1
|
Kurhaluk N, Tkaczenko H. L-Arginine and Nitric Oxide in Vascular Regulation-Experimental Findings in the Context of Blood Donation. Nutrients 2025; 17:665. [PMID: 40004994 PMCID: PMC11858268 DOI: 10.3390/nu17040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
This narrative review provides an analysis of the role of nitric oxide (NO) and its precursors, particularly L-arginine, in vascular regulation and health, with an emphasis on findings from our experimental research in animal models. NO serves as a critical mediator of vascular function, contributing to vasodilation, the regulation of blood flow, and the prevention of thrombosis. As a primary precursor of NO, L-arginine is essential for maintaining endothelial integrity, modulating mitochondrial function, and reducing oxidative damage. This review synthesises the data and contextualises these findings within the physiological challenges faced by blood donors, such as repeated blood donation and associated oxidative stress. It examines the effects of L-arginine supplementation on mitochondrial respiration, lipid peroxidation, and microsomal oxidation in different conditions, including differences in age, gender, and dietary interventions. The mechanisms by which L-arginine enhances NO production, improves vascular elasticity, and alleviates endothelial dysfunction caused by reduced NO bioavailability are also investigated. By integrating experimental findings with insights from the existing literature, this review provides a perspective on the potential of L-arginine supplementation to address the specific physiological needs of blood donors. It highlights the importance of personalised nutritional approaches in enhancing donor recovery and vascular resilience. In addition, this review assesses the wider implications of L-arginine supplementation in mitigating oxidative stress and preserving vascular function. The interplay between NO bioavailability, dietary factors, and physiological adaptation in blood donors is highlighted, along with the identification of current knowledge gaps and recommendations for future research. By presenting both original experimental evidence and a critical synthesis of the literature, this article highlights the therapeutic potential of NO precursors, particularly L-arginine, in promoting vascular health in the context of blood donation.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22b, 76-200 Słupsk, Poland;
| | | |
Collapse
|
2
|
Tekeli MY, Eraslan G, Bayram LÇ, Aslan C, Çalımlı S. The protective effects of baicalin and chrysin against emamectin benzoate-induced toxicity in Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53997-54021. [PMID: 36869176 DOI: 10.1007/s11356-023-26110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to investigate the effects of baicalin, chrysin and their combinations against emamectin benzoate-induced toxicity in rats. For this purpose, sixty four rats were divided into evenly 8 groups with 6-8-week-old male Wistar albino rats, weighing 180-250 g, in each group. While the first group was kept as a control (corn oil), the remaining 7 groups were administered with emamectin benzoate (10 mg/kg bw), baicalin (50 mg/kg bw) and chrysin (50 mg/kg bw) alone or together for 28 days. Oxidative stress parameters, serum biochemical parameters and blood/tissue (liver, kidney, brain, testis and heart) and tissue histopathology were investigated. Compared to the control group, the emamectin benzoate-intoxicated rats had significantly higher tissue/plasma concentrations of nitric oxide (NO) and malondialdehyde (MDA), as well as lower tissue glutathione (GSH) concentrations and antioxidant enzyme activity (glutathione peroxidase/GSH-Px, glutathione reductase/GR, glutathione-S-transferase/GST, superoxide dismutase/SOD, catalase/CAT). Biochemical analysis showed that emamectin benzoate administration significantly increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities, as well as triglyceride, cholesterol, creatinine, uric acid and urea levels, and decreased serum total protein and albumin levels. The histopathological examination of the liver, kidney, brain, heart and testis tissues of the emamectin benzoate-intoxicated rats demonstrated necrotic changes. Baicalin and/or chrysin reversed the biochemical and histopathological alterations induced by emamectin benzoate on these tested organs. Therefore, baicalin and chrysin (alone or in combination) could offer protection against emamectin benzoate-induced toxicity.
Collapse
Affiliation(s)
- Muhammet Yasin Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Latife Çakır Bayram
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Coşkun Aslan
- Derinkuyu Emineana and Yaşar Ertaş Agriculture and Livestock Vocational School, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Sinem Çalımlı
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| |
Collapse
|
3
|
Pappas G, Wilkinson ML, Gow AJ. Nitric oxide regulation of cellular metabolism: Adaptive tuning of cellular energy. Nitric Oxide 2023; 131:8-17. [PMID: 36470373 PMCID: PMC9839556 DOI: 10.1016/j.niox.2022.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nitric oxide can interact with a wide range of proteins including many that are involved in metabolism. In this review we have summarized the effects of NO on glycolysis, fatty acid metabolism, the TCA cycle, and oxidative phosphorylation with reference to skeletal muscle. Low to moderate NO concentrations upregulate glucose and fatty acid oxidation, while higher NO concentrations shift cellular reliance toward a fully glycolytic phenotype. Moderate NO production directly inhibits pyruvate dehydrogenase activity, reducing glucose-derived carbon entry into the TCA cycle and subsequently increasing anaploretic reactions. NO directly inhibits aconitase activity, increasing reliance on glutamine for continued energy production. At higher or prolonged NO exposure, citrate accumulation can inhibit multiple ATP-producing pathways. Reduced TCA flux slows NADH/FADH entry into the ETC. NO can also inhibit the ETC directly, further limiting oxidative phosphorylation. Moderate NO production improves mitochondrial efficiency while improving O2 utilization increasing whole-body energy production. Long-term bioenergetic capacity may be increased because of NO-derived ROS, which participate in adaptive cellular redox signaling through AMPK, PCG1-α, HIF-1, and NF-κB. However, prolonged exposure or high concentrations of NO can result in membrane depolarization and opening of the MPT. In this way NO may serve as a biochemical rheostat matching energy supply with demand for optimal respiratory function.
Collapse
Affiliation(s)
- Gregory Pappas
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Melissa L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| | - Andrew J Gow
- Department of Kinesiology & Applied Physiology, Rutgers the State University of New Jersey, NJ, 08854, USA; Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers the State University of New Jersey, NJ, 08854, USA.
| |
Collapse
|
4
|
Kashiwagi S, Morita A, Yokomizo S, Ogawa E, Komai E, Huang PL, Bragin DE, Atochin DN. Photobiomodulation and nitric oxide signaling. Nitric Oxide 2023; 130:58-68. [PMID: 36462596 PMCID: PMC9808891 DOI: 10.1016/j.niox.2022.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/05/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Nitric oxide (NO) is a well-known gaseous mediator that maintains vascular homeostasis. Extensive evidence supports that a hallmark of endothelial dysfunction, which leads to cardiovascular diseases, is endothelial NO deficiency. Thus, restoring endothelial NO represents a promising approach to treating cardiovascular complications. Despite many therapeutic agents having been shown to augment NO bioavailability under various pathological conditions, success in resulting clinical trials has remained elusive. There is solid evidence of diverse beneficial effects of the treatment with low-power near-infrared (NIR) light, defined as photobiomodulation (PBM). Although the precise mechanisms of action of PBM are still elusive, recent studies consistently report that PBM improves endothelial dysfunction via increasing bioavailable NO in a dose-dependent manner and open a feasible path to the use of PBM for treating cardiovascular diseases via augmenting NO bioavailability. In particular, the use of NIR light in the NIR-II window (1000-1700 nm) for PBM, which has reduced scattering and minimal tissue absorption with the largest penetration depth, is emerging as a promising therapy. In this review, we update recent findings on PBM and NO.
Collapse
Affiliation(s)
- Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA.
| | - Atsuyo Morita
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA; Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Eri Komai
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Paul L Huang
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Dr. SE, Albuquerque, NM, 87108, USA; Department of Neurology, The University of New Mexico School of Medicine, MSC08 4720, 1 UNM, Albuquerque, NM, 87131, USA.
| | - Dmitriy N Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
5
|
Kinetic Mathematical Modeling of Oxidative Phosphorylation in Cardiomyocyte Mitochondria. Cells 2022; 11:cells11244020. [PMID: 36552784 PMCID: PMC9777548 DOI: 10.3390/cells11244020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) is an oxygen-dependent process that consumes catabolized nutrients to produce adenosine triphosphate (ATP) to drive energy-dependent biological processes such as excitation-contraction coupling in cardiomyocytes. In addition to in vivo and in vitro experiments, in silico models are valuable for investigating the underlying mechanisms of OXPHOS and predicting its consequences in both physiological and pathological conditions. Here, we compare several prominent kinetic models of OXPHOS in cardiomyocytes. We examine how their mathematical expressions were derived, how their parameters were obtained, the conditions of their experimental counterparts, and the predictions they generated. We aim to explore the general landscape of energy production mechanisms in cardiomyocytes for future in silico models.
Collapse
|
6
|
Katagiri W, Yokomizo S, Ishizuka T, Yamashita K, Kopp T, Roessing M, Sato A, Iwasaki T, Sato H, Fukuda T, Monaco H, Manganiello S, Nomura S, Ng MR, Feil S, Ogawa E, Fukumura D, Atochin DN, Choi HS, Kashiwagi S. Dual near-infrared II laser modulates the cellular redox state of T cells and augments the efficacy of cancer immunotherapy. FASEB J 2022; 36:e22521. [PMID: 36052742 PMCID: PMC9574655 DOI: 10.1096/fj.202200033r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022]
Abstract
Immunotherapy, including immune checkpoint inhibitors, has revolutionized cancer treatment, but only a minor fraction of patients shows durable responses. A new approach to overcome this limitation is yet to be identified. Recently, we have shown that photobiomodulation (PBM) with near-infrared (NIR) light in the NIR-II window reduces oxidative stress and supports the proliferation of CD8+ T cells, suggesting that PBM with NIR-II light could augment anti-cancer immunity. Here, we report a novel approach to support tumor-infiltrating CD8+ T cells upon PBM with NIR-II laser with high tissue penetration depth. Brief treatments of a murine model of breast cancer with dual 1064 and 1270 nm lasers reduced the expression of the programmed cell death protein 1 (PD-1) in CD8+ T cells in a syngeneic mouse model of breast cancer. The direct effect of the NIR-II laser treatment on T cells was confirmed by the enhanced tumor growth delay by the adoptive transfer of laser-treated CD8+ T cells ex vivo against a model tumor antigen. We further demonstrated that specific NIR-II laser parameters augmented the effect of the immune checkpoint inhibitor on tumor growth. PBM with NIR-II light augments the efficacy of cancer immunotherapy by supporting CD8+ T cells. Unlike the current immunotherapy with risks of undesirable drug-drug interactions and severe adverse events, the laser is safe and low-cost. It can be broadly combined with other therapy without modification to achieve clinical significance. In addition, our study established a path to develop a novel laser-based therapy to treat cancer effectively.
Collapse
Affiliation(s)
- Wataru Katagiri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, Kanagawa 223-8522, Japan
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
| | - Takanobu Ishizuka
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
- Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Keiko Yamashita
- Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Malte Roessing
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Akiko Sato
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Taizo Iwasaki
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Hideki Sato
- Bioresearch Center, Corporate R&D Center, Terumo Corporation, 1500 Inokuchi, Nakai-machi, Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Takeshi Fukuda
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Hailey Monaco
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Sophia Manganiello
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Shinsuke Nomura
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
- Department of Surgery, Faculty of Medicine, University of Miyazaki Hospital, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki 889-1692, Japan
| | - Mei Rosa Ng
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Dai Fukumura
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA, 02129, United States of America
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| |
Collapse
|
7
|
Yokomizo S, Roessing M, Morita A, Kopp T, Ogawa E, Katagiri W, Feil S, Huang PL, Atochin DN, Kashiwagi S. Near-infrared II photobiomodulation augments nitric oxide bioavailability via phosphorylation of endothelial nitric oxide synthase. FASEB J 2022; 36:e22490. [PMID: 35929438 PMCID: PMC9382775 DOI: 10.1096/fj.202101890r] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
There is solid evidence of the beneficial effect of photobiomodulation (PBM) with low-power near-infrared (NIR) light in the NIR-I window in increasing bioavailable nitric oxide (NO). However, it is not established whether this effect can be extended to NIR-II light, limiting broader applications of this therapeutic modality. Since we have demonstrated PBM with NIR laser in the NIR-II window, we determined the causal relationship between NIR-II irradiation and its specific biological effects on NO bioavailability. We analyzed the impact of NIR-II irradiation on NO release in cultured human endothelial cells using a NO-sensitive fluorescence probe and single-cell live imaging. Two distinct wavelengths of NIR-II laser (1064 and 1270 nm) and NIR-I (808 nm) at an irradiance of 10 mW/cm2 induced NO release from endothelial cells. These lasers also enhanced Akt phosphorylation at Ser 473, endothelial nitric oxide synthase (eNOS) phosphorylation at Ser 1177, and endothelial cell migration. Moreover, the NO release and phosphorylation of eNOS were abolished by inhibiting mitochondrial respiration, suggesting that Akt activation caused by NIR-II laser exposure involves mitochondrial retrograde signaling. Other inhibitors that inhibit known Akt activation pathways, including a specific inhibitor of PI3K, Src family PKC, did not affect this response. These two wavelengths of NIR-II laser induced no appreciable NO generation in cultured neuronal cells expressing neuronal NOS (nNOS). In short, NIR-II laser enhances bioavailable NO in endothelial cells. Since a hallmark of endothelial dysfunction is suppressed eNOS with concomitant NO deficiency, NIR-II laser technology could be broadly used to restore endothelial NO and treat or prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA, 02129, USA
- Department of Radiological Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo 116-8551, Japan
| | - Malte Roessing
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Atsuyo Morita
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Timo Kopp
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Emiyu Ogawa
- School of Allied Health Science, Kitasato University, 1-15-1 Kitasato Minami-ku Sagamihara, Kanagawa, Japan
| | - Wataru Katagiri
- Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Susanne Feil
- Interfaculty Institute of Biochemistry (IFIB), University of Tübingen, Auf der Morgenstelle 34, Tübingen 72076, Germany
| | - Paul L. Huang
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, 149 13 Street, Charlestown, MA 02129, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13 Street, Charlestown, MA, 02129, USA
| |
Collapse
|
8
|
Besednova NN, Andryukov BG, Zaporozhets TS, Kuznetsova TA, Kryzhanovsky SP, Ermakova SP, Galkina IV, Shchelkanov MY. Molecular Targets of Brown Algae Phlorotannins for the Therapy of Inflammatory Processes of Various Origins. Mar Drugs 2022; 20:243. [PMID: 35447916 PMCID: PMC9025421 DOI: 10.3390/md20040243] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory reactions are part of a complex biological response that plays a vital role in the appearance of various stimuli resulting from tissue and cell damage, the invasion of pathogenic bacteria, and the formation of the subsequent adaptive immune response. The production of many triggers and mediators of inflammation, which are inducers of pro-inflammatory factors, is controlled by numerous differentiation programs, through which inflammation is resolved and tissue homeostasis is restored. However, prolonged inflammatory responses or dysregulation of pro-inflammatory mechanisms can lead to chronic inflammation. Modern advances in biotechnology have made it possible to characterize the anti-inflammatory activity of phlorotannins, polyphenolic compounds from brown seaweed, and the mechanisms by which they modulate the inflammatory response. The purpose of this review is to analyze and summarize the results of numerous experimental in vitro and in vivo studies, illustrating the regulatory mechanisms of these compounds, which have a wide range of biological effects on the body. The results of these studies and the need for further research are discussed.
Collapse
Affiliation(s)
- Natalya N. Besednova
- Somov Research Institute of Epidemiology and Microbiology by Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | - Boris G. Andryukov
- Somov Research Institute of Epidemiology and Microbiology by Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
- School of Medicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Tatyana S. Zaporozhets
- Somov Research Institute of Epidemiology and Microbiology by Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | - Tatyana A. Kuznetsova
- Somov Research Institute of Epidemiology and Microbiology by Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Irina V. Galkina
- School of Medicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Mikhail Yu. Shchelkanov
- Somov Research Institute of Epidemiology and Microbiology by Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (T.S.Z.); (T.A.K.); (M.Y.S.)
- School of Medicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690091 Vladivostok, Russia
- Zhirmunsky National Scientific Center, Marine Biology of the Far Eastern Branch of the Russian Academy of Sciences, 690091 Vladivostok, Russia
| |
Collapse
|
9
|
Massa CM, Liu Z, Taylor S, Pettit AP, Stakheyeva MN, Korotkova E, Popova V, Atochina-Vasserman EN, Gow AJ. Biological Mechanisms of S-Nitrosothiol Formation and Degradation: How Is Specificity of S-Nitrosylation Achieved? Antioxidants (Basel) 2021; 10:antiox10071111. [PMID: 34356344 PMCID: PMC8301044 DOI: 10.3390/antiox10071111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 01/21/2023] Open
Abstract
The modification of protein cysteine residues underlies some of the diverse biological functions of nitric oxide (NO) in physiology and disease. The formation of stable nitrosothiols occurs under biologically relevant conditions and time scales. However, the factors that determine the selective nature of this modification remain poorly understood, making it difficult to predict thiol targets and thus construct informatics networks. In this review, the biological chemistry of NO will be considered within the context of nitrosothiol formation and degradation whilst considering how specificity is achieved in this important post-translational modification. Since nitrosothiol formation requires a formal one-electron oxidation, a classification of reaction mechanisms is proposed regarding which species undergoes electron abstraction: NO, thiol or S-NO radical intermediate. Relevant kinetic, thermodynamic and mechanistic considerations will be examined and the impact of sources of NO and the chemical nature of potential reaction targets is also discussed.
Collapse
Affiliation(s)
- Christopher M. Massa
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Ziping Liu
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Sheryse Taylor
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Ashley P. Pettit
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
| | - Marena N. Stakheyeva
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Elena Korotkova
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Valentina Popova
- Institute of Natural Resources, Tomsk Polytechnic University, Lenin Av. 30, 634050 Tomsk, Russia; (E.K.); (V.P.)
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J. Gow
- Department of Pharmacology & Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08848, USA; (C.M.M.); (Z.L.); (S.T.); (A.P.P.)
- RASA Center in Tomsk, Tomsk Polytechnic University, 634050 Tomsk, Russia; (M.N.S.); (E.N.A.-V.)
- Correspondence: ; Tel.: +1-848-445-4612
| |
Collapse
|
10
|
Borisov VB, Siletsky SA, Paiardini A, Hoogewijs D, Forte E, Giuffrè A, Poole RK. Bacterial Oxidases of the Cytochrome bd Family: Redox Enzymes of Unique Structure, Function, and Utility As Drug Targets. Antioxid Redox Signal 2021; 34:1280-1318. [PMID: 32924537 PMCID: PMC8112716 DOI: 10.1089/ars.2020.8039] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022]
Abstract
Significance: Cytochrome bd is a ubiquinol:oxygen oxidoreductase of many prokaryotic respiratory chains with a unique structure and functional characteristics. Its primary role is to couple the reduction of molecular oxygen, even at submicromolar concentrations, to water with the generation of a proton motive force used for adenosine triphosphate production. Cytochrome bd is found in many bacterial pathogens and, surprisingly, in bacteria formally denoted as anaerobes. It endows bacteria with resistance to various stressors and is a potential drug target. Recent Advances: We summarize recent advances in the biochemistry, structure, and physiological functions of cytochrome bd in the light of exciting new three-dimensional structures of the oxidase. The newly discovered roles of cytochrome bd in contributing to bacterial protection against hydrogen peroxide, nitric oxide, peroxynitrite, and hydrogen sulfide are assessed. Critical Issues: Fundamental questions remain regarding the precise delineation of electron flow within this multihaem oxidase and how the extraordinarily high affinity for oxygen is accomplished, while endowing bacteria with resistance to other small ligands. Future Directions: It is clear that cytochrome bd is unique in its ability to confer resistance to toxic small molecules, a property that is significant for understanding the propensity of pathogens to possess this oxidase. Since cytochrome bd is a uniquely bacterial enzyme, future research should focus on harnessing fundamental knowledge of its structure and function to the development of novel and effective antibacterial agents.
Collapse
Affiliation(s)
- Vitaliy B. Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Sergey A. Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | | | - David Hoogewijs
- Department of Medicine/Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Robert K. Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
11
|
Bhartiya P, Mumtaz S, Lim JS, Kaushik N, Lamichhane P, Nguyen LN, Jang JH, Yoon SH, Choi JJ, Kaushik NK, Choi EH. Pulsed 3.5 GHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines. Sci Rep 2021; 11:8475. [PMID: 33875781 PMCID: PMC8055702 DOI: 10.1038/s41598-021-88078-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Microwave (MW) radiation is increasingly being used for several biological applications. Many investigations have focused on understanding the potential influences of pulsed MW irradiation on biological solutions. The current study aimed to investigate the effects of 3.5 GHz pulsed MW radiation-irradiated liquid solutions on the survival of human cancer and normal cells. Different physiological solutions such as phosphate buffer saline, deionized water, and Dulbecco's modified Eagle medium (DMEM) for cell culture growth were irradiated with pulsed MW radiation (45 shots with the energy of 1 mJ/shot). We then evaluated physiological effects such as cell viability, metabolic activity, mitochondrial membrane potential, cell cycle, and cell death in cells treated with MW-irradiated biological solutions. As MW irradiation with power density ~ 12 kW/cm2 mainly induces reactive nitrogen oxygen species in deionized water, it altered the cell cycle, membrane potential, and cell death rates in U373MG cells due to its high electric field ~ 11 kV/cm in water. Interestingly, MW-irradiated cell culture medium and phosphate-buffered saline did not alter the cellular viability and metabolic energy of cancer and normal cells without affecting the expression of genes responsible for cell death. Taken together, MW-irradiated water can alter cellular physiology noticeably, whereas irradiated media and buffered saline solutions induce negligible or irrelevant changes that do not affect cellular health.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jun Sup Lim
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Neha Kaushik
- College of Engineering, Department of Biotechnology, University of Suwon, Hwaseong, 18323, Korea
| | - Pradeep Lamichhane
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jung Hyun Jang
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sang Ho Yoon
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jin Joo Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|
12
|
Lau SE, Hamdan MF, Pua TL, Saidi NB, Tan BC. Plant Nitric Oxide Signaling under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:360. [PMID: 33668545 PMCID: PMC7917642 DOI: 10.3390/plants10020360] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Water deficit caused by drought is a significant threat to crop growth and production. Nitric oxide (NO), a water- and lipid-soluble free radical, plays an important role in cytoprotection. Apart from a few studies supporting the role of NO in drought responses, little is known about this pivotal molecular amendment in the regulation of abiotic stress signaling. In this review, we highlight the knowledge gaps in NO roles under drought stress and the technical challenges underlying NO detection and measurements, and we provide recommendations regarding potential avenues for future investigation. The modulation of NO production to alleviate abiotic stress disturbances in higher plants highlights the potential of genetic manipulation to influence NO metabolism as a tool with which plant fitness can be improved under adverse growth conditions.
Collapse
Affiliation(s)
- Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.-E.L.); (T.-L.P.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Fadhli Hamdan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China;
| | - Teen-Lee Pua
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.-E.L.); (T.-L.P.)
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.-E.L.); (T.-L.P.)
| |
Collapse
|
13
|
Dehhaghi M, Kazemi Shariat Panahi H, Heng B, Guillemin GJ. The Gut Microbiota, Kynurenine Pathway, and Immune System Interaction in the Development of Brain Cancer. Front Cell Dev Biol 2020; 8:562812. [PMID: 33330446 PMCID: PMC7710763 DOI: 10.3389/fcell.2020.562812] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Human gut microbiota contains a large, complex, dynamic microbial community of approximately 1014 microbes from more than 1,000 microbial species, i.e., equivalent to 4 × 106 genes. Numerous evidence links gut microbiota with human health and diseases. Importantly, gut microbiota is involved in the development and function of the brain through a bidirectional pathway termed as the gut-brain axis. Interaction between gut microbiota and immune responses can modulate the development of neuroinflammation and cancer diseases in the brain. With respect of brain cancer, gut microbiota could modify the levels of antioxidants, amyloid protein and lipopolysaccharides, arginase 1, arginine, cytochrome C, granulocyte-macrophage colony-stimulating factor signaling (GM-CSF), IL-4, IL-6, IL-13, IL-17A, interferon gamma (IFN-γ), reactive oxygen species (ROS), reactive nitrogen species (e.g., nitric oxide and peroxynitrite), short-chain fatty acids (SCFAs), tryptophan, and tumor necrosis factor-β (TGF-β). Through these modifications, gut microbiota can modulate apoptosis, the aryl hydrocarbon receptor (AhR), autophagy, caspases activation, DNA integrity, microglia dysbiosis, mitochondria permeability, T-cell proliferation and functions, the signal transducer and activator of transcription (STAT) pathways, and tumor cell proliferation and metastasis. The outcome of such interventions could be either oncolytic or oncogenic. This review scrutinizes the oncogenic and oncolytic effects of gut microbiota by classifying the modification mechanisms into (i) amino acid deprivation (arginine and tryptophan); (ii) kynurenine pathway; (iii) microglia dysbiosis; and (iv) myeloid-derived suppressor cells (MDSCs). By delineating the complexity of the gut-microbiota-brain-cancer axis, this review aims to help the research on the development of novel therapeutic strategies that may aid the efficient eradication of brain cancers.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Pandis Community, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Benjamin Heng
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Neuroinflammation Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Pandis Community, Sydney, NSW, Australia
| |
Collapse
|
14
|
Nitric Oxide Does Not Inhibit but Is Metabolized by the Cytochrome bcc- aa3 Supercomplex. Int J Mol Sci 2020; 21:ijms21228521. [PMID: 33198276 PMCID: PMC7697965 DOI: 10.3390/ijms21228521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a well-known active site ligand and inhibitor of respiratory terminal oxidases. Here, we investigated the interaction of NO with a purified chimeric bcc-aa3 supercomplex composed of Mycobacterium tuberculosis cytochrome bcc and Mycobacterium smegmatisaa3-type terminal oxidase. Strikingly, we found that the enzyme in turnover with O2 and reductants is resistant to inhibition by the ligand, being able to metabolize NO at 25 °C with an apparent turnover number as high as ≈303 mol NO (mol enzyme)−1 min−1 at 30 µM NO. The rate of NO consumption proved to be proportional to that of O2 consumption, with 2.65 ± 0.19 molecules of NO being consumed per O2 molecule by the mycobacterial bcc-aa3. The enzyme was found to metabolize the ligand even under anaerobic reducing conditions with a turnover number of 2.8 ± 0.5 mol NO (mol enzyme)−1 min−1 at 25 °C and 8.4 µM NO. These results suggest a protective role of mycobacterial bcc-aa3 supercomplexes against NO stress.
Collapse
|
15
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
16
|
AMPK, Mitochondrial Function, and Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21144987. [PMID: 32679729 PMCID: PMC7404275 DOI: 10.3390/ijms21144987] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is in charge of numerous catabolic and anabolic signaling pathways to sustain appropriate intracellular adenosine triphosphate levels in response to energetic and/or cellular stress. In addition to its conventional roles as an intracellular energy switch or fuel gauge, emerging research has shown that AMPK is also a redox sensor and modulator, playing pivotal roles in maintaining cardiovascular processes and inhibiting disease progression. Pharmacological reagents, including statins, metformin, berberine, polyphenol, and resveratrol, all of which are widely used therapeutics for cardiovascular disorders, appear to deliver their protective/therapeutic effects partially via AMPK signaling modulation. The functions of AMPK during health and disease are far from clear. Accumulating studies have demonstrated crosstalk between AMPK and mitochondria, such as AMPK regulation of mitochondrial homeostasis and mitochondrial dysfunction causing abnormal AMPK activity. In this review, we begin with the description of AMPK structure and regulation, and then focus on the recent advances toward understanding how mitochondrial dysfunction controls AMPK and how AMPK, as a central mediator of the cellular response to energetic stress, maintains mitochondrial homeostasis. Finally, we systemically review how dysfunctional AMPK contributes to the initiation and progression of cardiovascular diseases via the impact on mitochondrial function.
Collapse
|
17
|
Sánchez-Duarte E, Cortés-Rojo C, Sánchez-Briones LA, Campos-García J, Saavedra-Molina A, Delgado-Enciso I, López-Lemus UA, Montoya-Pérez R. Nicorandil Affects Mitochondrial Respiratory Chain Function by Increasing Complex III Activity and ROS Production in Skeletal Muscle Mitochondria. J Membr Biol 2020; 253:309-318. [PMID: 32620983 DOI: 10.1007/s00232-020-00129-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Adenosine triphosphate (ATP)-dependent potassium channels openers (KATP) protect skeletal muscle against function impairment through the activation of the mitochondrial KATP channels (mitoKATP). Previous reports suggest that modulators of the mitochondrial KATP channels have additional effects on isolated mitochondria. To determine whether the KATP channel opener nicorandil has non-specific effects that explain its protective effect through the mitochondrial function, chicken muscle mitochondria were isolated, and respiration rate was determined pollarographically. The activity of the electron transport chain (ETC) complexes (I-IV) was measured using a spectrophotometric method. Reactive oxygen species (ROS) levels and lipid peroxidation were assessed using flow cytometry and thiobarbituric acid assay, respectively. Both KATP channel opener nicorandil and KATP channel blocker 5-hydroxydecanoate (5-HD) decreased mitochondrial respiration; nicorandil increased complex III activity and decreased complex IV activity. The effects of nicorandil on complex III were antagonized by 5-HD. Nicorandil increased ROS levels, effect reverted by either 5-HD or the antioxidant N-2-mercaptopropionyl glycine (MPG). None of these drugs affected lipid peroxidation levels. These findings suggest that KATP channel opener nicorandil increases mitochondrial ROS production from complex III. This results by partially blocking electron flow in the complex IV, setting electron carriers in a more reduced state, which is favored by the increase in complex III activity by nicorandil. Overall, our study showed that nicorandil like other mitochondrial KATP channel openers might not act through mitoKATP channel activation.
Collapse
Affiliation(s)
- E Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, 37150, León, Guanajuato, Mexico
| | - C Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, Mexico
| | - L A Sánchez-Briones
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, Mexico
| | - J Campos-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, Mexico
| | - A Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, Mexico
| | - I Delgado-Enciso
- Facultad de Medicina, Universidad de Colima, Av. Universidad 333. Las Víboras, 28040, Colima, Colima, Mexico
| | - U A López-Lemus
- Center for Biodefense and Global Infectious Diseases, 28078, Colima, Colima, Mexico
| | - R Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
18
|
Lou F, Sun Y, Xu Z, Niu L, Wang Z, Deng S, Liu Z, Zhou H, Bai J, Yin Q, Cai X, Sun L, Wang H, Li Q, Wu Z, Chen X, Gu J, Shi YL, Tao W, Ginhoux F, Wang H. Excessive Polyamine Generation in Keratinocytes Promotes Self-RNA Sensing by Dendritic Cells in Psoriasis. Immunity 2020; 53:204-216.e10. [PMID: 32553276 DOI: 10.1016/j.immuni.2020.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Psoriasis is a chronic inflammatory disease whose etiology is multifactorial. The contributions of cellular metabolism to psoriasis are unclear. Here, we report that interleukin-17 (IL-17) downregulated Protein Phosphatase 6 (PP6) in psoriatic keratinocytes, causing phosphorylation and activation of the transcription factor C/EBP-β and subsequent generation of arginase-1. Mice lacking Pp6 in keratinocytes were predisposed to psoriasis-like skin inflammation. Accumulation of arginase-1 in Pp6-deficient keratinocytes drove polyamine production from the urea cycle. Polyamines protected self-RNA released by psoriatic keratinocytes from degradation and facilitated the endocytosis of self-RNA by myeloid dendritic cells to promote toll-like receptor-7 (TLR7)-dependent RNA sensing and IL-6 production. An arginase inhibitor improved skin inflammation in murine and non-human primate models of psoriasis. Our findings suggest that urea cycle hyperreactivity and excessive polyamine generation in psoriatic keratinocytes promote self-RNA sensation and PP6 deregulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis.
Collapse
Affiliation(s)
- Fangzhou Lou
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yang Sun
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenyao Xu
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liman Niu
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhikai Wang
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Siyu Deng
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Zhou
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Bai
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qianqian Yin
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaojie Cai
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Libo Sun
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hong Wang
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qun Li
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun Gu
- Department of Dermatology, Shanghai Tenth People's Hospital, Institute of Psoriasis, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu-Ling Shi
- Department of Dermatology, Shanghai Tenth People's Hospital, Institute of Psoriasis, Tongji University School of Medicine, Shanghai 200072, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai 200433, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore.
| | - Honglin Wang
- Shanghai Institute of Immunology, Translational Medicine Center, Shanghai General Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
19
|
Singhal R, Shah YM. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J Biol Chem 2020; 295:10493-10505. [PMID: 32503843 DOI: 10.1074/jbc.rev120.011188] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract is a highly proliferative and regenerative tissue. The intestine also harbors a large and diverse microbial population collectively called the gut microbiome (microbiota). The microbiome-intestine cross-talk includes a dynamic exchange of gaseous signaling mediators generated by bacterial and intestinal metabolisms. Moreover, the microbiome initiates and maintains the hypoxic environment of the intestine that is critical for nutrient absorption, intestinal barrier function, and innate and adaptive immune responses in the mucosal cells of the intestine. The response to hypoxia is mediated by hypoxia-inducible factors (HIFs). In hypoxic conditions, the HIF activation regulates the expression of a cohort of genes that promote adaptation to hypoxia. Physiologically, HIF-dependent genes contribute to the aforementioned maintenance of epithelial barrier function, nutrient absorption, and immune regulation. However, chronic HIF activation exacerbates disease conditions, leading to intestinal injury, inflammation, and colorectal cancer. In this review, we aim to outline the major roles of physiological and pathological hypoxic conditions in the maintenance of intestinal homeostasis and in the onset and progression of disease with a major focus on understanding the complex pathophysiology of the intestine.
Collapse
Affiliation(s)
- Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA .,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Giuffrè A, Tomé CS, Fernandes DGF, Zuhra K, Vicente JB. Hydrogen Sulfide Metabolism and Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:335-353. [PMID: 32130707 DOI: 10.1007/978-3-030-34025-4_17] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S), while historically perceived merely as a toxicant, has progressively emerged as a key regulator of numerous processes in mammalian physiology, exerting its signaling function essentially through interaction with and/or modification of proteins, targeting mainly cysteine residues and metal centers. As a gaseous signaling molecule that freely diffuses across aqueous and hydrophobic biological milieu, it has been designated the third 'gasotransmitter' in mammalian physiology. H2S is synthesized and detoxified by specialized endogenous enzymes that operate under a tight regulation, ensuring homeostatic levels of this otherwise toxic molecule. Indeed, imbalances in H2S levels associated with dysfunctional H2S metabolism have been growingly correlated with various human pathologies, from cardiovascular and neurodegenerative diseases to cancer. Several cancer cell lines and specimens have been shown to naturally overexpress one or more of the H2S-synthesizing enzymes. The resulting increased H2S levels have been proposed to promote cancer development through the regulation of various cancer-related processes, which led to the interest in pharmacological targeting of H2S metabolism. Herein are summarized some of the key observations that place H2S metabolism and signaling pathways at the forefront of the cellular mechanisms that support the establishment and development of a tumor within its complex and challenging microenvironment. Special emphasis is given to the mechanisms whereby H2S helps shaping cancer cell bioenergetic metabolism and affords resistance and adaptive mechanisms to hypoxia.
Collapse
Affiliation(s)
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal
| | - Dalila G F Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal
| | - Karim Zuhra
- CNR Institute of Molecular Biology and Pathology, Rome, Italy
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, NOVA University of Lisbon, Oeiras, Portugal.
| |
Collapse
|
21
|
Mukherjee S. Insights into nitric oxide-melatonin crosstalk and N-nitrosomelatonin functioning in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6035-6047. [PMID: 31429913 DOI: 10.1093/jxb/erz375] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/06/2019] [Indexed: 05/23/2023]
Abstract
Similar to animal systems, plants have been suggested to possess both positive and antagonistic interactions between nitric oxide (NO) and melatonin. This review summarizes the current understanding of NO-melatonin crosstalk in plants with regard to redox homoeostasis, regulation of gene expression, and developmental changes. It also addresses the possible role of N-nitrosomelatonin (NOmela), which is likely to be associated with redox signaling and long-distance communication. Localization and quantification of NOmela are expected to add new insights into its precise role in plants. Methodological advances in imaging, isolation, and quantification of such a transient molecule require further attention. The quest for the biological role of NOmela in plants should lure physiologists to pursue investigations to obtain solid experimental evidence.
Collapse
Affiliation(s)
- Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal 742213, India
| |
Collapse
|
22
|
Reciprocal regulation of sulfite oxidation and nitrite reduction by mitochondrial sulfite oxidase. Nitric Oxide 2019; 89:22-31. [PMID: 31002874 DOI: 10.1016/j.niox.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 01/08/2023]
Abstract
The oxygen-independent nitrate-nitrite-nitric oxide (NO) pathway is considered as a substantial source of NO in mammals. Dietary nitrate/nitrite are distributed throughout the body and reduced to NO by the action of various enzymes. The intermembrane spaced (IMS), molybdenum cofactor-dependent sulfite oxidase (SO) was shown to catalyze such a nitrite reduction. In this study we asked whether the primary function of SO - sulfite oxidation - and its novel function - nitrite reduction - impact each other. First, we utilized benzyl viologen as artificial electron donor to investigate steady state NO synthesis by SO and found fast (kcat = 14 s-1) nitrite reduction of SO full-length and its isolated molybdenum domain at pH 6.5. Next, we determined the impact of nitrite on pre-steady state kinetics in SO catalysis and identified nitrite as a pH-dependent inhibitor of SO reductive and oxidative half reaction. Finally, we report on the time-dependent formation of the paramagnetic Mo(V) species following nitrite reduction and demonstrate that sulfite inhibits nitrite reduction. In conclusion, we propose a pH-dependent reciprocal regulation of sulfite oxidation and nitrite reduction by each substrate, thus facilitating quick responses to hypoxia induced changes in the IMS, which may function in protecting the cell from reactive oxygen species production.
Collapse
|
23
|
Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? Metab Brain Dis 2019; 34:385-415. [PMID: 30758706 PMCID: PMC6428797 DOI: 10.1007/s11011-019-0388-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
A model of the development and progression of chronic fatigue syndrome (myalgic encephalomyelitis), the aetiology of which is currently unknown, is put forward, starting with a consideration of the post-infection role of damage-associated molecular patterns and the development of chronic inflammatory, oxidative and nitrosative stress in genetically predisposed individuals. The consequences are detailed, including the role of increased intestinal permeability and the translocation of commensal antigens into the circulation, and the development of dysautonomia, neuroinflammation, and neurocognitive and neuroimaging abnormalities. Increasing levels of such stress and the switch to immune and metabolic downregulation are detailed next in relation to the advent of hypernitrosylation, impaired mitochondrial performance, immune suppression, cellular hibernation, endotoxin tolerance and sirtuin 1 activation. The role of chronic stress and the development of endotoxin tolerance via indoleamine 2,3-dioxygenase upregulation and the characteristics of neutrophils, monocytes, macrophages and T cells, including regulatory T cells, in endotoxin tolerance are detailed next. Finally, it is shown how the immune and metabolic abnormalities of chronic fatigue syndrome can be explained by endotoxin tolerance, thus completing the model.
Collapse
Affiliation(s)
- Gerwyn Morris
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
- Department of Psychiatry, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Victoria, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| |
Collapse
|
24
|
Jahani M, Noroznezhad F, Mansouri K. Arginine: Challenges and opportunities of this two-faced molecule in cancer therapy. Biomed Pharmacother 2018; 102:594-601. [DOI: 10.1016/j.biopha.2018.02.109] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022] Open
|
25
|
Stefano GB, Kream RM. Alkaloids, Nitric Oxide, and Nitrite Reductases: Evolutionary Coupling as Key Regulators of Cellular Bioenergetics with Special Relevance to the Human Microbiome. Med Sci Monit 2018; 24:3153-3158. [PMID: 29756604 PMCID: PMC5978027 DOI: 10.12659/msm.909409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Typical alkaloids expressed by prokaryotic and eukaryotic cells are small heterocyclic compounds containing weakly basic nitrogen groups that are critically important for mediating essential biological activities. The prototype opiate alkaloid morphine represents a low molecular mass heterocyclic compound that has been evolutionarily fashioned from a relatively restricted role as a secreted antimicrobial phytoalexin into a broad spectrum regulatory molecule. As an essential corollary, positive evolutionary pressure has driven the development of a cognate 6-transmembrane helical (TMH) domain μ3 opiate receptor that is exclusively responsive to morphine and related opiate alkaloids. A key aspect of “morphinergic” signaling mediated by μ3 opiate receptor activation is its functional coupling with regulatory pathways utilizing constitutive nitric oxide (NO) as a signaling molecule. Importantly, tonic and phasic intra-mitochondrial NO production exerts profound inhibitory effects on the rate of electron transport, H+ pumping, and O2 consumption. Given the pluripotent role of NO as a selective, temporally-defined chemical regulator of mitochondrial respiration and cellular bioenergetics, the expansion of prokaryotic denitrification systems into mitochondrial NO/nitrite cycling complexes represents a series of evolutionary modifications of existential proportions. Presently, our short review provides selective discussion of evolutionary development of morphine, opiate alkaloids, μ3 opiate receptors, and NO systems, within the perspectives of enhanced mitochondrial function, cellular bioenergetics, and the human microbiome.
Collapse
Affiliation(s)
- George B Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague, Prague, Czech Republic.,Center for Cognitive and Molecular Neuroscience, General University Hospital in Prague, Prague, Czech Republic
| | - Richard M Kream
- Senior Advisor, International Scientific Information, Inc., Melville, NY, USA
| |
Collapse
|
26
|
Nonylphenol and Octylphenol Differently Affect Cell Redox Balance by Modulating the Nitric Oxide Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1684827. [PMID: 29805728 PMCID: PMC5901947 DOI: 10.1155/2018/1684827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
Nonylphenol (NP) and octylphenol (OP) are pervasive environmental contaminants belonging to the broader class of compounds known as alkylphenols, with potential human toxic effects. Classified as “xenoestrogens,” NP and OP are able to interfere with the cell endocrine physiology via a direct interaction with the estrogen receptors. Here, using HepG2 cells in culture, the changes of the cell redox balance and mitochondrial activity induced by OP and NP have been investigated at μM concentrations, largely below those provoking acute toxicity, as those typical of environmental contaminants. Following 24 h cell exposure to both OP and NP, ROS production appeared significantly increased (p ≤ 0.01), together with the production of higher NO oxides (p = 0.003) and peroxynitrated protein-derivatives (NP versus CTR, p = 0.003). The mitochondrial proton electrochemical potential gradient instead was decreased (p ≤ 0.05), as the oxygen consumption by complex IV, particularly following incubation with NP (NP versus CTR, p = 0.017). Consistently, the RT-PCR and Western blot analyses proved that the OP and NP can modulate to a different extent the expression of the inducible NOS (NP versus CTR, p ≤ 0.01) and the endothelial NOS (OP versus CTR, p ≤ 0.05), with a significant variation of the coupling efficiency of the latter (NP versus CTR, p ≤ 0.05), a finding that may provide a novel clue to understand the specific xenoestrogenic properties of OP and NP.
Collapse
|
27
|
Morris G, Puri BK, Walder K, Berk M, Stubbs B, Maes M, Carvalho AF. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications. Mol Neurobiol 2018; 55:8765-8787. [PMID: 29594942 PMCID: PMC6208857 DOI: 10.1007/s12035-018-1028-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Ken Walder
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
28
|
Nakamura T, Lipton SA. 'SNO'-Storms Compromise Protein Activity and Mitochondrial Metabolism in Neurodegenerative Disorders. Trends Endocrinol Metab 2017; 28:879-892. [PMID: 29097102 PMCID: PMC5701818 DOI: 10.1016/j.tem.2017.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 01/07/2023]
Abstract
The prevalence of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), is currently a major public health concern due to the lack of efficient disease-modifying therapeutic options. Recent evidence suggests that mitochondrial dysfunction and nitrosative/oxidative stress are key common mediators of pathogenesis. In this review, we highlight molecular mechanisms linking NO-dependent post-translational modifications, such as cysteine S-nitrosylation and tyrosine nitration, to abnormal mitochondrial metabolism. We further discuss the hypothesis that pathological levels of NO compromise brain energy metabolism via aberrant S-nitrosylation of key enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, contributing to neurodegenerative conditions. A better understanding of these pathophysiological events may provide a potential pathway for designing novel therapeutics to ameliorate neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA.
| | - Stuart A Lipton
- Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
29
|
VLDL Induced Modulation of Nitric Oxide Signalling and Cell Redox Homeostasis in HUVEC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2697364. [PMID: 29085553 PMCID: PMC5632467 DOI: 10.1155/2017/2697364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
High levels of circulating lipoprotein constitute a risk factor for cardiovascular diseases, and in this context, the specific role of the very-low-density lipoproteins (VLDL) is poorly understood. The response of human umbilical vein endothelial cells (HUVEC) to VLDL exposure was studied, especially focusing on the pathways involved in alteration of redox homeostasis and nitric oxide (NO) bioavailability. The results obtained by the analysis of the expression level of genes implicated in the NO metabolism and oxidative stress response indicated a strong activation of inducible NO synthase (iNOS) upon 24 h exposure to VLDL, particularly if these have been preventively oxidised. Simultaneously, both mRNA and protein expression of endothelial NO synthase (eNOS) were decreased and its phosphorylation pattern, at the key residues Tyr495 and Ser1177, strongly suggested the occurrence of the eNOS uncoupling. The results are consistent with the observed increased production of nitrites and nitrates (NOx), reactive oxygen species (ROS), 3-nitrotyrosine (3-NT), and, at mitochondrial level, a deficit in mitochondrial O2 consumption. Altogether, these data suggest that the VLDL, particularly if oxidised, when allowed to persist in contact with endothelial cells, strongly alter NO bioavailability, affecting redox homeostasis and mitochondrial function.
Collapse
|
30
|
Morris G, Walder K, Carvalho AF, Tye SJ, Lucas K, Berk M, Maes M. The role of hypernitrosylation in the pathogenesis and pathophysiology of neuroprogressive diseases. Neurosci Biobehav Rev 2017; 84:453-469. [PMID: 28789902 DOI: 10.1016/j.neubiorev.2017.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 07/02/2017] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
There is a wealth of data indicating that de novo protein S-nitrosylation in general and protein transnitrosylation in particular mediates the bulk of nitric oxide signalling. These processes enable redox sensing and facilitate homeostatic regulation of redox dependent protein signalling, function, stability and trafficking. Increased S-nitrosylation in an environment of increasing oxidative and nitrosative stress (O&NS) is initially a protective mechanism aimed at maintaining protein structure and function. When O&NS becomes severe, mechanisms governing denitrosylation and transnitrosylation break down leading to the pathological state referred to as hypernitrosylation (HN). Such a state has been implicated in the pathogenesis and pathophysiology of several neuropsychiatric and neurodegenerative diseases and we investigate its potential role in the development and maintenance of neuroprogressive disorders. In this paper, we propose a model whereby the hypernitrosylation of a range of functional proteins and enzymes lead to changes in activity which conspire to produce at least some of the core abnormalities contributing to the development and maintenance of pathology in these illnesses.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA152LW, Wales, United Kingdom
| | - Ken Walder
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil
| | - Susannah J Tye
- Deakin University, The Centre for Molecular and Medical Research, School of Medicine, P.O. Box 291, Geelong, 3220, Australia; Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, 60430-040, Fortaleza, CE, Brazil; Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia
| | - Kurt Lucas
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Orygen Youth Health Research Centre and the Centre of Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3052, Australia.
| | - Michael Maes
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, P.O. Box 281, Geelong, 3220, Australia; Department of Psychiatry, Chulalongkorn University, Faculty of Medicine, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
31
|
Cardiovascular Mitochondrial Dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3034245. [PMID: 28593024 PMCID: PMC5448156 DOI: 10.1155/2017/3034245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/08/2017] [Accepted: 03/26/2017] [Indexed: 12/12/2022]
Abstract
Cocaine abuse has long been known to cause morbidity and mortality due to its cardiovascular toxic effects. The pathogenesis of the cardiovascular toxicity of cocaine use has been largely reviewed, and the most recent data indicate a fundamental role of oxidative stress in cocaine-induced cardiovascular toxicity, indicating that mitochondrial dysfunction is involved in the mechanisms of oxidative stress. The comprehension of the mechanisms involving mitochondrial dysfunction could help in selecting the most appropriate mitochondria injury biological marker, such as superoxide dismutase-2 activity and glutathionylated hemoglobin. The potential use of modulators of oxidative stress (mitoubiquinone, the short-chain quinone idebenone, and allopurinol) in the treatment of cocaine cardiotoxic effects is also suggested to promote further investigations on these potential mitochondria-targeted antioxidant strategies.
Collapse
|
32
|
Tonazzi A, Giangregorio N, Console L, De Palma A, Indiveri C. Nitric oxide inhibits the mitochondrial carnitine/acylcarnitine carrier through reversible S-nitrosylation of cysteine 136. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:475-482. [PMID: 28438511 DOI: 10.1016/j.bbabio.2017.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/29/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022]
Abstract
S-nitrosylation of the mitochondrial carnitine/acylcarnitine transporter (CACT) has been investigated on the native and the recombinant proteins reconstituted in proteoliposomes, and on intact mitochondria. The widely-used NO-releasing compound, GSNO, strongly inhibited the antiport measured in proteoliposomes reconstituted with the native CACT from rat liver mitochondria or the recombinant rat CACT over-expressed in E. coli. Inhibition was reversed by the reducing agent dithioerythritol, indicating a reaction mechanism based on nitrosylation of Cys residues of the CACT. The half inhibition constant (IC50) was very similar for the native and recombinant proteins, i.e., 74 and 71μM, respectively. The inhibition resulted to be competitive with respect the substrate, carnitine. NO competed also with NEM, correlating well with previous data showing interference of NEM with the substrate transport path. Using a site-directed mutagenesis approach on Cys residues of the recombinant CACT, the target of NO was identified. C136 plays a major role in the reaction mechanism. The occurrence of S-nitrosylation was demonstrated in intact mitochondria after treatment with GSNO, immunoprecipitation and immunostaining of CACT with a specific anti NO-Cys antibody. In parallel samples, transport activity of CACT measured in intact mitochondria, was strongly inhibited after GSNO treatment. The possible physiological and pathological implications of the post-translational modification of CACT are discussed.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Annalisa De Palma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy; Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
33
|
The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 2015; 13:68. [PMID: 25889215 PMCID: PMC4382850 DOI: 10.1186/s12916-015-0310-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction and defects in oxidative metabolism are a characteristic feature of many chronic illnesses not currently classified as mitochondrial diseases. Examples of such illnesses include bipolar disorder, multiple sclerosis, Parkinson's disease, schizophrenia, depression, autism, and chronic fatigue syndrome. DISCUSSION While the majority of patients with multiple sclerosis appear to have widespread mitochondrial dysfunction and impaired ATP production, the findings in patients diagnosed with Parkinson's disease, autism, depression, bipolar disorder schizophrenia and chronic fatigue syndrome are less consistent, likely reflecting the fact that these diagnoses do not represent a disease with a unitary pathogenesis and pathophysiology. However, investigations have revealed the presence of chronic oxidative stress to be an almost invariant finding in study cohorts of patients afforded each diagnosis. This state is characterized by elevated reactive oxygen and nitrogen species and/or reduced levels of glutathione, and goes hand in hand with chronic systemic inflammation with elevated levels of pro-inflammatory cytokines. SUMMARY This paper details mechanisms by which elevated levels of reactive oxygen and nitrogen species together with elevated pro-inflammatory cytokines could conspire to pave a major road to the development of mitochondrial dysfunction and impaired oxidative metabolism seen in many patients diagnosed with these disorders.
Collapse
|
34
|
Generation of purified nitric oxide from liquid N2O4 for the treatment of pulmonary hypertension in hypoxemic swine. Nitric Oxide 2014; 37:66-72. [PMID: 24513304 DOI: 10.1016/j.niox.2014.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/13/2014] [Accepted: 02/02/2014] [Indexed: 12/23/2022]
Abstract
Inhaled nitric oxide (NO) selectively dilates pulmonary blood vessels, reduces pulmonary vascular resistance (PVR), and enhances ventilation-perfusion matching. However, existing modes of delivery for the treatment of chronic pulmonary hypertension are limited due to the bulk and heft of large tanks of compressed gas. We present a novel system for the generation of inhaled NO that is based on the initial heat-induced evaporation of liquid N2O4 into gas phase NO2 followed by the room temperature reduction to NO by an antioxidant, ascorbic acid cartridge just prior to inhalation. The biologic effects of NO generated from liquid N2O4 were compared with the effects of NO gas, on increased mean pulmonary artery pressure (mPAP) and PVR in a hypoxemic (FiO2 15%) swine model of pulmonary hypertension. We showed that NO concentration varied directly with the fixed cross sectional flow of the outflow aperture when studied at temperatures of 45, 47.5 and 50°C and was independent of the rate of heating. Liquid N2O4-sourced NO at 1, 5, and 20 ppm significantly reduced the elevated mPAP and PVR induced by experimental hypoxemia and was biologically indistinguishable from gas source NO in this model. These experiments show that it is feasible to generate highly purified NO gas from small volumes of liquid N2O4 at concentrations sufficient to lower mPAP and PVR in hypoxemic swine, and suggest that a miniaturized ambulatory system designed to generate biologically active NO from liquid N2O4 is achievable.
Collapse
|
35
|
Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1178-87. [PMID: 24486503 DOI: 10.1016/j.bbabio.2014.01.016] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 01/25/2014] [Accepted: 01/27/2014] [Indexed: 12/28/2022]
Abstract
Cytochrome bd is a prokaryotic respiratory quinol:O2 oxidoreductase, phylogenetically unrelated to the extensively studied heme-copper oxidases (HCOs). The enzyme contributes to energy conservation by generating a proton motive force, though working with a lower energetic efficiency as compared to HCOs. Relevant to patho-physiology, members of the bd-family were shown to promote virulence in some pathogenic bacteria, which makes these enzymes of interest also as potential drug targets. Beyond its role in cell bioenergetics, cytochrome bd accomplishes several additional physiological functions, being apparently implicated in the response of the bacterial cell to a number of stress conditions. Compelling experimental evidence suggests that the enzyme enhances bacterial tolerance to oxidative and nitrosative stress conditions, owing to its unusually high nitric oxide (NO) dissociation rate and a notable catalase activity; the latter has been recently documented in one of the two bd-type oxidases of Escherichia coli. Current knowledge on cytochrome bd and its reactivity with O2, NO and H2O2 is summarized in this review in the light of the hypothesis that the preferential (over HCOs) expression of cytochrome bd in pathogenic bacteria may represent a strategy to evade the host immune attack based on production of NO and reactive oxygen species (ROS). This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
|
36
|
Piccoli C, Agriesti F, Scrima R, Falzetti F, Di Ianni M, Capitanio N. To breathe or not to breathe: the haematopoietic stem/progenitor cells dilemma. Br J Pharmacol 2014; 169:1652-71. [PMID: 23714011 DOI: 10.1111/bph.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 05/11/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Adult haematopoietic stem/progenitor cells (HSPCs) constitute the lifespan reserve for the generation of all the cellular lineages in the blood. Although massive progress in identifying the cluster of master genes controlling self-renewal and multipotency has been achieved in the past decade, some aspects of the physiology of HSPCs still need to be clarified. In particular, there is growing interest in the metabolic profile of HSPCs in view of their emerging role as determinants of cell fate. Indeed, stem cells and progenitors have distinct metabolic profiles, and the transition from stem to progenitor cell corresponds to a critical metabolic change, from glycolysis to oxidative phosphorylation. In this review, we summarize evidence, reported in the literature and provided by our group, highlighting the peculiar ability of HSPCs to adapt their mitochondrial oxidative/bioenergetic metabolism to survive in the hypoxic microenvironment of the endoblastic niche and to exploit redox signalling in controlling the balance between quiescence versus active cycling and differentiation. Especial prominence is given to the interplay between hypoxia inducible factor-1, globins and NADPH oxidases in managing the mitochondrial dioxygen-related metabolism and biogenesis in HSPCs under different ambient conditions. A mechanistic model is proposed whereby 'mitochondrial differentiation' is a prerequisite in uncommitted stem cells, paving the way for growth/differentiation factor-dependent processes. Advancing the understanding of stem cell metabolism will, hopefully, help to (i) improve efforts to maintain, expand and manipulate HSPCs ex vivo and realize their potential therapeutic benefits in regenerative medicine; (ii) reprogramme somatic cells to generate stem cells; and (iii) eliminate, selectively, malignant stem cells. LINKED ARTICLES This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8.
Collapse
Affiliation(s)
- C Piccoli
- Department of Medical and Experimental Medicine, University of Foggia, Foggia, Italy.
| | | | | | | | | | | |
Collapse
|
37
|
Sarti P, Magnifico MC, Altieri F, Mastronicola D, Arese M. New evidence for cross talk between melatonin and mitochondria mediated by a circadian-compatible interaction with nitric oxide. Int J Mol Sci 2013; 14:11259-76. [PMID: 23759982 PMCID: PMC3709731 DOI: 10.3390/ijms140611259] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 01/24/2023] Open
Abstract
Extending our previous observations, we have shown on HaCat cells that melatonin, at ~10−9 M concentration, transiently raises not only the expression of the neuronal nitric oxide synthase (nNOS) mRNA, but also the nNOS protein synthesis and the nitric oxide oxidation products, nitrite and nitrate. Interestingly, from the cell bioenergetic point of view, the activated NO-related chemistry induces a mild decrease of the oxidative phosphorylation (OXPHOS) efficiency, paralleled by a depression of the mitochondrial membrane potential. The OXPHOS depression is apparently balanced by glycolysis. The mitochondrial effects described have been detected only at nanomolar concentration of melatonin and within a time window of a few hours’ incubation; both findings compatible with the melatonin circadian cycle.
Collapse
Affiliation(s)
- Paolo Sarti
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (M.C.M.); (F.A.); (M.A.)
- CNR Institute of Molecular Biology and Pathology, Rome 00185, Italy; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-6-4450291 or +39-6-49910944; Fax: +39-6-4440062
| | - Maria Chiara Magnifico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (M.C.M.); (F.A.); (M.A.)
| | - Fabio Altieri
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (M.C.M.); (F.A.); (M.A.)
| | | | - Marzia Arese
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy; E-Mails: (M.C.M.); (F.A.); (M.A.)
| |
Collapse
|
38
|
Lohr NL, Ninomiya JT, Warltier DC, Weihrauch D. Far red/near infrared light treatment promotes femoral artery collateralization in the ischemic hindlimb. J Mol Cell Cardiol 2013; 62:36-42. [PMID: 23702287 DOI: 10.1016/j.yjmcc.2013.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/18/2013] [Accepted: 05/10/2013] [Indexed: 01/19/2023]
Abstract
Nitric oxide (NO) is a crucial mediator of hindlimb collateralization and angiogenesis. Within tissues there are nitrosyl-heme proteins which have the potential to generate NO under conditions of hypoxia or low pH. Low level irradiation of blood and muscle with light in the far red/near infrared spectrum (670 nm, R/NIR) facilitates NO release. Therefore, we assessed the impact of red light exposure on the stimulation of femoral artery collateralization. Rabbits and mice underwent unilateral resection of the femoral artery and chronic R/NIR treatment. The direct NO scavenger carboxy-PTIO and the nitric oxide synthase (NOS) inhibitor L-NAME were also administered in the presence of R/NIR. DAF fluorescence assessed R/NIR changes in NO levels within endothelial cells. In vitro measures of R/NIR induced angiogenesis were assessed by endothelial cell proliferation and migration. R/NIR significantly increased collateral vessel number which could not be attenuated with L-NAME. R/NIR induced collateralization was abolished with c-PTIO. In vitro, NO production increased in endothelial cells with R/NIR exposure, and this finding was independent of NOS inhibition. Similarly R/NIR induced proliferation and tube formation in a NO dependent manner. Finally, nitrite supplementation accelerated R/NIR collateralization in wild type C57Bl/6 mice. In an eNOS deficient transgenic mouse model, R/NIR restores collateral development. In conclusion, R/NIR increases NO levels independent of NOS activity, and leads to the observed enhancement of hindlimb collateralization.
Collapse
Affiliation(s)
- Nicole L Lohr
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, USA.
| | | | | | | |
Collapse
|
39
|
Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013; 14:6306-44. [PMID: 23528859 PMCID: PMC3634422 DOI: 10.3390/ijms14036306] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023] Open
Abstract
The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
| | - Edgar A. Jaimes
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
- Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|