1
|
Shen P, Ma Z, Xu X, Li W, Li Y. Dental pulp stem cells promote malignant transformation of oral epithelial cells through mitochondrial transfer. Med Mol Morphol 2024; 57:306-319. [PMID: 39122902 DOI: 10.1007/s00795-024-00403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Oral epithelial dysplasia includes a range of clinical oral mucosal diseases with potentially malignant traits. Dental pulp stem cells (DPSCs) are potential candidates for cell-based therapies targeting various diseases. However, the effect of DPSCs on the progression of oral mucosal precancerous lesions remains unclear. Animal experiments were conducted to assess the effect of human DPSCs (hDPSCs). We measured the proliferation, motility and mitochondrial respiratory function of the human dysplastic oral keratinocyte (DOK) cells cocultured with hDPSCs. Mitochondrial transfer experiments were performed to determine the role mitochondria from hDPSCs in the malignant transformation of DOK cells. hDPSCs injection accelerated carcinogenesis in 4NQO-induced oral epithelial dysplasia in mice. Coculture with hDPSCs increased the proliferation, migration, invasion and mitochondrial respiratory function of DOK cells. Mitochondria from hDPSCs could be transferred to DOK cells, and activated mTOR signaling pathway in DOK cells. Our study demonstrates that hDPSCs activate the mTOR signaling pathway through mitochondrial transfer, promoting the malignant transformation of oral precancerous epithelial lesions.
Collapse
Affiliation(s)
- Peiqi Shen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Zeyi Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Xiaoqing Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Weiyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, People's Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China
| | - Yaoyin Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, People's Republic of China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Kobal N, Marzidovšek M, Schollmayer P, Maličev E, Hawlina M, Marzidovšek ZL. Molecular and Cellular Mechanisms of the Therapeutic Effect of Mesenchymal Stem Cells and Extracellular Vesicles in Corneal Regeneration. Int J Mol Sci 2024; 25:11121. [PMID: 39456906 PMCID: PMC11507649 DOI: 10.3390/ijms252011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
The cornea is a vital component of the visual system, and its integrity is crucial for optimal vision. Damage to the cornea resulting from trauma, infection, or disease can lead to blindness. Corneal regeneration using mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) offers a promising alternative to corneal transplantation. MSCs are multipotent stromal cells that can differentiate into various cell types, including corneal cells. They can also secrete a variety of anti-inflammatory cytokines and several growth factors, promoting wound healing and tissue reconstruction. This review summarizes the current understanding of the molecular and cellular mechanisms by which MSCs and MSC-EVs contribute to corneal regeneration. It discusses the potential of MSCs and MSC-EV for treating various corneal diseases, including corneal epithelial defects, dry eye disease, and keratoconus. The review also highlights finalized human clinical trials investigating the safety and efficacy of MSC-based therapy in corneal regeneration. The therapeutic potential of MSCs and MSC-EVs for corneal regeneration is promising; however, further research is needed to optimize their clinical application.
Collapse
Affiliation(s)
- Nina Kobal
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
| | - Miha Marzidovšek
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
| | - Petra Schollmayer
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
| | - Elvira Maličev
- Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marko Hawlina
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
- Medical Faculty, Department of Ophthalmology, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Zala Lužnik Marzidovšek
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (N.K.)
- Medical Faculty, Department of Ophthalmology, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Patro BP, Jeyaraman N, Jayakumar T, Das G, Nallakumarasamy A, Jeyaraman M. Efficacy of Autologous Adult Live-Cultured Osteoblast (AALCO) Implantation in Avascular Necrosis of the Femoral Head: A Mid-Term Outcome Analysis. Indian J Orthop 2024; 58:1053-1063. [PMID: 39087043 PMCID: PMC11286887 DOI: 10.1007/s43465-024-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024]
Abstract
Introduction Avascular Necrosis (AVN) of the femoral head, a condition characterized by the interruption of blood supply leading to bone tissue death, presents significant therapeutic challenges. Recent advancements in orthobiologics, including the use of Autologous Adult Live-Cultured Osteoblasts (AALCO), combined with core decompression, offer a novel approach for managing AVN. This study assesses the efficacy of this treatment modality in improving functional outcomes and hindering disease progression. Materials and methods This retrospective observational study encompassed 30 patients treated between 2020 and 2023 for idiopathic AVN of the femoral head, grades I to III, who had not responded to conservative treatment. Patients were excluded based on specific criteria including age, secondary AVN causes, and certain health conditions. The treatment involved a two-stage surgical procedure under spinal anesthesia with OSSGROW® for AALCO generation. Post-operative care emphasized early mobilization, DVT prevention, and avoidance of NSAIDs. Outcome measures were evaluated using the Visual Analog Scale (VAS) for pain, modified Harris Hip Score, and annual MRI imaging for up to 36 months. Results Among 26 patients (41 hips) completing the study, statistically significant improvements in pain and hip functionality were documented, alongside positive radiological signs of osteogenesis in the majority of cases. However, four instances required advancement to total hip replacement due to disease progression. Conclusion The combination of core decompression and AALCO implantation shows promise as an effective treatment for AVN of the femoral head, with notable improvements in functional and radiological outcomes. This study supports the potential of orthobiologic approaches in AVN treatment, warranting further investigation through comprehensive randomized controlled trials. Graphical Abstract
Collapse
Affiliation(s)
- Bishnu Prasad Patro
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019 India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077 India
| | - Tarun Jayakumar
- Department of Orthopaedics, KIMS-Sunshine Hospital, Hyderabad, Telangana 500003 India
| | - Gurudip Das
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019 India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, Puducherry, 609602 India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, Tamil Nadu 600077 India
| |
Collapse
|
4
|
Long Q, Huang C, Zhang L, Jiang H, Zhao S, Zhang L, Zheng X, Ou S, Gu H. A novel tissue-engineered corneal epithelium based on ultra-thin amniotic membrane and mesenchymal stem cells. Sci Rep 2024; 14:17407. [PMID: 39075142 PMCID: PMC11286932 DOI: 10.1038/s41598-024-68219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Currently, in vitro cultured corneal epithelial transplantation is effective in treating limbal stem cell dysfunction (LSCD). Selecting carriers is crucial for constructing the corneal epithelium through tissue engineering. In this study, the traditional amniotic membrane (AM) was modified, and mesenchymal stem cells (MSCs) were inoculated into the ultra-thin amniotic membrane (UAM) stroma to construct a novel UAM-MSC tissue-engineered corneal epithelial carrier, that could effectively simulate the limbal stem cells (LSCs) microenvironment. The structure of different carriers cultured tissue-engineered corneal epithelium and the managed rabbit LSCD model corneas were observed through hematoxylin-eosin staining. Cell phenotypes were evaluated through fluorescence staining, Western blotting, and RT-qPCR. Additionally, cell junction genes and expression markers related to anti-neovascularization were evaluated using RT-qPCR. Corneal epithelium cell junctions were observed via an electron microscope. The tissue-engineered corneal epithelium culture medium was analyzed through mass spectrometry. Tissue-engineered corneal epithelial cells expanded by LSCs on UAM-MSCs had good transparency. Simultaneously, progenitor cell (K14, PNCA, p63) and corneal epithelial (PAX6) gene expression in tissue-engineered corneal epithelium constructed using UAM-MSCs was higher than that in corneal epithelial cells amplified by UAM and de-epithelialized amniotic membrane. Electron microscopy revealed that corneal epithelial cells grafted with UAM-MSCs were closely connected. In conclusion, the UAM-MSCs vector we constructed could better simulate the limbal microenvironment; the cultured tissue-engineered corneal epithelium had better transparency, anti-neovascularization properties, closer intercellular connections, and closer resemblance to the natural corneal epithelial tissue phenotype.
Collapse
Affiliation(s)
- Qiurong Long
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Chao Huang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Liying Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Hao Jiang
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Su Zhao
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Lingli Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueer Zheng
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shangkun Ou
- Guizhou Medical University, Guiyang, Guizhou, China.
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China.
| | - Hao Gu
- Guizhou Medical University, Guiyang, Guizhou, China.
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
5
|
Wu CH, Weng TF, Li JP, Wu KH. Biology and Therapeutic Properties of Mesenchymal Stem Cells in Leukemia. Int J Mol Sci 2024; 25:2527. [PMID: 38473775 DOI: 10.3390/ijms25052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
This comprehensive review delves into the multifaceted roles of mesenchymal stem cells (MSCs) in leukemia, focusing on their interactions within the bone marrow microenvironment and their impact on leukemia pathogenesis, progression, and treatment resistance. MSCs, characterized by their ability to differentiate into various cell types and modulate the immune system, are integral to the BM niche, influencing hematopoietic stem cell maintenance and functionality. This review extensively explores the intricate relationship between MSCs and leukemic cells in acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia, and chronic lymphocytic leukemia. This review also addresses the potential clinical applications of MSCs in leukemia treatment. MSCs' role in hematopoietic stem cell transplantation, their antitumor effects, and strategies to disrupt chemo-resistance are discussed. Despite their therapeutic potential, the dual nature of MSCs in promoting and inhibiting tumor growth poses significant challenges. Further research is needed to understand MSCs' biological mechanisms in hematologic malignancies and develop targeted therapeutic strategies. This in-depth exploration of MSCs in leukemia provides crucial insights for advancing treatment modalities and improving patient outcomes in hematologic malignancies.
Collapse
Affiliation(s)
- Cheng-Hsien Wu
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Te-Fu Weng
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Ju-Pi Li
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Department of Pathology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
6
|
Bhujel B, Oh SH, Kim CM, Yoon YJ, Kim YJ, Chung HS, Ye EA, Lee H, Kim JY. Mesenchymal Stem Cells and Exosomes: A Novel Therapeutic Approach for Corneal Diseases. Int J Mol Sci 2023; 24:10917. [PMID: 37446091 DOI: 10.3390/ijms241310917] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The cornea, with its delicate structure, is vulnerable to damage from physical, chemical, and genetic factors. Corneal transplantation, including penetrating and lamellar keratoplasties, can restore the functions of the cornea in cases of severe damage. However, the process of corneal transplantation presents considerable obstacles, including a shortage of available donors, the risk of severe graft rejection, and potentially life-threatening complications. Over the past few decades, mesenchymal stem cell (MSC) therapy has become a novel alternative approach to corneal regeneration. Numerous studies have demonstrated the potential of MSCs to differentiate into different corneal cell types, such as keratocytes, epithelial cells, and endothelial cells. MSCs are considered a suitable candidate for corneal regeneration because of their promising therapeutic perspective and beneficial properties. MSCs compromise unique immunomodulation, anti-angiogenesis, and anti-inflammatory properties and secrete various growth factors, thus promoting corneal reconstruction. These effects in corneal engineering are mediated by MSCs differentiating into different lineages and paracrine action via exosomes. Early studies have proven the roles of MSC-derived exosomes in corneal regeneration by reducing inflammation, inhibiting neovascularization, and angiogenesis, and by promoting cell proliferation. This review highlights the contribution of MSCs and MSC-derived exosomes, their current usage status to overcome corneal disease, and their potential to restore different corneal layers as novel therapeutic agents. It also discusses feasible future possibilities, applications, challenges, and opportunities for future research in this field.
Collapse
Affiliation(s)
- Basanta Bhujel
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Se-Heon Oh
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Chang-Min Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ye-Ji Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Young-Jae Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Ho-Seok Chung
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Eun-Ah Ye
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Hun Lee
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| | - Jae-Yong Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, 88, Olympic-Ro, Songpa-Gu, Seoul 05505, Republic of Korea
| |
Collapse
|
7
|
Saeed Y. Title: Immunotherapy; a ground-breaking remedy for spinal cord injury with stumbling blocks: An overview. Front Pharmacol 2023; 14:1110008. [PMID: 36778022 PMCID: PMC9909832 DOI: 10.3389/fphar.2023.1110008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Spinal cord injury (SCI) is a debilitating disorder with no known standard and effective treatment. Despite its ability to exacerbate SCI sequel by accelerating auto-reactive immune cells, an immune response is also considered essential to the healing process. Therefore, immunotherapeutic strategies targeting spinal cord injuries may benefit from the dual nature of immune responses. An increasing body of research suggests that immunization against myelin inhibitors can promote axon remyelination after SCI. However, despite advancements in our understanding of neuroimmune responses, immunoregulation-based therapeutic strategies have yet to receive widespread acceptance. Therefore, it is a prerequisite to enhance the understanding of immune regulation to ensure the safety and efficacy of immunotherapeutic treatments. The objective of the present study was to provide an overview of previous studies regarding the advantages and limitations of immunotherapeutic strategies for functional recovery after spinal cord injury, especially in light of limiting factors related to DNA and cell-based vaccination strategies by providing a novel prospect to lay the foundation for future studies that will help devise a safe and effective treatment for spinal cord injury.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, 288 University Ave. Zhenjiang District, Shaoguan City, Guangdong Province, China
| |
Collapse
|
8
|
Exosomal microRNAs have great potential in the neurorestorative therapy for traumatic brain injury. Exp Neurol 2022; 352:114026. [DOI: 10.1016/j.expneurol.2022.114026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 11/19/2022]
|
9
|
Pang QM, Chen SY, Xu QJ, Fu SP, Yang YC, Zou WH, Zhang M, Liu J, Wan WH, Peng JC, Zhang T. Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Front Immunol 2021; 12:751021. [PMID: 34925326 PMCID: PMC8674561 DOI: 10.3389/fimmu.2021.751021] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/15/2021] [Indexed: 12/27/2022] Open
Abstract
Transected axons are unable to regenerate after spinal cord injury (SCI). Glial scar is thought to be responsible for this failure. Regulating the formation of glial scar post-SCI may contribute to axonal regrow. Over the past few decades, studies have found that the interaction between immune cells at the damaged site results in a robust and persistent inflammatory response. Current therapy strategies focus primarily on the inhibition of subacute and chronic neuroinflammation after the acute inflammatory response was executed. Growing evidences have documented that mesenchymal stem cells (MSCs) engraftment can be served as a promising cell therapy for SCI. Numerous studies have shown that MSCs transplantation can inhibit the excessive glial scar formation as well as inflammatory response, thereby facilitating the anatomical and functional recovery. Here, we will review the effects of inflammatory response and glial scar formation in spinal cord injury and repair. The role of MSCs in regulating neuroinflammation and glial scar formation after SCI will be reviewed as well.
Collapse
Affiliation(s)
- Qi-Ming Pang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Si-Yu Chen
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qi-Jing Xu
- Department of Human Anatomy, Zunyi Medical University, Zunyi, China
| | - Sheng-Ping Fu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi-Chun Yang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wang-Hui Zou
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Juan Liu
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei-Hong Wan
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jia-Chen Peng
- Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province and Regenerative Medicine Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Preciado S, Sirerol-Piquer MS, Muntión S, Osugui L, Martí-Chillón GJ, Navarro-Bailón A, Sepúlveda P, Sánchez-Guijo F. Co-administration of human MSC overexpressing HIF-1α increases human CD34 + cell engraftment in vivo. Stem Cell Res Ther 2021; 12:601. [PMID: 34876206 PMCID: PMC8650423 DOI: 10.1186/s13287-021-02669-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/20/2021] [Indexed: 12/28/2022] Open
Abstract
Background Poor graft function or graft failure after allogeneic stem cell transplantation is an unmet medical need, in which mesenchymal stromal cells (MSC) constitute an attractive potential therapeutic approach. Hypoxia-inducible factor-1α (HIF-1α) overexpression in MSC (HIF-MSC) potentiates the angiogenic and immunomodulatory properties of these cells, so we hypothesized that co-transplantation of MSC-HIF with CD34+ human cord blood cells would also enhance hematopoietic stem cell engraftment and function both in vitro and in vivo.
Methods Human MSC were obtained from dental pulp. Lentiviral overexpression of HIF-1α was performed transducing cells with pWPI-green fluorescent protein (GFP) (MSC WT) or pWPI-HIF-1α-GFP (HIF-MSC) expression vectors. Human cord blood CD34+ cells were co-cultured with MSC WT or HIF-MSC (4:1) for 72 h. Then, viability (Annexin V and 7-AAD), cell cycle, ROS expression and immunophenotyping of key molecules involved in engraftment (CXCR4, CD34, ITGA4, c-KIT) were evaluated by flow cytometry in CD34+ cells. In addition, CD34+ cells clonal expansion was analyzed by clonogenic assays. Finally, in vivo engraftment was measured by flow cytometry 4-weeks after CD34+ cell transplantation with or without intrabone MSC WT or HIF-MSC in NOD/SCID mice. Results We did not observe significant differences in viability, cell cycle and ROS expression between CD34+ cells co-cultured with MSC WT or HIF-MSC. Nevertheless, a significant increase in CD34, CXCR4 and ITGA4 expression (p = 0.009; p = 0.001; p = 0.013, respectively) was observed in CD34+ cells co-cultured with HIF-MSC compared to MSC WT. In addition, CD34+ cells cultured with HIF-MSC displayed a higher CFU-GM clonogenic potential than those cultured with MSC WT (p = 0.048). We also observed a significant increase in CD34+ cells engraftment ability when they were co-transplanted with HIF-MSC compared to CD34+ co-transplanted with MSC WT (p = 0.016) or alone (p = 0.015) in both the injected and contralateral femurs (p = 0.024, p = 0.008 respectively). Conclusions Co-transplantation of human CD34+ cells with HIF-MSC enhances cell engraftment in vivo. This is probably due to the ability of HIF-MSC to increase clonogenic capacity of hematopoietic cells and to induce the expression of adhesion molecules involved in graft survival in the hematopoietic niche. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02669-z.
Collapse
Affiliation(s)
- Silvia Preciado
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Mª Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, University of Valencia, Burjassot, Spain.,Instituto de Biotecnología y Biomedicina (BioTecMed), University of Valencia, Burjassot, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Sandra Muntión
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Lika Osugui
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Gerardo J Martí-Chillón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Almudena Navarro-Bailón
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain.,RETIC TerCel, ISCIII, Madrid, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,RETIC TerCel, ISCIII, Madrid, Spain
| | - Fermín Sánchez-Guijo
- Cell Therapy Unit, Hematology Department, University Hospital of Salamanca, IBSAL, University of Salamanca, Paseo de San Vicente 58-182, 37007, Salamanca, Spain. .,RETIC TerCel, ISCIII, Madrid, Spain. .,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.
| |
Collapse
|
11
|
Kulubya ES, Clark K, Hao D, Lazar S, Ghaffari-Rafi A, Karnati T, Ebinu JO, Zwienenberg M, Farmer DL, Wang A. The Unique Properties of Placental Mesenchymal Stromal Cells: A Novel Source of Therapy for Congenital and Acquired Spinal Cord Injury. Cells 2021; 10:2837. [PMID: 34831060 PMCID: PMC8616037 DOI: 10.3390/cells10112837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Spinal cord injury (SCI) is a devasting condition with no reliable treatment. Spina bifida is the most common cause of congenital SCI. Cell-based therapies using mesenchymal stem/stromal cells (MSCS) have been largely utilized in SCI. Several clinical trials for acquired SCI use adult tissue-derived MSC sources, including bone-marrow, adipose, and umbilical cord tissues. The first stem/stromal cell clinical trial for spina bifida is currently underway (NCT04652908). The trial uses early gestational placental-derived mesenchymal stem/stromal cells (PMSCs) during the fetal repair of myelomeningocele. PMSCs have been shown to exhibit unique neuroprotective, angiogenic, and antioxidant properties, all which are promising applications for SCI. This review will summarize the unique properties and current applications of PMSCs and discuss their therapeutic role for acquired SCI.
Collapse
Affiliation(s)
- Edwin S Kulubya
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Department of Neurological Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (A.G.-R.); (T.K.); (J.O.E.); (M.Z.)
| | - Kaitlin Clark
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Dake Hao
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Sabrina Lazar
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Arash Ghaffari-Rafi
- Department of Neurological Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (A.G.-R.); (T.K.); (J.O.E.); (M.Z.)
| | - Tejas Karnati
- Department of Neurological Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (A.G.-R.); (T.K.); (J.O.E.); (M.Z.)
| | - Julius Okudu Ebinu
- Department of Neurological Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (A.G.-R.); (T.K.); (J.O.E.); (M.Z.)
| | - Marike Zwienenberg
- Department of Neurological Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (A.G.-R.); (T.K.); (J.O.E.); (M.Z.)
| | - Diana L Farmer
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Aijun Wang
- Department of Surgery, Davis School of Medicine, University of California, Sacramento, CA 95817, USA; (E.S.K.); (K.C.); (D.H.); (S.L.); (D.L.F.)
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
- Department of Biomedical Engineering, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
12
|
Rat Adipose-Derived Stromal Cells (ADSCs) Increases the Glioblastoma Growth and Decreases the Animal Survival. Stem Cell Rev Rep 2021; 18:1495-1509. [PMID: 34403074 DOI: 10.1007/s12015-021-10227-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
Many studies have shown that mesenchymal stromal cells (MSCs) and their secreted factors may modulate the biology of tumor cells. However, how these interactions happen in vivo remains unclear. In the present study, we investigated the effects of rat adipose-derived stromal cells (ADSCs) and their conditioned medium (ADSC-CM) in glioma tumor growth and malignancy in vivo. Our results showed that when we co-injected C6 cells plus ADSCs into the rat brains, the tumors generated were larger and the animals exhibited shorter survival, when compared with tumors of the animals that received only C6 cells or C6 cells pre-treated with ADSC-CM. We further showed that the animals that received C6 plus ADSC did not present enhanced expression of CD73 (a gene highly expressed in ADSCs), indicating that the tumor volume observed in these animals was not a mere consequence of the higher density of cells administered in this group. Finally, we showed that the animals that received C6 + ADSC presented tumors with larger necrosis areas and greater infiltration of immune cells. These results indicate that the immunoregulatory properties of ADSCs and its contribution to tumor stroma can support tumor growth leading to larger zones of necrosis, recruitment of immune cells, thus facilitating tumor progression. Our data provide new insights into the way by which ADSCs and tumor cells interact and highlight the importance of understanding the fate and roles of MSCs in tumor sites in vivo, as well as their intricate crosstalk with cancer cells.
Collapse
|
13
|
Eiro N, Fraile M, Fernández-Francos S, Sánchez R, Costa LA, Vizoso FJ. Importance of the origin of mesenchymal (stem) stromal cells in cancer biology: "alliance" or "war" in intercellular signals. Cell Biosci 2021; 11:109. [PMID: 34112253 PMCID: PMC8194017 DOI: 10.1186/s13578-021-00620-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a central role in the intercellular signaling within the tumor microenvironment (TME), exchanging signals with cancer cells and tumor stromal cells, such as cancer-associated fibroblasts and inflammatory mononuclear cells. Research attributes both pro-tumor and anti-tumor actions to MSCs; however, evidence indicates that MSCs specific effect on the tumor depends on the source of the MSCs and the type of tumor. There are consistent data proving that MSCs from reproductive tissues, such as the uterus, umbilical cord or placenta, have potent anti-tumor effects and tropism towards tumor tissues. More interestingly, products derived from MSCs, such as secretome or extracellular vesicles, seem to reproduce the effects of their parental cells, showing a potential advantage for clinical treatments by avoiding the drawbacks associated with cell therapy. Given these perspectives, it appears necessary new research to optimize the production, safety and antitumor potency of the products derived from the MSCs suitable for oncological therapies.
Collapse
Affiliation(s)
- Noemi Eiro
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain.
| | - Maria Fraile
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Silvia Fernández-Francos
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Rosario Sánchez
- Department of Surgery, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain
| | - Luis A Costa
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain
| | - Francisco J Vizoso
- Unit Research, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33290, Gijón, Asturias, Spain. .,Department of Surgery, Fundación Hospital de Jove, 33290, Gijón, Asturias, Spain.
| |
Collapse
|
14
|
Chen S, He Z, Xu J. Application of adipose-derived stem cells in photoaging: basic science and literature review. Stem Cell Res Ther 2020; 11:491. [PMID: 33225962 PMCID: PMC7682102 DOI: 10.1186/s13287-020-01994-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Photoaging is mainly induced by continuous exposure to sun light, causing multiple unwanted skin characters and accelerating skin aging. Adipose-derived stem cells(ADSCs) are promising in supporting skin repair because of their significant antioxidant capacity and strong proliferation, differentiation, and migration ability, as well as their enriched secretome containing various growth factors and cytokines. The identification of the mechanisms by which ADSCs perform these functions for photoaging has great potential to explore therapeutic applications and combat skin aging. We also review the basic mechanisms of UV-induced skin aging and recent improvement in pre-clinical applications of ADSCs associated with photoaging. Results showed that ADSCs are potential to address photoaging problem and might treat skin cancer. Compared with ADSCs alone, the secretome-based approaches and different preconditionings of ADSCs are more promising to overcome the current limitations and enhance the anti-photoaging capacity.
Collapse
Affiliation(s)
- Shidie Chen
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China
| | - Zhigang He
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
15
|
Liu D, Zheng W, Pan S, Liu Z. Concise review: current trends on applications of stem cells in diabetic nephropathy. Cell Death Dis 2020; 11:1000. [PMID: 33221823 PMCID: PMC7680458 DOI: 10.1038/s41419-020-03206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy, with high prevalence, is the main cause of renal failure in diabetic patients. The strategies for treating DN are limited with not only high cost but an unsatisfied effect. Therefore, the effective treatment of DN needs to be explored urgently. In recent years, due to their self-renewal ability and multi-directional differentiation potential, stem cells have exerted therapeutic effects in many diseases, such as graft-versus-host disease, autoimmune diseases, pancreatic diseases, and even acute kidney injury. With the development of stem cell technology, stem cell-based regenerative medicine has been tried to be applied to the treatment of DN. Related stem cells include embryonic stem cells, induced pluripotent stem cells, mesenchymal cells, and endothelial progenitor cells. Undoubtedly, stem cell transplantation has achieved certain results in the treatment of DN animal models. However, stem cell therapy still remains certain thorny issues during treatment. For instance, poor engraftment and limited differentiation of stem cells caused by the diabetic microenvironment, differentiation into unwanted cell lineages, and malignant transformation or genetic aberrations of stem cells. At present, various researches on the therapeutic effects of stem cells in DN with different opinions are reported and the specific mechanism of stem cells is still unclear. We review here the potential mechanism of stem cells as new therapeutic agents in the treatment of DN. Also, we review recent findings and updated information about not only the utilization of stem cells on DN in both preclinical and clinical trials but limitations and future expectations of stem cell-based therapy for DN.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Wen Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China. .,Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China. .,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China. .,Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
16
|
Alveolar Type II Cells or Mesenchymal Stem Cells: Comparison of Two Different Cell Therapies for the Treatment of Acute Lung Injury in Rats. Cells 2020; 9:cells9081816. [PMID: 32751857 PMCID: PMC7464506 DOI: 10.3390/cells9081816] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
The use of cell therapies has recently increased for the treatment of pulmonary diseases. Mesenchymal stem/stromal cells (MSCs) and alveolar type II cells (ATII) are the main cell-based therapies used for the treatment of acute respiratory distress syndrome (ARDS). Many pre-clinical studies have shown that both therapies generate positive outcomes; however, the differences in the efficiency of MSCs or ATII for reducing lung damage remains to be studied. We compared the potential of both cell therapies, administering them using the same route and dose and equal time points in a sustained acute lung injury (ALI) model. We found that the MSCs and ATII cells have similar therapeutic effects when we tested them in a hydrochloric acid and lipopolysaccharide (HCl-LPS) two-hit ALI model. Both therapies were able to reduce proinflammatory cytokines, decrease neutrophil infiltration, reduce permeability, and moderate hemorrhage and interstitial edema. Although MSCs and ATII cells have been described as targeting different cellular and molecular mechanisms, our data indicates that both cell therapies are successful for the treatment of ALI, with similar beneficial results. Understanding direct cell crosstalk and the factors released from each cell will open the door to more accurate drugs being able to target specific pathways and offer new curative options for ARDS.
Collapse
|
17
|
Costa LA, Eiro N, Fraile M, Gonzalez LO, Saá J, Garcia-Portabella P, Vega B, Schneider J, Vizoso FJ. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci 2020; 78:447-467. [PMID: 32699947 PMCID: PMC7375036 DOI: 10.1007/s00018-020-03600-0] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are present in all organs and tissues. Several studies have shown the therapeutic potential effect of MSC or their derived products. However, the functional heterogeneity of MSC constitutes an important barrier for transferring these capabilities to the clinic. MSC heterogeneity depends on their origin (biological niche) or the conditions of potential donors (age, diseases or unknown factors). It is accepted that many culture conditions of the artificial niche to which they are subjected, such as O2 tension, substrate and extracellular matrix cues, inflammatory stimuli or genetic manipulations can influence their resulting phenotype. Therefore, to attain a more personalized and precise medicine, a correct selection of MSC is mandatory, based on their functional potential, as well as the need to integrate all the existing information to achieve an optimal improvement of MSC features in the artificial niche.
Collapse
Affiliation(s)
- Luis A Costa
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - María Fraile
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Luis O Gonzalez
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.,Department of Anatomical Pathology, Fundación Hospital de Jove, Gijón, Spain
| | - Jorge Saá
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Pablo Garcia-Portabella
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Belén Vega
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - José Schneider
- Department of Obstetrics and Gynecology, University of Valladolid, Valladolid, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.
| |
Collapse
|
18
|
Rahmatizadeh F, Gholizadeh-Ghaleh Aziz S, Khodadadi K, Lale Ataei M, Ebrahimie E, Soleimani Rad J, Pashaiasl M. Bidirectional and Opposite Effects of Naïve Mesenchymal Stem Cells on Tumor Growth and Progression. Adv Pharm Bull 2019; 9:539-558. [PMID: 31857958 PMCID: PMC6912184 DOI: 10.15171/apb.2019.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer has long been considered as a heterogeneous population of uncontrolled proliferation of
different transformed cell types. The recent findings concerning tumorigeneses have highlighted
the fact that tumors can progress through tight relationships among tumor cells, cellular, and
non-cellular components which are present within tumor tissues. In recent years, studies have
shown that mesenchymal stem cells (MSCs) are essential components of non-tumor cells within
the tumor tissues that can strongly affect tumor development. Several forms of MSCs have been
identified within tumor stroma. Naïve (innate) mesenchymal stem cells (N-MSCs) derived from
different sources are mostly recruited into the tumor stroma. N-MSCs exert dual and divergent
effects on tumor growth through different conditions and factors such as toll-like receptor
priming (TLR-priming), which is the primary underlying causes of opposite effects. Moreover,
MSCs also have the contrary effects by various molecular mechanisms relying on direct cellto-
cell connections and indirect communications through the autocrine, paracrine routes, and
tumor microenvironment (TME).
Overall, cell-based therapies will hold great promise to provide novel anticancer treatments.
However, the application of intact MSCs in cancer treatment can theoretically cause adverse
clinical outcomes. It is essential that to extensively analysis the effective factors and conditions
in which underlying mechanisms are adopted by MSCs when encounter with cancer.
The aim is to review the cellular and molecular mechanisms underlying the dual effects of
MSCs followed by the importance of polarization of MSCs through priming of TLRs.
Collapse
Affiliation(s)
- Faramarz Rahmatizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Khodadad Khodadadi
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, Melbourne, Australia
| | - Maryam Lale Ataei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esmaeil Ebrahimie
- Adelaide Medical School, University of Adelaide, Adelaide, Australia.,School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, Australia
| | - Jafar Soleimani Rad
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
| | - Maryam Pashaiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran.,Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Fathi E, Sanaat Z, Farahzadi R. Mesenchymal stem cells in acute myeloid leukemia: a focus on mechanisms involved and therapeutic concepts. Blood Res 2019; 54:165-174. [PMID: 31730689 PMCID: PMC6779935 DOI: 10.5045/br.2019.54.3.165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 12/15/2022] Open
Abstract
Drug resistance in cancer, especially in leukemia, creates a dilemma in treatment planning. Consequently, studies related to the mechanisms underlying drug resistance, the molecular pathways involved in this phenomenon, and alternate therapies have attracted the attention of researchers. Among a variety of therapeutic modalities, mesenchymal stem cells (MSCs) are of special interest due to their potential clinical use. Therapies involving MSCs are showing increasing promise in cancer treatment and anticancer drug screening applications; however, results have been inconclusive, possibly due to the heterogeneity of MSC populations. Most recently, the effect of MSCs on different types of cancer, such as hematologic malignancies, their mechanisms, sources of MSCs, and its advantages and disadvantages have been discussed. There are many proposed mechanisms describing the effects of MSCs in hematologic malignancies; however, the most commonly-accepted mechanism is that MSCs induce tumor cell cycle arrest. This review explains the anti-tumorigenic effects of MSCs through the suppression of tumor cell proliferation in hematological malignancies, especially in acute myeloid leukemia.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Gao S, Guo X, Zhao S, Jin Y, Zhou F, Yuan P, Cao L, Wang J, Qiu Y, Sun C, Kang Z, Gao F, Xu W, Hu X, Yang D, Qin Y, Ning K, Shaw PJ, Zhong G, Cheng L, Zhu H, Gao Z, Chen X, Xu J. Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury. Cell Death Dis 2019; 10:597. [PMID: 31395857 PMCID: PMC6687731 DOI: 10.1038/s41419-019-1772-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/24/2019] [Accepted: 05/31/2019] [Indexed: 01/06/2023]
Abstract
Human adipose-derived stem cells (hADSCs) are increasingly presumed to be a prospective stem cell source for cell replacement therapy in various degenerative and/or traumatic diseases. The potential of trans-differentiating hADSCs into motor neuron cells indisputably provides an alternative way for spinal cord injury (SCI) treatment. In the present study, a stepwise and efficient hADSC trans-differentiation protocol with retinoic acid (RA), sonic hedgehog (SHH), and neurotrophic factors were developed. With this protocol hADSCs could be converted into electrophysiologically active motoneuron-like cells (hADSC-MNs), which expressed both a cohort of pan neuronal markers and motor neuron specific markers. Moreover, after being primed for neuronal differentiation with RA/SHH, hADSCs were transplanted into SCI mouse model and they survived, migrated, and integrated into injured site and led to partial functional recovery of SCI mice. When ablating the transplanted hADSC-MNs harboring HSV-TK-mCherry overexpression system with antivirial Ganciclovir (GCV), functional relapse was detected by motor-evoked potential (MEP) and BMS assays, implying that transplanted hADSC-MNs participated in rebuilding the neural circuits, which was further confirmed by retrograde neuronal tracing system (WGA). GFP-labeled hADSC-MNs were subjected to whole-cell patch-clamp recording in acute spinal cord slice preparation and both action potentials and synaptic activities were recorded, which further confirmed that those pre-conditioned hADSCs indeed became functionally active neurons in vivo. As well, transplanted hADSC-MNs largely prevented the formation of injury-induced cavities and exerted obvious immune-suppression effect as revealed by preventing astrocyte reactivation and favoring the secretion of a spectrum of anti-inflammatory cytokines and chemokines. Our work suggests that hADSCs can be readily transformed into MNs in vitro, and stay viable in spinal cord of the SCI mouse and exert multi-therapeutic effects by rebuilding the broken circuitry and optimizing the microenvironment through immunosuppression.
Collapse
Affiliation(s)
- Shane Gao
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xuanxuan Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Simeng Zhao
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, JinShan, Shanghai, 201508, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, 200438, China
| | - Ping Yuan
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Limei Cao
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yue Qiu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Chenxi Sun
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhanrong Kang
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 200137, China
| | - Fengjuan Gao
- Zhoupu hospital, Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Wei Xu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Hu
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China
| | - Danjing Yang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ying Qin
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield, S10 2HQ, UK
| | - Guisheng Zhong
- iHuman Institute, Shanghai Science and Technology University, Shanghai, 201210, China.
| | - Liming Cheng
- Tongji hospital affiliated to Tongji University, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Hongwen Zhu
- Tianjin Hospital, Tianjin, 300211, China. .,BOE Technology Group Co., Ltd., Beijing, 100176, China.
| | - Zhengliang Gao
- Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xu Chen
- Shanghai Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, 200233, China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
21
|
Chen L, Zhang Q, Chen QH, Ran FY, Yu LM, Liu X, Fu Q, Song GY, Tang JM, Zhang T. Combination of G-CSF and AMD3100 Improves the Anti-inflammatory Effect of Mesenchymal Stem Cells on Inducing M2 Polarization of Macrophages Through NF-κB-IL1RA Signaling Pathway. Front Pharmacol 2019; 10:579. [PMID: 31191315 PMCID: PMC6546872 DOI: 10.3389/fphar.2019.00579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/06/2019] [Indexed: 01/18/2023] Open
Abstract
Mobilized peripheral blood-derived mesenchymal stem cells (PB-MSCs) mainly derived from bone marrow-derived MSCs (BM-MSCs) exert a similar anti-inflammatory effect. However, the mechanism of anti-inflammatory effect of mobilized PB-MSCs by a combination of G-CSF and AMD3100 remains unclear. Cultured rat PB-MSCs mobilized by G-CSF/AMD3100 have shown typical surface markers and potential for multiple differentiations, similar to non-mobilized BM-MSCs. In a co-culture system, rat M0-type macrophages co-cultured with PB-MSCs have shown higher expression of M2 markers including CD206, Arg-1, IL-10, and CCL-22 than BM-MSCs, indicating that PB-MSCs induced greater M0 polarization to M2. Furthermore, compared with BM-MSCs, PB-MSCs in a co-culture system with lipopolysaccharide-induced M1-type macrophages more efficiently promoted M1 polarization to M2, accompanied by increasing expression of CD206, Arg-1, IL-10, and CCL-22 while decreasing expression of M1 markers including iNOS, TNF-α, IL-1β and IL-6, indicating that PB-MSCs triggered greater M1 polarization to M2. Subsequently, polymerase chain reaction arrays showed higher expressions of both IL1rn and Tnfrsf11b in PB-MSCs versus BM-MSCs. In response to an inflammatory niche, such as TNF-α, PB-MSCs have shown higher expression and release of IL1RA, causing greater M2 polarization of macrophages, and the special effects may be almost entirely abolished through the neutralization antibody of IL1RA. Mechanistic studies determined that PB-MSCs showed higher levels NF-κBp65 and NF-κBp-p65 than BM-MSCs, which could be obviously enhanced by TNF-α. And the increased IL1RA expression by TNF-α in PB-MSCs could be markedly canceled by an NF-κB inhibitor PDTC. Interestingly, mimicking the mobilized PB-MSCs by a combination of G-CSF and AMD3100 in vivo, BM-MSCs were treated with G-CSF and/or AMD3100 in vitro, showing the increased expressions of NF-κBp65 and IL1RA, which could be prominently abolished by PDTC. Therefore, targeting IL1rn, gene modification or drug intervention for MSCs may provide a novel therapeutic strategy for human diseases, especially inflammatory diseases.
Collapse
Affiliation(s)
- Long Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Experimental Medical Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Qian Zhang
- Department of Human Anatomy, Zunyi Medical University, Zunyi, China
| | - Qin-Hua Chen
- Experimental Medical Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Feng-Yin Ran
- Experimental Medical Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Li-Mei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiu Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qiang Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Gong-Yu Song
- Department of Human Anatomy, Zunyi Medical University, Zunyi, China
| | - Jun-Ming Tang
- Institute of Clinical Medicine, Renming Hospital, Hubei University of Medicine, Shiyan, China.,Institute of Biomedicine and Key Lab of Human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Shiyan, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
22
|
Mesenchymal Stem Cells and Cancer: Clinical Challenges and Opportunities. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2820853. [PMID: 31205939 PMCID: PMC6530243 DOI: 10.1155/2019/2820853] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Stem cell-based therapies exhibit profound therapeutic potential for treating various human diseases, including cancer. Among the cell types that can be used for this purpose, mesenchymal stem cells (MSCs) are considered as promising source of stem cells in personalized cell-based therapies. The inherent tumor-tropic property of MSCs can be used to target cancer cells. Although the impacts of MSCs on tumor progression remain elusive, they have been genetically modified or engineered as targeted anticancer agents which could inhibit tumor growth by blocking different processes of tumor. In addition, there are close interactions between MSCs and cancer stem cells (CSCs). MSCs can regulate the growth of CSCs through paracrine mechanisms. This review aims to focus on the current knowledge about MSCs-based tumor therapies, the opportunities and challenges, as well as the prospective of its further clinical implications.
Collapse
|
23
|
Sanchez LR, Borriello L, Entenberg D, Condeelis JS, Oktay MH, Karagiannis GS. The emerging roles of macrophages in cancer metastasis and response to chemotherapy. J Leukoc Biol 2019; 106:259-274. [PMID: 30720887 DOI: 10.1002/jlb.mr0218-056rr] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Macrophages represent a heterogeneous group of cells, capable of carrying out distinct functions in a variety of organs and tissues. Even within individual tissues, their functions can vary with location. Tumor-associated macrophages (TAMs) specialize into three major subtypes that carry out multiple tasks simultaneously. This is especially true in the context of metastasis, where TAMs establish most of the cellular and molecular prerequisites for successful cancer cell dissemination and seeding to the secondary site. Perivascular TAMs operate in the perivascular niche, where they promote tumor angiogenesis and aid in the assembly of intravasation sites called tumor microenvironment of metastasis (TMEM). Streaming TAMs co-migrate with tumor cells (irrespective of the perivascular niche) and promote matrix remodeling, tumor cell invasiveness, and an immunosuppressive local microenvironment. Premetastatic TAMs are recruited to the premetastatic niche, where they can assist in tumor cell extravasation, seeding, and metastatic colonization. The dynamic interplay between TAMs and tumor cells can also modify the ability of the latter to resist cytotoxic chemotherapy (a phenotype known as environment-mediated drug resistance) and induce chemotherapy-mediated pro-metastatic microenvironmental changes. These observations suggest that future therapeutics should be designed to target TAMs with the aim of suppressing the metastatic potential of tumors and rendering chemotherapy more efficient.
Collapse
Affiliation(s)
- Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Surgery, Montefiore Medical Center, Bronx, New York, USA
| | - Lucia Borriello
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Surgery, Montefiore Medical Center, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA.,Department of Pathology, Montefiore Medical Center, Bronx, New York, USA
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York, USA.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, New York, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
24
|
Chramiec A, Vunjak-Novakovic G. Tissue engineered models of healthy and malignant human bone marrow. Adv Drug Deliv Rev 2019; 140:78-92. [PMID: 31002835 PMCID: PMC6663611 DOI: 10.1016/j.addr.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/14/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
Tissue engineering is becoming increasingly successful in providing in vitro models of human tissues that can be used for ex vivo recapitulation of functional tissues as well as predictive testing of drug efficacy and safety. From simple tissue models to microphysiological platforms comprising multiple tissue types connected by vascular perfusion, these "tissues on a chip" are emerging as a fast track application for tissue engineering, with great potential for modeling diseases and supporting the development of new drugs and therapeutic targets. We focus here on tissue engineering of the hematopoietic stem and progenitor cell compartment and the malignancies that can develop in the human bone marrow. Our overall goal is to demonstrate the utility and interconnectedness of improvements in bioengineering methods developed in one area of bone marrow studies for the remaining, seemingly disparate, bone marrow fields.
Collapse
|
25
|
Mesenchymal stem cells in suppression or progression of hematologic malignancy: current status and challenges. Leukemia 2019; 33:597-611. [PMID: 30705410 PMCID: PMC6756083 DOI: 10.1038/s41375-018-0373-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are known for being multi-potent. However, they also possess anticancer properties, which has prompted efforts to adapt MSCs for anticancer therapies. However, MSCs have also been widely implicated in pathways that contribute to tumor growth. Numerous studies have been conducted to adapt MSCs for further clinical use; however, the results have been inconclusive, possibly due to the heterogeneity of MSC populations. Moreover, the conflicting roles of MSCs in tumor inhibition and tumor growth impede their adaptation for anticancer therapies. Antitumorigenic and protumorigenic properties of MSCs in hematologic malignancies are not as well established as they are for solid malignancies, and data comparing them are still limited. Herein the effect of MSCs on hematologic malignancies, such as leukemia and lymphoma, their mechanisms, sources of MSCs, and their effects on different types of cancer, have been discussed. This review describes how MSCs preserve both antitumorigenic and protumorigenic effects, as they tend to not only inhibit tumor growth by suppressing tumor cell proliferation but also promote tumor growth by suppressing tumor cell apoptosis. Thus clinical studies trying to adapt MSCs for anticancer therapies should consider that MSCs could actually promote hematologic cancer progression. It is necessary to take extreme care while developing MSC-based cell therapies in order to boost anticancer properties while eliminating tumor-favoring effects. This review emphasizes that research on the therapeutic applications of MSCs must consider that they exert both antitumorigenic and protumorigenic effects on hematologic malignancies.
Collapse
|
26
|
Mesenchymal stem cell-based therapy for autoimmune diseases: emerging roles of extracellular vesicles. Mol Biol Rep 2019; 46:1533-1549. [PMID: 30623280 DOI: 10.1007/s11033-019-04588-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/03/2019] [Indexed: 02/07/2023]
Abstract
In autoimmune disease body's own immune system knows healthy cells as undesired and foreign cells. Over 80 types of autoimmune diseases have been recognized. Currently, at clinical practice, treatment strategies for autoimmune disorders are based on relieving symptoms and preventing difficulties. In other words, there is no effective and useful therapy up to now. It has been well-known that mesenchymal stem cells (MSCs) possess immunomodulatory effects. This strongly suggests that MSCs might be as a novel modality for treatment of autoimmune diseases. Supporting this notion a few preclinical and clinical studies indicate that MSCs ameliorate autoimmune disorders. Interestingly, it has been found that the beneficial effects of MSCs in autoimmune disorders are not relying only on direct cell-to-cell communication but on their capability to produce a broad range of paracrine factors including growth factors, cytokines and extracellular vehicles (EVs). EVs are multi-signal messengers that play a serious role in intercellular signaling through carrying cargo such as mRNA, miRNA, and proteins. Numerous studies have shown that MSC-derived EVs are able to mimic the effects of the cell of origin on immune cells. In this review, we discuss the current studies dealing with MSC-based therapies in autoimmune diseases and provide a vision and highlight in order to introduce MSC-derived EVs as an alternative and emerging modality for autoimmune disorders.
Collapse
|
27
|
Seyhoun I, Hajighasemlou S, Muhammadnejad S, Ai J, Nikbakht M, Alizadeh AA, Hosseinzadeh F, Mirmoghtadaei M, Seyhoun SM, Verdi J. Combination therapy of sorafenib with mesenchymal stem cells as a novel cancer treatment regimen in xenograft models of hepatocellular carcinoma. J Cell Physiol 2018; 234:9495-9503. [PMID: 30362607 DOI: 10.1002/jcp.27637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022]
Abstract
AIM Hepatocellular carcinoma (HCC) is the most common liver malignancy and the second leading cause of cancer-related deaths in the world. Sorafenib is the first-line treatment of HCC. Although sorafenib has positive effects on the survival of patients, novel therapeutic strategies are needed to extend survival and improve the efficacy of sorafenib. This study combines sorafenib with mesenchymal stem cells (MSCs) as a new approach to enhance the efficacy of sorafenib. MATERIAL AND METHODS A subcutaneous xenograft model of HCC, established by human HepG2 cell lines, was implanted into the flank of nude mice and was used to evaluate tumor growth after treatment with sorafenib alone or in combination with MSCs. The aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, and creatinine levels were measured for safety assessment. Histopathological studies were performed using hematoxylin and eosin staining, and immunohistochemistry tests were performed to evaluate proliferation (Ki67) and angiogenesis (CD34). The TUNEL assay was used to detect apoptosis and measure the expression of major inflammatory cytokines (IL-1a, IL-10, and TNF-α) with real-time polymerase chain reaction. RESULT Sorafenib, in combination with MSCs, strongly inhibited tumor growth in the xenograft model. Furthermore, the combination therapy significantly inhibited HCC cell proliferation, decreased tumor angiogenesis, and induced apoptosis and maintained antitumor-associated anti-inflammatory effects of MSCs. CONCLUSION This combination therapy strategy could be used as a new therapeutic approach to the treatment of HCC that significantly improves upon the results achieved using sorafenib as monotherapy.
Collapse
Affiliation(s)
- Iman Seyhoun
- Tissue Engineering & Applied Cell Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Saieh Hajighasemlou
- Tissue Engineering & Applied Cell Sciences, Tehran University of Medical Sciences, Tehran, Iran.,Food and Drug Control Laboratory (FDCL), Iran Ministry of Health and Medical Education, Tehran, Iran
| | - Samad Muhammadnejad
- Cell-Based Therapies Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Tissue Engineering & Applied Cell Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Nikbakht
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Alizadeh
- Tissue Engineering & Applied Cell Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faezeh Hosseinzadeh
- Tissue Engineering & Applied Cell Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Mirmoghtadaei
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Javad Verdi
- Tissue Engineering & Applied Cell Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
He N, Kong Y, Lei X, Liu Y, Wang J, Xu C, Wang Y, Du L, Ji K, Wang Q, Li Z, Liu Q. MSCs inhibit tumor progression and enhance radiosensitivity of breast cancer cells by down-regulating Stat3 signaling pathway. Cell Death Dis 2018; 9:1026. [PMID: 30297887 PMCID: PMC6175943 DOI: 10.1038/s41419-018-0949-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
The acquisition of radioresistance by breast cancer cells during radiotherapy may lead to cancer recurrence and poor survival. Signal transducer and activator of transcription 3 (Stat3) is activated in breast cancer cells and, therefore, may be an effective target for overcoming therapeutic resistance. Mesenchymal stem cells (MSCs) have been investigated for use in cancer treatment. Here, we investigated the potential of MSC conditioned medium (MSC-CM) in sensitizing breast cancer to radiotherapy. It was found that MSC-CM could inhibit the level of activated Stat3, suppress cancer growth, and exhibit synergetic effects with radiation treatment in vitro and in vivo. Furthermore, MSC-CM reduced the ALDH-positive cancer stem cells (CSCs) population, modulated several potential stem cell markers, and decreased tumor migration, as well as metastasis. These results demonstrate that MSC-CM suppresses breast cancer cells growth and sensitizes cancer cells to radiotherapy through inhibition of the Stat3 signaling pathway, thus, providing a novel strategy for breast cancer therapy by overcoming radioresistance.
Collapse
Affiliation(s)
- Ningning He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yangyang Kong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Xudan Lei
- School of Medicine, Nankai University, Tianjin, China
| | - Yang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jinhan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Kaihua Ji
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Zongjin Li
- School of Medicine, Nankai University, Tianjin, China.
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China.
| |
Collapse
|
29
|
Potential Effect of Exosomes Derived from Cancer Stem Cells and MSCs on Progression of DEN-Induced HCC in Rats. Stem Cells Int 2018; 2018:8058979. [PMID: 30224923 PMCID: PMC6129855 DOI: 10.1155/2018/8058979] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 05/17/2018] [Accepted: 06/10/2018] [Indexed: 02/06/2023] Open
Abstract
Cross talk, mediated by exosomes, between normal stem cells and cancer stem cells (CSCs) in the tumor microenvironment has been given less attention so far. In addition, no publications are available in the literature that address the in vivo impact of exosomes derived from CSCs and mesenchymal stem cells (MSCs) on progression of long-term hepatocellular carcinoma (HCC). Herein, we hypothesized that transfer of exosomes among the cells in the HCC microenvironment could either induce or inhibit tumor growth and metastasis depending on their source. To check this hypothesis, we investigated the effect of exosomes coming from two different stem cell populations, hepatic CSCs and bone marrow (BM) MSCs, on progression of long-term DEN-induced HCC in rats and the involved underlying mechanisms. CSCs-exosomes induced a significant increase in liver relative weight and serum levels of cancer markers (AFP and GGT) and liver enzymes (ALT, AST, and ALP), intensive immunostaining for the HCC marker GST-P, and an increased number and area of tumor nodules as compared to HCC rats injected by PBS. CSCs-exosomes also decreased apoptosis (marked by downregulation of Bax and p53 and upregulation of Bcl2, and increased immunostaining of PCNA), increased angiogenetic activity (revealed by upregulation of VEGF), enhanced metastasis and invasiveness (indicated by upregulation of P13K and ERK proteins and their downstream target MMP9 and downregulation of TIMP1), and induced epithelial mesenchymal transition (marked by increased serum and hepatic level of TGFβ1 mRNA and protein). Notably, CSCs-exosomes also elevated HCC exosomal microRNA (miR) 21, exosomal long noncoding (lnc) RNA Tuc339, lncHEIH, and the HCC lncHOTAIR and decreased liver miR122 and HCC miRs (miR148a, miR16, and miR125b). All these cellular, functional, and molecular changes were reversed following injection of BM-MSCs-exosomes. However, both CSCs- and MSCs-exosomes failed to change the elevated oxidative stress or the inhibited antioxidant activities induced by HCC. Collectively, our results revealed a tumor stimulatory effect (induction of tumor growth, progression, and metastasis) for exosomes derived from CSCs and an inhibitory effect for exosomes derived from MSCs. These results provide valuable insight on the effect of CSCs- and MSCs-exosomes on HCC growth and progression in vivo, which may be helpful to understand the mechanism of HCC development.
Collapse
|
30
|
Li Z, Maitz P. Cell therapy for severe burn wound healing. BURNS & TRAUMA 2018; 6:13. [PMID: 29854856 PMCID: PMC5971426 DOI: 10.1186/s41038-018-0117-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/26/2018] [Indexed: 12/14/2022]
Abstract
Cell therapy has emerged as an important component of life-saving procedures in treating burns. Over past decades, advances in stem cells and regenerative medicine have offered exciting opportunities of developing cell-based alternatives and demonstrated the potential and feasibility of various stem cells for burn wound healing. However, there are still scientific and technical issues that should be resolved to facilitate the full potential of the cellular devices. More evidence from large, randomly controlled trials is also needed to understand the clinical impact of cell therapy in burns. This article aims to provide an up-to-date review of the research development and clinical applications of cell therapies in burn wound healing and skin regeneration.
Collapse
Affiliation(s)
- Zhe Li
- Burns Unit, Concord Hospital, Concord, New South Wales 2139 Australia
- Skin Laboratory, NSW Statewide Burns Service, Concord, New South Wales Australia
- Discipline of Surgery, University of Sydney Medical School, Camperdown, New South Wales Australia
| | - Peter Maitz
- Burns Unit, Concord Hospital, Concord, New South Wales 2139 Australia
- Skin Laboratory, NSW Statewide Burns Service, Concord, New South Wales Australia
- Discipline of Surgery, University of Sydney Medical School, Camperdown, New South Wales Australia
| |
Collapse
|
31
|
Li Y, Cheng Q, Hu G, Deng T, Wang Q, Zhou J, Su X. Extracellular vesicles in mesenchymal stromal cells: A novel therapeutic strategy for stroke. Exp Ther Med 2018; 15:4067-4079. [PMID: 29725359 PMCID: PMC5920496 DOI: 10.3892/etm.2018.5993] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
A stroke is a focal cerebral insult that frequently causes severe neurological deficit and mortality. Recent studies have demonstrated that multipotent mesenchymal stromal cells (MSCs) hold great promise for neurovascular remodeling and neurological function recovery following a stroke. Rather than a direct replacement of parenchymal brain cells, the therapeutic mechanism of MSCs is suggested to be the secretion of soluble factors. Specifically, emerging data described MSCs as being able to release extracellular vesicles (EVs), which contain a variety of cargo including proteins, lipids, DNA and various RNA species. The released EVs can target neurocytes and vascular cells and modify the cell's functions by delivering the cargo, which are considered to mediate the neural restoration effects of MSCs. Therefore, EVs may be developed as a novel cell-free therapy for neurological disorders. In the present review, the current advances regarding the components, functions and therapeutic potential of EVs are summarized and the use of MSC-derived EVs as a promising approach in the treatment of stroke are highlighted.
Collapse
Affiliation(s)
- Yingchen Li
- Post-doctoral Research Station of Clinical Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qilai Cheng
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Guoheng Hu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Tianhao Deng
- Department of Oncology, The Affiliated Hospital of Hunan Institute of Traditional Chinese Medicine, Changsha, Hunan 410006, P.R. China
| | - Qimei Wang
- Department of Oncology, The Affiliated Hospital of Hunan Institute of Traditional Chinese Medicine, Changsha, Hunan 410006, P.R. China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xinping Su
- Department of Osteology, The Affiliated Hospital of Hunan Institute of Traditional Chinese Medicine, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
32
|
Chemotherapy-induced metastasis: mechanisms and translational opportunities. Clin Exp Metastasis 2018; 35:269-284. [PMID: 29307118 DOI: 10.1007/s10585-017-9870-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Tumors often overcome the cytotoxic effects of chemotherapy through either acquired or environment-mediated drug resistance. In addition, signals from the microenvironment obfuscate the beneficial effects of chemotherapy and may facilitate progression and metastatic dissemination. Seminal mediators in chemotherapy-induced metastasis appear to be a wide range of hematopoietic, mesenchymal and immune progenitor cells, originating from the bone marrow. The actual purpose of these cells is to orchestrate the repair response to the cytotoxic damage of chemotherapy. However, these repair responses are exploited by tumor cells at every step of the metastatic cascade, ranging from tumor cell invasion, intravasation and hematogenous dissemination to extravasation and effective colonization at the metastatic site. A better understanding of the mechanistic underpinnings of chemotherapy-induced metastasis will allow us to better predict which patients are more likely to exhibit pro-metastatic responses to chemotherapy and will help develop new therapeutic strategies to neutralize chemotherapy-driven prometastatic changes.
Collapse
|
33
|
Baharaghdam S, Yousefi M, Movasaghpour A, Solali S, Talebi M, Ahani-Nahayati M, Lotfimehr H, Shamsasanjan K. Effects of Hypoxia on Biology of Human Leukemia T-cell Line (MOLT-4 cells) Co-cultured with Bone Marrow Mesenchymal Stem Cells. Avicenna J Med Biotechnol 2018; 10:62-68. [PMID: 29849981 PMCID: PMC5960061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND One of the most significant problems in the treatment of leukemia is the expansion of resistance to chemotherapeutic agents. Therefore, assessing the drug resistance and especially the drug resistance genes of leukemic cells is important in any treatment. The impact of Mesenchymal Stem Cells (MSCs) and hypoxic condition have been observed in the biological performance of majority of leukemic cells. METHODS MOLT-4 cells were co-cultured with MSCs in the hypoxic condition induced by Cobalt Chloride (CoCl2) for 6 and 24 hr. Then, apoptosis of cells was analyzed using annexin-V/PI staining and expression of the drug resistance genes including MDR1, MRP, and BCRP along with apoptotic and anti-apoptotic genes, including BAX and BCL2, was evaluated by real-time PCR. RESULTS The hypoxic condition for MOLT-4 cells co-cultured with MSCs could significantly increase the expression of MDR1 and BCRP genes (p<0.05) which are involved in drug resistance. Also, the results indicated that this condition significantly increases the expression of BCL2 (p<0.05) and reduces the apoptosis in MOLT-4 cells co-cultured with MSCs in the hypoxic condition. CONCLUSION These effects can demonstrate the important role of hypoxia and MSCs on the biological behavior of Acute Lymphoblastic Leukemia (ALL) cells that may lead to particular treatment outcomes.
Collapse
Affiliation(s)
- Sina Baharaghdam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran, Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding authors: Mehdi Yousefi, Ph.D., Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences Tabriz, Iran
| | - Aliakbar Movasaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Ahani-Nahayati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Lotfimehr
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasanjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Karim Shamsasanjan, Ph.D., Department of Immunology-Hematology and Transfer Medicine Division, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran Tel: +98 41 33364665 Fax: +98 41 33364665 E-mail:,
| |
Collapse
|
34
|
Sadat-Ali M, Azam MQ, Elshabouri EM, Tantawy AM, Acharya S. Stem Cell Therapy for Avascular Necrosis of Femoral Head in Sickle Cell Disease: Report of 11 Cases and Review of Literature. Int J Stem Cells 2017; 10:179-183. [PMID: 28844125 PMCID: PMC5741199 DOI: 10.15283/ijsc17019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/05/2022] Open
Abstract
Background and Objective Sickle cell disease (SCD) is quite common in eastern Saudi Arabia and Avascular necrosis of femoral head (ANFH) occurs in 30% of the young patients leading to early joint arthroplasty. This study was conducted to assess the benefits of injection of osteoblasts in the avascular lesions of the head of femur. Patients and Methods A preset technique was used, 10 CC of bone marrow aspiration was performed under local anesthesia and aseptic technique. Osteoblasts were separated from the bone marrow cells. The avascular area was drilled and 10 million osteoblasts were transplanted at the lesion site. Patients were seen in the out patient clinic after two weeks for removal of the suture and addressed the questionnaire and examined for the range of movement. The follow up MRI was performed at 4 months. Results The average age was 20.2±3.9 years. The mean hemoglobin S was 81.6±4.8 percent. Quality of Life Score for Chronic Hip Disease was assessed and found at 8.6 (1 being the severe limitation and 10 being normal), whereas Harris hip score improved from 41.7±5.1 to 88.93±3.6 (p<0.001). MRI of pre and post osteoblast implantation showed robust new bone formation and disappearance of the avascular lesions. Conclusions The short term results were good and we believe the injection of osteoblast in the avascular lesion of head of femur is a less invasive procedure devoid of any untoward complications and merits such treatment in large patient group with longer follow up.
Collapse
Affiliation(s)
- Mir Sadat-Ali
- Department of Orthopaedic Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Md Q Azam
- Department of Orthopaedic Surgery, King George Medical College and Hospital Lucknow, India
| | - Ezzat M Elshabouri
- Department of Orthopaedic Surgery, King Fahad Hospital of the University, Al-Khobar, Saudi Arabia
| | - Ahmad M Tantawy
- Department of Orthopaedic Surgery, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Sadananda Acharya
- Stem Cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
35
|
Grigorian-Shamagian L, Fereydooni S, Liu W, Echavez A, Marbán E. Harnessing the heart's resistance to malignant tumors: cardiac-derived extracellular vesicles decrease fibrosarcoma growth and leukemia-related mortality in rodents. Oncotarget 2017; 8:99624-99636. [PMID: 29245929 PMCID: PMC5725120 DOI: 10.18632/oncotarget.20454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/14/2017] [Indexed: 11/25/2022] Open
Abstract
The heart is known for its resistance to cancer. Although different conjectures have been proposed to explain this phenomenon, none has been tested. We propose that the heart microenvironment may exert anti-cancer properties. So, our objective was to test the anti-oncogenic potential of cardiac-derived extracellular vesicles (EVs). For that EVs secreted by cardiosphere-derived cells (CDCs, heart progenitor cells) were tested in vitro on fibrosarcoma HT1080. In vivo models comprised the xenograft HT1080 fibrosarcoma in athymic mice (n=35), and spontaneous acute lymphocyte leukemia in old rats (n=44). CDC-EVs were compared with two control groups: EVs secreted by bone-marrow derived mesenchymal stem cells (MSC-EVs) and phosphate-buffered saline (PBS). Injection of CDC-EVs led to a 2.5-fold decrease of fibrosarcoma growth in mice (p<0.01 and p<0.05 for human and rat EVs, respectively) vs PBS group. The effect was associated with 2-fold decrease of tumor cells proliferation (p<0.001) and 1.5-fold increase of apoptosis (p<0.05) in CDC-EV vs PBS mice. Salutary changes in tumor gene and protein expression were observed in CDC-EV animals. CDC-EVs reduced tumor vascularization compared with PBS (p<0.05) and MSC-EVs (p<0.01). Moreover, CDC-EVs increased leukemia-free survival (p<0.05) in old rats vs PBS. MiR-146, highly enriched in CDC-EVs, may be implicated in part of the observed effects. In conclusion, this study presents the first evidence that ties together the long-recognized enigma of the "heart immunity to cancer" with an antioncogenic effect of heart-derived EVs. These findings open up cancer as a new therapeutic target for CDC-EVs.
Collapse
Affiliation(s)
| | - Soraya Fereydooni
- Cedars-Sinai Heart Institute, Los Angeles, CA, United States of America
- Department of Biology, Stanford University, Stanford, CA, United States of America
| | - Weixin Liu
- Cedars-Sinai Heart Institute, Los Angeles, CA, United States of America
| | - Antonio Echavez
- Cedars-Sinai Heart Institute, Los Angeles, CA, United States of America
| | - Eduardo Marbán
- Cedars-Sinai Heart Institute, Los Angeles, CA, United States of America
| |
Collapse
|
36
|
Wawryk-Gawda E, Wojcik B. Application of mesenchymal stem cells in paediatrics. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2017. [DOI: 10.1515/cipms-2017-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Mesenchymal stem cells (MSC) were described by Friedenstein in the 1970s as being a group of bone marrow non-hematopoietic cells that are the source of fibroblasts. Since then, knowledge about the therapeutic potential of MSCs has significantly increased. MSCs are currently used for the treatment of many diseases, both in adults and children. MSCs are used successfully in the case of autoimmune diseases, including rheumatic diseases, diabetes mellitus type 1, gastroenterological and neurological diseases. Moreover, treatment of such organ disorders as damage or hypoxia through application of MSC therapy has shown to be satisfactory. In addition, there are some types of congenital disorders, including osteogenesis imperfecta and Spinal Muscular Atrophy, that may be treated with cellular therapy. Most studies showed no other adverse effects than fever. Our study is an analysis that particularly focuses on the registered trials and results of MSCs application to under 18 patients with acute, chronic, recurrent, resistance and corticosteroids types of Graft-versus-Host Disease (GvHD). Stem cells currently play an important role in the treatment of many diseases. Long-term studies conducted on animals have shown that cell therapy is both effective and safe. The number of indications for use of these cells in the course of treatment of people is constantly increasing. The results of subsequent studies provide important data justifying the application of MSCs in the course of treatment of many diseases whose treatment is ineffective when utilizing other approaches.
Collapse
Affiliation(s)
- Ewelina Wawryk-Gawda
- Chair and Department Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, Radziwillowska 11, 20-080 Lublin , Poland
| | - Beata Wojcik
- Clinic and Department of Pediatric Hematology and Oncology and Transplantology University Children’s Hospital in Lublin, Prof. Antoniego Gebali 6, Lublin , Poland
| |
Collapse
|
37
|
Zhou S, Cecere R, Philip A. CD109 released from human bone marrow mesenchymal stem cells attenuates TGF-β-induced epithelial to mesenchymal transition and stemness of squamous cell carcinoma. Oncotarget 2017; 8:95632-95647. [PMID: 29221155 PMCID: PMC5707049 DOI: 10.18632/oncotarget.21067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Although there is increasing evidence that human bone marrow mesenchymal stem cells (hBM-MSCs) play an important role in cancer progression, the underlying mechanisms are poorly understood. Transforming growth factor β (TGF-β) is an important pro-metastatic cytokine. We have previously shown that CD109, a glycosylphosphatidylinositol-anchored protein, is a TGF-β co-receptor and a strong inhibitor of TGF-β signalling. Moreover, CD109 can be released from the cell surface. In the current study, we examined whether hBM-MSCs regulate the malignant properties of squamous cell carcinoma cells, and whether CD109 plays a role in mediating the effect of hBM-MSCs on cancer cells. Here we show that hBM-MSC-conditioned medium decreases proliferation and induces apoptosis in human squamous carcinoma cell lines, A431 and FaDu. Importantly, hBM-MSC-conditioned medium markedly suppresses markers of epithelial-to-mesenchymal transition and stemness, and concomitantly decreases cell migration, invasion, and spheroid formation in A431 and FaDu cells. In addition, knockdown of CD109 in hBM-MSCs abrogates the anti-malignant activity of hBM-MSC-conditioned medium on A431 and FaDu cells. Furthermore, overexpression of CD109 in A431 cells decreases their malignant traits. Together, our findings suggest that hBM-MSCs inhibit the malignant traits of squamous cell carcinoma cells by a paracrine effect via released factors and that CD109 released from hBM-MSCs, at least partially, mediates these effects.
Collapse
Affiliation(s)
- Shufeng Zhou
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Renzo Cecere
- Division of Cardiac Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Anie Philip
- Division of Plastic Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
38
|
Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int J Mol Sci 2017; 18:ijms18091852. [PMID: 28841158 PMCID: PMC5618501 DOI: 10.3390/ijms18091852] [Citation(s) in RCA: 850] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Earlier research primarily attributed the effects of mesenchymal stem cell (MSC) therapies to their capacity for local engrafting and differentiating into multiple tissue types. However, recent studies have revealed that implanted cells do not survive for long, and that the benefits of MSC therapy could be due to the vast array of bioactive factors they produce, which play an important role in the regulation of key biologic processes. Secretome derivatives, such as conditioned media or exosomes, may present considerable advantages over cells for manufacturing, storage, handling, product shelf life and their potential as a ready-to-go biologic product. Nevertheless, regulatory requirements for manufacturing and quality control will be necessary to establish the safety and efficacy profile of these products. Among MSCs, human uterine cervical stem cells (hUCESCs) may be a good candidate for obtaining secretome-derived products. hUCESCs are obtained by Pap cervical smear, which is a less invasive and painful method than those used for obtaining other MSCs (for example, from bone marrow or adipose tissue). Moreover, due to easy isolation and a high proliferative rate, it is possible to obtain large amounts of hUCESCs or secretome-derived products for research and clinical use.
Collapse
|
39
|
Houshmand M, Soleimani M, Atashi A, Saglio G, Abdollahi M, Nikougoftar Zarif M. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening. Tissue Eng Part C Methods 2017; 23:72-85. [PMID: 28007011 DOI: 10.1089/ten.tec.2016.0404] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone marrow niche is a major contributing factor in leukemia development and drug resistance in acute myeloid leukemia (AML) patients. Although mimicking leukemic bone marrow niche relies on two-dimensional (2D) culture conditions, it cannot recapitulate complex bone marrow structure that causes introduction of different three-dimensional (3D) scaffolds. Simultaneously, microfluidic platform by perfusing medium culture mimic interstitial fluid flow, along with 3D scaffold would help for mimicking bone marrow microenvironment. In this study TF-1 cells were cocultured with bone marrow mesenchymal stem cells (BM-MSCs) in 2D and 3D microfluidic devices. Phenotype maintenance during cell culture and proliferation rate was assayed and confirmed by cell cycle analysis. Morphology of cells in 2D and 3D culture conditions was demonstrated by scanning electron microscopy. After these experiments, drug screening was performed by applying azacitidine and cytarabine and cytotoxicity assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for B cell lymphoma 2 (BCL2) were done to compare drug resistance in 2D and 3D culture conditions. Our result shows leukemic cells in 3D microfluidic device retaining their phenotype and proliferation rate was significantly higher in 3D culture condition in comparison to 2D culture condition (p < 0.05), which was confirmed by cell cycle analysis. Cytotoxicity assay also illustrated drug resistance in 3D culture condition and qRT-PCR demonstrated higher BCL2 expression in 3D microfluidic device in contrast to 2D microfluidic device (p < 0.05). On balance, mimicking bone marrow niche would help the target therapy and specify the role of niche in development of leukemia in AML patients.
Collapse
Affiliation(s)
- Mohammad Houshmand
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| | - Masoud Soleimani
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Amir Atashi
- 3 Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences , Shahroud, Iran
| | - Giuseppe Saglio
- 4 Department of Clinical and Biological Sciences, "S. Luigi Gonzaga" Hospital, University of Turin , Orbassano, Italy
| | - Mohammad Abdollahi
- 2 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mahin Nikougoftar Zarif
- 1 Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine , Tehran, Iran
| |
Collapse
|
40
|
Yang N, Li S, Li G, Zhang S, Tang X, Ni S, Jian X, Xu C, Zhu J, Lu M. The role of extracellular vesicles in mediating progression, metastasis and potential treatment of hepatocellular carcinoma. Oncotarget 2017; 8:3683-3695. [PMID: 27713136 PMCID: PMC5356911 DOI: 10.18632/oncotarget.12465] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. As vectors for intercellular information exchange, the potential role of extracellular vesicles (EVs) in HCC formation, progression and therapy has been widely investigated. In this review, we explore the current status of the researches in this field. Altogether there is undeniable evidence that EVs play a crucial role in HCC development, metastasis. Moreover, EVs have shown great potential as drug delivery systems (DDSs) for the treatment of HCC. Exosomal miRNAs derived from HCC cells can enhance transformed cell growth in recipient cells by modulating the expression of transforming growth factor-β activated kinase-1(TAK1) and downstream signaling molecules. Furthermore, vacuolar protein sortin 4 homolog A(VPS4A) and insulin-like growth factor(IGF)-1 regulate exosome-mediated miRNAs transfer. Immune cells- derived EVs containing integrin αMβ2 or CD147 may facilitate HCC metastasis. In addition, EVs-mediated shuttle of long non-coding RNAs (lncRNAs), specifically linc- VLDLR and linc-ROR promote chemoresistance of malignant cells. Heat shock proteins (HSPs)-harboring exosomes derived from HCC tumor cells increase the antitumor effect of natural killer (NK) cells, thus enhancing HCC immunotherapy. Indeed, inhibition of HCC tumor growth has been associated with tumor cell-derived exosomes (TEX)-pulsed dentritic cells (DCs). Exosomes are also essential in liver metastasis during colorectal carcinoma (CRC) and pancreatic ductal adenocarcinomas (PDAC). Therefore, as nucleic acid and drug delivery vehicles, EVs show a tremendous potential for effective treatment against HCC.
Collapse
Affiliation(s)
- Naibin Yang
- Department of Infection and Liver Diseases, Ningbo First Hospital, Ningbo, China
| | - Shanshan Li
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Institute of Liver Research, Wenzhou Medical University, Wenzhou, China
| | - Guoxiang Li
- Department of Infection and Liver Diseases, Ningbo First Hospital, Ningbo, China
| | - Shengguo Zhang
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Institute of Liver Research, Wenzhou Medical University, Wenzhou, China
| | - Xinyue Tang
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Institute of Liver Research, Wenzhou Medical University, Wenzhou, China
| | - Shunlan Ni
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Institute of Liver Research, Wenzhou Medical University, Wenzhou, China
| | - Xiaomin Jian
- Department of The First Clinical Medical, Wenzhou Medical University, Wenzhou, China
| | - Cunlai Xu
- Department of Respiration, Lishui People's Hospital of Wenzhou Medical University, Lishui, China
| | - Jiayin Zhu
- Laboratory Animal Center, Wenzhou Medical University, Wenzhou, China
| | - Mingqin Lu
- Department of Infection and Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Institute of Liver Research, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
41
|
Shen ZY, Wu B, Liu T, Yang Y, Yin ML, Zheng WP, Zhang BY, Song HL. Immunomodulatory effects of bone marrow mesenchymal stem cells overexpressing heme oxygenase-1: Protective effects on acute rejection following reduced-size liver transplantation in a rat model. Cell Immunol 2016; 313:10-24. [PMID: 28069109 DOI: 10.1016/j.cellimm.2016.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/08/2016] [Accepted: 12/24/2016] [Indexed: 12/21/2022]
Abstract
Here we explore the T-lymphocyte suppressive and immunomodulatory effects of bone marrow mesenchymal stem cells (BMMSCs) overexpressing heme oxygenase-1 (HO-1) on acute rejection following reduced-size liver transplantation (RLT) in a rat model. The proliferation activity, cell cycle progression, secretion of proinflammatory cytokines, expression of CD25 and CD71 in lymphocytes, and activity of NK cells were found to be significantly lowered, and the proportion of regulatory T cells (Tregs) was found to be increased relative to BMMSCs when Adv-HO-1/BMMSCs were co-cultured with Con A ex vivo; secretion of anti-inflammatory cytokines was significantly higher. When treated with saline, BMMSCs or Adv-HO-1/BMMSCs, post-transplantation rats receiving Adv-HO-1/BMMSCs showed better median survival time, lower rejection activity index, higher anti-inflammatory cytokine levels, lower proinflammatory cytokine levels, more peripheral Tregs, and lower natural killer cell viability. These results suggest that HO-1 enhanced and prolonged the effects of BMMSCs on acute rejection following RLT, with immunomodulatory effects in which adaptive and innate immunity, as well as paracrine signaling, may play important roles.
Collapse
Affiliation(s)
- Zhong-Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Bin Wu
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Tao Liu
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China; Key Laboratory of Emergency and Care Medicine of Ministry of Health, Tianjin 300192, PR China
| | - Yang Yang
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Ming-Li Yin
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China; Key Laboratory of Emergency and Care Medicine of Ministry of Health, Tianjin 300192, PR China
| | - Wei-Ping Zheng
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China
| | - Bo-Ya Zhang
- Key Laboratory of Emergency and Care Medicine of Ministry of Health, Tianjin 300192, PR China
| | - Hong-Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, PR China; Tianjin Key Laboratory of Organ Transplantation, Tianjin 300192, PR China.
| |
Collapse
|
42
|
Yang X, Hao J, Mao Y, Jin ZQ, Cao R, Zhu CH, Liu XH, Liu C, Ding XL, Wang XD, Chen D, Wu XZ. bFGF Promotes Migration and Induces Cancer-Associated Fibroblast Differentiation of Mouse Bone Mesenchymal Stem Cells to Promote Tumor Growth. Stem Cells Dev 2016; 25:1629-1639. [PMID: 27484709 DOI: 10.1089/scd.2016.0217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumors recruit bone mesenchymal stem cells (BMSCs) to localize to tumor sites, which induces their conversion into cancer-associated fibroblasts (CAFs) that facilitate tumor progression. However, this process is poorly understood on the molecular level. In this study, we found that 4T1 breast cancer cells promoted the migration of BMSCs, and bFGF neutralizing antibody inhibited the migration of BMSCs induced by a tumor-conditioned medium. In addition, exogenous bFGF enhanced the migration of BMSCs in a dose-dependent manner in vitro. Furthermore, BMSCs promoted the proliferation of 4T1 tumor cells under BMSC-conditioned medium and in tumor xenograft model. Dramatically, BMSCs expressed CAF markers and produced collagen in the tumor microenvironment, and this transition was blocked by bFGF antibody. In addition, exogenous bFGF induced CAF differentiation of BMSCs. And bFGF increased phosphorylation of Erk1/2 and Smad3 in BMSCs and Erk inhibitor PD98059 was shown to block bFGF-induced Erk and Smad3 phosphorylation, suggesting that Erk/Smad3 signaling pathway involved in BMSC transdifferentiation induced by bFGF. Collectively, our results indicate that bFGF signaling plays indispensable roles in BMSC recruitment and transdifferentiation into CAFs and the consequent protumor effects, and targeting tumor stroma through bFGF inhibition maybe a promising strategy to suppress tumor progression.
Collapse
Affiliation(s)
- Xue Yang
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Jian Hao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Yu Mao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Zi-Qi Jin
- 2 Tianjin Medical University , Tianjin, China
| | - Rui Cao
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Cui-Hong Zhu
- 3 Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiao-Hui Liu
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Chang Liu
- 3 Zhong-Shan-Men In-Patient Department, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiu-Li Ding
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| | - Xiao-Dong Wang
- 4 Tianjin Medical University General Hospital , Tianjin, China
| | - Dan Chen
- 2 Tianjin Medical University , Tianjin, China
| | - Xiong-Zhi Wu
- 1 Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital , Tianjin, China
| |
Collapse
|
43
|
Abstract
Trauma is a leading cause of death in both military and civilian populations worldwide. Although medical advances have improved the overall morbidity and mortality often associated with trauma, additional research and innovative advancements in therapeutic interventions are needed to optimize patient outcomes. Cell-based therapies present a novel opportunity to improve trauma and critical care at both the acute and chronic phases that often follow injury. Although this field is still in its infancy, animal and human studies suggest that stem cells may hold great promise for the treatment of brain and spinal cord injuries, organ injuries, and extremity injuries such as those caused by orthopedic trauma, burns, and critical limb ischemia. However, barriers in the translation of cell therapies that include regulatory obstacles, challenges in manufacturing and clinical trial design, and a lack of funding are critical areas in need of development. In 2015, the Department of Defense Combat Casualty Care Research Program held a joint military–civilian meeting as part of its effort to inform the research community about this field and allow for effective planning and programmatic decisions regarding research and development. The objective of this article is to provide a “state of the science” review regarding cellular therapies in trauma and critical care, and to provide a foundation from which the potential of this emerging field can be harnessed to mitigate outcomes in critically ill trauma patients.
Collapse
|
44
|
Modulation of Immunoregulatory Properties of Mesenchymal Stromal Cells by Toll-Like Receptors: Potential Applications on GVHD. Stem Cells Int 2016; 2016:9434250. [PMID: 27738438 PMCID: PMC5050362 DOI: 10.1155/2016/9434250] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022] Open
Abstract
In the last decade, the immunomodulatory properties of mesenchymal stromal cells (MSCs) have attracted a lot of attention, due to their potential applicability in the treatment of graft-versus-host disease (GVHD), a condition frequently associated with opportunistic infections. The present review addresses how Pathogen-Associated Molecular Patterns (PAMPS) modulate the immunosuppressive phenotype of human MSCs by signaling through Toll-like receptors (TLRs). Overall, we observed that regardless of the source tissue, human MSCs express TLR2, TLR3, TLR4, and TLR9. Stimulation of distinct TLRs on MSCs elicits distinct inflammatory signaling pathways, differentially influencing the expression of inflammatory factors and the ability of MSCs to suppress the proliferation of immune system cells. The capacity to enhance the immunosuppressive phenotype of MSCs through TLRs stimulation might be properly elucidated in order to improve the MSC-based immunotherapy against GVHD.
Collapse
|
45
|
Nowakowski A, Drela K, Rozycka J, Janowski M, Lukomska B. Engineered Mesenchymal Stem Cells as an Anti-Cancer Trojan Horse. Stem Cells Dev 2016; 25:1513-1531. [PMID: 27460260 DOI: 10.1089/scd.2016.0120] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cell-based gene therapy holds a great promise for the treatment of human malignancy. Among different cells, mesenchymal stem cells (MSCs) are emerging as valuable anti-cancer agents that have the potential to be used to treat a number of different cancer types. They have inherent migratory properties, which allow them to serve as vehicles for delivering effective therapy to isolated tumors and metastases. MSCs have been engineered to express anti-proliferative, pro-apoptotic, and anti-angiogenic agents that specifically target different cancers. Another field of interest is to modify MSCs with the cytokines that activate pro-tumorigenic immunity or to use them as carriers for the traditional chemical compounds that possess the properties of anti-cancer drugs. Although there is still controversy about the exact function of MSCs in the tumor settings, the encouraging results from the preclinical studies of MSC-based gene therapy for a large number of tumors support the initiation of clinical trials.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Drela
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Rozycka
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland .,2 Division of MR Research, Russel H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre , Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
46
|
Irradiation enhances susceptibility of tumor cells to the antitumor effects of TNF-α activated adipose derived mesenchymal stem cells in breast cancer model. Sci Rep 2016; 6:28433. [PMID: 27329316 PMCID: PMC4916474 DOI: 10.1038/srep28433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Gene modified or cytokine activated mesenchymal stem cells (MSCs) have been used as a treatment in various types of cancer. Moreover, irradiation is usually applied as either a standard primary or adjuvant therapy. Here, we showed that the expression of TNF related apoptosis-inducing ligand (TRAIL) and Dickouf-3 (Dkk-3), the promising anticancer proteins, increased in murine adipose-derived mesenchymal stromal cells (AD-MSCs) following activation with TNF-α, resulting in the induction of apoptosis in cancer cells. Also, anticancer effects of TNF-α activated AD-MSCs were intensified with irradiation. In vivo results showed that TNF-α preactivated AD-MSCs combined with irradiation decreased tumor size and increased survival rate in tumor bearing mice. On the other hands, both TNF-α preactivated AD-MSCs with or without irradiation prevented metastasis in ling and liver, and increased apoptosis in tumor mass. Finally, flowcytometry assay demonstrated that naïve AD-MSCs combined with irradiation but not TNF-α activated MSCs with irradiation increased Treg population in lymph node and spleen. Altogether, obtained results suggest that TNF-α activated MSCs combined with irradiation therapy can serve as new strategy in breast cancer therapy.
Collapse
|
47
|
Goel A. Stem cell therapy in spinal cord injury: Hollow promise or promising science? JOURNAL OF CRANIOVERTEBRAL JUNCTION AND SPINE 2016; 7:121-6. [PMID: 27217662 PMCID: PMC4872563 DOI: 10.4103/0974-8237.181880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Spinal cord injury (SCI) remains one of the most physically, psychologically and socially debilitating conditions worldwide. While rehabilitation measures may help limit disability to some extent, there is no effective primary treatment yet available. The efficacy of stem cells as a primary therapeutic option in spinal cord injury is currently an area under much scrutiny and debate. Several laboratory and some primary clinical studies into the use of bone marrow mesenchymal stem cells or embryonic stem cell-derived oligodentrocyte precursor cells have shown some promising results in terms of remyelination and regeneration of damaged spinal nerve tracts. More recently,laboratory and early clinical experiments into the use of Olfactory Ensheathing Cells, a type of glial cell derived from olfactory bulb and mucosa have provided some phenomenal preliminary evidence as to their neuroregenerative and neural bridging capacity. This report compares and evaluates some current research into selected forms of embryonic and mesenchymal stem cell therapy as well as olfactory ensheathing cell therapy in SCI, and also highlights some legal and ethical issues surrounding their use. While early results shows promise, more rigorous large scaleclinical trials are needed to shed light on the safety, efficacy and long term viability of stem cell and cellular transplant techniques in SCI.
Collapse
Affiliation(s)
- Aimee Goel
- 4 year Medical Student, University College London, London, United Kingdom
| |
Collapse
|
48
|
Snyder J, Rin Son A, Hamid Q, Wang C, Lui Y, Sun W. Mesenchymal stem cell printing and process regulated cell properties. Biofabrication 2015; 7:044106. [DOI: 10.1088/1758-5090/7/4/044106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Wang X, Lazorchak AS, Song L, Li E, Zhang Z, Jiang B, Xu RH. Immune modulatory mesenchymal stem cells derived from human embryonic stem cells through a trophoblast-like stage. Stem Cells 2015; 34:380-91. [DOI: 10.1002/stem.2242] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/11/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaofang Wang
- ImStem Biotechnology Inc.; Farmington Conneticut USA
| | | | - Li Song
- ImStem Biotechnology Inc.; Farmington Conneticut USA
| | - Enqin Li
- Faculty of Health Sciences; University of Macau; Taipa Macau People's Republic of China
| | - Zhenwu Zhang
- Faculty of Health Sciences; University of Macau; Taipa Macau People's Republic of China
| | - Bin Jiang
- Faculty of Health Sciences; University of Macau; Taipa Macau People's Republic of China
| | - Ren-He Xu
- ImStem Biotechnology Inc.; Farmington Conneticut USA
- Faculty of Health Sciences; University of Macau; Taipa Macau People's Republic of China
| |
Collapse
|
50
|
Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol 2015; 12:154-68. [PMID: 26607387 DOI: 10.1038/nrrheum.2015.160] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bone marrow niche consists of stem and progenitor cells destined to become mature cells such as haematopoietic elements, osteoblasts or adipocytes. Marrow cells, influenced by endocrine, paracrine and autocrine factors, ultimately function as a unit to regulate bone remodelling and haematopoiesis. Current evidence highlights that the bone marrow niche is not merely an anatomic compartment; rather, it integrates the physiology of two distinct organ systems, the skeleton and the marrow. The niche has a hypoxic microenvironment that maintains quiescent haematopoietic stem cells (HSCs) and supports glycolytic metabolism. In response to biochemical cues and under the influence of neural, hormonal, and biochemical factors, marrow stromal elements, such as mesenchymal stromal cells (MSCs), differentiate into mature, functioning cells. However, disruption of the niche can affect cellular differentiation, resulting in disorders ranging from osteoporosis to malignancy. In this Review, we propose that the niche reflects the vitality of two tissues - bone and blood - by providing a unique environment for stem and stromal cells to flourish while simultaneously preventing disproportionate proliferation, malignant transformation or loss of the multipotent progenitors required for healing, functional immunity and growth throughout an organism's lifetime. Through a fuller understanding of the complexity of the niche in physiologic and pathologic states, the successful development of more-effective therapeutic approaches to target the niche and its cellular components for the treatment of rheumatic, endocrine, neoplastic and metabolic diseases becomes achievable.
Collapse
Affiliation(s)
- Michaela R Reagan
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Centre Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|