1
|
Zhang Y, Cheng J, Liu W, Zhou L, Yang C, Li Y, Du E. Identification of three novel B cell epitopes targeting the bovine viral diarrhea virus NS3 protein for use in diagnostics and vaccine development. Int J Biol Macromol 2025; 308:142767. [PMID: 40180073 DOI: 10.1016/j.ijbiomac.2025.142767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Bovine viral diarrhea virus (BVDV) is a major pathogen in cattle herds, widely distributed across the globe and causing significant economic losses to the cattle industry. The nonstructural protein NS3 is highly conserved across BVDV subtypes. Identifying and screening epitopes on BVDV NS3 is crucial for developing sensitive, specific diagnostic tools. In this study, we obtained three monoclonal antibodies (mAbs) against the NS3 protein: 2F7, 3E8, and 4D6. Three novel linear B-cell epitope 100EYG102, 384FLDIA388, and 100EYGVK104 were identified through reactions of these mAbs with a series of continuous-truncated peptides and one of which a rare three-amino-acid B-cell epitope 100EYG102. Critical amino acid residues were further characterized through alanine (A)-scanning mutagenesis. Sequence alignment revealed that 100EYG102 and 100EYGVK104 were highly conserved allowing mAbs 2F7 and 4D6 to recognize all BVDV subtypes. In contrast, 384FLDIA388 was specifically conserved in BVDV-1 and BVDV-3 enabling 3E8 mAb to differential diagnosis BVDV-2 from other BVDV subtypes. Additionally, preliminary diagnostic assays for BVDV were established by western blotting and peptide-based blocking ELISA. Moreover, we observed that these mAbs could inhibit the replication of BVDV. These findings provide a theoretical foundation for developing of therapeutic strategies for nonstructural protein and accurate diagnostic procedures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China
| | - Jing Cheng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China
| | - Wenxiao Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China
| | - Linyi Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China
| | - Chun Yang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China; Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yongqing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Research Center for Infectious Diseases in Livestock and Poultry, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; Sino-UK Joint Laboratory for Prevention & Control of Infectious Diseases in Livestock and Poultry, Beijing, China; Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| | - Enqi Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China; Yangling Carey Biotechnology Co., Ltd., Yangling, China.
| |
Collapse
|
2
|
Nawaz M, Huiyuan Y, Akhtar F, Tianyue M, Zheng H. Deep learning in the discovery of antiviral peptides and peptidomimetics: databases and prediction tools. Mol Divers 2025:10.1007/s11030-025-11173-y. [PMID: 40153158 DOI: 10.1007/s11030-025-11173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/18/2025] [Indexed: 03/30/2025]
Abstract
Antiviral peptides (AVPs) represent a novel and promising therapeutic alternative to conventional antiviral treatments, due to their broad-spectrum activity, high specificity, and low toxicity. The emergence of zoonotic viruses such as Zika, Ebola, and SARS-CoV-2 have accelerated AVP research, driven by advancements in data availability and artificial intelligence (AI). This review focuses on the development of AVP databases, their physicochemical properties, and predictive tools utilizing machine learning for AVP discovery. Machine learning plays a pivotal role in advancing and developing antiviral peptides and peptidomimetics, particularly through the development of specialized databases such as DRAVP, AVPdb, and DBAASP. These resources facilitate AVP characterization but face limitations, including small datasets, incomplete annotations, and inadequate integration with multi-omics data.The antiviral efficacy of AVPs is closely linked to their physicochemical properties, such as hydrophobicity and amphipathic α-helical structures, which enable viral membrane disruption and specific target interactions. Computational prediction tools employing machine learning and deep learning have significantly advanced AVP discovery. However, challenges like overfitting, limited experimental validation, and a lack of mechanistic insights hinder clinical translation.Future advancements should focus on improved validation frameworks, integration of in vivo data, and the development of interpretable models to elucidate AVP mechanisms. Expanding predictive models to address multi-target interactions and incorporating complex biological environments will be crucial for translating AVPs into effective clinical therapies.
Collapse
Affiliation(s)
- Maryam Nawaz
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, People's Republic of China
| | - Yao Huiyuan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, People's Republic of China
| | - Fahad Akhtar
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, People's Republic of China
| | - Ma Tianyue
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211100, People's Republic of China.
| |
Collapse
|
3
|
Atasever S. Enhancing HCV NS3 Inhibitor Classification with Optimized Molecular Fingerprints Using Random Forest. Int J Mol Sci 2025; 26:2680. [PMID: 40141322 PMCID: PMC11943357 DOI: 10.3390/ijms26062680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
The classification of Hepatitis C virus (HCV) NS3 inhibitors is essential for identifying potential antiviral agents through computational methods. This study aims to develop an optimized machine learning (ML) model using random forest (RF) and molecular fingerprints to accurately classify HCV NS3 inhibitors. A dataset of 965 molecules was retrieved from the ChEMBL database, and 290 bioactive compounds were selected for model training. Twelve molecular fingerprint descriptors were tested, and the CDK graph-only fingerprint yielded the best performance. In addition to RF, performance comparisons of other classifiers such as instance-based k-nearest neighbor (IBk), logistic regression (LR), AdaBoost, and OneR were conducted using WEKA with various molecular fingerprint descriptors. The optimized RF model achieved an accuracy of 89.6552%, a mean absolute error (MAE) of 0.2114, a root mean square error (RMSE) of 0.3304, and a Matthews correlation coefficient (MCC) of 0.7950 on the test set. These results highlight the effectiveness of optimized molecular fingerprints in enhancing virtual screening (VS) for HCV inhibitors. This approach offers a data-driven method for drug discovery.
Collapse
Affiliation(s)
- Sema Atasever
- Department of Computer Engineering, Faculty of Engineering and Architecture, Nevsehir Haci Bektas Veli University, 50300 Nevşehir, Turkey
| |
Collapse
|
4
|
Belal A, Abdou A, Miski SF, Ali MAM, Ghamry HI, Obaidullah AJ, Zaky MY, Hassan AHE, Roh EJ, Al-Karmalawy AA, Ibrahim MH. Exploring the potential of some natural indoles as antiviral agents: quantum chemical analysis, inverse molecular docking, and affinity calculations. Front Chem 2025; 12:1521298. [PMID: 39886558 PMCID: PMC11779707 DOI: 10.3389/fchem.2024.1521298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/17/2024] [Indexed: 02/01/2025] Open
Abstract
Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections represent critical global health challenges due to the high morbidity and mortality associated with co-infections. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS), infects 4,000 people daily, potentially leading to 1.2 million new cases by 2025, while HCV chronically affects 58 million people, causing cirrhosis and hepatocellular carcinoma. Indole-based compounds play a crucial role in antiviral drug development due to their "privileged scaffold" structure. This study investigates the antiviral potential of natural indoles, gardflorine A-C, derived from Gardneria multiflora Makino, a plant traditionally used to treat various ailments. We employed molecular docking, ADMET analysis, and computational techniques [frontier molecular orbital (FMO), natural bond orbital (NBO), and density functional theory (DFT)] to evaluate these compounds" potential as multi-target antiviral agents against HIV and HCV proteins.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Aly Abdou
- Chemistry Department, Faculty of science, Sohag university, Sohag, Egypt
| | - Samar F. Miski
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| | - Mohamed A. M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Heba I. Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saudi University, Riyadh, Saudi Arabia
| | - Mohamed Y. Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, BeniSuef, Egypt
| | - Ahmed H. E. Hassan
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Mona H. Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Goh L, Hardikar W. Hepatitis C in Children-An Asia-Pacific Concise Perspective. Pathogens 2024; 13:860. [PMID: 39452731 PMCID: PMC11510634 DOI: 10.3390/pathogens13100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Since the discovery of hepatitis C virus (HCV) in 1989, we now have curative treatment options with direct-acting antiviral therapies. By increasing the rate of treatment and reducing transmission, the eradication of HCV is potentially achievable. Nonetheless, the feasibility and implementation of this goal remains challenging. This article sums up the approach to managing children with HCV in the Asia-Pacific region and lists some of the difficulties and complexities surrounding this issue.
Collapse
Affiliation(s)
- Lynette Goh
- Department of Gastroenterology, Hepatology and Nutrition, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Winita Hardikar
- Gastroenterology and Clinical Nutrition, The Royal Children’s Hospital Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
6
|
Martineau CA, Rivard N, Bisaillon M. From viruses to cancer: exploring the role of the hepatitis C virus NS3 protein in carcinogenesis. Infect Agent Cancer 2024; 19:40. [PMID: 39192306 DOI: 10.1186/s13027-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide and is a known etiological agent of hepatocellular carcinoma (HCC). The molecular mechanisms of HCV-mediated carcinogenesis are not fully understood. This review article focuses on the oncogenic potential of NS3, a viral protein with transformative effects on cells, although the precise mechanisms remain elusive. Unlike the more extensively studied Core and NS5A proteins, NS3's roles in cancer development are less defined but critical. Research indicates that NS3 is implicated in several carcinogenic processes such as proliferative signaling, cell death resistance, genomic instability and mutations, invasion and metastasis, tumor-related inflammation, immune evasion, and replicative immortality. Understanding the direct impact of viral proteins such as NS3 on cellular transformation is crucial for elucidating HCV's role in HCC development. Overall, this review sheds light on the molecular mechanisms used by NS3 to contribute to hepatocarcinogenesis, and highlights its significance in the context of HCV-associated HCC, underscoring the need for further investigation into its specific molecular and cellular actions.
Collapse
Affiliation(s)
- Carole-Anne Martineau
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Nathalie Rivard
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
7
|
Anjali, Kamboj P, Alam O, Patel H, Ahmad I, Ahmad SS, Amir M. Design, synthesis, biological evaluation, and in silico studies of quinoxaline derivatives as potent p38α MAPK inhibitors. Arch Pharm (Weinheim) 2024; 357:e2300301. [PMID: 37847883 DOI: 10.1002/ardp.202300301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
A new series of quinoxaline derivatives possessing the hydrazone moiety were designed, synthesized, and screened for in-vitro anti-inflammatory activity by the bovine serum albumin (BSA) denaturation technique, and for antioxidant activity, by the (2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The synthesized compounds were also tested for p38α mitogen-activated protein (MAP) kinase inhibition. The in-vivo anti-inflammatory activity was assessed by the carrageenan-induced rat paw edema inhibition method. All the compounds (4a-n) exhibited moderate to high in-vitro anti-inflammatory activity. Compound 4a displayed the highest inhibitory activity in the BSA assay (83.42%) in comparison to the standard drug diclofenac sodium (82.90%), while 4d exhibited comparable activity (81.87%). The DPPH assay revealed that compounds 4a and 4d have free radical scavenging potential (74.70% and 74.34%, respectively) comparable to the standard butylated hydroxyanisole (74.09%). Furthermore, the p38α MAP kinase inhibition assay demonstrated that compound 4a is highly selective against p38α MAP kinase (IC50 = 0.042) in comparison to the standard SB203580 (IC50 = 0.044). The five most active compounds (4a-4d and 4f) with good in-vitro profiles were selected for in-vivo anti-inflammatory studies. Compounds 4a and 4d were found to display the highest activity (83.61% and 82.92% inhibition, respectively) in comparison to the standard drug diclofenac sodium (82.65% inhibition). These compounds (4a and 4d) also exhibited better ulcerogenic and lipid peroxidation profiles than diclofenac sodium. The molecular docking and molecular dynamics simulation studies were also performed and found to be in agreement with the p38α MAP kinase inhibitory activity.
Collapse
Affiliation(s)
- Anjali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Payal Kamboj
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, Division of Computer Aided Drug Design, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, Maharashtra, India
| | - Syed Sufian Ahmad
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Shabir G, Saeed A, Zahid W, Naseer F, Riaz Z, Khalil N, Muneeba, Albericio F. Chemistry and Pharmacology of Fluorinated Drugs Approved by the FDA (2016-2022). Pharmaceuticals (Basel) 2023; 16:1162. [PMID: 37631077 PMCID: PMC10458641 DOI: 10.3390/ph16081162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Fluorine is characterized by high electronegativity and small atomic size, which provide this molecule with the unique property of augmenting the potency, selectivity, metabolic stability, and pharmacokinetics of drugs. Fluorine (F) substitution has been extensively explored in drug research as a means of improving biological activity and enhancing chemical or metabolic stability. Selective F substitution onto a therapeutic or diagnostic drug candidate can enhance several pharmacokinetic and physicochemical properties such as metabolic stability and membrane permeation. The increased binding ability of fluorinated drug target proteins has also been reported in some cases. An emerging line of research on F substitution has been addressed by using 18F as a radiolabel tracer atom in the extremely sensitive methodology of positron emission tomography (PET) imaging. This review aims to report on the fluorinated drugs approved by the US Food and Drug Administration (FDA) from 2016 to 2022. It cites selected examples from a variety of therapeutic and diagnostic drugs. FDA-approved drugs in this period have a variety of heterocyclic cores, including pyrrole, pyrazole, imidazole, triazole, pyridine, pyridone, pyridazine, pyrazine, pyrimidine, triazine, purine, indole, benzimidazole, isoquinoline, and quinoline appended with either F-18 or F-19. Some fluorinated oligonucleotides were also authorized by the FDA between 2019 and 2022.
Collapse
Affiliation(s)
- Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Wajeeha Zahid
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Fatima Naseer
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Zainab Riaz
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Nafeesa Khalil
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Muneeba
- Department of Chemistry, Government Graduate College Toba Tek Singh, Punjab 36050, Pakistan; (W.Z.); (F.N.); (Z.R.); (N.K.); (M.)
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Mousavi Maleki MS, Sardari S, Ghandehari Alavijeh A, Madanchi H. Recent Patents and FDA-Approved Drugs Based on Antiviral Peptides and Other Peptide-Related Antivirals. Int J Pept Res Ther 2022; 29:5. [PMID: 36466430 PMCID: PMC9702942 DOI: 10.1007/s10989-022-10477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In spite of existing cases of severe viral infections with a high mortality rate, there are not enough antiviral drugs and vaccines available for the prevention and treatment of such diseases. In addition, the increasing reports of the emergence of viral epidemics highlight, the need for novel molecules with antiviral potential. Antimicrobial peptides (AMPs) with antiviral activity or antiviral peptides (AVPs) have turned into a research hotspot and already show tremendous potential to become pharmaceutically available antiviral medicines. AMPs, a diverse group of bioactive peptides act as a part of our first line of defense against pathogen inactivation. Although most of the currently reported AMPs are either antibacterial or antifungal peptides, the number of antiviral peptides is gradually increasing. Some of the AMPs that are shown as effective antivirals have been deployed against viruses such as influenza A virus, severe acute respiratory syndrome coronavirus (SARS-CoV), HIV, HSV, West Nile Virus (WNV), and other viruses. This review offers an overview of AVPs that have been approved within the past few years and will set out a few of the most essential patents and their usage within the context mentioned above during 2000-2020. Moreover, the present study will explain some of the progress in antiviral drugs based on peptides and peptide-related antivirals.
Collapse
Affiliation(s)
| | - Soroush Sardari
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Ghandehari Alavijeh
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Madanchi
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Chuang CH, Cheng TL, Chen WC, Huang YJ, Wang HE, Lo YC, Hsieh YC, Lin WW, Hsieh YJ, Ke CC, Huang KC, Lee JC, Huang MY. Micro-PET imaging of hepatitis C virus NS3/4A protease activity using a protease-activatable retention probe. Front Microbiol 2022; 13:896588. [PMID: 36406412 PMCID: PMC9672079 DOI: 10.3389/fmicb.2022.896588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/27/2022] [Indexed: 11/03/2023] Open
Abstract
Hepatitis C virus (HCV) NS3/4A protease is an attractive target for direct-acting antiviral agents. Real-time tracking of the NS3/4A protease distribution and activity is useful for clinical diagnosis and disease management. However, no approach has been developed that can systemically detect NS3/4A protease activity or distribution. We designed a protease-activatable retention probe for tracking HCV NS3/4A protease activity via positron emission topography (PET) imaging. A cell-penetrating probe was designed that consisted of a cell-penetrating Tat peptide, HCV NS3/4A protease substrate, and a hydrophilic domain. The probe was labeled by fluorescein isothiocyanate (FITC) and 124I in the hydrophilic domain to form a TAT-ΔNS3/4A-124I-FITC probe. Upon cleavage at NS3/4A substrate, the non-penetrating hydrophilic domain is released and accumulated in the cytoplasm allowing PET or optical imaging. The TAT-ΔNS3/4A-FITC probe selectively accumulated in NS3/4A-expressing HCC36 (NS3/4A-HCC36) cells/tumors and HCV-infected HCC36 cells. PET imaging showed that the TAT-ΔNS3/4A-124I-FITC probe selectively accumulated in the NS3/4A-HCC36 xenograft tumors and liver-implanted NS3/4A-HCC36 tumors, but not in the control HCC36 tumors. The TAT-ΔNS3/4A-124I-FITC probe can be used to represent NS3/4 protease activity and distribution via a clinical PET imaging system allowing. This strategy may be extended to detect any cellular protease activity for optimization the protease-based therapies.
Collapse
Affiliation(s)
- Chih-Hung Chuang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chun Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yi-Jung Huang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan
| | - Yen-Chen Lo
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei City, Taiwan
| | - Yuan-Chin Hsieh
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ju Hsieh
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chih Ke
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kang-Chieh Huang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Abdelkader A, Elzemrany AA, El-Nadi M, Elsabbagh SA, Shehata MA, Eldehna WM, El-Hadidi M, Ibrahim TM. In-Silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing. Virology 2022; 573:96-110. [PMID: 35738174 PMCID: PMC9212324 DOI: 10.1016/j.virol.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/04/2022]
Abstract
Non-Structural Protein 6 (NSP6) has a protecting role for SARS-CoV-2 replication by inhibiting the expansion of autophagosomes inside the cell. NSP6 is involved in the endoplasmic reticulum stress response by binding to Sigma receptor 1 (SR1). Nevertheless, NSP6 crystal structure is not solved yet. Therefore, NSP6 is considered a challenging target in Structure-Based Drug Discovery. Herein, we utilized the high quality NSP6 model built by AlphaFold in our study. Targeting a putative NSP6 binding site is believed to inhibit the SR1-NSP6 protein-protein interactions. Three databases were virtually screened, namely FDA-approved drugs (DrugBank), Northern African Natural Products Database (NANPDB) and South African Natural Compounds Database (SANCDB) with a total of 8158 compounds. Further validation for 9 candidates via molecular dynamics simulations for 100 ns recommended potential binders to the NSP6 binding site. The proposed candidates are recommended for biological testing to cease the rapidly growing pandemic.
Collapse
Affiliation(s)
- Ahmed Abdelkader
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| | - Amal A Elzemrany
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Mennatullah El-Nadi
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt; Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif A Elsabbagh
- Biochemistry Department, Institute of Pharmacy, Eberhard-Karls University, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Moustafa A Shehata
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Tamer M Ibrahim
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| |
Collapse
|
12
|
Metwally NH, Abd-Elmoety AS. Novel fluorinated pyrazolo[1,5-a]pyrimidines: In a way from synthesis and docking studies to biological evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Ul Haq A, Sheikh A, Naeem S, Abidi SH. Molecular docking analysis of fluoroquinolones and other natural and synthetic compounds with the HCV NS3 helicase. Bioinformation 2022; 18:147-154. [PMID: 36518146 PMCID: PMC9722412 DOI: 10.6026/97320630018147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/07/2022] [Accepted: 03/31/2022] [Indexed: 08/10/2023] Open
Abstract
It is of an interest to document the molecular docking analysis of fluoroquinolones and other natural and synthetic compounds with the HCV NS3 helicase. Data shows that three fluoroquinolones interacted with the NS3 helicase in the catalytic region, targeting some of the amino acids known to play a crucial role in NS3 helicase activity. Similarly, binding energy shows that the fluoroquinolones were comparable to the thiazolpiperazinyl derivatives, while superior to several of the synthetic and natural derivatives. The results show three fluoroquinolones to be potent helicase inhibitors that can be repurposed as supplemental therapy against HCV especially in cases non-responsive to DAAAs.
Collapse
Affiliation(s)
- Ahtesham Ul Haq
- Department of Biochemistry, University of Karachi, Karachi-Pakistan
| | - Alisalman Sheikh
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi-Pakistan
| | - Sadaf Naeem
- Department of Biochemistry, University of Karachi, Karachi-Pakistan
| | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi-Pakistan
| |
Collapse
|
14
|
Biallas P, Yamazaki K, Dixon DJ. Difluoroalkylation of Tertiary Amides and Lactams by an Iridium-Catalyzed Reductive Reformatsky Reaction. Org Lett 2022; 24:2002-2007. [PMID: 35258311 PMCID: PMC9082613 DOI: 10.1021/acs.orglett.2c00438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 12/16/2022]
Abstract
An iridium-catalyzed, reductive alkylation of abundant tertiary lactams and amides using 1-2 mol % of Vaska's complex (IrCl(CO)(PPh3)2), tetramethyldisiloxane (TMDS), and difluoro-Reformatsky reagents (BrZnCF2R) for the general synthesis of medicinally relevant α-difluoroalkylated tertiary amines is described. A broad scope (46 examples), including N-aryl- and N-heteroaryl-substituted lactams, demonstrated an excellent functional group tolerance. Furthermore, late-stage drug functionalizations, a gram-scale synthesis, and common downstream transformations proved the potential synthetic relevance of this new methodology.
Collapse
Affiliation(s)
- Phillip Biallas
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| | - Ken Yamazaki
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| | - Darren J. Dixon
- Chemistry Research Laboratory, Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 2JD, U.K.
| |
Collapse
|
15
|
Ray AK, Sen Gupta PS, Panda SK, Biswal S, Bhattacharya U, Rana MK. Repurposing of FDA-approved drugs as potential inhibitors of the SARS-CoV-2 main protease: Molecular insights into improved therapeutic discovery. Comput Biol Med 2022; 142:105183. [PMID: 34986429 PMCID: PMC8714248 DOI: 10.1016/j.compbiomed.2021.105183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 12/22/2022]
Abstract
With numerous infections and fatalities, COVID-19 has wreaked havoc around the globe. The main protease (Mpro), which cleaves the polyprotein to form non-structural proteins, thereby helping in the replication of SARS-CoV-2, appears as an attractive target for antiviral therapeutics. As FDA-approved drugs have shown effectiveness in targeting Mpro in previous SARS-CoV(s), molecular docking and virtual screening of existing antiviral, antimalarial, and protease inhibitor drugs were carried out against SARS-CoV-2 Mpro. Among 53 shortlisted drugs with binding energies lower than that of the crystal-bound inhibitor α-ketoamide 13 b (-6.7 kcal/mol), velpatasvir, glecaprevir, grazoprevir, baloxavir marboxil, danoprevir, nelfinavir, and indinavir (-9.1 to -7.5 kcal/mol) were the most significant on the list (hereafter referred to as the 53-list). Molecular dynamics (MD) simulations confirmed the stability of their Mpro complexes, with the MMPBSA binding free energy (ΔGbind) ranging between -124 kJ/mol (glecaprevir) and -28.2 kJ/mol (velpatasvir). Despite having the lowest initial binding energy, velpatasvir exhibited the highest ΔGbind value for escaping the catalytic site during the MD simulations, indicating its reduced efficacy, as observed experimentally. Available inhibition assay data adequately substantiated the computational forecast. Glecaprevir and nelfinavir (ΔGbind = -95.4 kJ/mol) appear to be the most effective antiviral drugs against Mpro. Furthermore, the remaining FDA drugs on the 53-list can be worth considering, since some have already demonstrated antiviral activity against SARS-CoV-2. Hence, theoretical pKi (Ki = inhibitor constant) values for all 53 drugs were provided. Notably, ΔGbind directly correlates with the average distance of the drugs from the His41-Cys145 catalytic dyad of Mpro, providing a roadmap for rapid screening and improving the inhibitor design against SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Abhik Kumar Ray
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Parth Sarthi Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Uddipan Bhattacharya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, 760010, India.
| |
Collapse
|
16
|
Patil VS, Harish DR, Vetrivel U, Roy S, Deshpande SH, Hegde HV. Hepatitis C Virus NS3/4A Inhibition and Host Immunomodulation by Tannins from Terminalia chebula: A Structural Perspective. Molecules 2022; 27:molecules27031076. [PMID: 35164341 PMCID: PMC8839135 DOI: 10.3390/molecules27031076] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/15/2022] [Accepted: 01/22/2022] [Indexed: 01/27/2023] Open
Abstract
Terminalia chebula Retz. forms a key component of traditional folk medicine and is also reported to possess antihepatitis C virus (HCV) and immunomodulatory activities. However, information on the intermolecular interactions of phytochemicals from this plant with HCV and human proteins are yet to be established. Thus, by this current study, we investigated the HCV NS3/4A inhibitory and host immune-modulatory activity of phytocompounds from T. chebula through in silico strategies involving network pharmacology and structural bioinformatics techniques. To start with, the phytochemical dataset of T. chebula was curated from biological databases and the published literature. Further, the target ability of the phytocompounds was predicted using BindingDB for both HCV NS3/4A and other probable host targets involved in the immune system. Further, the identified targets were docked to the phytochemical dataset using AutoDock Vina executed through the POAP pipeline. The resultant docked complexes with significant binding energy were subjected to 50 ns molecular dynamics (MD) simulation in order to infer the stability of complex formation. During network pharmacology analysis, the gene set pathway enrichment of host targets was performed using the STRING and Reactome pathway databases. Further, the biological network among compounds, proteins, and pathways was constructed using Cytoscape 3.6.1. Furthermore, the druglikeness, side effects, and toxicity of the phytocompounds were also predicted using the MolSoft, ADVERpred, and PreADMET methods, respectively. Out of 41 selected compounds, 10 were predicted to target HCV NS3/4A and also to possess druglike and nontoxic properties. Among these 10 molecules, Chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose exhibited potent HCV NS3/4A inhibitory activity, as these scored a lowest binding energy (BE) of −8.6 kcal/mol and −7.7 kcal/mol with 11 and 20 intermolecular interactions with active site residues, respectively. These findings are highly comparable with Asunaprevir (known inhibitor of HCV NS3/4A), which scored a BE of −7.4 kcal/mol with 20 key intermolecular interactions. MD studies also strongly suggest that chebulagic acid and 1,2,3,4,6-Pentagalloyl glucose as promising leads, as these molecules showed stable binding during 50 ns of production run. Further, the gene set enrichment and network analysis of 18 protein targets prioritized 10 compounds and were predicted to potentially modulate the host immune system, hemostasis, cytokine levels, interleukins signaling pathways, and platelet aggregation. On overall analysis, this present study predicts that tannins from T. chebula have a potential HCV NS3/4A inhibitory and host immune-modulatory activity. However, further experimental studies are required to confirm the efficacies.
Collapse
Affiliation(s)
- Vishal S. Patil
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
| | - Darasaguppe R. Harish
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Correspondence: (D.R.H.); (S.R.)
| | - Umashankar Vetrivel
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India
| | - Subarna Roy
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Correspondence: (D.R.H.); (S.R.)
| | - Sanjay H. Deshpande
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
- Regional Centre for Biotechnology, NCR-Biotech Science Cluster, Faridabad 121001, India
| | - Harsha V. Hegde
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; (V.S.P.); (U.V.); (S.H.D.); (H.V.H.)
| |
Collapse
|
17
|
Abstract
RNA viruses cause many routine illnesses, such as the common cold and the flu. Recently, more deadly diseases have emerged from this family of viruses. The hepatitis C virus has had a devastating impact worldwide. Despite the cures developed in the U.S. and Europe, economically disadvantaged countries remain afflicted by HCV infection due to the high cost of these medications. More recently, COVID-19 has swept across the world, killing millions and disrupting economies and lifestyles; the virus responsible for this pandemic is a coronavirus. Our understanding of HCV and SARS CoV-2 replication is still in its infancy. Helicases play a critical role in the replication, transcription and translation of viruses. These key enzymes need extensive study not only as an essential player in the viral lifecycle, but also as targets for antiviral therapeutics. In this review, we highlight the current knowledge for RNA helicases of high importance to human health.
Collapse
Affiliation(s)
- John C Marecki
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Binyam Belachew
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
18
|
Baesi K, Velayati AA, Ashtiani MF, Fakhredini K, Banifazl M, Larijani MS, Basimi P, Ramezani A. Prevalence of Naturally Occurring Resistance Associated Substitutions in NS3/4A Protease Inhibitors in Iranian HCV/HIV Infected Patients. Curr HIV Res 2021; 19:391-397. [PMID: 34238162 DOI: 10.2174/1566523221666210707142838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) acts in host as a complicated mixture of related variants with the potency to genetically escape host immune responses. Direct acting antivirals (DAAs) have been approved for HCV treatment with shorter duration, better cure rates and lower side effects. However, naturally occurring resistance associated substitutions(RASs) make some obstacles to this antiviral therapy success. OBJECTIVE In this study, we aimed at determination of the naturally occurring NS3/4A RASs in HCV/human immunodeficiency virus (HIV)infected patients. METHODS A total of 120 DAA-naïve HCV-HIV co-infected patients were included. HCV NS3/4Agenome region was amplified with PCR and mutation analysis was performed by Sanger sequencing technique. The amino acid sequence diversity of the region wasanalyzed using geno2pheno HCV. RESULTS Phylogenetic analysis showed that 73 cases were infected by 3a and 47 subjects by subtype1a. The overall RASs among studied subjects wereobserved in 6 (5%) individuals from 120 studied cases who were infected with HCV 1a. V36M/L,Q80L,S122G/L,R155T/G,A156S,D168Y/N and S174A/N/T mutations were detected in this study. CONCLUSION Although the prevalence of RASs was totally low in this study, the presence of several cases of double and triple mutants among this population suggests prior evaluation of protease inhibitors related mutations before initiation of standard treatment and also investigation on a large population could be of high value.
Collapse
Affiliation(s)
- Kazem Baesi
- Hepatitis & AIDS Dept., Pasteur Institute of Iran, Tehran, Iran
| | - Ali Akbar Velayati
- Masih Daneshvari Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | | | - Kamal Fakhredini
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Banifazl
- Iranian Society for Support of Patients with Infectious Disease, Tehran, Iran
| | | | - Parya Basimi
- Hepatitis & AIDS Dept., Pasteur Institute of Iran, Tehran, Iran
| | - Amitis Ramezani
- Clinical Research Dept., Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SHE, Lai KS, Chong CM. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar Drugs 2021; 19:246. [PMID: 33925365 PMCID: PMC8146879 DOI: 10.3390/md19050246] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
Collapse
Affiliation(s)
- Disha Varijakzhan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jiun-Yan Loh
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Wai-Sum Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Rabiha Seboussi
- Health Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates;
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
20
|
Gundala R, Balutia H, Lavanya R, Velayutham R, Roy KK. HCV NS3 serine protease as a drug target for the development of drugs against hepatocellular carcinoma (liver cancer). CANCER-LEADING PROTEASES 2020:243-263. [DOI: 10.1016/b978-0-12-818168-3.00009-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
21
|
Ren J, Ojeda I, Patel M, Johnson ME, Lee H. Exploring small molecules with pan-genotypic inhibitory activities against hepatitis C virus NS3/4A serine protease. Bioorg Med Chem Lett 2019; 29:2349-2353. [PMID: 31201062 DOI: 10.1016/j.bmcl.2019.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023]
Abstract
Among the many Hepatitis C virus (HCV) genotypes and subtypes, genotypes 1b and 3a are most prevalent in United States and Asia, respectively. A total of 132 commercially available analogs of a previous lead compound were initially investigated against wild-type HCV genotype 1b NS3/4A protease. Ten compounds showed inhibitory activities (IC50 values) below 10 µM with comparable direct binding affinities (KD values) determined by surface plasmon resonance (SPR). To identify pan-genotypic inhibitors, these ten selected compounds were tested against four additional genotypes (1a, 2a, 3a, and 4) and three drug-resistant mutants (A156S, R155K, and V36M). Four new analogs have been identified with better activities against all five tested genotypes than the prior lead compound. Further, the original lead compound did not show activity against genotype 3a NS3/4A, whereas four newly identified compounds exhibited IC50 values below 33 µM against genotype 3a NS3/4A. Encouragingly, the best new compound F1813-0710 possessed promising activity toward genotype 3a, which is a huge improvement over the previous lead compound that had no effect on genotype 3a. This intriguing observation was further analyzed by molecular docking and molecular dynamics (MD) simulations to understand their different binding interactions, which should benefit future pan-genotypic inhibitor design and drug discovery.
Collapse
Affiliation(s)
- Jinhong Ren
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Isabel Ojeda
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Maulik Patel
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA
| | - Michael E Johnson
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, IL 60612, USA.
| | - Hyun Lee
- Center for Biomolecular Sciences, University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; Biophysics Core at Research Resource Center, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood Street, IL 60612, USA.
| |
Collapse
|
22
|
Discovery of Novel Druggable Sites on Zika Virus NS3 Helicase Using X-ray Crystallography-Based Fragment Screening. Int J Mol Sci 2018; 19:ijms19113664. [PMID: 30463319 PMCID: PMC6274715 DOI: 10.3390/ijms19113664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/28/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
The flavivirus family contains several important human pathogens, such as Zika virus (ZIKV), dengue, West Nile, and Yellow Fever viruses, that collectively lead to a large, global disease burden. Currently, there are no approved medicines that can target these viruses. The sudden outbreak of ZIKV infections in 2015⁻2016 posed a serious threat to global public health. While the epidemic has receded, persistent reservoirs of ZIKV infection can cause reemergence. Here, we have used X-ray crystallography-based screening to discover two novel sites on ZIKV NS3 helicase that can bind drug-like fragments. Both sites are structurally conserved in other flaviviruses, and mechanistically significant. The binding poses of four fragments, two for each of the binding sites, were characterized at atomic precision. Site A is a surface pocket on the NS3 helicase that is vital to its interaction with NS5 polymerase and formation of the flaviviral replication complex. Site B corresponds to a flexible, yet highly conserved, allosteric site at the intersection of the three NS3 helicase domains. Saturation transfer difference nuclear magnetic resonance (NMR) experiments were additionally used to evaluate the binding strength of the fragments, revealing dissociation constants (KD) in the lower mM range. We conclude that the NS3 helicase of flaviviruses is a viable drug target. The data obtained open opportunities towards structure-based design of first-in-class anti-ZIKV compounds, as well as pan-flaviviral therapeutics.
Collapse
|
23
|
Ahmed M. Era of direct acting anti-viral agents for the treatment of hepatitis C. World J Hepatol 2018; 10:670-684. [PMID: 30386460 PMCID: PMC6206157 DOI: 10.4254/wjh.v10.i10.670] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C infection is universal and the most common indication of liver transplantation in the United States. The period of less effective interferon therapy with intolerable side effects has gone. Now we have stepped into the era of direct acting anti-viral agents (DAAs) against hepatitis C virus. Treatment of hepatitis C is now extremely effective, tolerable and requires a short duration of intake of oral agents. Less monitoring is required with the current therapy and drug-drug interactions are less than the previous regimen. The current treatment options of chronic hepatitis C with various DAAs are discussed in this article.
Collapse
Affiliation(s)
- Monjur Ahmed
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
24
|
O'Rourke A, Kremb S, Duggan BM, Sioud S, Kharbatia N, Raji M, Emwas AH, Gerwick WH, Voolstra CR. Identification of a 3-Alkylpyridinium Compound from the Red Sea Sponge Amphimedon chloros with In Vitro Inhibitory Activity against the West Nile Virus NS3 Protease. Molecules 2018; 23:E1472. [PMID: 29912151 PMCID: PMC6099703 DOI: 10.3390/molecules23061472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 12/19/2022] Open
Abstract
Viruses are underrepresented as targets in pharmacological screening efforts, given the difficulties of devising suitable cell-based and biochemical assays. In this study we found that a pre-fractionated organic extract of the Red Sea sponge Amphimedon chloros was able to inhibit the West Nile Virus NS3 protease (WNV NS3). Using liquid chromatography⁻mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy, the identity of the bioactive compound was determined as a 3-alkylpyridinium with m/z = 190.16. Diffusion Ordered Spectroscopy (DOSY) NMR and NMR relaxation rate analysis suggest that the bioactive compound forms oligomers of up to 35 kDa. We observed that at 9.4 μg/mL there was up to 40⁻70% inhibitory activity on WNV NS3 protease in orthogonal biochemical assays for solid phase extracts (SPE) of A. chloros. However, the LC-MS purified fragment was effective at inhibiting the protease up to 95% at an approximate amount of 2 µg/mL with negligible cytotoxicity to HeLa cells based on a High-Content Screening (HCS) cytological profiling strategy. To date, 3-alkylpyridinium type natural products have not been reported to show antiviral activity since the first characterization of halitoxin, or 3-alkylpyridinium, in 1978. This study provides the first account of a 3-alkylpyridinium complex that exhibits a proposed antiviral activity by inhibiting the NS3 protease. We suggest that the here-described compound can be further modified to increase its stability and tested in a cell-based assay to explore its full potential as a potential novel antiviral capable of inhibiting WNV replication.
Collapse
Affiliation(s)
- Aubrie O'Rourke
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Stephan Kremb
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Brendan M Duggan
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Salim Sioud
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia.
| | - Najeh Kharbatia
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia.
| | - Misjudeen Raji
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia.
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal 23955-6900, Saudi Arabia.
| | - William H Gerwick
- Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
25
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
26
|
Jin G, Lee J, Lee K. Chemical genetics-based development of small molecules targeting hepatitis C virus. Arch Pharm Res 2017; 40:1021-1036. [PMID: 28856597 DOI: 10.1007/s12272-017-0949-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today's advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni®, Zepatier®, Technivie®, and Epclusa®. A number of reviews have been recently published describing the structure-activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug's mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.
Collapse
Affiliation(s)
- Guanghai Jin
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jisu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
27
|
Cuypers L, Libin P, Schrooten Y, Theys K, Di Maio VC, Cento V, Lunar MM, Nevens F, Poljak M, Ceccherini-Silberstein F, Nowé A, Van Laethem K, Vandamme AM. Exploring resistance pathways for first-generation NS3/4A protease inhibitors boceprevir and telaprevir using Bayesian network learning. INFECTION GENETICS AND EVOLUTION 2017; 53:15-23. [PMID: 28499845 DOI: 10.1016/j.meegid.2017.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022]
Abstract
Resistance-associated variants (RAVs) have been shown to influence treatment response to direct-acting antivirals (DAAs) and first generation NS3/4A protease inhibitors (PIs) in particular. Interpretation of hepatitis C virus (HCV) genotypic drug resistance remains a challenge, especially in patients who previously failed DAA therapy and need to be retreated with a second DAA based regimen. Bayesian network (BN) learning on HCV sequence data from patients treated with DAAs could provide insight in resistance pathways against PIs for HCV subtypes 1a and 1b, in a similar way as applied before for HIV. The publicly available 'Rega-BN' tool chain was developed to study associative analyses for various pathogens. Our first analysis, comparing sequences from PI-naïve and PI-experienced patients, determined that NS3 substitutions R155K and V36M arise with PI-exposure in HCV1a infected patients, and were defined as major and minor resistance-associated variants respectively. NS3 variant 174H was newly identified as potentially related to PI resistance. In a second analysis, NS3 sequences from PI-naïve patients who cleared the virus during PI therapy and from PI-naïve patients who failed PI therapy were compared, showing that NS3 baseline variant 67S predisposes to treatment-failure and variant 72I to treatment success. This approach has the potential to better characterize the role of more RAVs, if sufficient therapy annotated sequence data becomes available in curated public databases. In addition, polymorphisms present in baseline sequences that predispose patients to therapy failure can be identified using this approach.
Collapse
Affiliation(s)
- Lize Cuypers
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Herestraat 49, box 1040, 3000 Leuven, Belgium.
| | - Pieter Libin
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Herestraat 49, box 1040, 3000 Leuven, Belgium; Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Yoeri Schrooten
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Herestraat 49, box 1040, 3000 Leuven, Belgium.
| | - Kristof Theys
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Herestraat 49, box 1040, 3000 Leuven, Belgium.
| | - Velia Chiara Di Maio
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy.
| | - Valeria Cento
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy.
| | - Maja M Lunar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | - Frederik Nevens
- University Hospitals Leuven, Department of Hepatology, Herestraat 49, 3000 Leuven, Belgium.
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | | | - Ann Nowé
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Kristel Van Laethem
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Herestraat 49, box 1040, 3000 Leuven, Belgium.
| | - Anne-Mieke Vandamme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Herestraat 49, box 1040, 3000 Leuven, Belgium; Center for Global Health and Tropical Medicine, Microbiology Unit, Institute for Hygiene and Tropical Medicine, University Nova de Lisboa, Rua da Junqueira 100, 1349-008 Lisbon, Portugal.
| |
Collapse
|
28
|
Kuznetsova SS, Kolesanova EF, Talanova AV, Veselovsky AV. [Prospects for the design of new therapeutically significant protease inhibitors based on knottins and sunflower seed trypsin inhibitor (SFTI 1)]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2016; 62:353-68. [PMID: 27562989 DOI: 10.18097/pbmc20166204353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Plant seed knottins, mainly from the Cucurbitacea family, and sunflower seed trypsin inhibitor (SFTI 1) are the most low-molecular canonical peptide inhibitors of serine proteases. High efficiency of inhibition of various serine proteases, structure rigidity together with the possibility of limited variations of amino acid sequences, high chemical stability, lack of toxic properties, opportunity of production by either chemical synthesis or use of heterologous expression systems make these inhibitors attractive templates for design of new compounds for regulation of therapeutically significant serine protease activities. Hence the design of such compounds represents a prospective research field. The review considers structural characteristics of these inhibitors, their properties, methods of preparation and design of new analogs. Examples of successful employment of natural serine protease inhibitors belonging to knottin family and SFTI 1 as templates for the design of highly specific inhibitors of certain proteases are given.
Collapse
Affiliation(s)
| | | | - A V Talanova
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
29
|
Wahyuni TS, Utsubo CA, Hotta H. Promising Anti-Hepatitis C Virus Compounds from Natural Resources. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100840] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem, which involves approximately 170 million people. High morbidity of patients is caused by chronic infection, which leads to liver cirrhosis, hepatocellular carcinoma and other HCV-related diseases. The sustained virological response (SVR) has been markedly improved to be >90% by the current standard interferon (IFN)-free treatment regimens with a combination of direct-acting antiviral agents (DAAs) targeting the viral NS3 protease, NS5A multi-function protein and NS5B RNA-dependent RNA polymerase, compared with 50–70% of SVR rates achieved by the previous standard IFN-based treatment regimens with or without an NS3 protease inhibitor. However, the emergence of DAA-resistant HCV strains and the limited access to the DAAs due to their high cost could be major concerns. Also, the long-term prognosis of patients treated with DAAs, such as the possible development of hepatocellular carcinoma, still needs to be further evaluated. Natural resources are considered to be good candidates to develop anti-HCV agents. Here, we summarize anti-HCV compounds obtained from natural resources, including medicinal plant extracts, their isolated compounds and some of their derivatives that possess high antiviral potency against HCV.
Collapse
Affiliation(s)
- Tutik Sri Wahyuni
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Airlangga University, Jl. Dharmawangsa Dalam, Surabaya 60286, Indonesia
| | - Chie Aoki Utsubo
- Department of International Health, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | - Hak Hotta
- Division of Microbiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Department of Oral Vaccine and Drug Development, Kobe University Graduate School of Health Sciences, 1-5-6 Minatojima-minamimachi, Chou-ku, Kobe 650-0047, Japan
| |
Collapse
|
30
|
Ozdemir Isik G, Ozer AN. Prediction of substrate specificity in NS3/4A serine protease by biased sequence search threading. J Biomol Struct Dyn 2016; 35:1102-1114. [DOI: 10.1080/07391102.2016.1171801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gonca Ozdemir Isik
- Department of Bioengineering, Marmara University , Goztepe, Kadikoy, 34722 Istanbul, Turkey
| | - A. Nevra Ozer
- Department of Bioengineering, Marmara University , Goztepe, Kadikoy, 34722 Istanbul, Turkey
| |
Collapse
|
31
|
Gu M, Rice CM. The Spring α-Helix Coordinates Multiple Modes of HCV (Hepatitis C Virus) NS3 Helicase Action. J Biol Chem 2016; 291:14499-509. [PMID: 27226535 DOI: 10.1074/jbc.m115.704379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 01/08/2023] Open
Abstract
Genomic DNA replication requires helicases to processively unwind duplexes. Although helicases encoded by positive-strand RNA viruses are necessary for RNA genome replication, their functions are not well understood. We determined structures of the hepatitis C virus helicase (NS3h) in complex with the transition state ATP mimic ADP·AlF4 (-) and compared them with the previous nucleic acid-associated ternary complexes. The results suggested that nucleic acid binding promotes a structural change of the spring helix at the transition state, optimizing the interaction network centered on the nucleophilic water. Analysis of ATP hydrolysis with and without conformational restraints on the spring helix further supported the importance of its action for both nucleic acid-stimulated and basal catalysis. We further found that an F238P substitution, predicted to destabilize the helix, diminished viral RNA replication without significantly affecting ATP-dependent duplex unwinding. The stability of the secondary structure, thus, seems critical for additional functions of NS3h. Taken together, the results suggest that the spring helix may be central to the coordination of multiple modes of NS3h action. Further characterization centered on this element may help understand the molecular details of how the viral helicase facilitates RNA replication. This new structural information may also aid efforts to develop specific inhibitors targeting this essential viral enzyme.
Collapse
Affiliation(s)
- Meigang Gu
- From the Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065
| | - Charles M Rice
- From the Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, New York 10065
| |
Collapse
|
32
|
Murira A, Lapierre P, Lamarre A. Evolution of the Humoral Response during HCV Infection: Theories on the Origin of Broadly Neutralizing Antibodies and Implications for Vaccine Design. Adv Immunol 2015; 129:55-107. [PMID: 26791858 DOI: 10.1016/bs.ai.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Similar to human immunodeficiency virus (HIV)-1, vaccine-induced elicitation of broadly neutralizing (bNt) antibodies (Abs) is gaining traction as a key goal toward the eradication of the hepatitis C virus (HCV) pandemic. Previously, the significance of the Ab response against HCV was underappreciated given the prevailing evidence advancing the role of the cellular immune response in clearance and overall control of the infection. However, recent findings have driven growing interest in the humoral arm of the immune response and in particular the role of bNt responses due to their ability to confer protective immunity upon passive transfer in animal models. Nevertheless, the origin and development of bNt Abs is poorly understood and their occurrence is rare as well as delayed with emergence only observed in the chronic phase of infection. In this review, we characterize the interplay between the host immune response and HCV as it progresses from the acute to chronic phase of infection. In addition, we place these events in the context of current hypotheses on the origin of bNt Abs against the HIV-1, whose humoral immune response is better characterized. Based on the increasing significance of the humoral immune response against HCV, characterization of these events may be critical in understanding the development of the bNt responses and, thus, provide strategies toward effective vaccine design.
Collapse
Affiliation(s)
- Armstrong Murira
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| | - Pascal Lapierre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - Alain Lamarre
- Immunovirology Laboratory, Institut national de la recherche scientifique (INRS), INRS-Institut Armand-Frappier, Laval, Quebec, Canada.
| |
Collapse
|
33
|
Narrowing the translational research gap: what needs to be done? Future Med Chem 2015; 7:1843-6. [PMID: 26393393 DOI: 10.4155/fmc.15.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Luo D, Vasudevan SG, Lescar J. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res 2015; 118:148-58. [PMID: 25842996 DOI: 10.1016/j.antiviral.2015.03.014] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 11/30/2022]
Abstract
The flavivirus NS3 protein is associated with the endoplasmic reticulum membrane via its close interaction with the central hydrophilic region of the NS2B integral membrane protein. The multiple roles played by the NS2B-NS3 protein in the virus life cycle makes it an attractive target for antiviral drug discovery. The N-terminal region of NS3 and its cofactor NS2B constitute the protease that cleaves the viral polyprotein. The NS3 C-terminal domain possesses RNA helicase, nucleoside and RNA triphosphatase activities and is involved both in viral RNA replication and virus particle formation. In addition, NS2B-NS3 serves as a hub for the assembly of the flavivirus replication complex and also modulates viral pathogenesis and the host immune response. Here, we review biochemical and structural advances on the NS2B-NS3 protein, including the network of interactions it forms with NS5 and NS4B and highlight recent drug development efforts targeting this protein. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery.
Collapse
Affiliation(s)
- Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, #07-03, Singapore 138673, Singapore.
| | - Subhash G Vasudevan
- Program in Emerging Infectious Diseases, DUKE-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; UPMC UMRS CR7 - CNRS ERL 8255-INSERM U1135 Centre d'Immunologie et des Maladies Infectieuses, Centre Hospitalier Universitaire Pitié-Salpêtrière, Faculté de Médecine Pierre et Marie Curie, Paris, France.
| |
Collapse
|
35
|
Leung KH, He HZ, He B, Zhong HJ, Lin S, Wang YT, Ma DL, Leung CH. Label-free luminescence switch-on detection of hepatitis C virus NS3 helicase activity using a G-quadruplex-selective probe. Chem Sci 2015; 6:2166-2171. [PMID: 28808523 PMCID: PMC5539802 DOI: 10.1039/c4sc03319a] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/16/2014] [Indexed: 12/16/2022] Open
Abstract
A series of luminescent Ir(iii) complexes were synthesised and evaluated for their ability to act as luminescent G-quadruplex-selective probes. The Ir(iii) complex 9, [Ir(phq)2(phen)]PF6 (where phq = 2-phenylquinoline; phen = 1,10-phenanthroline), exhibited high luminescence in the presence of G-quadruplex DNA compared to dsDNA and ssDNA, and was employed to construct a label-free G-quadruplex-based assay for hepatitis C virus NS3 helicase activity in aqueous solution. Moreover, the application of the assay for screening potential helicase inhibitors was demonstrated. To our knowledge, this is the first G-quadruplex-based assay for helicase activity.
Collapse
Affiliation(s)
- Ka-Ho Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Hong-Zhang He
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Bingyong He
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Sheng Lin
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| | - Dik-Lung Ma
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong , China .
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine , Institute of Chinese Medical Sciences , University of Macau , Macao , China .
| |
Collapse
|
36
|
Development of a high-throughput pyrosequencing assay for monitoring temporal evolution and resistance associated variant emergence in the Hepatitis C virus protease coding-region. Antiviral Res 2014; 110:52-9. [PMID: 25057759 DOI: 10.1016/j.antiviral.2014.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/08/2023]
Abstract
A new generation of drugs targeting the non-structural (NS) proteins of the Hepatitis C virus (HCV) will substantially increase treatment success rates, reducing global infections. Amongst the NS proteins, the NS3 protease represents an important drug target, responsible for liberation of mature NS proteins from the nascent HCV polyprotein and suppression of host innate immunity. Despite this, the evolutionary stability of the genomic locus encoding the NS3 protease is poorly characterized in chronic HCV infection. To address this shortfall, we developed a high-throughput amplicon pyrosequencing protocol and utilised it to monitor NS3 protease coding-sequence evolution for over a decade in two patients. Although patient-specific evolutionary trends were apparent, the protease amino acid population consensus remained stable with a massive excess of synonymous mutations observed, confirming this locus is under strong purifying selection during chronic infection within individual patients. No evidence for continuous immune escape was detected. Additionally, both patients failed protease inhibitor (PI) therapy and protease sequence diversity pre- and post-therapy were also assessed. No baseline resistance associated variants (RAVs) contributed to treatment failure. Significant reductions in viral diversity were observed post-PI therapy, indicating a population bottleneck occurred. The genetic vestiges of this bottleneck were still detectable 18months after therapy discontinuation. Although significant enrichment of the Q80L mutation was observed in one patient, genetic and phenotypic data reveal no detectable RAV persistence post-therapy failure. Together this investigation provides a sensitive and reproducible high-throughput framework to interrogate viral sequence diversity at high-resolution, with potential applications for routine monitoring of treatment regimens. This study also reveals novel insights into the evolutionary processes that shape NS3 sequence divergence in both chronic HCV infection and post PI-therapy failure.
Collapse
|
37
|
Abstract
An all-oral therapy for treating hepatitis C (HCV) is now available for the most common genotypes although interferon-based therapy is still recommended for interferon-eligible patients with HCV genotype 1. For most patients, a prior history of treatment or presence of cirrhosis does not appear to significantly impact eradication rates with direct acting antivirals (DAA). The promising results from the numerous clinical trials of DAA's for HCV together with their tolerability represent a tremendous advance in our management of this disease, particularly as treatment is often well-tolerated, associated with few side effects and significantly shortened in duration. We will review several of the peer-reviewed landmark studies of DAA's for the treatment HCV and conclude with an expert commentary and five year view.
Collapse
Affiliation(s)
- Manogna Nookathota
- Creighton University Medical Center, 601 North 30th Street, Omaha, NE 68131, USA
| | | |
Collapse
|
38
|
Functional interplay among the flavivirus NS3 protease, helicase, and cofactors. Virol Sin 2014; 29:74-85. [PMID: 24691778 DOI: 10.1007/s12250-014-3438-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/19/2014] [Indexed: 12/22/2022] Open
Abstract
Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.
Collapse
|