1
|
Wu CH, Chou WC, Jou IM, Tu YK, Ma CH, Tsai KL. Cisplatin-induced oxidative stress, apoptosis, and pro-inflammatory responses in chondrocytes through modulating LOX-1. J Orthop Surg Res 2025; 20:206. [PMID: 40011998 PMCID: PMC11866722 DOI: 10.1186/s13018-025-05602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
Cisplatin is a potent and efficacious anticancer medication. In pediatric cancer, the height of the growth plate's proliferating layer is known to be reduced by cisplatin, but researchers have not yet determined the specific mechanism behind this phenomenon. Lectin-like oxidized low-density lipoprotein receptor-1 is known to be involved in the development of osteoarthritis and atherosclerosis. The equilibrium of cartilage is regulated by LOX-1, but the function of LOX-1 in cisplatin-induced chondrocyte impairment remains unknown. Positive regulation of LOX-1 leads to increased cellular oxidative stress and cell damage. Research has shown that blocking of LOX-1 can reduce the chondrocyte damage and oxidative stress in cells induced by oxidized LDL treatment. However, the role of LOX-1 in cisplatin-mediated chondrocyte damage is still unclear. This study found that cisplatin increased ROS concentration and p38, ERK phosphorylation. Cisplatin activated NF-κB in chondrocytes. In addition, LOX-1 small interfering RNA transfection mitigated cisplatin-induced apoptosis in TC28a2 cells. Phosphorylated extracellular signal-regulated kinase and p38 were dose-dependently increased by administration of cisplatin. Silencing LOX-1 or MAPK inhibition reduces cisplatin-caused apoptosis. The findings suggest that cisplatin-induced growth plate dysfunction operates through the LOX-1/p38/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chin-Hsien Wu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Wan-Ching Chou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan, ROC
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - I-Ming Jou
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Yuan-Kun Tu
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan, ROC
| | - Ching-Hou Ma
- Department of Orthopedics, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan, ROC.
- School of Medicine, I-Shou University, Kaohsiung City, Taiwan, ROC.
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
2
|
Ibrahim Fouad G, Rizk MZ. Neurotoxicity of the antineoplastic drugs: "Doxorubicin" as an example. J Mol Histol 2024; 55:1023-1050. [PMID: 39352546 DOI: 10.1007/s10735-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
There is an increased prevalence of cancer, and chemotherapy is widely and routinely utilized to manage the majority of cancers; however, administration of chemotherapeutic drugs has faced limitations concerning the "off-target" cytotoxicity. Chemobrain and impairment of neurocognitive functions have been observed in a significant fraction of cancer patients or survivors and reduce their life quality; this could be ascribed to the ability of chemotherapeutic drugs to alter the structure and function of the brain. Doxorubicin (DOX), an FDA-approved chemotherapeutic drug with therapeutic effectiveness, is commonly used to treat several carcinomas clinically. DOX-triggered neurotoxicity is the most serious adverse reaction after DOX-induced cardiotoxicity which greatly limits its clinical application. DOX-induced neurotoxicity is a net of multiple mechanisms that have been verified in pre-clinical and clinical studies, such as oxidative stress, neuroinflammation, mitochondrial disruption, apoptosis, autophagy, disruption of neurotransmitters, and impairment of neurogenesis. There is a massive need for developing novel therapeutics for both cancer and DOX-associated neurotoxicity; therefore investigating the implicated mechanisms of DOX-induced chemobrain will reveal multi-targets for novel curative strategies. Recently, various neuroprotective mechanisms were employed to mitigate DOX-mediated neurotoxicity. For this purpose, therapeutic interventions using pharmacological compounds were developed to protect healthy "off-target" tissues from DOX-induced toxicity. In addition, nanoplatforms were used to enable target delivery of DOX; to prevent its deposition in non-cancerous tissues. The aim of the current review is to provide some reference value for the future management of DOX-induced neurotoxicity and to summarize the underlying mechanisms of DOX-mediated neurotoxicity and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
3
|
Mossa FB, Bakry N, El-Sawi MR. Potential ameliorative effects of bilberry (Vaccinium myrtillus L.) fruit extract on cisplatin-induced reproductive damage in adult male albino rats. Clin Exp Reprod Med 2024; 51:192-204. [PMID: 39210717 PMCID: PMC11372312 DOI: 10.5653/cerm.2023.06380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/19/2023] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Cisplatin (CP) is a widely used chemotherapeutic agent, but its severe side effects impact testicular function. We investigated the potential protective effects of bilberry extract against CP-induced testicular toxicity. METHODS Forty adult male albino rats were divided into four groups. Control animals received a single oral dose of 0.9% saline. Bilberry-treated rats received oral bilberry extract (200 mg/kg body weight [BW] dissolved in 1 mL of saline) daily for 10 consecutive days. CP-treated animals were administered a single intraperitoneal dose (7.5 mg/kg BW). Finally, a bilberry+CP group received oral bilberry extract (200 mg/kg BW) daily for 10 consecutive days, with one intraperitoneal dose of CP (7.5 mg/kg BW) on day 2. We assessed sperm count, motility, viability, and abnormalities, along with testis weight, testis weight-to-BW ratio, antioxidant activity, levels of oxidative stress markers (malondialdehyde [MDA] and hydrogen peroxide [H2O2]), sex hormones (follicle-stimulating hormone [FSH], luteinizing hormone [LH], and testosterone), and apoptotic and anti-apoptotic markers, and DNA damage. Testicular tissue underwent histopathological examination. RESULTS Among CP-treated rats, significantly lower values were observed for testis weight; testis weight-to-BW ratio; levels of FSH, LH, testosterone, superoxide dismutase, catalase, glutathione S-transferase, glutathione, and B-cell lymphoma 2; and sperm count, motility, and proportion of normal sperm. CP administration was associated with higher MDA, H2O2, p53, Bax, cytochrome c, caspase 9, and caspase 3 levels, along with elevated tail moment. However, bilberry extract administration significantly improved all altered parameters. CONCLUSION Bilberry treatment demonstrated protective effects and reduced CP-induced testicular toxicity via antioxidant activity and cytoprotection.
Collapse
Affiliation(s)
- Fatma B Mossa
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nadia Bakry
- Bone Marrow Transplantation and Cord Blood Unit, Mansoura University Children's Hospital, Mansoura, Egypt
| | - Mamdouh Rashad El-Sawi
- Physiology Division, Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Badea MA, Balas M, Ionita D, Dinischiotu A. Carbon nanotubes conjugated with cisplatin activate different apoptosis signaling pathways in 2D and 3D-spheroid triple-negative breast cancer cell cultures: a comparative study. Arch Toxicol 2024; 98:2843-2866. [PMID: 38739308 PMCID: PMC11324667 DOI: 10.1007/s00204-024-03779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The type of experimental model for the in vitro testing of drug formulations efficiency represents an important tool in cancer biology, with great attention being granted to three-dimensional (3D) cultures as these offer a closer approximation of the clinical sensitivity of drugs. In this study, the effects induced by carboxyl-functionalized single-walled carbon nanotubes complexed with cisplatin (SWCNT-COOH-CDDP) and free components (SWCNT-COOH and CDDP) were compared between conventional 2D- and 3D-spheroid cultures of human breast cancer cells. The 2D and 3D breast cancer cultures were exposed to various doses of SWCNT-COOH (0.25-2 μg/mL), CDDP (0.158-1.26 μg/mL) and the same doses of SWNCT-COOH-CDDP complex for 24 and 48 h. The anti-tumor activity, including modulation of cell viability, oxidative stress, proliferation, apoptosis, and invasion potential, was explored by spectrophotometric and fluorometric methods, immunoblotting, optical and fluorescence microscopy. The SWCNT-COOH-CDDP complex proved to have high anti-cancer efficiency on 2D and 3D cultures by inhibiting cell proliferation and activating cell death. A dose of 0.632 μg/mL complex triggered different pathways of apoptosis in 2D and 3D cultures, by intrinsic, extrinsic, and reticulum endoplasmic pathways. Overall, the 2D cultures showed higher susceptibility to the action of complex compared to 3D cultures and SWCNT-COOH-CDDP proved enhanced anti-tumoral activity compared to free CDDP.
Collapse
Affiliation(s)
- Madalina Andreea Badea
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663, Bucharest, Romania
| | - Mihaela Balas
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania.
| | - Daniela Ionita
- Faculty of Applied Chemistry and Materials Science, Department of General Chemistry, Politehnica University of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania
| | - Anca Dinischiotu
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
5
|
El-Bendary MM, Akhdhar A, Al-Bogami AS, Domyati D, Kalantan AA, Alzahrani FA, Alamoudi SM, Sheikh RA, Ali EMM. Palladium and platinum complexes based on pyridine bases induced anticancer effectiveness via apoptosis protein signaling in cancer cells. Biometals 2024; 37:905-921. [PMID: 38361146 DOI: 10.1007/s10534-023-00580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024]
Abstract
Palladium and platinum complexes, especially those that include cisplatin, can be useful chemotherapeutic drugs. Alternatives that have less adverse effects and require lower dosages of treatment could be provided by complexes containing pyridine bases. The complexes [Pd(SCN)2(4-Acpy)2] (1), [Pd(N3)2(4-Acpy)2] (2) [Pd(paOH)2].2Cl (3) and [Pt(SCN)2(paO)2] (4) were prepared by self-assembly method at ambient temperature; (4-Acpy = 4-acetylpyridine and paOH = pyridine-2-carbaldehyde-oxime). The structure of complexes 1-4 was confirmed using spectroscopic and X-ray crystallography methods. Complexes 1-4 have similar features in isomerism that include the trans coordination geometry of pyridine ligands with Pd or Pt ion. The 3D network structure of complexes 1-4 was constructed by an infinite number of discrete mononuclear molecules extending via H-bonds. The Pd and Pt complexes 1-4 with pyridine ligands were assessed on MCF-7, T47D breast cancer cells and HCT116 colon cancer cells. The study evaluated cell death through apoptosis and cell cycle phases in MCF-7 cells treated with palladium or platinum conjugated with pyridine base. Upon treatment of MCF-7 with these complexes, the expression of apoptotic signals (Bcl2, p53, Bax and c-Myc) and cell cycle signals (p16, CDK1A, CDK1B) were evaluated. Compared to other complexes and cisplatin, IC50 of complex 1 was lowest in MCF-7 cells and complex 2 in T47D cells. Complex 4 has the highest effectiveness on HCT116. The selective index (SI) of complexes 1-4 has a value of more than two for all cancer cell lines, indicating that the complexes were less toxic to normal cells when given the same dose. MCF-7 cells treated with complex 2 and platinum complex 4 exhibited the highest level of early apoptosis. p16 may be signal arrest cells in Sub G, which was observed in cells treated with palladium complexes that suppress excessive cell proliferation. High c-Myc expression of treated cells with four complexes 1-4 and cisplatin could induce p53. All complexes 1-4 elevated the expression of Bax and triggered by the tumor suppressor gene p53. p53 was downregulating the expression of Bcl2.
Collapse
Affiliation(s)
- Mohamed M El-Bendary
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia.
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Abdullah Akhdhar
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia
| | - Abdullah S Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia
| | - Doaa Domyati
- Department of Chemistry, College of Science, University of Jeddah, 21959, Jeddah, Saudi Arabia
| | - Abdulaziz A Kalantan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Faisal Ay Alzahrani
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University, 21911, Rabigh, Saudi Arabia
| | - Samer M Alamoudi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ryan A Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
6
|
Taguchi K, Sugahara S, Elias BC, Pabla N, Canaud G, Brooks CR. IL-22 promotes acute kidney injury through activation of the DNA damage response and cell death in proximal tubule cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544134. [PMID: 37333314 PMCID: PMC10274795 DOI: 10.1101/2023.06.08.544134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Acute kidney injury (AKI) affects over 13 million people world-wide annually and is associated with a fourfold increase in mortality. Our lab and others have shown that DNA damage response (DDR) governs the outcome of AKI in a bimodal manner. Activation of DDR sensor kinases protects against AKI, while hyperactivation of DDR effector proteins, such as p53, induces to cell death and worsens AKI. The factors that trigger the switch from pro-reparative to pro-cell death DDR remain to be resolved. Here we investigate the role of interleukin 22 (IL-22), an IL-10 family member whose receptor (IL-22RA1) is expressed on proximal tubule cells (PTCs), in DDR activation and AKI. Using cisplatin and aristolochic acid (AA) induced nephropathy as models of DNA damage, we identify PTCs as a novel source of urinary IL-22, making PTCs the only epithelial cells known to secret IL-22, to our knowledge. Functionally, IL-22 binding its receptor (IL-22RA1) on PTCs amplifies the DDR. Treating primary PTCs with IL-22 alone induces rapid activation of the DDR in vitro. The combination of IL-22 + cisplatin or AA treatment on primary PTCs induces cell death, while the same dose of cisplatin or AA alone does not. Global deletion of IL-22 protects against cisplatin or AA induced AKI. IL-22 deletion reduces expression of components of the DDR and inhibits PTC cell death. To confirm PTC IL-22 signaling contributes to AKI, we knocked out IL-22RA1 in renal epithelial cells by crossing IL-22RA1floxed mice with Six2-Cre mice. IL-22RA1 KO reduced DDR activation, cell death, and kidney injury. These data demonstrate that IL-22 promotes DDR activation in PTCs, switching pro-recovery DDR responses to a pro-cell death response and worsening AKI. Targeting IL-22 represents a novel therapeutic approach to prevent the negative consequences of the DDR activation while not interfering with the processes necessary for repair of damaged DNA.
Collapse
Affiliation(s)
- Kensei Taguchi
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sho Sugahara
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bertha C Elias
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Navjot Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Guillaume Canaud
- Overgrowth Syndrome and Vascular Anomalies Unit, Hôpital Necker Enfants Malades, Université de Paris, Paris, France
| | - Craig R Brooks
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
7
|
Ajwa dates (Phoenix dactylifera L.) attenuate cisplatin-induced nephrotoxicity in rats via augmenting Nrf2, modulating NADPH oxidase-4 and mitigating inflammatory/apoptotic mediators. Biomed Pharmacother 2022; 156:113836. [PMID: 36242846 DOI: 10.1016/j.biopha.2022.113836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
In the therapy of cisplatin (CP), nephrotoxicity is a main limiting issue that associated with oxidative stress and apoptosis. According to many studies, the antioxidant and anti-inflammatory properties of Ajwa dates are very strong, due to the unique phytochemical profile. Here, we investigated the possible mitigative effects of Ajwa dates fruits extract (ADFE) vs CP-induced nephrotoxicity in rats, in addition to phytochemical profiling of its components via LC-MS/MS. Six groups were formed from forty-two male rats. G1: control, G2: ADFE 0.25 g/kg, G3: ADFE 0.5 g/kg (for 21 days), G4: CP -intoxicated group (single i.p. dose of 7.0 mg/kg b.w) on day 16th, G5: ADFE 0.25 + CP, G6: ADFE 0.5 + CP. LC-MS/MS analysis revealed the tentative identification of 17 compounds of different chemical nature, including organic/phenolic acids, and flavonoids and their sulphated/glycosides derivatives. ADFE has considerable antioxidant potential (DPPH with IC50 326.65 µg/ml and FRAP= 20.91 mM FeSO4/g extract) and total phenolic content (TPC = 35.44 mg/GAE/g extract). It (especially at dose 0.5 g/kg b.w) significantly modulated the toxicity of CP via enhancing food intake and hematobiochemical indices (renal functions, anemia, and leucopenia), increasing the renal antioxidant status (GSH, SOD, and CAT), decreasing the production of oxidative stress and inflammatory markers (MDA, NO, H2O2, MPO, MCP-1, TNF-α and IL-6), augmenting mRNA expression of Nrf2, and modulating NOX4 mRNA expression. The existence of bioactive compounds in ADFE may be responsible for their prophylactic properties, demonstrating natural usefulness in the treatment of oxidative stress, hypochromic anemia, immunodeficiency, and inflammatory complications, all of which are chemotherapy side effects.
Collapse
|
8
|
Lae Lae Phoo N, Sukhamwang A, Dejkriengkraikul P, Yodkeeree S. Diclofenac Sensitizes Signet Ring Cell Gastric Carcinoma Cells to Cisplatin by Activating Autophagy and Inhibition of Survival Signal Pathways. Int J Mol Sci 2022; 23:ijms232012066. [PMID: 36292923 PMCID: PMC9602524 DOI: 10.3390/ijms232012066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer has one of the highest incidence rates of cancer worldwide while also contributing to increased drug resistance among patients in clinical practice. Herein, we have investigated the role of diclofenac (DCF) on sensitizing cisplatin resistance in signet ring cell gastric carcinoma cells (SRCGC). Non-toxic concentrations of DCF significantly augmented cisplatin-induced cell death in cisplatin-resistant SRCGC cells (KATO/DDP) but not in cisplatin-sensitive SRCGC cells (KATOIII). Consistently, concomitant treatment of DCF and cisplatin significantly enhanced autophagic cell death due to overproduction of intracellular reactive oxygen species (ROS). At the molecular level, the induction of ROS has been associated with a reduction in antioxidant enzymes expression while inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Moreover, the combination of DCF and cisplatin also inhibited the expression of survival proteins including Bcl-2, Bcl-xL, cIAP1 and cyclin D1 in KATO/DDP cells when compared with cisplatin alone. This was due, at least in part, to reduce MAPKs, Akt, NF-κB, AP-1 and STAT-3 activation. Taken together, our results suggested that DCF potentiated the anticancer effect of cisplatin in SRCGC via the regeneration of intracellular ROS, which in turn promoted cell death as an autophagy mechanism and potentially modulated the cell survival signal transduction pathway.
Collapse
Affiliation(s)
- Nang Lae Lae Phoo
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Amonnat Sukhamwang
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornngarm Dejkriengkraikul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence:
| |
Collapse
|
9
|
Zhao Z, Simms A, Steinmetz NF. Cisplatin-Loaded Tobacco Mosaic Virus for Ovarian Cancer Treatment. Biomacromolecules 2022; 23:4379-4387. [PMID: 36053908 PMCID: PMC9831511 DOI: 10.1021/acs.biomac.2c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ovarian cancer is the foremost cause of gynecological cancer and a major cause of cancer death in women. Treatment for advanced stage is surgical debulking followed by chemotherapy; however, most patients relapse with more aggressive and therapy-resistant tumors. There is a need to develop drug delivery approaches to deliver platinum therapies to tumors to increase efficacy while maintaining safety. Toward this goal, we utilized the protein nanotubes from the plant virus, tobacco mosaic virus (TMV), as a drug carrier. Specifically, the nanochannel of TMV was loaded with the active dication form of cisplatin (cisPt2+), making use of the negatively charged Glu acid side chains that line the interior channel of TMV. We achieved a loading efficiency with ∼2700 cisPt2+ per TMV; formulation stability was established with drug complexes stably loaded into the carrier for 2 months under refrigerated storage. TMV-cisPt maintained its efficacy against ovarian tumor cells with an IC50 of ∼40 μM. TMV-cisPt exhibited superior efficacy vs free cisPt in ovarian tumor mouse models using intraperitoneal ID8-Defb29/Vegf-a-Luc (mouse) tumors and subcutaneous A2780 (human) xenografts. TMV-cisPt treatment led to reduced tumor burden and increased survival. Using ID8-Defb29/Vegf-a-Luc-bearing C57BL/6 mice, we also noted reduced tumor growth when animals were treated with TMV alone, which may indicate antitumor immunity induced by the immunomodulatory nature of the plant virus nanoparticle. Biodistribution studies supported the efficacy data, showing increased cisPt accumulation within tumors when delivered via the TMV carrier vs free cisPt administration. Finally, good safety profiles were noted. The study highlights the potential of TMV as a drug carrier against cancer and points to the opportunity to explore plant viruses as chemo-immuno combination cancer therapeutics.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States; Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Andrea Simms
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States; Center for Nano-ImmunoEngineering, Department of Bioengineering, Department of Radiology, and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, United States; Institute for Materials Discovery and Design, University of California, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Al-Rashdi KS, Babgi BA, Ali EMM, Davaasuren B, Jedidi A, Emwas AHM, Alrayyani MA, Jaremko M, Humphrey MG, Hussien MA. Tuning the anticancer properties of Pt(ii) complexes via structurally flexible N-(2-picolyl)salicylimine ligands. RSC Adv 2022; 12:27582-27595. [PMID: 36276022 PMCID: PMC9514381 DOI: 10.1039/d2ra04992a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/17/2022] [Indexed: 09/12/2023] Open
Abstract
Three tridentate Schiff base ligands were synthesized from the reactions between 2-picolylamine and salicylaldehyde derivatives (3-ethoxy (OEt), 4-diethylamino (NEt2) and 4-hydroxy (OH)). Complexes with the general formula Pt(N^N^O)Cl were obtained from reactions between the ligands and K2PtCl4. The ligands and their complexes were characterized by NMR spectroscopy, mass spectrometry and elemental analysis. Further confirmation of the structure of Pt-OEt was achieved by single-crystal X-ray diffraction. The DMSO/chlorido exchange process at Pt-OEt was investigated by monitoring the change in conductivity, revealing very slow dissociation in DMSO. Moreover, solvent/chlorido exchange for Pt-OEt and Pt-NEt2 were investigated by NMR spectroscopy in DMSO and DMSO/D2O; Pt-NEt2 forms an adduct with DMSO while Pt-OEt forms adducts with DMSO and water. The DNA-binding behaviour of the platinum(ii) complexes was investigated by two techniques. Pt-NEt2 has the best apparent binding constant. The intercalation mode of interaction with ct-DNA was suggested by molecular docking studies and the increase in the relative viscosity of ct-DNA with increasing concentrations of the platinum(ii) complexes. However, the gradual decrease in the relative viscosity over time at constant concentration of platinum(ii) complexes indicated a shift from intercalation to a covalent binding mode. Anticancer activities of the ligands and their platinum(ii) complexes were examined against two cell lines. The platinum(ii) complexes exhibit superior cytotoxicity to that of their ligands. Among the platinum(ii) complexes, Pt-OEt possesses the best IC50 against both cell lines, its cytotoxicity being comparable to that observed for cisplatin. Cell cycle arrest in the HepG2 cell line upon treatment with Pt-OEt and Pt-NEt2 was investigated and compared to that of cisplatin; the change in the cell accumulation patterns supports the presumption of an apoptotic cell death pathway. The optimized structures of the B-DNA trimer adducts with the platinum complexes showed hydrogen-bonding interactions between the ligands and nucleobases, affecting the inter-strand hydrogen bonding within the DNA, and highlighting the strong ability of the complexes to induce conformational changes in the DNA, leading to the activation of apoptotic cell death. In summary, the current study demonstrates promising new anticancer platinum(ii) complexes with highly flexible tridentate ligands; the functional groups on the ligands are important in tuning their DNA binding/anticancer properties.
Collapse
Affiliation(s)
- Kamelah S Al-Rashdi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966 555563702
| | - Bandar A Babgi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966 555563702
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University Tanta 31527 Egypt
| | - Bambar Davaasuren
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdesslem Jedidi
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966 555563702
| | - Abdul-Hamid M Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Maymounah A Alrayyani
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966 555563702
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mark G Humphrey
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
| | - Mostafa A Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia +966 555563702
- Department of Chemistry, Faculty of Science, Port Said University Port Said 42521 Egypt
| |
Collapse
|
11
|
Pyrocatechol Alleviates Cisplatin-Induced Acute Kidney Injury by Inhibiting ROS Production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2158644. [PMID: 36193072 PMCID: PMC9526614 DOI: 10.1155/2022/2158644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
As one of the most common cancer chemotherapy drugs, cisplatin is widely used in cancer management. However, cisplatin-induced nephrotoxicity occurs in patients who receive this drug. This study is aimed at developing therapeutic agents that effectively alleviate the nephrotoxic effects during cisplatin treatment. We identified a compound named pyrocatechol (PCL) from a natural product library that significantly alleviated cisplatin-induced cytotoxicity in vitro. Pyrocatechol treatment substantially ameliorated cisplatin (20 mg · kg−1) treatment-induced neuropathological indexes, including inflammatory cell infiltration and apoptosis, in vivo. Mechanistically, pyrocatechol significantly prevented oxidative stress-induced apoptosis by activating glutathione peroxidase 4 (GPX4) to reduce reactive oxygen species (ROS) accumulation in cisplatin-treated cells. In addition, pyrocatechol significantly inhibited ROS-induced JNK/P38 activation. Thus, we found that pyrocatechol prevents ROS-mediated JNK/P38 MAPK activation, apoptosis, and cytotoxicity through GPX4. Our study demonstrated that pyrocatechol is a novel therapeutic agent against cisplatin-induced kidney injury.
Collapse
|
12
|
Loren P, Saavedra N, Saavedra K, De Godoy Torso N, Visacri MB, Moriel P, Salazar LA. Contribution of MicroRNAs in Chemoresistance to Cisplatin in the Top Five Deadliest Cancer: An Updated Review. Front Pharmacol 2022; 13:831099. [PMID: 35444536 PMCID: PMC9015654 DOI: 10.3389/fphar.2022.831099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Cisplatin (DDP) is a well-known anticancer drug used for the treatment of numerous human cancers in solid organs, including bladder, breast, cervical, head and neck squamous cell, ovarian, among others. Its most important mode of action is the DNA-platinum adducts formation, inducing DNA damage response, silencing or activating several genes to induce apoptosis; these mechanisms result in genetics and epigenetics modifications. The ability of DDP to induce tumor cell death is often challenged by the presence of anti-apoptotic regulators, leading to chemoresistance, wherein many patients who have or will develop DDP-resistance. Cancer cells resist the apoptotic effect of chemotherapy, being a problem that severely restricts the successful results of treatment for many human cancers. In the last 30 years, researchers have discovered there are several types of RNAs, and among the most important are non-coding RNAs (ncRNAs), a class of RNAs that are not involved in protein production, but they are implicated in gene expression regulation, and representing the 98% of the human genome non-translated. Some ncRNAs of great interest are long ncRNAs, circular RNAs, and microRNAs (miRs). Accumulating studies reveal that aberrant miRs expression can affect the development of chemotherapy drug resistance, by modulating the expression of relevant target proteins. Thus, identifying molecular mechanisms underlying chemoresistance development is fundamental for setting strategies to improve the prognosis of patients with different types of cancer. Therefore, this review aimed to identify and summarize miRs that modulate chemoresistance in DDP-resistant in the top five deadliest cancer, both in vitro and in vivo human models.
Collapse
Affiliation(s)
- Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | | | | | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
13
|
Chatterjee M, Sengupta S. Human Satellite III long non-coding RNA imparts survival benefits to cancer cells. Cell Biol Int 2022; 46:611-627. [PMID: 35005799 DOI: 10.1002/cbin.11761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/06/2021] [Accepted: 12/26/2021] [Indexed: 11/07/2022]
Abstract
Long non-coding RNAs (lncRNAs) are heterogeneous group of transcripts that lack coding potential and have essential roles in gene regulations. Recent days have seen an increasing association of non-coding RNAs with human diseases, especially cancers. One interesting group of non-coding RNAs strongly linked to cancers are heterochromatic repetitive Satellite RNAs. Satellite RNAs are transcribed from pericentromeric heterochromatic region of the human chromosomes. Satellite II RNA, most extensively studied, is upregulated in wide variety of epithelial cancer. Similarly, alpha satellite is over expressed in BRCA1- deficient tumors. Though much is known about alpha satellites and SatII repeats, little is known about Satellite III (SatIII) lncRNAs in human cancers. SatIII repeats, though transcriptionally silent in normal conditions is actively transcribed under condition of stress, mainly heat shock. In the present study, we show that colon and breast cancer cells aberrantly transcribes SatIII, in a Heat shock factor I (HSF1)-independent manner. Our study also reveals that, overexpression of SatIII RNA favours cancer cell survival by overriding chemo drug-induced cell death. Interestingly, knockdown of SatIII sensitizes cells towards chemotherapeutic drugs. This sensitization is possibly mediated by restoration of p53 protein expression that facilitates cell death. Heat shock however helps SatIII to continue with its pro-cell survival function. Our results, therefore suggest SatIII to be an important regulator of human cancers. Induction of SatIII is not only a response to the oncogenic stress but also facilitates cancer progression by a distinct pathway that is different from heat stress pathway. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Manjima Chatterjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sonali Sengupta
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
14
|
Dutta D, Sharma P, Gomila RM, Frontera A, Barcelo-Oliver M, Verma AK, Gogoi M, Bhattacharyya MK. Solvent driven structural topologies involving unconventional O H(methanol)⋯π contact and anti-cooperative HB⋯anion-π⋯HB assemblies with unusual enclathration of dual guest (H2O)4 cores in Mn(II) and Ni(II) coordination compounds: Antiproliferative evaluation and theoretical studies. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Huang D, Yang J, Li C, Hui Y, Chen W. Recent Advances in Isolation, Synthesis and Biological Evaluation of Terrein. Chem Biodivers 2021; 18:e2100594. [PMID: 34704347 DOI: 10.1002/cbdv.202100594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 11/11/2022]
Abstract
Terrein is a small-molecule polyketide compound with a simple structure mainly isolated from fungi. Since its discovery in 1935, many scholars have conducted a series of research on its structure identification, isolation source, production increase, synthesis and biological activity. Studies have shown that terrein has a variety of biological activities, not only can inhibit melanin production and epidermal hyperplasia, but also has anti-cancer, anti-inflammatory, anti-angiopoietic secretion, antibacterial, insecticidal activities, and so on. It has potential application prospects in beauty, medicine, agriculture and other fields. This article reviews the process of structural identification of terrein since 1935, and summarizes the latest advances in its isolation, source, production increase, synthesis, and biological activity evaluation, with a view to providing a reference and helping for the in-depth research of terrein.
Collapse
Affiliation(s)
- Dan Huang
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Jianni Yang
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Chen Li
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| | - Wenhao Chen
- Key Laboratory of Tropical Medicinal Resources Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.,Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158 Hainan, P. R. China
| |
Collapse
|
16
|
Grosfeld EV, Bidiuk VA, Mitkevich OV, Ghazy ESMO, Kushnirov VV, Alexandrov AI. A Systematic Survey of Characteristic Features of Yeast Cell Death Triggered by External Factors. J Fungi (Basel) 2021; 7:886. [PMID: 34829175 PMCID: PMC8626022 DOI: 10.3390/jof7110886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/20/2022] Open
Abstract
Cell death in response to distinct stimuli can manifest different morphological traits. It also depends on various cell death signaling pathways, extensively characterized in higher eukaryotes but less so in microorganisms. The study of cell death in yeast, and specifically Saccharomyces cerevisiae, can potentially be productive for understanding cell death, since numerous killing stimuli have been characterized for this organism. Here, we systematized the literature on external treatments that kill yeast, and which contains at least minimal data on cell death mechanisms. Data from 707 papers from the 7000 obtained using keyword searches were used to create a reference table for filtering types of cell death according to commonly assayed parameters. This table provides a resource for orientation within the literature; however, it also highlights that the common view of similarity between non-necrotic death in yeast and apoptosis in mammals has not provided sufficient progress to create a clear classification of cell death types. Differences in experimental setups also prevent direct comparison between different stimuli. Thus, side-by-side comparisons of various cell death-inducing stimuli under comparable conditions using existing and novel markers that can differentiate between types of cell death seem like a promising direction for future studies.
Collapse
Affiliation(s)
- Erika V. Grosfeld
- Moscow Institute of Physics and Technology, 9 Institutskiy per, Dolgoprudny, 141700 Moscow, Russia;
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Victoria A. Bidiuk
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Olga V. Mitkevich
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Eslam S. M. O. Ghazy
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Vitaliy V. Kushnirov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| | - Alexander I. Alexandrov
- Federal Research Center of Biotechnology of the RAS, Bach Institute of Biochemistry, 119071 Moscow, Russia; (V.A.B.); (O.V.M.); (E.S.M.O.G.); (V.V.K.)
| |
Collapse
|
17
|
Qin Z, Tong H, Li T, Cao H, Zhu J, Yin S, He W. SPHK1 contributes to cisplatin resistance in bladder cancer cells via the NONO/STAT3 axis. Int J Mol Med 2021; 48:204. [PMID: 34549307 PMCID: PMC8480383 DOI: 10.3892/ijmm.2021.5037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) serves an important role in various physiological and pathophysiological processes, including the regulation of cell apoptosis, proliferation and survival. Sphingosine kinase 1 (SPHK1) is a lipid kinase that phosphorylates sphingosine to generate S1P. S1P has been proven to be positively correlated with chemotherapy resistance in breast cancer, colorectal carcinoma and non-small cell lung cancer. However, whether SPHK1 is involved in the development of cisplatin resistance remains to be elucidated. The present study aimed to identify the association between SPHK1 and chemoresistance in bladder cancer cells and to explore the therapeutic implications in patients with bladder cancer. Bladder cancer cell proliferation and apoptosis were determined using Cell Counting Kit-8 assays and flow cytometry, respectively. Apoptosis-related proteins were detected via western blotting. The results revealed that SPHK1 was positively correlated with cisplatin resistance in bladder cancer cells, exhibiting an antiapoptotic effect that was reflected by the downregulation of apoptosis-related proteins (Bax and cleaved caspase-3) and the upregulation of an antiapoptotic protein (Bcl-2) in SPHK1-overexpression cell lines. Suppression of SPHK1 by small interfering RNA or FTY-720 significantly reversed the antiapoptotic effect. A potential mechanism underlying SPHK1-induced cisplatin resistance and apoptosis inhibition may be activation of STAT3 via binding non-POU domain containing octamer binding. In conclusion, the present study suggested that SPHK1 displayed significant antiapoptotic effects in cisplatin-based treatment, thus may serve as a potential novel therapeutic target for the treatment for bladder cancer.
Collapse
Affiliation(s)
- Zijia Qin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Honghao Cao
- Department of Urology, Rongchang Traditional Chinese Medicine Hospital, Chongqing 402460, P.R. China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Siwen Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
18
|
The Prognostic Significance of the BIN1 and CCND2 Gene in Adult Patients with Acute Myeloid Leukemia. Indian J Hematol Blood Transfus 2021; 38:481-491. [DOI: 10.1007/s12288-021-01479-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022] Open
|
19
|
A375 melanoma cells are sensitized to cisplatin-induced toxicity by a synthetic nitro-flavone derivative 2-(4-Nitrophenyl)-4H-chromen-4-one through inhibition of PARP1. Mol Biol Rep 2021; 48:5993-6005. [PMID: 34342816 DOI: 10.1007/s11033-021-06600-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Cisplatin has been extensively used in therapeutics for its broad-spectrum anticancer activity and frequently used for the treatment of solid tumors. However, it presents several side-effects and several cancers develop resistance. Combination therapy of cisplatin with poly (ADP-ribose) polymerase 1 (PARP1) inhibitors has been effective in increasing its efficacy at lower doses. METHODS AND RESULTS In this work, we have shown that the nitro-flavone derivative, 2-(4-Nitrophenyl)-4H-chromen-4-one (4NCO), can improve the sensitivity of cancer cells to cisplatin through inhibition of PARP1. The effect of 4NCO on cisplatin toxicity was studied through combination therapy in both exponential and density inhibited A375 melanoma cells. Combination index (CI) was determined from isobologram analysis. The mechanism of cell killing was assessed by lactate dehydrogenase (LDH) assay. Temporal nicotinamide adenine dinucleotide (NAD+) assay was done to show the inhibition of PARP1. We also performed in silico molecular modeling studies to know the binding mode of 4NCO to a modeled PARP1-DNA complex containing cisplatin-crosslinked adduct. The results from both in silico and in cellulo studies confirmed that PARP1 inhibition by 4NCO was most effective in sensitizing A375 melanoma cells to cisplatin. Isobologram analysis revealed that 4NCO reduced cell viability both in exponential and density inhibited A375 cells synergistically. The combination led to cell death through apoptosis. CONCLUSION The synthetic nitro-flavone derivative 4NCO effectively inhibited the important nuclear DNA repair enzyme PARP1 and therefore, could complement the DNA-damaging anticancer drug cisplatin in A375 cells and thus, could act as a potential adjuvant to cisplatin in melanoma therapy.
Collapse
|
20
|
Wu Q, Siddharth S, Sharma D. Triple Negative Breast Cancer: A Mountain Yet to Be Scaled Despite the Triumphs. Cancers (Basel) 2021; 13:3697. [PMID: 34359598 PMCID: PMC8345029 DOI: 10.3390/cancers13153697] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 12/12/2022] Open
Abstract
Metastatic progression and tumor recurrence pertaining to TNBC are certainly the leading cause of breast cancer-related mortality; however, the mechanisms underlying TNBC chemoresistance, metastasis, and tumor relapse remain somewhat ambiguous. TNBCs show 77% of the overall 4-year survival rate compared to other breast cancer subtypes (82.7 to 92.5%). TNBC is the most aggressive subtype of breast cancer, with chemotherapy being the major approved treatment strategy. Activation of ABC transporters and DNA damage response genes alongside an enrichment of cancer stem cells and metabolic reprogramming upon chemotherapy contribute to the selection of chemoresistant cells, majorly responsible for the failure of anti-chemotherapeutic regime. These selected chemoresistant cells further lead to distant metastasis and tumor relapse. The present review discusses the approved standard of care and targetable molecular mechanisms in chemoresistance and provides a comprehensive update regarding the recent advances in TNBC management.
Collapse
Affiliation(s)
| | - Sumit Siddharth
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA;
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA;
| |
Collapse
|
21
|
Cisplatin-functionalized nanodiamonds: preparation and characterization, with potential antineoplastic application. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01955-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Majtnerova P, Capek J, Petira F, Handl J, Rousar T. Quantitative spectrofluorometric assay detecting nuclear condensation and fragmentation in intact cells. Sci Rep 2021; 11:11921. [PMID: 34099803 PMCID: PMC8184882 DOI: 10.1038/s41598-021-91380-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
At present, nuclear condensation and fragmentation have been estimated also using Hoechst probes in fluorescence microscopy and flow cytometry. However, none of the methods used the Hoechst probes for quantitative spectrofluorometric assessment. Therefore, the aim of the present study was to develop a spectrofluorometric assay for detection of nuclear condensation and fragmentation in the intact cells. We used human hepatoma HepG2 and renal HK-2 cells cultured in 96-well plates treated with potent apoptotic inducers (i.e. cisplatin, staurosporine, camptothecin) for 6-48 h. Afterwards, the cells were incubated with Hoechst 33258 (2 µg/mL) and the increase of fluorescence after binding of the dye to DNA was measured. The developed spectrofluorometric assay was capable to detect nuclear changes caused by all tested apoptotic inducers. Then, we compared the outcomes of the spectrofluorometric assay with other methods detecting cell impairment and apoptosis (i.e. WST-1 and glutathione tests, TUNEL, DNA ladder, caspase activity, PARP-1 and JNKs expressions). We found that our developed spectrofluorometric assay provided results of the same sensitivity as the TUNEL assay but with the advantages of being fast processing, low-cost and a high throughput. Because nuclear condensation and fragmentation can be typical markers of cell death, especially in apoptosis, we suppose that the spectrofluorometric assay could become a routinely used method for characterizing cell death processes.
Collapse
Affiliation(s)
- Pavlina Majtnerova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Filip Petira
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
23
|
In Vivo Evaluation of the Combined Anticancer Effects of Cisplatin and SAHA in Nonsmall Cell Lung Carcinoma Using [ 18F]FAHA and [ 18F]FDG PET/CT Imaging. Mol Imaging 2021; 2021:6660358. [PMID: 33867871 PMCID: PMC8032518 DOI: 10.1155/2021/6660358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/12/2021] [Indexed: 01/27/2023] Open
Abstract
Combining standard drugs with low doses of histone deacetylase inhibitors (HDACIs) is a promising strategy to increase the efficacy of chemotherapy. The ability of well-tolerated doses of HDACIs that act as chemosensitizers for platinum-based chemotherapeutics has recently been proven in many types and stages of cancer in vitro and in vivo. Detection of changes in HDAC activity/expression may provide important prognostic and predictive information and influence treatment decision-making. Use of [18F] FAHA, a HDAC IIa-specific radionuclide, for molecular imaging may enable longitudinal, noninvasive assessment of HDAC activity/expression in metastatic cancer. We evaluated the synergistic anticancer effects of cisplatin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) in xenograft models of nonsmall cell lung cancer (NSCLC) using [18F] FAHA and [18F] FDG PET/CT imaging. Cisplatin alone significantly increased [18F] FAHA accumulation and reduced [18F] FDG accumulation in H441 and PC14 xenografts; coadministration of cisplatin and SAHA resulted in the opposite effects. Immunochemical staining for acetyl-histone H3 confirmed the PET/CT imaging findings. Moreover, SAHA had a more significant effect on the acetylome in PC14 (EGFR exon 19 deletion mutation) xenografts than H441 (wild-type EGFR and KRAS codon 12 mutant) xenografts. In conclusion, [18F] FAHA enables quantitative visualization of HDAC activity/expression in vivo, thus, may represent a clinically useful, noninvasive tool for the management of patients who may benefit from synergistic anticancer therapy.
Collapse
|
24
|
Das A, Sharma P, Frontera A, Barcelo-Oliver M, Verma AK, Ahmed RS, Hussain S, Bhattacharyya MK. Supramolecular assemblies involving biologically relevant antiparallel π-stacking and unconventional solvent driven structural topology in maleato and fumarato bridged Zn(ii) coordination polymers: antiproliferative evaluation and theoretical studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj00619c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro anticancer activities have been explored in solvent driven maleato and fumarato bridged Zn(ii) coordination polymers involving energetically significant antiparallel π-stacking and enclathrated guest MeOH/H2O moieties.
Collapse
Affiliation(s)
- Amal Das
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Pranay Sharma
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- Palma de Mallorca (Baleares)
- Spain
| | - Miquel Barcelo-Oliver
- Departament de Química
- Universitat de les Illes Balears
- Palma de Mallorca (Baleares)
- Spain
| | - Akalesh K. Verma
- Department of Zoology
- Cell & Biochemical Technology Laboratory
- Cotton University
- Guwahati-781001
- India
| | - Ruksana Sultana Ahmed
- Department of Zoology
- Cell & Biochemical Technology Laboratory
- Cotton University
- Guwahati-781001
- India
| | - Sahid Hussain
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta, Patna-801103
- India
| | | |
Collapse
|
25
|
Widden H, Kaczmarczyk A, Subedi A, Whitaker RH, Placzek WJ. MCL1 binds and negatively regulates the transcriptional function of tumor suppressor p73. Cell Death Dis 2020; 11:946. [PMID: 33144577 PMCID: PMC7641127 DOI: 10.1038/s41419-020-03068-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
MCL1, an anti-apoptotic protein that controls chemosensitivity and cell fate through its regulation of intrinsic apoptosis, has been identified as a high-impact target in anti-cancer therapeutic development. With MCL1-specific inhibitors currently in clinical trials, it is imperative that we understand the roles that MCL1 plays in cells, especially when targeting the Bcl-2 homology 3 (BH3) pocket, the central region of MCL1 that mediates apoptotic regulation. Here, we establish that MCL1 has a direct role in controlling p73 transcriptional activity, which modulates target genes associated with DNA damage response, apoptosis, and cell cycle progression. This interaction is mediated through the reverse BH3 (rBH3) motif in the p73 tetramerization domain, which restricts p73 assembly on DNA. Here, we provide a novel mechanism for protein-level regulation of p73 transcriptional activity by MCL1, while also framing a foundation for studying MCL1 inhibitors in combination with platinum-based chemotherapeutics. More broadly, this work expands the role of Bcl-2 family signaling beyond cell fate regulation.
Collapse
Affiliation(s)
- Hayley Widden
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aneta Kaczmarczyk
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashok Subedi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Shimizu T, Fujii T, Sakai H. The Relationship Between Actin Cytoskeleton and Membrane Transporters in Cisplatin Resistance of Cancer Cells. Front Cell Dev Biol 2020; 8:597835. [PMID: 33195280 PMCID: PMC7655133 DOI: 10.3389/fcell.2020.597835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin [cis-diamminedichloroplatinum (II)] is a platinum-based anticancer drug widely used for the treatment of various cancers. It forms interstrand and intrastrand cross-linking with DNA and block DNA replication, resulting in apoptosis. On the other hand, intrinsic and acquired cisplatin resistance restricts its therapeutic effects. Although some studies suggest that dramatic epigenetic alternations are involved in the resistance triggered by cisplatin, the mechanism is complicated and remains poorly understood. Recent studies reported that cytoskeletal structures regulate cisplatin sensitivity and that activities of membrane transporters contribute to the development of resistance to cisplatin. Therefore, we focus on the roles of actin filaments and membrane transporters in cisplatin-induced apoptosis. In this review, we summarize the relationship between actin cytoskeleton and membrane transporters in the cisplatin resistance of cancer cells.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
27
|
Yi J, Kim TS, Pak JH, Chung JW. Protective Effects of Glucose-Related Protein 78 and 94 on Cisplatin-Mediated Ototoxicity. Antioxidants (Basel) 2020; 9:686. [PMID: 32748834 PMCID: PMC7465420 DOI: 10.3390/antiox9080686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Cisplatin is a widely used chemotherapeutic drug for treating various solid tumors. Ototoxicity is a major dose-limiting side effect of cisplatin, which causes progressive and irreversible sensorineural hearing loss. Here, we examined the protective effects of glucose-related protein (GRP) 78 and 94, also identified as endoplasmic reticulum (ER) chaperone proteins, on cisplatin-induced ototoxicity. Treating murine auditory cells (HEI-OC1) with 25 μM cisplatin for 24 h increased cell death resulting from excessive intracellular reactive oxygen species (ROS) accumulation and caspase-involved apoptotic signaling pathway activation with subsequent DNA fragmentation. GRP78 and GRP94 expression was increased in cells treated with 3 nM thapsigargin or 0.1 μg/mL tunicamycin for 24 h, referred to as mild ER stress condition. This condition, prior to cisplatin exposure, attenuated cisplatin-induced ototoxicity. The involvement of GRP78 and GRP94 induction was demonstrated by the knockdown of GRP78 or GRP94 expression using small interfering RNAs, which abolished the protective effect of mild ER stress condition on cisplatin-induced cytotoxicity. These results indicated that GRP78 and GRP94 induction plays a protective role in remediating cisplatin-ototoxicity.
Collapse
Affiliation(s)
- Junyeong Yi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea;
| | - Tae Su Kim
- Department of Otorhinolaryngology, School of Medicine, Kangwon National University, Gangwondaehakgil, Chuncheon, Gangwon-Do 24341, Korea;
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea
| | - Jong Woo Chung
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-Gu, Seoul 05505, Korea;
| |
Collapse
|
28
|
Velugula K, Kumar A, Chinta JP. Nuclease and anticancer activity of antioxidant conjugated terpyridine metal complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
29
|
Balduit A, Agostinis C, Mangogna A, Maggi V, Zito G, Romano F, Romano A, Ceccherini R, Grassi G, Bonin S, Bonazza D, Zanconati F, Ricci G, Bulla R. The Extracellular Matrix Influences Ovarian Carcinoma Cells' Sensitivity to Cisplatinum: A First Step towards Personalized Medicine. Cancers (Basel) 2020; 12:1175. [PMID: 32392708 PMCID: PMC7281165 DOI: 10.3390/cancers12051175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
The development of personalized therapies for ovarian carcinoma patients is still hampered by several limitations, mainly the difficulty of predicting patients' responses to chemotherapy in tumor cells isolated from peritoneal fluids. The main reason for the low predictive power of in vitro assays is related to the modification of the cancer cells' phenotype induced by the culture conditions, which results in changes to the activation state and drug sensitivity of tumor cells compared to their in vivo properties. We have defined the optimal culture conditions to set up a prognostic test to predict high-grade serous ovarian carcinoma (HGSOC) patients' responses to platinum chemotherapy. We evaluated the effects of hyaluronic acid (HA) and fibronectin matrices and the contribution of freezing/thawing processes to the cell response to platinum-based treatment, collecting spheroids from the ascitic fluids of 13 patients with stage II or III HGSOC. Our findings indicated that an efficient model used to generate predictive data for in vivo sensitivity to platinum is culturing fresh spheroids on HA, avoiding the use of previously frozen primary tumor cells. The establishment of this easy, reproducible and standardized testing method can significantly contribute to an improvement in therapeutic effectiveness, thus bringing the prospect of personalized therapy closer for ovarian carcinoma patients.
Collapse
Affiliation(s)
- Andrea Balduit
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (G.G.); (R.B.)
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
| | - Alessandro Mangogna
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (G.G.); (R.B.)
| | - Veronica Maggi
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
| | - Andrea Romano
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Rita Ceccherini
- Centro Sociale Oncologico, OSARF, Azienda Sanitaria Universitaria Giuliano Isontina, 34127 Trieste, Italy;
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (G.G.); (R.B.)
| | - Serena Bonin
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34134 Trieste, Italy; (G.Z.); (F.R.); (G.R.)
- Department of Medical, Surgical and Health Science, University of Trieste, 34129 Trieste, Italy; (V.M.); (A.R.); (S.B.); (D.B.); (F.Z.)
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (A.B.); (A.M.); (G.G.); (R.B.)
| |
Collapse
|
30
|
Ruan T, Liu W, Tao K, Wu C. A Review of Research Progress in Multidrug-Resistance Mechanisms in Gastric Cancer. Onco Targets Ther 2020; 13:1797-1807. [PMID: 32184615 PMCID: PMC7053652 DOI: 10.2147/ott.s239336] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/15/2020] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most common malignant tumors, and it is also one of the leading causes of cancer death worldwide. Because of its insidious symptoms and lack of early dictation screening, many cases of gastric cancer are at late stages which make it more complicated to cure. For these advanced-stage gastric cancers, combination therapy of surgery, chemotherapy, radiotherapy and target therapy would bring more benefit to the patients. However, the drug-resistance to the chemotherapy restricts its effect and might lead to treatment failure. In this review article, we discuss the mechanisms which have been found in recent years of drug resistance in gastric cancer. And we also want to find new approaches to counteract chemotherapy resistance and bring more benefits to the patients.
Collapse
Affiliation(s)
- Tuo Ruan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
31
|
Norouzi M, Amerian M, Amerian M, Atyabi F. Clinical applications of nanomedicine in cancer therapy. Drug Discov Today 2020; 25:107-125. [DOI: 10.1016/j.drudis.2019.09.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022]
|
32
|
Vukovic R, Kumburovic I, Joksimovic Jovic J, Jovicic N, Katanic Stankovic JS, Mihailovic V, Djuric M, Velickovic S, Arnaut A, Selakovic D, Rosic G. N-Acetylcysteine Protects against the Anxiogenic Response to Cisplatin in Rats. Biomolecules 2019; 9:biom9120892. [PMID: 31861240 PMCID: PMC6995611 DOI: 10.3390/biom9120892] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 12/12/2022] Open
Abstract
Since cisplatin therapy is usually accompanied with numerous toxicities, including neurotoxicity, that involve tissue oxidative damage, the aim of this study was to evaluate the possible protective effect of N-acetylcysteine (NAC) on the anxiogenic response to cisplatin (CIS). Thirty-two male Wistar albino rats divided into four groups (control, cisplatin, NAC, and CIS + NAC). All treatments were delivered intraperitoneally. On day one, the control and cisplatin groups received saline while the NAC and CIS + NAC groups were administered with NAC (500 mg/kg). On the fifth day, the control group received saline while the CIS group was treated with cisplatin (7.5 mg/kg), the NAC group again received NAC (500 mg/kg), and the CIS + NAC group was simultaneously treated with cisplatin and NAC (7.5 and 500 mg/kg, respectively). Behavioral testing, performed on the tenth day in the open field (OF) and elevated plus maze (EPM) tests, revealed the anxiogenic effect of cisplatin that was significantly attenuated by NAC. The hippocampal sections evaluation showed increased oxidative stress (increased lipid peroxidation and decline in antioxidant enzymes activity) and proapoptotic action (predominantly by diminished antiapoptotic gene expression) following a single dose of cisplatin. NAC supplementation along with cisplatin administration reversed the prooxidative and proapoptotic effects of cisplatin. In conclusion, the results obtained in this study confirmed that antioxidant supplementation with NAC may attenuate the cisplatin-induced anxiety. The mechanism of anxiolytic effect achieved by NAC may include the decline in oxidative damage that down regulates increased apoptosis and reverses the anxiogenic action of cisplatin.
Collapse
Affiliation(s)
- Rade Vukovic
- Clinic for Anesthesiology and Critical Care, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia;
| | - Igor Kumburovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.K.); (J.J.J.)
| | - Jovana Joksimovic Jovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.K.); (J.J.J.)
| | - Nemanja Jovicic
- Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Jelena S. Katanic Stankovic
- Department of Science, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica b.b., 34000 Kragujevac, Serbia;
| | - Vladimir Mihailovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovica 12, 34000 Kragujevac, Serbia;
| | - Milos Djuric
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia;
| | - Stefan Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (S.V.); (A.A.)
| | - Aleksandra Arnaut
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (S.V.); (A.A.)
| | - Dragica Selakovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.K.); (J.J.J.)
- Correspondence: (D.S.); (G.R.)
| | - Gvozden Rosic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia; (I.K.); (J.J.J.)
- Correspondence: (D.S.); (G.R.)
| |
Collapse
|
33
|
Russi S, Verma HK, Laurino S, Mazzone P, Storto G, Nardelli A, Zoppoli P, Calice G, La Rocca F, Sgambato A, Lucci V, Falco G, Ruggieri V. Adapting and Surviving: Intra and Extra-Cellular Remodeling in Drug-Resistant Gastric Cancer Cells. Int J Mol Sci 2019; 20:3736. [PMID: 31370155 PMCID: PMC6695752 DOI: 10.3390/ijms20153736] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite the significant recent advances in clinical practice, gastric cancer (GC) represents a leading cause of cancer-related deaths in the world. In fact, occurrence of chemo-resistance still remains a daunting hindrance to effectiveness of the current approach to GC therapy. There is accumulating evidence that a plethora of cellular and molecular factors is implicated in drug-induced phenotypical switching of GC cells. Among them, epithelial-mesenchymal transition (EMT), autophagy, drug detoxification, DNA damage response and drug target alterations, have been reported as major determinants. Intriguingly, resistant GC phenotype may be the result of GC cell-induced tumor microenvironment (TME) remodeling, which is currently emerging as a key player in promoting drug resistance and overcoming cytotoxic effects of drugs. In this review, we discuss the possible mechanisms of drug resistance and their involvement in determining current GC therapies failure.
Collapse
Affiliation(s)
- Sabino Russi
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Henu Kumar Verma
- Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy
| | - Simona Laurino
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Pellegrino Mazzone
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy
| | - Giovanni Storto
- Department of Nuclear Medicine, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Anna Nardelli
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, 80145 Napoli, Italy
| | - Pietro Zoppoli
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Francesco La Rocca
- Laboratory of Clinical Research and Advanced Diagnostics, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Alessandro Sgambato
- Scientific Direction, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy
| | - Valeria Lucci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Geppino Falco
- Section of Stem Cell and Development, Istituto di Ricerche Genetiche "Gaetano Salvatore" Biogem s.c. a.r.l., 83031 Ariano Irpino, Italy.
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Vitalba Ruggieri
- Laboratory of Preclinical and Translational Research, IRCCS-Referral Cancer Center of Basilicata (CROB), 85028 Rionero in Vulture (PZ), Italy.
| |
Collapse
|
34
|
Manosroi J, Chankhampan C, Kitdamrongtham W, Manosroi W, Manosroi A. Potent in vitro Anti-mouth Cancer (KB) and Immunostimulating Activities of the Job's Tears (Coix lachryma-jobi Linn.) Seed Semi-purified Extract Cocktails Containing Linoleic Acid. J Oleo Sci 2019; 68:351-359. [PMID: 30930371 DOI: 10.5650/jos.ess18255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The crude methanolic and hexane extracts of non-cooked, steamed and roasted from three Job's Tears cultivars were prepared and further semi-purified by liquid-liquid extraction techniques and silica gel column. The six single semi-purified extracts (F1-F6) were combined as nine cocktails (CT1, CT6, CT8, CT13, CT14, CT21, CT24, CT25 and CT31) according to the IC50 values from the preliminary study and investigated for anti-proliferative and apoptotic induction on mouth cancer cell line (KB) and immunostimulating as well as antioxidative activities. The highest anti-proliferative activity was observed in CT13 showing the IC50 value of 0.53±0.45 µg/mL which was higher than 5-fluorouracil and doxorubicin of 20.34 and 1.60 times, respectively. CT1 which was the combination of F1-F6 and CT13 which was the combination of F4-F6 exhibited significant strong synergistic activity with the combination index value (CI) of 0.28. CT1 at 200 µg/mL showed the highest percentages of apoptotic cells (40.65±10.97%) with no necrotic cells, but lower than cisplatin (100 µg/mL) of 2.18 times. CT14 gave the highest immunostimulating activity with the phagocytosis percentage of 13.0±1.7%, but lower than lipopolysaccharide of 1.08 times. CT31 gave the highest free radical scavenging and metal chelating activities with the SC50 and MC50 values of 0.73±0.07 and 1.99±0.24 µg/mL, but lower than ascorbic acid and EDTA of 18.25 and 4.33 times, respectively. The linoleic acid contents related to anti-cancer activity were also examined by HPLC. This study has demonstrated that CT1 composing of F1-F6 at the percentage ratio of 0.71:2.06:81.38: 8.47:4.92:2.46 was the potential cocktails of the semi-purified extracts from the Job's Tears which can be further developed as a novel active compound for oral cancer treatment.
Collapse
Affiliation(s)
- Jiradej Manosroi
- Manose Health and Beauty Research Center.,Faculty of Engineering and Technology, North-Chiang Mai University
| | - Charinya Chankhampan
- Manose Health and Beauty Research Center.,Faculty of Engineering and Technology, North-Chiang Mai University
| | - Worapong Kitdamrongtham
- Manose Health and Beauty Research Center.,Faculty of Engineering and Technology, North-Chiang Mai University
| | | | - Aranya Manosroi
- Manose Health and Beauty Research Center.,Faculty of Engineering and Technology, North-Chiang Mai University.,Faculty of Pharmacy / Research Administration Center, Chiang Mai University
| |
Collapse
|
35
|
Ahmmed B, Khan MN, Nisar MA, Kampo S, Zheng Q, Li Y, Yan Q. Tunicamycin enhances the suppressive effects of cisplatin on lung cancer growth through PTX3 glycosylation via AKT/NF-κB signaling pathway. Int J Oncol 2018; 54:431-442. [PMID: 30483742 PMCID: PMC6317655 DOI: 10.3892/ijo.2018.4650] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/05/2018] [Indexed: 12/22/2022] Open
Abstract
Long pentraxin-3 (PTX3) is an inflammatory molecule related to cancer proliferation, invasion, and metastasis. Many studies have highlighted the significance of glycosylated molecules in immune modulation, inflammation and cancer progression. Moreover, aberrant glycosylation of cancer cells is linked to chemoresistance. This study aimed to develop effective therapeutic strategies for deglycosylation of PTX3 (dePTX3) in order to enhance chemosensitivity to cisplatin (Cis) in lung cancer treatment. The A549 and SPCA1 cells were used to determine the role of PTX3 glycosylation in lung cancer growth. Our results revealed that PTX3 was higher in both human lung cancer tissues and serum in comparison with control. Furthermore, we found that deglycosylated PTX3 (dePTX3) by tunicamycin (TM), which is N-glycan precursor biosynthesis blocker, and PNGase F significantly reduced the survival and migration of lung cancer cells. To further confirm this, we also generated glycosylation-site mutant of PTX3 (mPTX3) to characterize the loss of glyco-function. dePTX3 and TM enhanced the suppressive effects of Cis on lung cancer cell growth, migration and invasion compared to individual treatment. Treatment with a combination of TM and Cis significantly inactivated AKT/NF-κB signaling pathway and induced apoptosis. In conclusion, these findings suggest that PTX3 is an important mediator of lung cancer progression, and dePTX3 by TM enhances the anticancer effects of Cis. The deglycosylation in chemotherapy may represent a potential novel therapeutic strategy against lung cancer.
Collapse
Affiliation(s)
- Bulbul Ahmmed
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Muhammad Noman Khan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Muhammad Azhar Nisar
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Sylvanus Kampo
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qin Zheng
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yulin Li
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Laboratory of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
36
|
Chen LL, Lin HP, Zhou WJ, He CX, Zhang ZY, Cheng ZL, Song JB, Liu P, Chen XY, Xia YK, Chen XF, Sun RQ, Zhang JY, Sun YP, Song L, Liu BJ, Du RK, Ding C, Lan F, Huang SL, Zhou F, Liu S, Xiong Y, Ye D, Guan KL. SNIP1 Recruits TET2 to Regulate c-MYC Target Genes and Cellular DNA Damage Response. Cell Rep 2018; 25:1485-1500.e4. [PMID: 30404004 PMCID: PMC6317994 DOI: 10.1016/j.celrep.2018.10.028] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
The TET2 DNA dioxygenase regulates gene expression by catalyzing demethylation of 5-methylcytosine, thus epigenetically modulating the genome. TET2 does not contain a sequence-specific DNA-binding domain, and how it is recruited to specific genomic sites is not fully understood. Here we carried out a mammalian two-hybrid screen and identified multiple transcriptional regulators potentially interacting with TET2. The SMAD nuclear interacting protein 1 (SNIP1) physically interacts with TET2 and bridges TET2 to bind several transcription factors, including c-MYC. SNIP1 recruits TET2 to the promoters of c-MYC target genes, including those involved in DNA damage response and cell viability. TET2 protects cells from DNA damage-induced apoptosis dependending on SNIP1. Our observations uncover a mechanism for targeting TET2 to specific promoters through a ternary interaction with a co-activator and many sequence-specific DNA-binding factors. This study also reveals a TET2-SNIP1-c-MYC pathway in mediating DNA damage response, thereby connecting epigenetic control to maintenance of genome stability.
Collapse
Affiliation(s)
- Lei-Lei Chen
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huai-Peng Lin
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Medical College of Xiamen University, Xiamen 361102, China
| | - Wen-Jie Zhou
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen-Xi He
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Yong Zhang
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhou-Li Cheng
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun-Bin Song
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peng Liu
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin-Yu Chen
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Kun Xia
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiu-Fei Chen
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ren-Qiang Sun
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing-Ye Zhang
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Ping Sun
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for National Center for Protein Science (The PHOENIX Center), Beijing, China
| | - Bing-Jie Liu
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, China
| | - Rui-Kai Du
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for National Center for Protein Science (The PHOENIX Center), Beijing, China
| | - Fei Lan
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sheng-Lin Huang
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng Zhou
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, China
| | - Yue Xiong
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Dan Ye
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Kun-Liang Guan
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
37
|
Chen Y, Zhang L, Liu Y, Tan S, Qu R, Wu Z, Zhou Y, Huang J. Preparation of PGA-PAE-Micelles for Enhanced Antitumor Efficacy of Cisplatin. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25006-25016. [PMID: 29781607 DOI: 10.1021/acsami.8b04259] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poly-γ-l-glutamic acid (PGA) is an outstanding drug carrier candidate owning to its excellent biodegradability and biocompatibility. The PGA carrier may shield toxic drugs from the body and enable the delivery of poorly soluble or unstable drugs and thereby minimize the side effects and improve drug efficacy. However, the limitation of PGA as a drug carrier is low drug loading efficiency (DLE), which is usually below 30%. In this study, we reported a chemical modification method using l-phenylalanine ethyl ester (PAE). PGA-PAE construct was amphiphilic, which could form micelles in aqueous solution. Cisplatin (CDDP), a commonly used chemotherapy drug whose side effect is well-known, was used as a model molecule to test the drug-loading efficiency of PGA-PAE. In this paper, two sizes of CDDP-loaded PGA-PAE micelles (M(Pt)-1 and M(Pt)-2) were prepared, the average diameter of M(Pt)-1 was 106 ± 6 nm and M(Pt)-2 was 210 ± 9 nm. The DLE of M(Pt)-1 and M(Pt)-2 was 52.8 ± 2.2 and 55.8 ± 1.2%, respectively. Both exhibited excellent biocompatibility, stability, and drug-retaining capability in physiological condition. The in vitro accumulative drug-releasing profile, IC50 for different tumor cell lines HeLa, A549, and HCCC9810, and in vivo pharmacokinetics were similar between these two micelles; however, M(Pt)-1 showed higher tumor tissue retention and longer efficient cancer cell internalization time (up to 20 d). Our results suggested PGA-PAE micelle carriers reduced the toxicity of CDDP and its size at around 100 nm was the better for CDDP high-efficacy.
Collapse
Affiliation(s)
- Yazhou Chen
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Li Zhang
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Yingjie Liu
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Shiming Tan
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Ruidan Qu
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Zirong Wu
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| | - Yue Zhou
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , PR China
| | - Jing Huang
- School of Life Science , East China Normal University , Shanghai 200241 , PR China
| |
Collapse
|
38
|
Shao L, Chen Z, Soutto M, Zhu S, Lu H, Romero-Gallo J, Peek R, Zhang S, El-Rifai W. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer. FASEB J 2018; 33:264-274. [PMID: 29985646 DOI: 10.1096/fj.201701456rr] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori infection is a major risk factor for the development of gastric cancer. Aberrant expression of microRNAs is strongly implicated in gastric tumorigenesis; however, their contribution in response to H. pylori infection has not been fully elucidated. In this study, we evaluated the expression of miR-135b-5p and its role in gastric cancer. We describe the overexpression of miR-135b-5p in human gastric cancer tissue samples compared with normal tissue samples. Furthermore, we found that miR-135b-5p is also up-regulated in gastric tumors from the trefoil factor 1-knockout mouse model. Infection with H. pylori induced the expression of miR-135b-5p in the in vitro and in vivo models. miR-135b-5p induction was mediated by NF-κB. Treatment of gastric cancer cells with TNF-α induced miR-135b-5p in a NF-κB-dependent manner. Mechanistically, we found that miR-135b-5p targets Krüppel-like factor 4 (KLF4) and binds to its 3' UTR, leading to reduced KLF4 expression. Functionally, high levels of miR-135b-5p suppress apoptosis and induce cisplatin resistance. Our results uncovered a mechanistic link between H. pylori infection and miR-135b-5p-KLF4, suggesting that targeting miR-135b-5p could be a potential therapeutic approach to circumvent resistance to cisplatin.-Shao, L., Chen, Z., Soutto, M., Zhu, S., Lu, H., Romero-Gallo, J., Peek, R., Zhang, S., El-Rifai, W. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer.
Collapse
Affiliation(s)
- Linlin Shao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
| | - Zheng Chen
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA.,Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA; and
| | - Mohammed Soutto
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
| | - Shoumin Zhu
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA; and
| | - Heng Lu
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA; and
| | - Judith Romero-Gallo
- Division of Gastroenterology, Hematology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard Peek
- Division of Gastroenterology, Hematology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wael El-Rifai
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA.,Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA; and
| |
Collapse
|
39
|
Jaber BM, Petroianu GA, Rizvi SA, Borai A, Saleh NA, Hala SM, Saleh AM. Protective effect of metoclopramide against organophosphate-induced apoptosis in the murine skin fibroblast L929. J Appl Toxicol 2018; 38:329-340. [PMID: 29027213 DOI: 10.1002/jat.3543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/27/2017] [Accepted: 08/30/2017] [Indexed: 11/12/2022]
Abstract
This study was performed to evaluate the protective efficacy of metoclopramide (MCP) against the organophosphates paraoxon (POX)- and malathion (MLT)-induced apoptosis in the murine L929 skin fibroblasts. L929 cells were exposed to either POX (10 nm) or 1.0 μm MLT in the absence and presence of increased concentrations of MCP. The protective effect of MCP on these organophosphate-stimulated apoptotic events was evaluated by flow cytometry analysis after staining with annexin-V/propidium iodide, processing and activation of the executioner caspase-3, cleavage of the poly-ADP ribose polymerase, fragmentation of the nucleosomal DNA and disruption of the mitochondrial membrane potential (Δψ). Our results showed that increased doses of MCP alone (≥10 μm) did not induce apoptosis or activation of caspase-3. Pretreatment of the cells with MCP attenuated all the apoptotic events triggered by the organophosphate compounds in a dose-dependent manner reaching ~70-80% protection when they were preincubated at 1 and 5 μm of the drug before the addition of POX and MLT, respectively. Interestingly, MCP did not offer a significant protective effect against the cytotoxicity of tumor necrosis factor-α, cisplatinum, etoposide or paclitaxel, which stimulate apoptosis by various mechanisms, suggesting that the anti-apoptotic effect of the drug is specific to organophosphates. The strong and specific anti-apoptotic activity of subclinical doses of MCP against the cytotoxicity of organophosphate compounds suggests its potential clinical application in treating their poisoning.
Collapse
Affiliation(s)
- Basem M Jaber
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs, Jeddah, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Kingdom of Saudi Arabia
| | - Georg A Petroianu
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Syed A Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University (NSU), Fort Lauderdale, FL, USA
| | - Anwar Borai
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Kingdom of Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs, Jeddah, Kingdom of Saudi Arabia
| | - Nada A Saleh
- Faculty of Medicine, the University of Jordan, Amman, Jordan
| | - Sharif M Hala
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Kingdom of Saudi Arabia
| | - Ayman M Saleh
- King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Jeddah, Kingdom of Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
CHERAGHIPOUR K, SHARIATI L, KHANAHMAD H, GANJALIKHANI-HAKEMI M, MORIDNIA A, MIRIAN M, PESTEHCHIAN N. Induction of Apoptosis in Toxoplasma gondii Infected Hela Cells by Cisplatin and Sodium Azide and Isolation of Apoptotic Bodies and Potential Use for Vaccination against Toxoplasma gondii. IRANIAN JOURNAL OF PARASITOLOGY 2018; 13:406-415. [PMID: 30483332 PMCID: PMC6243158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Toxoplasma gondii can infect a wide range of mammalians, especially humans. It controls several intracellular signals for the inhibition of apoptosis. This study aimed to investigate the apoptogenic effect of cisplatin and sodium azide on T. gondii infected HeLa cells and isolate apoptotic bodies (blebs) as a potent stimulator of the immune system. METHODS The cytotoxic properties of cisplatin and sodium azide (NaN3) on HeLa cells were evaluated by MTT assay. Moreover, the apoptogenic activity of cisplatin and NaN3 was studied using flow cytometry (Annexin V/PI double staining) and scanning electron microscopy (SEM). Finally, apoptotic bodies were separated by centrifugation. RESULTS MTT assay data showed that the survival rate of cells treated with different concentration of NaN3 was significantly reduced, compared to negative control groups. Concerning cisplatin, only concentration of 20 μM had not a significant impact on the cell viability; however, the other concentration of cisplatin significantly reduced cell viability, compared to negative control groups. The level of early apoptosis in uninfected HeLa cells was higher compared to infected HeLa cells treated with cisplatin and NaN3. Finally, apoptotic bodies were separated from T. gondii infected HeLa cells treated with cisplatin. CONCLUSION Apoptosis was induced in both uninfected and infected HeLa cells with T. gondii and apoptotic bodies were isolated from infected cells. Therefore, further studies on apoptotic bodies are required in order to find a proper candidate for vaccine preparation against T. gondii infections.
Collapse
Affiliation(s)
- Kourosh CHERAGHIPOUR
- Dept. of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Laleh SHARIATI
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein KHANAHMAD
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Diseases, Isfahan University of Medical Sciences, Isfahan, Iran,Dept. of Genetics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Abbas MORIDNIA
- Dept. of Immunology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mina MIRIAN
- Dept. of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nader PESTEHCHIAN
- Dept. of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Correspondence
| |
Collapse
|
41
|
Rajasekaran N, Jung HS, Bae SH, Chelakkot C, Hong S, Choi JS, Yim DS, Oh YK, Choi YL, Shin YK. Effect of HPV E6/E7 siRNA with Chemotherapeutic Agents on the Regulation of TP53/E2F Dynamic Behavior for Cell Fate Decisions. Neoplasia 2017; 19:735-749. [PMID: 28843398 PMCID: PMC5570578 DOI: 10.1016/j.neo.2017.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 01/19/2023] Open
Abstract
Toxicity and resistance remain major challenges for advanced or recurrent cervical cancer therapies, as treatment requires high doses of chemotherapeutic agents. Restoration of TP53 and hypophosphorylated-retinoblastoma (pRB) proteins by human papillomavirus (HPV) E6/E7 siRNA sensitizes HPV-positive cervical cancer cells toward chemotherapeutic agents. Here, we investigated the therapeutic effects of E6/E7 siRNA on the dynamic behavior of TP53 and RB/E2F signaling networks in deciding the cell fate. The synergistic effect of HPV E6/E7 siRNA pool (SP) with chemotherapeutic agents on TP53 and RB/E2F signaling, proliferation, and apoptosis was analyzed in vitro and in vivo. Compared to the E6/E7 SP alone, E6/E7 SP with cisplatin treatment effectively restored TP53 and RB/E2F signaling and contributes to differences in cell fate, such as apoptosis or cell cycle arrest. We also developed a cellular dynamics model that includes TP53-RB/E2F dynamics and cell proliferation profiles, and confirmed its utility for investigating E6/E7 siRNA-based combination regimens. Using a dual reporter system, we further confirmed the cross talk between TP53 and RB/E2F signaling mechanisms. Treatment of E6/E7 SP cationic liposome (i.v.) with cisplatin and paclitaxel (i.p.) potentially inhibited tumor growth in BALB/c-nude mice. Altogether, our findings suggest that stabilization of TP53 and the RB/E2F repressor complex by E6/E7 SP combined with low-dose chemotherapy can effectively suppress tumor growth.
Collapse
Affiliation(s)
- Nirmal Rajasekaran
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hun Soon Jung
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; ABION Inc. R&D Center, 9th Floor, HanWha Biz Metro Building, 242 Digital-ro, Guro-gu, Seoul 08394, Republic of Korea
| | - Soo Hyeon Bae
- PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chaithanya Chelakkot
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungpook 37673, Republic of Korea
| | - Sungyoul Hong
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Sun Choi
- The center for Anti-cancer Companion Diagnostics, School of Biological Science, Institute of Entrepreneurial BioConvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Seok Yim
- PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yu-Kyoung Oh
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoon-La Choi
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Young Kee Shin
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; The Center for Anti-cancer CDx, N-Bio, Seoul National University, Seoul 08826, Republic of Korea; Tumor Microenvironment Global Core Research Center, Seoul National University, Seoul 08826, Republic of Korea; Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
42
|
Tsyganov MM, Freidin MB, Ibragimova MK, Deryusheva IV, Kazantseva PV, Slonimskaya EM, Cherdyntseva NV, Litviakov NV. Genetic variability in the regulation of the expression cluster of MDR genes in patients with breast cancer. Cancer Chemother Pharmacol 2017; 80:251-260. [DOI: 10.1007/s00280-017-3354-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 06/02/2017] [Indexed: 12/22/2022]
|
43
|
Basourakos SP, Li L, Aparicio AM, Corn PG, Kim J, Thompson TC. Combination Platinum-based and DNA Damage Response-targeting Cancer Therapy: Evolution and Future Directions. Curr Med Chem 2017; 24:1586-1606. [PMID: 27978798 PMCID: PMC5471128 DOI: 10.2174/0929867323666161214114948] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 02/07/2023]
Abstract
Maintenance of genomic stability is a critical determinant of cell survival and is necessary for growth and progression of malignant cells. Interstrand crosslinking (ICL) agents, including platinum-based agents, are first-line chemotherapy treatment for many solid human cancers. In malignant cells, ICL triggers the DNA damage response (DDR). When the damage burden is high and lesions cannot be repaired, malignant cells are unable to divide and ultimately undergo cell death either through mitotic catastrophe or apoptosis. The activities of ICL agents, in particular platinum-based therapies, establish a "molecular landscape," i.e., a pattern of DNA damage that can potentially be further exploited therapeutically with DDR-targeting agents. If the molecular landscape created by platinum-based agents could be better defined at the molecular level, a systematic, mechanistic rationale(s) could be developed for the use of DDR-targeting therapies in combination/maintenance protocols for specific, clinically advanced malignancies. New therapeutic drugs such as poly(ADP-ribose) polymerase (PARP) inhibitors are examples of DDR-targeting therapies that could potentially increase the DNA damage and replication stress imposed by platinum-based agents in tumor cells and provide therapeutic benefit for patients with advanced malignancies. Recent studies have shown that the use of PARP inhibitors together with platinum-based agents is a promising therapy strategy for ovarian cancer patients with "BRCAness", i.e., a phenotypic characteristic of tumors that not only can involve loss-of-function mutations in either BRCA1 or BRCA2, but also encompasses the molecular features of BRCA-mutant tumors. On the basis of these promising results, additional mechanism-based studies focused on the use of various DDR-targeting therapies in combination with platinum-based agents should be considered. This review discusses, in general, (1) ICL agents, primarily platinum-based agents, that establish a molecular landscape that can be further exploited therapeutically; (2) multiple points of potential intervention after ICL agent-induced crosslinking that further predispose to cell death and can be incorporated into a systematic, therapeutic rationale for combination/ maintenance therapy using DDR-targeting agents; and (3) available agents that can be considered for use in combination/maintenance clinical protocols with platinum-based agents for patients with advanced malignancies.
Collapse
Affiliation(s)
- Spyridon P. Basourakos
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Likun Li
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ana M. Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jeri Kim
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Timothy C. Thompson
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
44
|
Quercetin and Cisplatin combined treatment altered cell cycle and mitogen activated protein kinase expressions in malignant mesotelioma cells. Altern Ther Health Med 2016; 16:281. [PMID: 27514524 PMCID: PMC4982421 DOI: 10.1186/s12906-016-1267-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/05/2016] [Indexed: 01/03/2023]
Abstract
Background Malignant mesothelioma is a locally aggressive and highly lethal neoplasm of pleural, peritoneal and pericardial mesothelial cells without successful therapy. Previously, we reported that Quercetin in combination with Cisplatin inhibits cell proliferation and activates caspase-9 and -3 enzymes in different malignant mesothelioma cell lines. Moreover, Quercetin + Cisplatin lead to accumulation of both SPC111 and SPC212 cell lines in S phase. Methods In present work, 84 genes involved in cell growth and proliferation have analysed by using RT2-PCR array system and protein profile of mitogen activated protein kinase (MAPK) family proteins investigated by western blots. Results Our results showed that Quercetin and Quercetin + Cisplatin modulated gene expression of cyclins, cyclin dependent kinases and cyclin dependent kinases inhibitors. In addition genes involved in JNK, p38 and MAPK/ERK pathways were up regulated. Moreover, while p38 and JNK phosphorylations were increased, ERK phosphorylations were decreased after using Quercetin + Cisplatin. Conclusion This research has clarified our previous results and detailed mechanism of anti-carcinogenic potential of Quercetin alone and incombination with Cisplatin on malignant mesothelioma cells.
Collapse
|
45
|
Hijaz M, Das S, Mert I, Gupta A, Al-Wahab Z, Tebbe C, Dar S, Chhina J, Giri S, Munkarah A, Seal S, Rattan R. Folic acid tagged nanoceria as a novel therapeutic agent in ovarian cancer. BMC Cancer 2016; 16:220. [PMID: 26979107 PMCID: PMC4791781 DOI: 10.1186/s12885-016-2206-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nanomedicine is a very promising field and nanomedical drugs have recently been used as therapeutic agents against cancer. In a previous study, we showed that Nanoceria (NCe), nanoparticles of cerium oxide, significantly inhibited production of reactive oxygen species, cell migration and invasion of ovarian cancer cells in vitro, without affecting cell proliferation and significantly reduced tumor growth in an ovarian cancer xenograft nude model. Increased expression of folate receptor-α, an isoform of membrane-bound folate receptors, has been described in ovarian cancer. To enable NCe to specifically target ovarian cancer cells, we conjugated nanoceria to folic acid (NCe-FA). Our aim was to investigate the pre-clinical efficacy of NCe-FA alone and in combination with Cisplatin. METHODS Ovarian cancer cell lines were treated with NCe or NCe-FA. Cell viability was assessed by MTT and colony forming units. In vivo studies were carried in A2780 generated mouse xenografts treated with 0.1 mg/Kg NCe, 0.1 mg/Kg; NCe-FA and cisplatinum, 4 mg/Kg by intra-peritoneal injections. Tumor weights and burden scores were determined. Immunohistochemistry and toxicity assays were used to evaluate treatment effects. RESULTS We show that folic acid conjugation of NCe increased the cellular NCe internalization and inhibited cell proliferation. Mice treated with NCe-FA had a lower tumor burden compared to NCe, without any vital organ toxicity. Combination of NCe-FA with cisplatinum decreased the tumor burden more significantly. Moreover, NCe-FA was also effective in reducing proliferation and angiogenesis in the xenograft mouse model. CONCLUSION Thus, specific targeting of ovarian cancer cells by NCe-FA holds great potential as an effective therapeutic alone or in combination with standard chemotherapy.
Collapse
Affiliation(s)
- Miriana Hijaz
- Division of Gynecology Oncology, Department of Women's Health, Henry Ford Hospital, Detroit, MI, USA
| | - Soumen Das
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Ismail Mert
- Division of Gynecology Oncology, Department of Women's Health, Henry Ford Hospital, Detroit, MI, USA.,Wayne State University, Detroit, MI, USA
| | - Ankur Gupta
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, FL, USA
| | - Zaid Al-Wahab
- Division of Gynecology Oncology, Department of Women's Health, Henry Ford Hospital, Detroit, MI, USA
| | - Calvin Tebbe
- Division of Gynecology Oncology, Department of Women's Health, Henry Ford Hospital, Detroit, MI, USA
| | - Sajad Dar
- Division of Gynecology Oncology, Department of Women's Health, Henry Ford Hospital, Detroit, MI, USA
| | - Jasdeep Chhina
- Division of Gynecology Oncology, Department of Women's Health, Henry Ford Hospital, Detroit, MI, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Josephine Ford Cancer Institute, Henry Ford Hospital, Detroit, MI, USA
| | - Adnan Munkarah
- Division of Gynecology Oncology, Department of Women's Health, Henry Ford Hospital, Detroit, MI, USA.,Josephine Ford Cancer Institute, Henry Ford Hospital, Detroit, MI, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, Materials Science and Engineering, University of Central Florida, Orlando, FL, USA.,College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ramandeep Rattan
- Division of Gynecology Oncology, Department of Women's Health, Henry Ford Hospital, Detroit, MI, USA. .,Josephine Ford Cancer Institute, Henry Ford Hospital, Detroit, MI, USA.
| |
Collapse
|
46
|
Jia Y, Sun H, Wu H, Zhang H, Zhang X, Xiao D, Ma X, Wang Y. Nicotine Inhibits Cisplatin-Induced Apoptosis via Regulating α5-nAChR/AKT Signaling in Human Gastric Cancer Cells. PLoS One 2016; 11:e0149120. [PMID: 26909550 PMCID: PMC4765889 DOI: 10.1371/journal.pone.0149120] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/15/2016] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer incidence demonstrates a strong etiologic association with smoking. Nicotine, the major component in tobacco, is a survival agonist that inhibits apoptosis induced by certain chemotherapeutic agents, but the precise mechanisms involved remain largely unknown. Recently studies have indicated that α5-nicotinic acetylcholine receptor (α5-nAChR) is highly associated with lung cancer risk and nicotine dependence. Nevertheless, no information has been available about whether nicotine also affects proliferation of human gastric cancer cells through regulation of α5-nAChR. To evaluate the hypothesis that α5-nAChR may play a role in gastric cancer, we investigated its expression in gastric cancer tissues and cell lines. The expression of α5-nAChR increased in gastric cancer tissue compared with para-carcinoma tissues. In view of the results, we proceeded to investigate whether nicotine inhibits cisplatin-induced apoptosis via regulating α5-nAChR in gastric cancer cell. The results showed that nicotine significantly promoted cell proliferation in a dose and time-dependent manner through α5-nAChR activation in human gastric cells. Furthermore, nicotine inhibited apoptosis induced by cisplatin. Silence of α5-nAChR ablated the protective effects of nicotine. However, when co-administrating LY294002, an inhibitor of PI3K/AKT pathway, an increased apoptosis was observed. This effect correlated with the induction of Bcl-2, Bax, Survivin and Caspase-3 by nicotine in gastric cell lines. These results suggest that exposure to nicotine might negatively impact the apoptotic potential of chemotherapeutic drugs and that α5-nAChR/AKT signaling plays a key role in the anti-apoptotic activity of nicotine induced by cisplatin.
Collapse
Affiliation(s)
- Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Haiji Sun
- College of Life Science, Shandong Normal University, Jinan, China
| | - Hongqiao Wu
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Huilin Zhang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiuping Zhang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Dongjie Xiao
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
- * E-mail: (XM); (YSW)
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
- * E-mail: (XM); (YSW)
| |
Collapse
|
47
|
Inverse regulation of bridging integrator 1 and BCR-ABL1 in chronic myeloid leukemia. Tumour Biol 2016; 37:217-25. [PMID: 26194865 DOI: 10.1007/s13277-015-3772-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022] Open
Abstract
Endocytosis is the major regulator process of tyrosine kinase receptor (RTK) functional activities. Bridging integrator 1 (BIN1) is a key protein involved in RTK intracellular trafficking. Here, we report, by studying 34 patients with chronic myeloid leukemia (CML) at diagnosis, that BIN1 gene is downregulated in CML as compared to healthy controls, suggesting an altered endocytosis of RTKs. Rab interactor 1 (RIN1), an activator of BIN1, displayed a similar behavior. Treatment of 57 patients by tyrosine kinase inhibitors caused, along with BCR-ABL1 inactivation, an increase of BIN1 and RIN1 expression, potentially restoring endocytosis. There was a significant inverse correlation between BIN1-RIN1 and BCR-ABL1 expression. In vitro experiments on both CML and nontumorigenic cell lines treated with Imatinib confirmed these results. In order to provide another proof in favor of BIN1 and RIN1 endocytosis function in CML, we demonstrated that Imatinib induced, in K562 cell line, BIN1-RIN1 upregulation accompanied by a parallel AXL receptor internalization into cytoplasmic compartment. This study shows a novel deregulated mechanism in CML patients, indicating BIN1 and RIN1 as players in the maintenance of the abnormal RTK signaling in this hematological disease.
Collapse
|
48
|
PAN-811 Blocks Chemotherapy Drug-Induced In Vitro Neurotoxicity, While Not Affecting Suppression of Cancer Cell Growth. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:9392404. [PMID: 26640619 PMCID: PMC4657105 DOI: 10.1155/2016/9392404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022]
Abstract
Chemotherapy often results in cognitive impairment, and no neuroprotective drug is now available. This study aimed to understand underlying neurotoxicological mechanisms of anticancer drugs and to evaluate neuroprotective effects of PAN-811. Primary neurons in different concentrations of antioxidants (AOs) were insulted for 3 days with methotrexate (MTX), 5-fluorouracil (5-FU), or cisplatin (CDDP) in the absence or presence of PAN-811·Cl·H2O. The effect of PAN-811 on the anticancer activity of tested drugs was also examined using mouse and human cancer cells (BNLT3 and H460) to assess any negative interference. Cell membrane integrity, survival, and death and intramitochondrial reactive oxygen species (ROS) were measured. All tested anticancer drugs elicited neurotoxicity only under low levels of AO and elicited a ROS increase. These results suggested that ROS mediates neurotoxicity of tested anticancer drugs. PAN-811 dose-dependently suppressed increased ROS and blocked the neurotoxicity when neurons were insulted with a tested anticancer drug. PAN-811 did not interfere with anticancer activity of anticancer drugs against BNLT3 cells. PAN-811 did not inhibit MTX-induced death of H460 cells but, interestingly, demonstrated a synergistic effect with 5-FU or CDDP in reducing cancer cell viability. Thus, PAN-811 can be a potent drug candidate for chemotherapy-induced cognitive impairment.
Collapse
|
49
|
Choi YM, Kim HK, Shim W, Anwar MA, Kwon JW, Kwon HK, Kim HJ, Jeong H, Kim HM, Hwang D, Kim HS, Choi S. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation. PLoS One 2015; 10:e0135083. [PMID: 26247588 PMCID: PMC4527592 DOI: 10.1371/journal.pone.0135083] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/16/2015] [Indexed: 12/18/2022] Open
Abstract
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.
Collapse
Affiliation(s)
- Yong-Min Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Han-Kyul Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Wooyoung Shim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Ji-Woong Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Hyung Joong Kim
- Division of Energy Systems Research, Ajou University, Suwon, 443–749, Korea
| | - Hyobin Jeong
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 790–784, Korea
| | - Hwan Myung Kim
- Division of Energy Systems Research, Ajou University, Suwon, 443–749, Korea
| | - Daehee Hwang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 790–784, Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 440–746, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| |
Collapse
|
50
|
A long-range foresight for the medical application of apoptosis specifically induced by Dd-MRP4, Dictyostelium mitochondrial ribosomal protein S4, to cancer therapy. Biomolecules 2015; 5:113-20. [PMID: 25675329 PMCID: PMC4384114 DOI: 10.3390/biom5010113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/31/2015] [Indexed: 01/11/2023] Open
Abstract
Apoptosis (programmed cell death) is regarded as ultimate differentiation of the cell. We have recently demonstrated that a targeted delivery of Dd-MRP4 (Dictyostelium mitochondrial ribosomal protein S4) suppresses specifically the proliferation of the human cancer cells, by inducing their apoptotic cell death (Chida et al., 2014, doi:10.1186/1475-2867-14-56). This amazing fact was discovered, simply based on the finding that Dd-MRP4 expression is absolutely required for transition of Dictyostelium cells from growth to differentiation (Chida et al., 2008, doi:10.1186/1471-2156-9-25; Maeda et al., 2013, doi:10.3390/biom3040943). Dd-MRP4 protein has quite unique structural characters, in that it is highly basic (pI: about 11.5) and interestingly has several nuclear-localization signals within the molecule. In this review, we introduce briefly the efficacy of several apoptosis-inducing substances reported thus far for cancer therapy, and speculate the possible mechanisms, by which apoptosis is specifically induced by Dd-MRP4, on the basis of its structural uniqueness. We also discuss several issues to be solved for the medical application of ectopically expressed Dd-MRP4 in human cancer cells.
Collapse
|