun Lin
- Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung 406040, Taiwan;
| | - Wen-Bin Wu
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Li-Der Hsiao
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Chuen-Mao Yang
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| |
Collapse
|
31
|
Russo V, Falco L, Tessitore V, Mauriello A, Catapano D, Napolitano N, Tariq M, Caturano A, Ciccarelli G, D’Andrea A, Giordano A. Anti-Inflammatory and Anticancer Effects of Anticoagulant Therapy in Patients with Malignancy. Life (Basel) 2023; 13:1888. [PMID: 37763292 PMCID: PMC10532829 DOI: 10.3390/life13091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Optimizing the anticoagulation therapy is of pivotal importance in patients with a malignant tumor, as venous thromboembolism (VTE) has become the second-leading cause of death in this population. Cancer can highly increase the risk of thrombosis and bleeding. Consequently, the management of cancer-associated VTE is complex. In recent years, translational research has intensified, and several studies have highlighted the role of inflammatory cytokines in cancer growth and progression. Simultaneously, the pleiotropic effects of anticoagulants currently recommended for VTE have emerged. In this review, we describe the anti-inflammatory and anticancer effects of both direct oral anticoagulants (DOACs) and low-molecular-weight heparins (LWMHs).
Collapse
Affiliation(s)
- Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Luigi Falco
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Viviana Tessitore
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Alfredo Mauriello
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Dario Catapano
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Nicola Napolitano
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Moiz Tariq
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, NA, Italy (A.D.)
| | - Giovanni Ciccarelli
- Cardiology Unit, Department of Medical Translational Science, University of Campania “Luigi Vanvitelli”—Monaldi Hospital, 80126 Naples, NA, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Antonello D’Andrea
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, NA, Italy (A.D.)
- Cardiology Unit, Umberto I Hospital, 84014 Nocera Inferiore, SA, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
32
|
Kuzmina IV, Ovchinnikova NV, Tolpygo SM. Serum Activity of Proteolytic Enzyme Trypsin in Rats under Conditions of Water and Food Deprivation. Bull Exp Biol Med 2023; 175:608-611. [PMID: 37861909 DOI: 10.1007/s10517-023-05910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Indexed: 10/21/2023]
Abstract
Trypsin is mainly regarded as a digestive enzyme, but there is evidence that activation of protease-activated receptor-2 (PAR-2) leads to behavioral changes. There are no data on trypsin activity in the serum of animals under conditions of thirst and starvation in the available literature. In our experiments, water deprivation led to a significant (p⩽0.05) increase in trypsin activity in rats, and food deprivation led to its decrease in comparison with controls (free access to water and food). After deprived rats received water and food, a decrease in trypsin activity was observed in both experimental groups. Changes in trypsin activity under conditions of water or food deprivation and after satiation were accompanied by shifts in some biochemical parameters of the bloods. Under conditions of metabolic stress (starvation and thirst), opposite changes in trypsin activity seem to indicate its participation in the mechanisms of adequate restructuring of metabolism and maintenance of vital processes in the body.
Collapse
Affiliation(s)
- I V Kuzmina
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| | - N V Ovchinnikova
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - S M Tolpygo
- P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
33
|
Lee HY, You DJ, Taylor-Just A, Tisch LJ, Bartone RD, Atkins HM, Ralph LM, Antoniak S, Bonner JC. Role of the protease-activated receptor-2 (PAR2) in the exacerbation of house dust mite-induced murine allergic lung disease by multi-walled carbon nanotubes. Part Fibre Toxicol 2023; 20:32. [PMID: 37580758 PMCID: PMC10424461 DOI: 10.1186/s12989-023-00538-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/28/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) has been reported to exert strong pro-inflammatory and pro-fibrotic adjuvant effects in mouse models of allergic lung disease. However, the molecular mechanisms through which MWCNTs exacerbate allergen-induced lung disease remain to be elucidated. We hypothesized that protease-activated receptor 2 (PAR2), a G-protein coupled receptor previously implicated in the pathogenesis of various diseases including pulmonary fibrosis and asthma, may play an important role in the exacerbation of house dust mite (HDM) allergen-induced lung disease by MWCNTs. METHODS Wildtype (WT) male C57BL6 mice and Par2 KO mice were exposed to vehicle, MWCNTs, HDM extract, or both via oropharyngeal aspiration 6 times over a period of 3 weeks and were sacrificed 3-days after the final exposure (day 22). Bronchoalveolar lavage fluid (BALF) was harvested to measure changes in inflammatory cells, total protein, and lactate dehydrogenase (LDH). Lung protein and RNA were assayed for pro-inflammatory or profibrotic mediators, and formalin-fixed lung sections were evaluated for histopathology. RESULTS In both WT and Par2 KO mice, co-exposure to MWCNTs synergistically increased lung inflammation assessed by histopathology, and increased BALF cellularity, primarily eosinophils, as well as BALF total protein and LDH in the presence of relatively low doses of HDM extract that alone produced little, if any, lung inflammation. In addition, both WT and par2 KO mice displayed a similar increase in lung Cc1-11 mRNA, which encodes the eosinophil chemokine CCL-11, after co-exposure to MWCNTs and HDM extract. However, Par2 KO mice displayed significantly less airway fibrosis as determined by quantitative morphometry compared to WT mice after co-exposure to MWCNTs and HDM extract. Accordingly, at both protein and mRNA levels, the pro-fibrotic mediator arginase 1 (ARG-1), was downregulated in Par2 KO mice exposed to MWCNTs and HDM. In contrast, phosphorylation of the pro-inflammatory transcription factor NF-κB and the pro-inflammatory cytokine CXCL-1 was increased in Par2 KO mice exposed to MWCNTs and HDM. CONCLUSIONS Our study indicates that PAR2 mediates airway fibrosis but not eosinophilic lung inflammation induced by co-exposure to MWCNTs and HDM allergens.
Collapse
Affiliation(s)
- Ho Young Lee
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dorothy J You
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Alexia Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Logan J Tisch
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ryan D Bartone
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hannah M Atkins
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Lauren M Ralph
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Silvio Antoniak
- UNC Blood Research Center, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
34
|
Agrawal A, Kulkarni GT. Topical application of aerial portion of Acalypha indica Linn ameliorates psoriasis in rodents: Evidences from in vivo and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2023:116685. [PMID: 37236382 DOI: 10.1016/j.jep.2023.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
ETHANOPHARMACOLOGICAL RELEVANCE Acalypha indica Linn. is a weed, used traditionally for different skin diseases such as eczema and dermatitis in various parts of India. There are no previous in vivo studies reported on the antipsoriatic potential of this medicinal plant. AIM The aim of this study was to investigate antipsoriatic activity of coconut oil dispersion of aerial portion of Acalypha indica Linn. Few lipid-soluble phytoconstituents of this plantwere subjected to molecular docking studies on different targets to determine phytoconstituent responsible for antipsoriatic activity. METHODS Virgin coconut oil dispersion of aerial portion of the plant was prepared by mixing three parts of coconut oil and one part of powdered aerial portion. The acute dermal toxicity was determined according to OECD guidelines. Mouse tail model was used to evaluate the antipsoriatic activity. Molecular docking of phytoconstituents was carried out using Biovia Discovery Studio. RESULTS In acute dermal toxicity study,the coconut oil dispersion was found to be safe up to the dose of 20000 mg/kg. The dispersion exhibited significant antipsoriatic activity (p < 0.01) at the dose of 250 mg/kg; at 500 mg/kg dose, the activity was similar that of 250 mg/kg dose. In the docking study of the phytoconstituents, 2-methyl anthraquinone was found to be responsible for antipsoriatic activity. CONCLUSION This study provides new evidence of Acalypha indica Linn as antipsoriatic plant and justifies its traditional use. Computational studies also endorse the results obtained via acute dermal toxicity study and mouse tail model for evaluation of antipsoriatic potential.
Collapse
Affiliation(s)
- Anurag Agrawal
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, 474 001, India; Uttarakhand Technical University, Dehradun, Uttarakhand, 248 007, India; Department of Pharmacology, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Dist. Gautam Buddha Nagar, Uttar Pradesh, 201310, India
| | - Giriraj T Kulkarni
- Gokaraju Rangaraju College of Pharmacy, Hyderabad, Telangana, 500 090, India.
| |
Collapse
|
35
|
Liu H, Baeumler TA, Nakamura K, Okada Y, Cho S, Eguchi A, Kuroda D, Tsumoto K, Ueki R, Sando S. An Engineered Synthetic Receptor-Aptamer Pair for an Artificial Signal Transduction System. ACS NANO 2023; 17:9039-9048. [PMID: 37154259 DOI: 10.1021/acsnano.2c11744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell membrane receptors regulate cellular responses through sensing extracellular environmental signals and subsequently transducing them. Receptor engineering provides a means of directing cells to react to a designated external cue and exert programmed functions. However, rational design and precise modulation of receptor signaling activity remain challenging. Here, we report an aptamer-based signal transduction system and its applications in controlling and customizing the functions of engineered receptors. A previously reported membrane receptor-aptamer pair was used to design a synthetic receptor system that transduces cell signaling depending on exogenous aptamer input. To eliminate the cross-reactivity of the receptor with its native ligand, the extracellular domain of the receptor was engineered to ensure that the receptor was solely activated by the DNA aptamer. The present system features tunability in the signaling output level using aptamer ligands with different receptor dimerization propensities. In addition, the functional programmability of DNA aptamers enables the modular sensing of extracellular molecules without the need for genetic engineering of the receptor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
36
|
Bagang N, Gupta K, Singh G, Kanuri SH, Mehan S. Protease-activated receptors in kidney diseases: A comprehensive review of pathological roles, therapeutic outcomes and challenges. Chem Biol Interact 2023; 377:110470. [PMID: 37011708 DOI: 10.1016/j.cbi.2023.110470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated that protease-activated receptors (PARs) with four subtypes (PAR1-4) are mainly expressed in the renal epithelial, endothelial, and podocyte cells. Some endogenous and urinary proteases, namely thrombin, trypsin, urokinase, and kallikrein released during diseased conditions, are responsible for activating different subtypes of PARs. Each PAR receptor subtype is involved in kidney disease of distinct aetiology. PAR1 and PAR2 have shown differential therapeutic outcomes in rodent models of type-1 and type-2 diabetic kidney diseases due to the distinct etiological basis of each disease type, however such findings need to be confirmed in other diabetic renal injury models. PAR1 and PAR2 blockers have been observed to abolish drug-induced nephrotoxicity in rodents by suppressing tubular inflammation and fibrosis and preventing mitochondrial dysfunction. Notably, PAR2 inhibition improved autophagy and prevented fibrosis, inflammation, and remodeling in the urethral obstruction model. Only the PAR1/4 subtypes have emerged as a therapeutic target for treating experimentally induced nephrotic syndrome, where their respective antibodies attenuated the podocyte apoptosis induced upon thrombin activation. Strikingly PAR2 and PAR4 subtypes involvement has been tested in sepsis-induced acute kidney injury (AKI) and renal ischemia-reperfusion injury models. Thus, more studies are required to delineate the role of other subtypes in the sepsis-AKI model. Evidence suggests that PARs regulate oxidative, inflammatory stress, immune cell activation, fibrosis, autophagic flux, and apoptosis during kidney diseases.
Collapse
|
37
|
Schiff HV, Rivas CM, Pederson WP, Sandoval E, Gillman S, Prisco J, Kume M, Dussor G, Vagner J, Ledford JG, Price TJ, DeFea KA, Boitano S. β-Arrestin-biased proteinase-activated receptor-2 antagonist C781 limits allergen-induced airway hyperresponsiveness and inflammation. Br J Pharmacol 2023; 180:667-680. [PMID: 35735078 PMCID: PMC10311467 DOI: 10.1111/bph.15903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma is a heterogenous disease strongly associated with inflammation that has many different causes and triggers. Current asthma treatments target symptoms such as bronchoconstriction and airway inflammation. Despite recent advances in biological therapies, there remains a need for new classes of therapeutic agents with novel, upstream targets. The proteinase-activated receptor-2 (PAR2) has long been implicated in allergic airway inflammation and asthma and it remains an intriguing target for novel therapies. Here, we describe the actions of C781, a newly developed low MW PAR2 biased antagonist, in vitro and in vivo in the context of acute allergen exposure. EXPERIMENTAL APPROACH A human bronchial epithelial cell line expressing PAR2 (16HBE14o- cells) was used to evaluate the modulation in vitro, by C781, of physiological responses to PAR2 activation and downstream β-arrestin/MAPK and Gq/Ca2+ signalling. Acute Alternaria alternata sensitized and challenged mice were used to evaluate C781 as a prophylactically administered modulator of airway hyperresponsiveness, inflammation and mucus overproduction in vivo. KEY RESULTS C781 reduced in vitro physiological signalling in response to ligand and proteinase activation. C781 effectively antagonized β-arrestin/MAPK signalling without significant effect on Gq/Ca2+ signalling in vitro. Given prophylactically, C781 modulated airway hyperresponsiveness, airway inflammation and mucus overproduction of the small airways in an acute allergen-challenged mouse model. CONCLUSION AND IMPLICATIONS Our work demonstrates the first biased PAR2 antagonist for β-arrestin/MAPK signalling. C781 is efficacious as a prophylactic treatment for allergen-induced airway hyperresponsiveness and inflammation in mice. It exemplifies a key pharmacophore for PAR2 that can be optimized for clinical development.
Collapse
Affiliation(s)
- Hillary V. Schiff
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
| | - Candy M. Rivas
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - William P. Pederson
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - Estevan Sandoval
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
| | - Samuel Gillman
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona
| | - Joy Prisco
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
| | - Moeno Kume
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Josef Vagner
- Bio5 Collaborative Research Center, University of Arizona
| | - Julie G. Ledford
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Department of Cellular and Molecular Medicine, University of Arizona
| | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, TX
| | - Kathryn A. DeFea
- University of California Riverside, Biomedical Sciences and PARMedics, Incorporated
| | - Scott Boitano
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences Center
- Bio5 Collaborative Research Center, University of Arizona
- Department of Physiology, University of Arizona
| |
Collapse
|
38
|
McArthur S. Regulation of Physiological Barrier Function by the Commensal Microbiota. Life (Basel) 2023; 13:life13020396. [PMID: 36836753 PMCID: PMC9964120 DOI: 10.3390/life13020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
A fundamental characteristic of living organisms is their ability to separate the internal and external environments, a function achieved in large part through the different physiological barrier systems and their component junctional molecules. Barrier integrity is subject to multiple influences, but one that has received comparatively little attention to date is the role of the commensal microbiota. These microbes, which represent approximately 50% of the cells in the human body, are increasingly recognized as powerful physiological modulators in other systems, but their role in regulating barrier function is only beginning to be addressed. Through comparison of the impact commensal microbes have on cell-cell junctions in three exemplar physiological barriers-the gut epithelium, the epidermis and the blood-brain barrier-this review will emphasize the important contribution microbes and microbe-derived mediators play in governing barrier function. By extension, this will highlight the critical homeostatic role of commensal microbes, as well as identifying the puzzles and opportunities arising from our steadily increasing knowledge of this aspect of physiology.
Collapse
Affiliation(s)
- Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
| |
Collapse
|
39
|
Allam VSRR, Waern I, Taha S, Akula S, Wernersson S, Pejler G. Nafamostat has anti-asthmatic effects associated with suppressed pro-inflammatory gene expression, eosinophil infiltration and airway hyperreactivity. Front Immunol 2023; 14:1136780. [PMID: 37153590 PMCID: PMC10160450 DOI: 10.3389/fimmu.2023.1136780] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction Asthma is characterized by an imbalance between proteases and their inhibitors. Hence, an attractive therapeutic option could be to interfere with asthma-associated proteases. Here we exploited this option by assessing the impact of nafamostat, a serine protease inhibitor known to neutralize mast cell tryptase. Methods Nafamostat was administered in a mouse model for asthma based on sensitization by house dust mite (HDM) extract, followed by the assessment of effects on airway hyperreactivity, inflammatory parameters and gene expression. Results We show that nafamostat efficiently suppressed the airway hyperreactivity in HDM-sensitized mice. This was accompanied by reduced infiltration of eosinophils and lymphocytes to the airways, and by lower levels of pro-inflammatory compounds within the airway lumen. Further, nafamostat had a dampening impact on goblet cell hyperplasia and smooth muscle layer thickening in the lungs of HDM-sensitized animals. To obtain deeper insight into the underlying mechanisms, a transcriptomic analysis was conducted. This revealed, as expected, that the HDM sensitization caused an upregulated expression of numerous pro-inflammatory genes. Further, the transcriptomic analysis showed that nafamostat suppressed the levels of multiple pro-inflammatory genes, with a particular impact on genes related to asthma. Discussion Taken together, this study provides extensive insight into the ameliorating effect of nafamostat on experimental asthma, and our findings can thereby provide a basis for the further evaluation of nafamostat as a potential therapeutic agent in human asthma.
Collapse
Affiliation(s)
- Venkata Sita Rama Raju Allam
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sowsan Taha
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Srinivas Akula
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Sara Wernersson, ; Gunnar Pejler,
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- *Correspondence: Sara Wernersson, ; Gunnar Pejler,
| |
Collapse
|
40
|
Lee-Rivera I, López E, López-Colomé AM. Diversification of PAR signaling through receptor crosstalk. Cell Mol Biol Lett 2022; 27:77. [PMID: 36088291 PMCID: PMC9463773 DOI: 10.1186/s11658-022-00382-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Protease activated receptors (PARs) are among the first receptors shown to transactivate other receptors: noticeably, these interactions are not limited to members of the same family, but involve receptors as diverse as receptor kinases, prostanoid receptors, purinergic receptors and ionic channels among others. In this review, we will focus on the evidence for PAR interactions with members of their own family, as well as with other types of receptors. We will discuss recent evidence as well as what we consider as emerging areas to explore; from the signalling pathways triggered, to the physiological and pathological relevance of these interactions, since this additional level of molecular cross-talk between receptors and signaling pathways is only beginning to be explored and represents a novel mechanism providing diversity to receptor function and play important roles in physiology and disease.
Collapse
|
41
|
Nagy M, van der Meijden PEJ, Glunz J, Schurgers L, Lutgens E, ten Cate H, Heitmeier S, Spronk HMH. Integrating Mechanisms in Thrombotic Peripheral Arterial Disease. Pharmaceuticals (Basel) 2022; 15:1428. [PMID: 36422558 PMCID: PMC9695058 DOI: 10.3390/ph15111428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/10/2023] Open
Abstract
Peripheral arterial disease (PAD), a manifestation of systemic atherosclerosis, is underdiagnosed in the general population. Despite the extensive research performed to unravel its pathophysiology, inadequate knowledge exists, thus preventing the development of new treatments. This review aims to highlight the essential elements of atherosclerosis contributing to the pathophysiology of PAD. Furthermore, emphasis will be placed on the role of thrombo-inflammation, with particular focus on platelet and coagulation activation as well as cell-cell interactions. Additional insight will be then discussed to reveal the contribution of hypercoagulability to the development of vascular diseases such as PAD. Lastly, the current antithrombotic treatments will be discussed, and light will be shed on promising new targets aiming to aid the development of new treatments.
Collapse
Affiliation(s)
- Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Paola E. J. van der Meijden
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Julia Glunz
- Cardiovascular Research, Bayer AG, 42117 Wuppertal, Germany
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Esther Lutgens
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 10785 Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian’s University, 80539 Munich, Germany
- Experimental Cardiovascular Immunology Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Center for Thrombosis and Hemostasis, Gutenberg University Mainz, 55122 Mainz, Germany
| | | | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
42
|
Akbasheva OE, Spirina LV, Dyakov DA, Masunova NV. Proteolysis and Deficiency of α1-Proteinase Inhibitor in SARS-CoV-2 Infection. BIOCHEMISTRY (MOSCOW) SUPPLEMENT. SERIES B, BIOMEDICAL CHEMISTRY 2022; 16:271-291. [PMID: 36407837 PMCID: PMC9668222 DOI: 10.1134/s1990750822040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
The SARS-CoV-2 pandemic had stimulated the emergence of numerous publications on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), especially when it was found that the regions of high mortality corresponded to the regions with deficient α1-PI alleles. By analogy with the data obtained in the last century, when the first cause of the genetic deficiency of α1-antitrypsin leading to elastase activation in pulmonary emphysema was proven, it can be supposed that proteolysis hyperactivation in COVID-19 may be associated with the impaired functions of α1-PI. The purpose of this review was to systematize the scientific data and critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a therapeutic target. This review describes the proteinase-dependent stages of viral infection: the reception and penetration of the virus into a cell and the imbalance of the plasma aldosterone-angiotensin-renin, kinin, and blood clotting systems. The role of ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases in the virus tropism, the activation of proteolytic cascades in blood, and the COVID-19-dependent complications is considered. The scientific reports on α1-PI involvement in the SARS-CoV-2-induced inflammation, the relationship with the severity of infection and comorbidities were analyzed. Particular attention is paid to the acquired α1-PI deficiency in assessing the state of patients with proteolysis overactivation and chronic non-inflammatory diseases, which are accompanied by the risk factors for comorbidity progression and the long-term consequences of COVID-19. Essential data on the search and application of protease inhibitor drugs in the therapy for bronchopulmonary and cardiovascular pathologies were analyzed. The evidence of antiviral, anti-inflammatory, anticoagulant, and anti-apoptotic effects of α1-PI, as well as the prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders, are presented.
Collapse
Affiliation(s)
| | - L. V. Spirina
- Siberian State Medical University, 634050 Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, 634009 Tomsk, Russia
| | - D. A. Dyakov
- Siberian State Medical University, 634050 Tomsk, Russia
| | | |
Collapse
|
43
|
Wang Z, Hao M, Wu L, He Y, Sun X. Mast cells disrupt the duodenal mucosal integrity: Implications for the mechanisms of barrier dysfunction in functional dyspepsia. Scand J Gastroenterol 2022; 58:460-470. [PMID: 36345966 DOI: 10.1080/00365521.2022.2141075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Functional dyspepsia (FD) is a common functional gastrointestinal (GI) disorder, but its pathophysiology is poorly understood. Mast cells (MCs) may play a critical role in the development of FD. Therefore, the aim of this study was to investigate the effect of MCs on barrier function, tight junction (TJ) proteins and related signaling pathways. METHODS The expression of the TJ proteins claudin-8, ZO-1 and occludin in biopsy tissues from seven FD patients and five controls was assessed. Based on the in vivo results, we further investigated the effect of (1) MC degranulation in a coculture model of Caco-2/RBL-2H3 cells and tryptase in Caco-2 monolayers, (2) MC degranulation in the presence or absence of a PAR-2 antagonist and (3) MC degranulation in the presence or absence of an ERK1/2 signaling pathway inhibitor. The epithelial integrity of Caco-2 cell monolayers was assessed by measuring the transepithelial electrical resistance (TEER). The expression of TJ proteins was evaluated by western blotting, QT-PCR and immunostaining. RESULTS Epithelial claudin-8, ZO-1 and occludin protein expression were significantly reduced in tissues from FD patients compared with controls. MC degranulation and tryptase decreased the TEER and reduced the expression of TJ proteins in Caco-2 cell monolayers. A PAR-2 antagonist and an ERK1/2 signaling pathway inhibitor significantly reduced the effect of MC degranulation on the TEER and TJ protein expression in Caco-2 cell monolayers. CONCLUSIONS MCs disrupt duodenal barrier function by modulating the levels of TJ proteins, and the PAR-2 and ERK1/2 signaling pathways may mediate the pathogenesis of FD.
Collapse
Affiliation(s)
- Zhiming Wang
- School of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| | - Menghao Hao
- School of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| | - Liping Wu
- School of Medicine, Southwest Jiaotong University, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China.,Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| | - Yumei He
- North Sichuan Medical College, Nanchong, PR China
| | - Xiaobin Sun
- Department of Gastroenterology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
44
|
Richardson KC, Jung K, Pardo J, Turner CT, Granville DJ. Noncytotoxic Roles of Granzymes in Health and Disease. Physiology (Bethesda) 2022; 37:323-348. [PMID: 35820180 DOI: 10.1152/physiol.00011.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Granzymes are serine proteases previously believed to play exclusive and somewhat redundant roles in lymphocyte-mediated target cell death. However, recent studies have challenged this paradigm. Distinct substrate profiles and functions have since emerged for each granzyme while their dysregulated proteolytic activities have been linked to diverse pathologies.
Collapse
Affiliation(s)
- Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julian Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragon (CIBA), Zaragoza, Spain.,Department of Microbiology, Radiology, Pediatrics and Public Health, University of Zaragoza, Zaragoza, Spain.,CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Zaragoza, Spain
| | - Christopher T Turner
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.,Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), British Columbia Professional Firefighters' Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
45
|
Mirakhur M, Diener M. Proteinase-activated receptors regulate intestinal functions in a segment-dependent manner in rats. Eur J Pharmacol 2022; 933:175264. [PMID: 36100127 DOI: 10.1016/j.ejphar.2022.175264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/03/2022]
Abstract
Proteinases released e.g. during inflammatory or allergic responses affect gastrointestinal functions via proteinase-activated receptors such as PAR1 and PAR2. As the gastrointestinal tract exerts pronounced gradients along its longitudinal axis, the present study focuses on the effect of PAR1 and PAR2 agonists on electrogenic ion transport (measured as short-circuit current; Isc), tissue conductance (Gt) and contractility of the longitudinal muscle layer of rats. In Ussing chamber experiments, the PAR1 agonist TFLLR-NH2, which mimics the tethered ligand liberated after cleavage of the receptor, evoked only a modest increase in Isc (<0.5 μEq·h-1·cm-2) in small intestine, but a strong increase (3-4 μEq·h-1·cm-2) in colon. Pretreatment with tetrodotoxin reduced the response of the colonic segments to the level of the small intestine. Thrombin, the natural activator of PAR1, was much less effective suggesting biased activation by this peptidase. A similar gradient along the longitudinal axis of the intestine was observed with trypsin, the endogenous activator of PAR2. Divergent actions of PAR1 activation by enzymatic cleavage or a mimetic peptide were also observed when recording isometric contractions of longitudinal muscle. For example, in the jejunum TFLLR-NH2 concentration-dependently induced a contractile response, whereas thrombin showed only inconsistent effects. The PAR2 activator AC264613 induced a concentration-dependent decrease in muscle tone combined with an inhibition of phasic spontaneous contractions. PCR experiments and immunohistochemical stainings confirmed the expression of PAR1 and PAR2. The data implies that PAR1 and PAR2 functions vary depending on the intestinal segment.
Collapse
Affiliation(s)
- Maanvee Mirakhur
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus-Liebig-University Giessen, Germany.
| |
Collapse
|
46
|
Proteases and Their Potential Role as Biomarkers and Drug Targets in Dry Eye Disease and Ocular Surface Dysfunction. Int J Mol Sci 2022; 23:ijms23179795. [PMID: 36077189 PMCID: PMC9456293 DOI: 10.3390/ijms23179795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disorder that leads to ocular discomfort, visual disturbance, and tear film instability. DED is accompanied by an increase in tear osmolarity and ocular surface inflammation. The diagnosis and treatment of DED still present significant challenges. Therefore, novel biomarkers and treatments are of great interest. Proteases are present in different tissues on the ocular surface. In a healthy eye, proteases are highly regulated. However, dysregulation occurs in various pathologies, including DED. With this review, we provide an overview of the implications of different families of proteases in the development and severity of DED, along with studies involving protease inhibitors as potential therapeutic tools. Even though further research is needed, this review aims to give suggestions for identifying novel biomarkers and developing new protease inhibitors.
Collapse
|
47
|
Russo C, Morello G, Mannino G, Russo A, Malaguarnera L. Immunoregulation of Ghrelin in neurocognitive sequelae associated with COVID-19: an in silico investigation. Gene 2022; 834:146647. [PMID: 35680023 PMCID: PMC9169425 DOI: 10.1016/j.gene.2022.146647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 01/08/2023]
Abstract
Some patients suffering from the new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) develop an exaggerated inflammatory response triggered by a “cytokine storm” resulting in acute respiratory distress syndrome (ARDS) with the concomitant activation of non-specific inflammatory reactivity in the circulatory system and other organs, leading to multiorgan failure, leaky vasculature, coagulopathies and stroke. Impairment of brain functions may also occur as dysregulations in immune function resulting from neuroendocrine interactions. In this study, we explored, by bioinformatics approaches, the interaction between the multiple inflammatory agents involved in SARS-CoV-2 and Ghrelin (Ghre) together with its receptor GHSR-1A, which are described as anti-inflammatory mediators, in order to investigate what could trigger the hyper-inflammatory response in some SARS-CoV-2 patients. In our analysis, we found several interactions of Ghre and GHSR-1A with SARS-CoV-2 interacting human genes. We observed a correlation between Ghre, angiotensin-converting enzyme 2 ACE2, toll-like receptors 9 (TLR9), and Acidic chitinase (CHIA), whereas its receptor GHSR-1A interacts with chemokine receptor 3 (CXCR3), CCR3, CCR5, CCR7, coagulation factor II (thrombin) receptor-like 1 (F2RL1), vitamin D receptor (VDR), Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and DDP4 in receptor dipeptidyl peptidase-4. To our knowledge, our findings show, for the first time, that Ghre and GHSR-1A may exert an immunomodulatory function in the course of SARS-Cov-2 infection.
Collapse
Affiliation(s)
- Cristina Russo
- Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanna Morello
- Department of Biomedical Science, Institute for Research and Biomedical Innovation (IRIB), National Research Council (CNR), Catania, Italy
| | - Giuliana Mannino
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Physiology section, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonella Russo
- Physiology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Malaguarnera
- Pathology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
48
|
Abstract
Thrombin facilitates the aggregation of platelet in hemostatic processes and participates in the regulation of cell signaling. Therefore, the development of thrombin sensors is conducive to comprehending the role of thrombin in the course of a disease. Biosensors based on aptamers screened by SELEX have exhibited superiority for thrombin detection. In this review, we summarized the aptamer-based sensors for thrombin detection which rely on the specific recognitions between thrombin and aptamer. Meanwhile, the unique advantages of different sensors including optical and electrochemical sensors were also highlighted. Especially, these sensors based on electrochemistry have the potential to be miniaturized, and thus have gained comprehensive attention. Furthermore, concerns about aptamer-based sensors for thrombin detection, prospects of the future and promising avenues in this field were also presented.
Collapse
|
49
|
Akbasheva OE, Spirina LV, Dyakov DA, Masunova NV. [Proteolysis and deficiency of α1-proteinase inhibitor in SARS-CoV-2 infection]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:157-176. [PMID: 35717581 DOI: 10.18097/pbmc20226803157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The SARS-CoV-2 pandemia had stimulated the numerous publications emergence on the α1-proteinase inhibitor (α1-PI, α1-antitrypsin), primarily when it was found that high mortality in some regions corresponded to the regions with deficient α1-PI alleles. By analogy with the last century's data, when the root cause of the α1-antitrypsin, genetic deficiency leading to the elastase activation in pulmonary emphysema, was proven. It is evident that proteolysis hyperactivation in COVID-19 may be associated with α1-PI impaired functions. The purpose of this review is to systematize scientific data, critical directions for translational studies on the role of α1-PI in SARS-CoV-2-induced proteolysis hyperactivation as a diagnostic marker and a target in therapy. This review describes the proteinase-dependent stages of a viral infection: the reception and virus penetration into the cell, the plasma aldosterone-angiotensin-renin, kinins, blood clotting systems imbalance. The ACE2, TMPRSS, ADAM17, furin, cathepsins, trypsin- and elastase-like serine proteinases role in the virus tropism, proteolytic cascades activation in blood, and the COVID-19-dependent complications is presented. The analysis of scientific reports on the α1-PI implementation in the SARS-CoV-2-induced inflammation, the links with the infection severity, and comorbidities were carried out. Particular attention is paid to the acquired α1-PI deficiency in assessing the patients with the proteolysis overactivation and chronic non-inflammatory diseases that are accompanied by the risk factors for the comorbidities progression, and the long-term consequences of COVID-19 initiation. Analyzed data on the search and proteases inhibitory drugs usage in the bronchopulmonary cardiovascular pathologies therapy are essential. It becomes evident the antiviral, anti-inflammatory, anticoagulant, anti-apoptotic effect of α1-PI. The prominent data and prospects for its application as a targeted drug in the SARS-CoV-2 acquired pneumonia and related disorders are presented.
Collapse
Affiliation(s)
| | - L V Spirina
- Siberian State Medical University, Tomsk, Russia; Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - D A Dyakov
- Siberian State Medical University, Tomsk, Russia
| | - N V Masunova
- Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
50
|
Choi NR, Kim JN, Kim BJ. Trypsin Depolarizes Pacemaker Potentials in Murine Small Intestinal Interstitial Cells of Cajal. APPLIED SCIENCES 2022; 12:4755. [DOI: 10.3390/app12094755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interstitial cells of Cajal (ICCs) generate pacemaker potentials in the gastrointestinal (GI) tract. In this study, the effects of trypsin on pacemaker potentials in murine small intestinal ICCs were examined. We used whole-cell patch-clamp analysis. The results of whole-cell patch-clamp analysis revealed that trypsin dose-dependently depolarized pacemaker potentials and decreased their amplitude. Treatments with the antagonists of neurokinin1 (NK1) and NK2 receptors (SR-140333 and SR-48968, respectively) slightly inhibited the trypsin-induced responses. However, treatment with the combination of SR-140333 and SR-48968 completely inhibited trypsin-induced responses. Trypsin slightly depolarized pacemaker potentials and increased their amplitude after the intracellular application of GDP-β-S. Additionally, incubation in external Ca2+-free solution inhibited trypsin-induced responses. In the presence of U-73122, staurosporine, Go6976, or xestospongin C, trypsin did not depolarize the pacemaker’s potentials. However, trypsin depolarized the pacemaker potentials in the presence of rottlerin. Finally, HC067047, a TRPV4 inhibitor, did not affect the trypsin-induced responses. These results suggest that trypsin depolarized pacemaker potentials through NK1 and NK2 receptors in the murine small intestinal ICCs, with this effect being dependent on the G protein, phospholipase C, protein kinase C, inositol triphosphate pathways, and extracellular Ca2+ but being independent of the TRPV4 pathway. Hence, trypsin-mediated GI motility regulation must be considered for prokinetic drug developments.
Collapse
Affiliation(s)
- Na Ri Choi
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jeong Nam Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|