1
|
Chevez ZR, Dunn LL, da Silva ALBR, Rodrigues C. Prevalence of STEC virulence markers and Salmonella as a function of abiotic factors in agricultural water in the southeastern United States. Front Microbiol 2024; 15:1320168. [PMID: 38832116 PMCID: PMC11144861 DOI: 10.3389/fmicb.2024.1320168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Fresh produce can be contaminated by enteric pathogens throughout crop production, including through contact with contaminated agricultural water. The most common outbreaks and recalls in fresh produce are due to contamination by Salmonella enterica and Shiga toxin-producing E. coli (STEC). Thus, the objectives of this study were to investigate the prevalence of markers for STEC (wzy, hly, fliC, eaeA, rfbE, stx-I, stx-II) and Salmonella (invA) in surface water sources (n = 8) from produce farms in Southwest Georgia and to determine correlations among the prevalence of virulence markers for STEC, water nutrient profile, and environmental factors. Water samples (500 mL) from eight irrigation ponds were collected from February to December 2021 (n = 88). Polymerase chain reaction (PCR) was used to screen for Salmonella and STEC genes, and Salmonella samples were confirmed by culture-based methods. Positive samples for Salmonella were further serotyped. Particularly, Salmonella was detected in 6/88 (6.81%) water samples from all ponds, and the following 4 serotypes were detected: Saintpaul 3/6 (50%), Montevideo 1/6 (16.66%), Mississippi 1/6 (16.66%), and Bareilly 1/6 (16.66%). Salmonella isolates were only found in the summer months (May-Aug.). The most prevalent STEC genes were hly 77/88 (87.50%) and stx-I 75/88 (85.22%), followed by fliC 54/88 (61.63%), stx-II 41/88 (46.59%), rfbE 31/88 (35.22%), and eaeA 28/88 (31.81%). The wzy gene was not detected in any of the samples. Based on a logistic regression analysis, the odds of codetection for STEC virulence markers (stx-I, stx-II, and eaeA) were negatively correlated with calcium and relative humidity (p < 0.05). A conditional forest analysis was performed to assess predictive performance (AUC = 0.921), and the top predictors included humidity, nitrate, calcium, and solar radiation. Overall, information from this research adds to a growing body of knowledge regarding the risk that surface water sources pose to produce grown in subtropical environmental conditions and emphasizes the importance of understanding the use of abiotic factors as a holistic approach to understanding the microbial quality of water.
Collapse
Affiliation(s)
- Zoila R. Chevez
- Department of Horticulture, Auburn University, Auburn, AL, United States
| | - Laurel L. Dunn
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
| | | | - Camila Rodrigues
- Department of Horticulture, Auburn University, Auburn, AL, United States
| |
Collapse
|
2
|
Kim S, Pachepsky Y, Micallef SA, Rosenberg Goldstein R, Sapkota AR, Hashem F, Parveen S, Kniel KE, Sharma M. Temporal stability of Salmonella enterica and Listeria monocytogenes in surface waters used for irrigation in the Mid-Atlantic United States. J Food Prot 2023; 86:100058. [PMID: 37005038 DOI: 10.1016/j.jfp.2023.100058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Enteric bacterial pathogen levels can influence the suitability of irrigation water sources for fruits and vegetables. We hypothesize that stable spatial patterns of Salmonella enterica and Listeria monocytogenes levels may exist across surface water sources in the Mid-Atlantic U.S. Water samples were collected at four streams and two pond sites in the mid-Atlantic U.S. over 2 years, biweekly during the fruit and vegetable growing seasons, and once a month during nongrowing seasons. Two stream sites and one pond site had significantly different mean concentrations in growing and nongrowing seasons. Stable spatial patterns were determined for relative differences between the site concentrations and average concentration of both pathogens across the study area. Mean relative differences were significantly different from zero at four of the six sites for S. enterica and three of six sites for L. monocytogenes. There was a similarity between the mean relative difference distribution between sites over growing season, nongrowing season, and the entire observation period. Mean relative differences were determined for temperature, oxidation-reduction potential, specific electrical conductance, pH, dissolved oxygen, turbidity, and cumulative rainfall. A moderate-to-strong Spearman correlation (rs > 0.657) was found between spatial patterns of S. enterica and 7-day rainfall, and between relative difference patterns of L. monocytogenes and temperature (rs = 0.885) and dissolved oxygen (rs = -0.885). Persistence in ranking sampling sites by the concentrations of the two pathogens was also observed. Finding spatially stable patterns in pathogen concentrations highlights spatiotemporal dynamics of these microorganisms across the study area can facilitate the design of an effective microbial water quality monitoring program for surface irrigation water.
Collapse
Affiliation(s)
- Seongyun Kim
- United States Department of Agriculture, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA; Department of Environmental System Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Yakov Pachepsky
- United States Department of Agriculture, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA.
| | - Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Rachel Rosenberg Goldstein
- Maryland Institute of Applied and Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Amy R Sapkota
- Maryland Institute of Applied and Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Fawzy Hashem
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Salina Parveen
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - Kalmia E Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Manan Sharma
- United States Department of Agriculture, Northeast Area, Beltsville Agricultural Research Center, Environmental Microbial and Food Safety Laboratory, Beltsville, MD, USA
| |
Collapse
|
3
|
Genomic epidemiology of Salmonella enterica circulating in surface waters used in agriculture and aquaculture in central Mexico. Appl Environ Microbiol 2022; 88:e0214921. [PMID: 35020454 PMCID: PMC8904062 DOI: 10.1128/aem.02149-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica can survive in surface waters (SuWa), and the role of nonhost environments in its transmission has acquired increasing relevance. In this study, we conducted comparative genomic analyses of 172 S. enterica isolates collected from SuWa across 3 months in six states of central Mexico during 2019. S. enterica transmission dynamics were assessed using 87 experimental and 112 public isolates from Mexico collected during 2002 through 2019. We also studied genetic relatedness between SuWa isolates and human clinical strains collected in North America during 2005 through 2020. Among experimental isolates, we identified 41 S. enterica serovars and 56 multilocus sequence types (STs). Predominant serovars were Senftenberg (n = 13), Meleagridis, Agona, and Newport (n = 12 each), Give (n = 10), Anatum (n = 8), Adelaide (n = 7), and Infantis, Mbandaka, Ohio, and Typhimurium (n = 6 each). We observed a high genetic diversity in the sample under study, as well as clonal dissemination of strains across distant regions. Some of these strains are epidemiologically important (ST14, ST45, ST118, ST132, ST198, and ST213) and were genotypically close to those involved in clinical cases in North America. Transmission network analysis suggests that SuWa are a relevant source of S. enterica (0.7 source/hub ratio) and contribute to its dissemination as isolates from varied sources and clinical cases have SuWa isolates as common ancestors. Overall, the study shows that SuWa act as reservoirs of various S. enterica serovars of public health significance. Further research is needed to better understand the mechanisms involved in SuWa contamination by S. enterica, as well as to develop interventions to contain its dissemination in food production settings. IMPORTANCE Surface waters are heavily used in food production worldwide. Several human pathogens can survive in these waters for long periods and disseminate to food production environments, contaminating our food supply. One of these pathogens is Salmonella enterica, a leading cause of foodborne infections, hospitalizations, and deaths in many countries. This research demonstrates the role of surface waters as a vehicle for the transmission of Salmonella along food production chains. It also shows that some strains circulating in surface waters are very similar to those implicated in human infections and harbor genes that confer resistance to multiple antibiotics, posing a risk to public health. This study contributes to expand our current knowledge on the ecology and epidemiology of Salmonella in surface waters.
Collapse
|
4
|
Bell RL, Kase JA, Harrison LM, Balan KV, Babu U, Chen Y, Macarisin D, Kwon HJ, Zheng J, Stevens EL, Meng J, Brown EW. The Persistence of Bacterial Pathogens in Surface Water and Its Impact on Global Food Safety. Pathogens 2021; 10:1391. [PMID: 34832547 PMCID: PMC8617848 DOI: 10.3390/pathogens10111391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Water is vital to agriculture. It is essential that the water used for the production of fresh produce commodities be safe. Microbial pathogens are able to survive for extended periods of time in water. It is critical to understand their biology and ecology in this ecosystem in order to develop better mitigation strategies for farmers who grow these food crops. In this review the prevalence, persistence and ecology of four major foodborne pathogens, Shiga toxin-producing Escherichia coli (STEC), Salmonella, Campylobacter and closely related Arcobacter, and Listeria monocytogenes, in water are discussed. These pathogens have been linked to fresh produce outbreaks, some with devastating consequences, where, in a few cases, the contamination event has been traced to water used for crop production or post-harvest activities. In addition, antimicrobial resistance, methods improvements, including the role of genomics in aiding in the understanding of these pathogens, are discussed. Finally, global initiatives to improve our knowledge base of these pathogens around the world are touched upon.
Collapse
Affiliation(s)
- Rebecca L. Bell
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Julie A. Kase
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Lisa M. Harrison
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Kannan V. Balan
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Uma Babu
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, Laurel, MD 20708, USA; (L.M.H.); (K.V.B.); (U.B.)
| | - Yi Chen
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Dumitru Macarisin
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Hee Jin Kwon
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Jie Zheng
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| | - Eric L. Stevens
- Office of the Center Director, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA;
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA;
| | - Eric W. Brown
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA; (J.A.K.); (Y.C.); (D.M.); (H.J.K.); (J.Z.); (E.W.B.)
| |
Collapse
|
5
|
Deaven AM, Ferreira CM, Reed EA, Chen See JR, Lee NA, Almaraz E, Rios PC, Marogi JG, Lamendella R, Zheng J, Bell RL, Shariat NW. Salmonella Genomics and Population Analyses Reveal High Inter- and Intraserovar Diversity in Freshwater. Appl Environ Microbiol 2021; 87:e02594-20. [PMID: 33397693 PMCID: PMC8104997 DOI: 10.1128/aem.02594-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
Freshwater can support the survival of the enteric pathogen Salmonella, though temporal Salmonella diversity in a large watershed has not been assessed. At 28 locations within the Susquehanna River basin, 10-liter samples were assessed in spring and summer over 2 years. Salmonella prevalence was 49%, and increased river discharge was the main driver of Salmonella presence. The amplicon-based sequencing tool, CRISPR-SeroSeq, was used to determine serovar population diversity and detected 25 different Salmonella serovars, including up to 10 serovars from a single water sample. On average, there were three serovars per sample, and 80% of Salmonella-positive samples contained more than one serovar. Serovars Give, Typhimurium, Thompson, and Infantis were identified throughout the watershed and over multiple collections. Seasonal differences were evident: serovar Give was abundant in the spring, whereas serovar Infantis was more frequently identified in the summer. Eight of the ten serovars most commonly associated with human illness were detected in this study. Crucially, six of these serovars often existed in the background, where they were masked by a more abundant serovar(s) in a sample. Serovars Enteritidis and Typhimurium, especially, were masked in 71 and 78% of samples where they were detected, respectively. Whole-genome sequencing-based phylogeny demonstrated that strains within the same serovar collected throughout the watershed were also very diverse. The Susquehanna River basin is the largest system where Salmonella prevalence and serovar diversity have been temporally and spatially investigated, and this study reveals an extraordinary level of inter- and intraserovar diversity.IMPORTANCESalmonella is a leading cause of bacterial foodborne illness in the United States, and outbreaks linked to fresh produce are increasing. Understanding Salmonella ecology in freshwater is of importance, especially where irrigation practices or recreational use occur. As the third largest river in the United States east of the Mississippi, the Susquehanna River is the largest freshwater contributor to the Chesapeake Bay, and it is the largest river system where Salmonella diversity has been studied. Rainfall and subsequent high river discharge rates were the greatest indicators of Salmonella presence in the Susquehanna and its tributaries. Several Salmonella serovars were identified, including eight commonly associated with foodborne illness. Many clinically important serovars were present at a low frequency within individual samples and so could not be detected by conventional culture methods. The technologies employed here reveal an average of three serovars in a 10-liter sample of water and up to 10 serovars in a single sample.
Collapse
Affiliation(s)
- Abigail M Deaven
- Department of Population Health, University of Georgia, Athens, Georgia, USA
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Christina M Ferreira
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Elizabeth A Reed
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | | | - Nora A Lee
- Biology Department, Juniata College, Huntingdon, Pennsylvania, USA
| | - Eduardo Almaraz
- Biology Department, Juniata College, Huntingdon, Pennsylvania, USA
| | - Paula C Rios
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - Jacob G Marogi
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | | | - Jie Zheng
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Rebecca L Bell
- Division of Microbiology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Nikki W Shariat
- Department of Population Health, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Factors Impacting the Prevalence of Foodborne Pathogens in Agricultural Water Sources in the Southeastern United States. WATER 2019. [DOI: 10.3390/w12010051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface water poses a great risk to fruit and vegetable crops when contaminated by foodborne pathogens. Several factors impact the microbial quality of surface waters and increase the risk of produce contamination. Therefore, evaluating the factors associated with the prevalence of pathogenic microorganisms in agricultural water sources is critical to determine and establish preventive actions that may minimize the incidence of foodborne outbreaks associated with contaminated production water. In the Southeastern U.S. environmental factors such as rainfall, temperature, and seasonal variations have been associated with the prevalence of pathogens or microbial indicators of fecal contamination in water. Also, the geographical location of the irrigation sources as well as surrounding activities and land use play an important role on the survival and prevalence of pathogenic bacteria. Therefore, these factors may be determinants useful in the evaluation of production water quality and may help to preemptively identify scenarios or hazards associated with the incidence of foodborne pathogenic microorganisms.
Collapse
|
7
|
Iwu CD, Okoh AI. Preharvest Transmission Routes of Fresh Produce Associated Bacterial Pathogens with Outbreak Potentials: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E4407. [PMID: 31717976 PMCID: PMC6888529 DOI: 10.3390/ijerph16224407] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023]
Abstract
Disease outbreaks caused by the ingestion of contaminated vegetables and fruits pose a significant problem to human health. The sources of contamination of these food products at the preharvest level of agricultural production, most importantly, agricultural soil and irrigation water, serve as potential reservoirs of some clinically significant foodborne pathogenic bacteria. These clinically important bacteria include: Klebsiella spp., Salmonella spp., Citrobacter spp., Shigella spp., Enterobacter spp., Listeria monocytogenes and pathogenic E. coli (and E. coli O157:H7) all of which have the potential to cause disease outbreaks. Most of these pathogens acquire antimicrobial resistance (AR) determinants due to AR selective pressure within the agroecosystem and become resistant against most available treatment options, further aggravating risks to human and environmental health, and food safety. This review critically outlines the following issues with regards to fresh produce; the global burden of fresh produce-related foodborne diseases, contamination between the continuum of farm to table, preharvest transmission routes, AR profiles, and possible interventions to minimize the preharvest contamination of fresh produce. This review reveals that the primary production niches of the agro-ecosystem play a significant role in the transmission of fresh produce associated pathogens as well as their resistant variants, thus detrimental to food safety and public health.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa;
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
8
|
Yu H, Li N, Zeng X, Liu L, Wang Y, Wang G, Cai S, Huang S, Ding X, Song Q, Qiao S. A Comprehensive Antimicrobial Activity Evaluation of the Recombinant Microcin J25 Against the Foodborne Pathogens Salmonella and E. coli O157:H7 by Using a Matrix of Conditions. Front Microbiol 2019; 10:1954. [PMID: 31507565 PMCID: PMC6718478 DOI: 10.3389/fmicb.2019.01954] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022] Open
Abstract
Natural microcin J25 (MccJ25) represent promising alternatives to traditional antibiotics for the treatment of drug-resistant infections. However, little is known about the antibacterial activity of recombinant MccJ25 against foodborne pathogens. Here, the activity of recombinant MccJ25 was examined using a matrix of conditions in order to assess the efficacy of recombinant MccJ25 as a mitigation against foodborne pathogens, such as Salmonella species and Escherichia coli (E. coli) O157:H7. Results showed that recombinant MccJ25 displayed excellent antimicrobial activity against these foodborne pathogens, including clinical isolates of Salmonella and E. coli, as well as clinical antibiotic-resistant Salmonella and E. coli isolates with different minimal inhibitory concentrations. In addition, antimicrobial activity curves and Live/Dead assay evidenced that recombinant MccJ25 harbors strong bactericidal activity against Salmonella and E. coli O157:H7. Notably, recombinant MccJ25 also had great potency and induced fast mortality against different growth phase of Salmonella and E. coli. The stability analysis results showed that the activity of recombinant MccJ25 was not influenced by temperatures as high as 121°C. Varying the pH from 2.0 to 9.0 did not appear to affect the activity of recombinant MccJ25. Under the challenge of several proteases, simulated gastrointestinal fluids and serum, recombinant MccJ25 still maintained exceptionally strong antimicrobial activity. Significant reductions in Salmonella Pullorum levels were also achieved in food biological environments, such as milk, egg and meat. Moreover, we demonstrated that recombinant MccJ25 appeared to act by inducing membrane breaks, thinning, and disintegration in the Salmonella Pullorum cytoplasmic membrane. Taken together, these results indicated that recombinant MccJ25 could be an effective alternative for mitigating and prevention of Salmonella and E. coli infection in food, animal and agriculture applications.
Collapse
Affiliation(s)
- Haitao Yu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Lu Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Gang Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Xiuliang Ding
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Qinglong Song
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China.,Ministry of Agriculture and Rural Affairs Feed Industry Centre, China Agricultural University, Beijing, China.,Beijing Key Laboratory of Bio-Feed Additives, Beijing, China
| |
Collapse
|
9
|
Truitt LN, Vazquez KM, Pfuntner RC, Rideout SL, Havelaar AH, Strawn LK. Microbial Quality of Agricultural Water Used in Produce Preharvest Production on the Eastern Shore of Virginia. J Food Prot 2018; 81:1661-1672. [PMID: 30212229 DOI: 10.4315/0362-028x.jfp-18-185] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Several produce-borne outbreaks have been associated with the use of contaminated water during preharvest applications. Salmonella has been implicated in a number of these outbreaks. The purpose of this study was to evaluate the microbial quality of agricultural surface water used in preharvest production on the Eastern Shore of Virginia in accordance with the Food Safety Modernization Act's Produce Safety Rule water standards. The study also examined the prevalence, concentration, and diversity of Salmonella in those water sources. Water samples (1 L) from 20 agricultural ponds were collected during the 2015 and 2016 growing seasons ( n = 400). Total aerobic bacteria, total coliforms, and Escherichia coli were enumerated for each sample. Population levels of each microorganism were calculated per 100-mL sample and log transformed, when necessary. Samples (250 mL) were also enriched for Salmonella. Presumptive Salmonella isolates were confirmed by PCR ( invA gene) and were serotyped. In 2016, the concentration of Salmonella in each sample was also estimated by most probable number (MPN). Indicator bacteria and environmental and meteorological factors were analyzed for their association with the detection of a Salmonella-positive water sample by using logistic regression analysis. Seventeen of the 20 ponds met the Food Safety Modernization Act's Produce Safety Rule standards for production agricultural water. Three ponds did not meet the standards because the statistical threshold value exceeded the limit. Salmonella was detected in 19% of water samples in each year (38 of 200 in 2015 and 38 of 200 in 2016). Of the 118 Salmonella isolates serotyped, 14 serotypes were identified with the most prevalent being Salmonella Newport. E. coli concentration, farm, and total aerobic bacteria concentration were significantly associated with the likelihood of detecting a Salmonella-positive sample The average concentration of Salmonella in all samples was 4.44 MPN/100 mL, with the limit of detection being 3.00 MPN/100 mL. The highest concentration of Salmonella was 93.0 MPN/100 mL. These data will assist in a better understanding of the risks that production water poses to produce contamination events.
Collapse
Affiliation(s)
| | | | | | - Steven L Rideout
- 3 Department of Plant Pathology, Physiology, and Weed Science, Eastern Shore Agricultural Research and Extension Center, Virginia Tech, Painter, Virginia 23420
| | - Arie H Havelaar
- 4 Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, USA (ORCID: http://orcid.org/0000-0002-6456-5460 [A.H.H.])
| | | |
Collapse
|
10
|
Lee D, Tertuliano M, Vellidis G, Harris C, Grossman MK, Rajeev S, Levy K. Evaluation of Grower-Friendly, Science-Based Sampling Approaches for the Detection of Salmonella in Ponds Used for Irrigation of Fresh Produce. Foodborne Pathog Dis 2018; 15:627-636. [PMID: 30334659 PMCID: PMC6201782 DOI: 10.1089/fpd.2018.2441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The recognition that irrigation water sources contribute to preharvest contamination of produce has led to new regulations on testing microbial water quality. To best identify contamination problems, growers who depend on irrigation ponds need guidance on how and where to collect water samples for testing. In this study, we evaluated several sampling strategies to identify Salmonella and Escherichia coli contamination in five ponds used for irrigation on produce farms in southern Georgia. Both Salmonella and E. coli were detected regularly in all the ponds over the 19-month study period, with overall prevalence and concentrations increasing in late summer and early fall. Of 507 water samples, 217 (42.8%) were positive for Salmonella, with a very low geometric mean (GM) concentration of 0.06 most probable number (MPN)/100 mL, and 442 (87.1%) tested positive for E. coli, with a GM of 6.40 MPN/100 mL. We found no significant differences in Salmonella or E. coli detection rates or concentrations between sampling at the bank closest to the pump intake versus sampling from the bank around the pond perimeter, when comparing with results from the pump intake, which we considered our gold standard. However, samples collected from the bank closest to the intake had a greater level of agreement with the intake (Cohen's kappa statistic = 0.53; p < 0.001) than the samples collected around the pond perimeter (kappa = 0.34; p = 0.009). E. coli concentrations were associated with increased odds of Salmonella detection (odds ratio = 1.31; 95% confidence interval = 1.10-1.56). All the ponds would have met the Produce Safety Rule standards for E. coli, although Salmonella was also detected. Results from this study provide important information to growers and regulators about pathogen detection in irrigation ponds and inform best practices for surface water sampling.
Collapse
Affiliation(s)
- Debbie Lee
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Moukaram Tertuliano
- Department of Crop and Soil Sciences, University of Georgia, Tifton, Georgia
| | - George Vellidis
- Department of Crop and Soil Sciences, University of Georgia, Tifton, Georgia
| | - Casey Harris
- Department of Crop and Soil Sciences, University of Georgia, Tifton, Georgia
| | - Marissa K. Grossman
- Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, Georgia
| | - Sreekumari Rajeev
- Department of Infectious Diseases, College of Veterinary Medicine, Veterinary Diagnostic and Investigational Laboratory, Tifton, Georgia
| | - Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| |
Collapse
|
11
|
Harris CS, Tertuliano M, Rajeev S, Vellidis G, Levy K. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia. J Appl Microbiol 2018; 124:910-921. [PMID: 29316043 DOI: 10.1111/jam.13689] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 11/28/2022]
Abstract
AIMS To examine Salmonella and Escherichia coli in storm runoff and irrigation ponds used by fresh produce growers, and compare Salmonella serovars with those found in cases of human salmonellosis. METHODS AND RESULTS We collected water before and after rain events at two irrigation ponds on farms in southern Georgia, USA, and collected storm runoff/storm flow within the contributing watershed of each pond. Salmonella and E. coli concentrations were higher in ponds after rain events by an average of 0·46 (P < 0·01) and 0·61 (P < 0·05) log10 most probable number (MPN) per 100 ml respectively. Salmonella concentrations in storm runoff from fields and forests were not significantly higher than in ponds before rain events, but concentrations in storm flow from streams and ditches were higher by an average of 1·22 log10 MPN per 100 ml (P < 0·001). Eighteen Salmonella serovars were identified from 155 serotyped isolates, and eight serovars were shared between storm runoff/storm flow and ponds. Seven of the serovars, including five of the shared serovars, were present in cases of human illness in the study region in the same year. However, several serovars most commonly associated with human illness in the study region (e.g. Javiana, Enteritidis, and Montevideo) were not found in any water samples. CONCLUSIONS Salmonella and E. coli concentrations in irrigation ponds were higher, on average, after rain events, but concentrations of Salmonella were low, and the ponds met FDA water quality standards based on E. coli. Some similarities and notable differences were found between Salmonella serovars in water samples and in cases of human illness. SIGNIFICANCE AND IMPACT OF THE STUDY This study directly examined storm runoff/storm flow into irrigation ponds and quantified increases in Salmonella and E. coli following rain events, with potential implications for irrigation pond management as well as human health.
Collapse
Affiliation(s)
- C S Harris
- Bureau of Water Resources, St. Johns River Water Management District, Palatka, FL, USA
| | - M Tertuliano
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | - S Rajeev
- Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, KN
| | - G Vellidis
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | - K Levy
- Department of Environmental Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Diversity and enzymatic potentialities of Bacillus sp. strains isolated from a polluted freshwater ecosystem in Cuba. World J Microbiol Biotechnol 2018; 34:28. [PMID: 29350293 DOI: 10.1007/s11274-018-2411-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/11/2018] [Indexed: 10/18/2022]
Abstract
Genotypic and phenotypic characterization of Bacillus spp. from polluted freshwater has been poorly addressed. The objective of this research was to determine the diversity and enzymatic potentialities of Bacillus spp. strains isolated from the Almendares River. Bacilli strains from a polluted river were characterized by considering the production of extracellular enzymes using API ZYM. 14 strains were selected and identified using 16S rRNA, gyrB and aroE genes. Genotypic diversity of the Bacillus spp. strains was evaluated using pulsed field gel electrophoresis. Furthermore, the presence of genetic determinants of potential virulence toxins of the Bacillus cereus group and proteinaceous crystal inclusions of Bacillus thuringiensis was determined. 10 strains were identified as B. thuringiensis, two as Bacillus megaterium, one as Bacillus pumilus and one as Bacillus subtilis. Most strains produced proteases, amylases, phosphatases, esterases, aminopeptidases and glucanases, which reflect the abundance of biopolymeric matter in Almendares River. Comparison of the typing results revealed a spatio-temporal distribution among B. thuringiensis strains along the river. The results of the present study highlight the genotypic and phenotypic diversity of Bacillus spp. strains from a polluted river, which contributes to the knowledge of genetic diversity of Bacilli from tropical polluted freshwater ecosystems.
Collapse
|
13
|
Topalcengiz Z, Strawn LK, Danyluk MD. Microbial quality of agricultural water in Central Florida. PLoS One 2017; 12:e0174889. [PMID: 28399144 PMCID: PMC5388333 DOI: 10.1371/journal.pone.0174889] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/16/2017] [Indexed: 12/02/2022] Open
Abstract
The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six agricultural ponds were collected during the 2012/2013 and 2013/2014 growing seasons (46 and 44 samples respectively, 540 from all ponds). Microbial indicator populations (total coliforms, generic Escherichia coli, and enterococci) were enumerated, environmental variables (temperature, pH, conductivity, redox potential, and turbidity) measured, and pathogen presence evaluated by PCR. Salmonella isolates were serotyped and analyzed by pulsed-field gel electrophoresis. Following rain events, coliforms increased up to 4.2 log MPN/100 mL. Populations of coliforms and enterococci ranged from 2 to 8 and 1 to 5 log MPN/100 mL, respectively. Microbial indicators did not correlate with environmental variables, except pH (P<0.0001). The invA gene (Salmonella) was detected in 26/540 (4.8%) samples, in all ponds and growing seasons, and 14 serotypes detected. Six STEC genes were detected in samples: hly (83.3%), fliC (51.8%), eaeA (17.4%), rfbE (17.4%), stx-I (32.6%), stx-II (9.4%). While all ponds met the PSR requirements, at least one virulence gene from Salmonella (invA-4.8%) or STEC (stx-I-32.6%, stx-II-9.4%) was detected in each pond. Water quality for tested agricultural ponds, below recommended standards, did not guarantee the absence of pathogens. Investigating the relationships among physicochemical attributes, environmental factors, indicator microorganisms, and pathogen presence allows researchers to have a greater understanding of contamination risks from agricultural surface waters in the field.
Collapse
Affiliation(s)
- Zeynal Topalcengiz
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Laura K. Strawn
- Department of Food Science and Technology, Agricultural Research and Extension Center, Virginia Tech, 33446 Research drive, Painter, Virginia, United States of America
| | - Michelle D. Danyluk
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gomba A, Chidamba L, Korsten L. Prevalence and serovar diversity of Salmonella spp. in primary horticultural fruit production environments. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Antaki EM, Vellidis G, Harris C, Aminabadi P, Levy K, Jay-Russell MT. Low Concentration of Salmonella enterica and Generic Escherichia coli in Farm Ponds and Irrigation Distribution Systems Used for Mixed Produce Production in Southern Georgia. Foodborne Pathog Dis 2016; 13:551-558. [PMID: 27400147 DOI: 10.1089/fpd.2016.2117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Studies have shown that irrigation water can be a vector for pathogenic bacteria. Due to this, the Food Safety Modernization Act's (FSMA) produce safety rule requires that agricultural water directly applied to produce be safe and of adequate sanitary quality for use, which may pose a challenge for some farmers. The purpose of this research was to assess the presence and concentration of Salmonella and generic Escherichia coli in irrigation water from distribution systems in a mixed produce production region of southern Georgia. Water samples were collected during three growing seasons at three farms irrigating crops with surface water (Pond 1, Pond 2) or groundwater (Well) during 2012-2013. Salmonella and generic E. coli populations were monitored by culture and Most Probable Number (MPN). Confirmed isolates were characterized by pulsed-field gel electrophoresis and serotyping. In Pond 1, Salmonella was detected in 2/21 surface, 5/26 subsurface, 10/50 center pivot, and 0/16 solid set sprinkler head water samples. In Pond 2, Salmonella was detected in 2/18 surface, 1/18 subsurface, 6/36 drip line start, and 8/36 drip line end water samples. Twenty-six well pumps and 64 associated drip line water samples were negative. The overall mean Salmonella concentration for positive water samples was 0.03 MPN/100 mL (range <0.0011-1.8 MPN/100 mL). Nine Salmonella serovars comprising 22 pulsotypes were identified. Identical serovars and subtypes were found three times on the same day and location: Pond 1-Pivot-Cantaloupe (serovar Rubislaw), Pond 1-Pivot-Peanut (serovar Saintpaul), and Pond 2-Drip Line Start-Drip Line End-Yellow Squash (serovar III_16z10:e,n,x,z15). Generic E. coli was detected in water from both farm ponds and irrigation distribution systems, but the concentrations met FSMA microbial water quality criteria. The results from this study will allow producers in southern Georgia to better understand how potential pathogens move through irrigation distribution systems.
Collapse
Affiliation(s)
- Elizabeth M Antaki
- 1 Western Center for Food Safety, University of California-Davis , Davis, California
| | - George Vellidis
- 2 Department of Crop and Soil Sciences, University of Georgia-Tifton , Tifton, Georgia
| | - Casey Harris
- 2 Department of Crop and Soil Sciences, University of Georgia-Tifton , Tifton, Georgia
| | - Peiman Aminabadi
- 1 Western Center for Food Safety, University of California-Davis , Davis, California
| | - Karen Levy
- 3 Department of Environmental Health, Rollins School of Public Health, Emory University , Atlanta, Georgia
| | - Michele T Jay-Russell
- 1 Western Center for Food Safety, University of California-Davis , Davis, California
| |
Collapse
|
16
|
Maurer JJ, Martin G, Hernandez S, Cheng Y, Gerner-Smidt P, Hise KB, Tobin D’Angelo M, Cole D, Sanchez S, Madden M, Valeika S, Presotto A, Lipp EK. Diversity and Persistence of Salmonella enterica Strains in Rural Landscapes in the Southeastern United States. PLoS One 2015; 10:e0128937. [PMID: 26131552 PMCID: PMC4489491 DOI: 10.1371/journal.pone.0128937] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/01/2015] [Indexed: 11/22/2022] Open
Abstract
Salmonellosis cases in the in the United States show distinct geographical trends, with the southeast reporting among the highest rates of illness. In the state of Georgia, USA, non-outbreak associated salmonellosis is especially high in the southern low-lying coastal plain. Here we examined the distribution of Salmonella enterica in environmental waters and associated wildlife in two distinct watersheds, one in the Atlantic Coastal Plain (a high case rate rural area) physiographic province and one in the Piedmont (a lower case rate rural area). Salmonella were isolated from the two regions and compared for serovar and strain diversity, as well as distribution, between the two study areas, using both a retrospective and prospective design. Thirty-seven unique serovars and 204 unique strain types were identified by pulsed-field gel electrophoresis (PFGE). Salmonella serovars Braenderup, Give, Hartford, and Muenchen were dominant in both watersheds. Two serovars, specifically S. Muenchen and S. Rubislaw, were consistently isolated from both systems, including water and small mammals. Conversely, 24 serovars tended to be site-specific (64.8%, n = 37). Compared to the other Salmonella serovars isolated from these sites, S. Muenchen and S. Rubislaw exhibited significant genetic diversity. Among a subset of PFGE patterns, approximately half of the environmental strain types matched entries in the USA PulseNet database of human cases. Ninety percent of S. Muenchen strains from the Little River basin (the high case rate area) matched PFGE entries in PulseNet compared to 33.33% of S. Muenchen strains from the North Oconee River region (the lower case rate area). Underlying the diversity and turnover of Salmonella strains observed for these two watersheds is the persistence of specific Salmonella serovars and strain types that may be adapted to these watersheds and landscapes.
Collapse
Affiliation(s)
- John J. Maurer
- Department of Population Health, University of Georgia, Athens, Georgia, United States of America
| | - Gordon Martin
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, United States of America
| | - Sonia Hernandez
- Department of Population Health, University of Georgia, Athens, Georgia, United States of America
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Ying Cheng
- Department of Population Health, University of Georgia, Athens, Georgia, United States of America
| | - Peter Gerner-Smidt
- Centers for Disease and Control and Prevention, Atlanta, Georgia, United States of America
| | - Kelley B. Hise
- Centers for Disease and Control and Prevention, Atlanta, Georgia, United States of America
| | | | - Dana Cole
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, United States of America
- Centers for Disease and Control and Prevention, Atlanta, Georgia, United States of America
| | - Susan Sanchez
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Marguerite Madden
- Department of Geography, University of Georgia, Athens, Georgia, United States of America
| | - Steven Valeika
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, United States of America
| | - Andrea Presotto
- Department of Geography, University of Georgia, Athens, Georgia, United States of America
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Bell RL, Zheng J, Burrows E, Allard S, Wang CY, Keys CE, Melka DC, Strain E, Luo Y, Allard MW, Rideout S, Brown EW. Ecological prevalence, genetic diversity, and epidemiological aspects of Salmonella isolated from tomato agricultural regions of the Virginia Eastern Shore. Front Microbiol 2015; 6:415. [PMID: 25999938 PMCID: PMC4423467 DOI: 10.3389/fmicb.2015.00415] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/20/2015] [Indexed: 11/13/2022] Open
Abstract
Virginia is the third largest producer of fresh-market tomatoes in the United States. Tomatoes grown along the eastern shore of Virginia are implicated almost yearly in Salmonella illnesses. Traceback implicates contamination occurring in the pre-harvest environment. To get a better understanding of the ecological niches of Salmonella in the tomato agricultural environment, a 2-year study was undertaken at a regional agricultural research farm in Virginia. Environmental samples, including tomato (fruit, blossoms, and leaves), irrigation water, surface water and sediment, were collected over the growing season. These samples were analyzed for the presence of Salmonella using modified FDA-BAM methods. Molecular assays were used to screen the samples. Over 1500 samples were tested. Seventy-five samples tested positive for Salmonella yielding over 230 isolates. The most commonly isolated serovars were S. Newport and S. Javiana with pulsed-field gel electrophoresis yielding 39 different patterns. Genetic diversity was further underscored among many other serotypes, which showed multiple PFGE subtypes. Whole genome sequencing (WGS) of several S. Newport isolates collected in 2010 compared to clinical isolates associated with tomato consumption showed very few single nucleotide differences between environmental isolates and clinical isolates suggesting a source link to Salmonella contaminated tomatoes. Nearly all isolates collected during two growing seasons of surveillance were obtained from surface water and sediment sources pointing to these sites as long-term reservoirs for persistent and endemic contamination of this environment.
Collapse
Affiliation(s)
- Rebecca L. Bell
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Jie Zheng
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Erik Burrows
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Sarah Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Charles Y. Wang
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Christine E. Keys
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - David C. Melka
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Errol Strain
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Yan Luo
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Marc W. Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Steven Rideout
- Eastern Shore Agricultural Research and Extension Center, Virginia TechPainter, VA, USA
| | - Eric W. Brown
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| |
Collapse
|
18
|
Distribution and Characterization of Salmonella enterica Isolates from Irrigation Ponds in the Southeastern United States. Appl Environ Microbiol 2015; 81:4376-87. [PMID: 25911476 DOI: 10.1128/aem.04086-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 04/06/2015] [Indexed: 11/20/2022] Open
Abstract
Irrigation water has been implicated as a likely source of produce contamination by Salmonella enterica. Therefore, the distribution of S. enterica was surveyed monthly in irrigation ponds (n = 10) located within a prime agricultural region in southern Georgia and northern Florida. All ponds and 28.2% of all samples (n = 635) were positive for Salmonella, with an overall geometric mean concentration (0.26 most probable number [MPN]/liter) that was relatively low compared to prior reports for rivers in this region. Salmonella peaks were seasonal; the levels correlated with increased temperature and rainfall (P < 0.05). The numbers and occurrence were significantly higher in water (0.32 MPN/liter and 37% of samples) than in sediment (0.22 MPN/liter and 17% of samples) but did not vary with depth. Representative isolates (n = 185) from different ponds, sample types, and seasons were examined for resistance to 15 different antibiotics; most strains were resistant to streptomycin (98.9%), while 20% were multidrug resistant (MDR) for 2 to 6 antibiotics. DiversiLab repetitive extragenic palindromic-element sequence-based PCR (rep-PCR) revealed genetic diversity and showed 43 genotypes among 191 isolates, as defined by >95% similarity. The genotypes did not partition by pond, season, or sample type. Genetic similarity to known serotypes indicated Hadar, Montevideo, and Newport as the most prevalent. All ponds achieved the current safety standards for generic Escherichia coli in agricultural water, and regression modeling showed that the E. coli level was a significant predictor for the probability of Salmonella occurrence. However, persistent populations of Salmonella were widely distributed in irrigation ponds, and the associated risks for produce contamination and subsequent human exposure are unknown, supporting continued surveillance of this pathogen in agricultural settings.
Collapse
|
19
|
Gibson KE. Tracking Pathogens in the Environment. Food Saf (Tokyo) 2015. [DOI: 10.1016/b978-0-12-800245-2.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Diversity of Salmonella isolates from central Florida surface waters. Appl Environ Microbiol 2014; 80:6819-27. [PMID: 25172861 DOI: 10.1128/aem.02191-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella serotype.
Collapse
|
21
|
Strawn LK, Danyluk MD, Worobo RW, Wiedmann M. Distributions of Salmonella subtypes differ between two U.S. produce-growing regions. Appl Environ Microbiol 2014; 80:3982-91. [PMID: 24747908 PMCID: PMC4054229 DOI: 10.1128/aem.00348-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/16/2014] [Indexed: 11/20/2022] Open
Abstract
Salmonella accounts for approximately 50% of produce-associated outbreaks in the United States, several of which have been traced back to contamination in the produce production environment. To quantify Salmonella diversity and aid in identification of Salmonella contamination sources, we characterized Salmonella isolates from two geographically diverse produce-growing regions in the United States. Initially, we characterized the Salmonella serotype and subtype diversity associated with 1,677 samples collected from 33 produce farms in New York State (NYS). Among these 1,677 samples, 74 were Salmonella positive, yielding 80 unique isolates (from 147 total isolates), which represented 14 serovars and 23 different pulsed-field gel electrophoresis (PFGE) types. To explore regional Salmonella diversity associated with production environments, we collected a smaller set of samples (n = 65) from South Florida (SFL) production environments and compared the Salmonella diversity associated with these samples with the diversity found among NYS production environments. Among these 65 samples, 23 were Salmonella positive, yielding 32 unique isolates (from 81 total isolates), which represented 11 serovars and 17 different PFGE types. The most common serovars isolated in NYS were Salmonella enterica serovars Newport, Cerro, and Thompson, while common serovars isolated in SFL were Salmonella serovars Saphra and Newport and S. enterica subsp. diarizonae serovar 50:r:z. High PFGE type diversity (Simpson's diversity index, 0.90 ± 0.02) was observed among Salmonella isolates across both regions; only three PFGE types were shared between the two regions. The probability of three or fewer shared PFGE types was <0.000001; therefore, Salmonella isolates were considerably different between the two sampled regions. These findings suggest the potential for PFGE-based source tracking of Salmonella in production environments.
Collapse
Affiliation(s)
- Laura K Strawn
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Michelle D Danyluk
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, USA
| | - Randy W Worobo
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
22
|
Luo Z, Gu G, Giurcanu MC, Adams P, Vellidis G, van Bruggen AHC, Wright AC. Development of a novel cross-streaking method for isolation, confirmation, and enumeration of Salmonella from irrigation ponds. J Microbiol Methods 2014; 101:86-92. [PMID: 24732066 DOI: 10.1016/j.mimet.2014.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
The 2013 Produce Safety Rules in Food Safety Modernization Act (FSMA) require regular testing for generic Escherichia coli in agricultural water intended for pre-harvest contact with the edible portion of fresh produce. However, the use of fecal contamination indicators frequently does not correctly reflect distribution of foodborne pathogens such as Salmonella enterica, and ensuring food safety may require direct detection and enumeration of pathogens in agricultural settings. Herein we report the evaluation of different cost-effective methods for quantification, isolation, and confirmation of Salmonella in irrigation pond water and sediment samples. A most probably number (MPN) dual enrichment culture method was used in combination with differential and selective agars, XLT4 and CHROMagar™ Salmonella plus (CSP). The necessity for PCR confirmation was evaluated, and methods were compared by cost and performance measures (i.e., sensitivity, specificity, positive predictive value, and negative predictive value). Statistical analyses showed that using XLT4 as the initial selective agar to isolate Salmonella colonies improved recovery compared to CSP agar; however, PCR confirmation was required to avoid false positive results on either agar. Therefore, a novel cross-streaking method utilizing CHROMagar™ agar for individual colony confirmation of Salmonella presence/absence on XLT4 was developed. This method classifies the colony as positive if typical Salmonella appearance is observed on both agars. Statistical analysis showed that this method was as effective as PCR for species confirmation of pure individual strains isolated from enrichment cultures (sensitivity=0.99, specificity=1.00, relative to PCR). This method offers a cost-effective alternative to PCR that would increase the capacity and sensitivity of Salmonella evaluation.
Collapse
Affiliation(s)
- Zhiyao Luo
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA
| | - Ganyu Gu
- Emerging Pathogens Institute and Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Mihai C Giurcanu
- Department of Statistics, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Paige Adams
- Biological & Agricultural Engineering Department, University of Georgia, Tifton, GA 31793, USA
| | - George Vellidis
- Biological & Agricultural Engineering Department, University of Georgia, Tifton, GA 31793, USA
| | - Ariena H C van Bruggen
- Emerging Pathogens Institute and Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Anita C Wright
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
23
|
Predicting Salmonella populations from biological, chemical, and physical indicators in Florida surface waters. Appl Environ Microbiol 2013; 79:4094-105. [PMID: 23624476 DOI: 10.1128/aem.00777-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Coliforms, Escherichia coli, and various physicochemical water characteristics have been suggested as indicators of microbial water quality or index organisms for pathogen populations. The relationship between the presence and/or concentration of Salmonella and biological, physical, or chemical indicators in Central Florida surface water samples over 12 consecutive months was explored. Samples were taken monthly for 12 months from 18 locations throughout Central Florida (n = 202). Air and water temperature, pH, oxidation-reduction potential (ORP), turbidity, and conductivity were measured. Weather data were obtained from nearby weather stations. Aerobic plate counts and most probable numbers (MPN) for Salmonella, E. coli, and coliforms were performed. Weak linear relationships existed between biological indicators (E. coli/coliforms) and Salmonella levels (R(2) < 0.1) and between physicochemical indicators and Salmonella levels (R(2) < 0.1). The average rainfall (previous day, week, and month) before sampling did not correlate well with bacterial levels. Logistic regression analysis showed that E. coli concentration can predict the probability of enumerating selected Salmonella levels. The lack of good correlations between biological indicators and Salmonella levels and between physicochemical indicators and Salmonella levels shows that the relationship between pathogens and indicators is complex. However, Escherichia coli provides a reasonable way to predict Salmonella levels in Central Florida surface water through logistic regression.
Collapse
|