1
|
Knight V. Phospho-flow cytometry assays for diagnostic use - A discussion of assay utility and assay development and validation challenges. J Immunol Methods 2025; 537:113818. [PMID: 39855543 DOI: 10.1016/j.jim.2025.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/03/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Detection of changes in phosphorylation of cell signaling molecules using flow cytometry is termed "phosphoflow" or "phospho-flow cytometry". Phosphoflow has wide application for basic research into the mechanics of cell signaling, for evaluating aberrant signaling in cancerous cells and tissues, for studying efficacy or off-target effects during drug and vaccine development, and for functional assessment of pathogenic variants of genes that are known to play a role in development or function of the immune system. Phosphoflow has not been widely adopted in clinical laboratories owing to the challenges with developing and validating robust assays consistent with clinical laboratory regulatory standards. This review provides a brief overview of the utility of phosphoflow and points of consideration for development and validation of phosphoflow assays for diagnostic use, with a focus on inborn errors of immunity.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Immunopathology and Hematopathology Laboratory, Children's Hospital, 13123 East 16(th) Avenue, Aurora, CO 80045, United States of America.
| |
Collapse
|
2
|
Montante S, Chen Y, Brinkman RR. flowSim: Near duplicate detection for flow cytometry data. Cytometry A 2023; 103:889-901. [PMID: 37530476 PMCID: PMC10834853 DOI: 10.1002/cyto.a.24776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The analysis of large amounts of data is important for the development of machine learning (ML) models. flowSim is the first algorithm designed to visualize, detect and remove highly redundant information in flow cytometry (FCM) training sets to decrease the computational time for training and increase the performance of ML algorithms by reducing overfitting. flowSim performs near duplicate image detection by combining community detection algorithms with the density analysis of the marker expression values. flowSim clustering compared to consensus manual clustering on a dataset composed of 160 images of bivariate FCM data had a mean Adjusted Rand Index of 0.90, demonstrating its efficiency in identifying similar patterns. flowSim selectively discarded near duplicate files in datasets constructed with known redundancy, and removed 92.6% of FCM images in a dataset of over 500,000 drawn from public repositories.
Collapse
Affiliation(s)
- Sebastiano Montante
- Terry Fox Laboratory, BC Cancer Research, Vancouver, British Columbia, Canada
| | - Yixuan Chen
- Terry Fox Laboratory, BC Cancer Research, Vancouver, British Columbia, Canada
| | - Ryan R. Brinkman
- Terry Fox Laboratory, BC Cancer Research, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada, 675 West 10th Avenue
| |
Collapse
|
3
|
Moschella F, Buccione C, Ruspantini I, Castiello L, Rozo Gonzalez A, Iacobone F, Ferraresi V, Palermo B, Nisticò P, Belardelli F, Proietti E, Macchia I, Urbani F. Blood immune cells as potential biomarkers predicting relapse-free survival of stage III/IV resected melanoma patients treated with peptide-based vaccination and interferon-alpha. Front Oncol 2023; 13:1145667. [PMID: 37274275 PMCID: PMC10233106 DOI: 10.3389/fonc.2023.1145667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Despite the recent approval of several therapies in the adjuvant setting of melanoma, tumor relapse still occurs in a significant number of completely resected stage III-IV patients. In this context, the use of cancer vaccines is still relevant and may increase the response to immune checkpoint inhibitors. We previously demonstrated safety, immunogenicity and preliminary evidence of clinical efficacy in stage III/IV resected melanoma patients subjected to a combination therapy based on peptide vaccination together with intermittent low-dose interferon-α2b, with or without dacarbazine preconditioning (https://www.clinicaltrialsregister.eu/ctr-search/search, identifier: 2008-008211-26). In this setting, we then focused on pre-treatment patient immune status to highlight possible factors associated with clinical outcome. Methods Multiparametric flow cytometry was used to identify baseline immune profiles in patients' peripheral blood mononuclear cells and correlation with the patient clinical outcome. Receiver operating characteristic curve, Kaplan-Meier survival and principal component analyses were used to evaluate the predictive power of the identified markers. Results We identified 12 different circulating T and NK cell subsets with significant (p ≤ 0.05) differential baseline levels in patients who later relapsed with respect to patients who remained free of disease. All 12 parameters showed a good prognostic accuracy (AUC>0.7, p ≤ 0.05) and 11 of them significantly predicted the relapse-free survival. Remarkably, 3 classifiers also predicted the overall survival. Focusing on immune cell subsets that can be analyzed through simple surface staining, three subsets were identified, namely regulatory T cells, CD56dimCD16- NK cells and central memory γδ T cells. Each subset showed an AUC>0.8 and principal component analysis significantly grouped relapsing and non-relapsing patients (p=0.034). These three subsets were used to calculate a combination score that was able to perfectly distinguish relapsing and non-relapsing patients (AUC=1; p=0). Noticeably, patients with a combined score ≥2 demonstrated a strong advantage in both relapse-free (p=0.002) and overall (p=0.011) survival as compared to patients with a score <2. Discussion Predictive markers may be used to guide patient selection for personalized therapies and/or improve follow-up strategies. This study provides preliminary evidence on the identification of peripheral blood immune biomarkers potentially capable of predicting the clinical response to combined vaccine-based adjuvant therapies in melanoma.
Collapse
Affiliation(s)
- Federica Moschella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Buccione
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Andrea Rozo Gonzalez
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Floriana Iacobone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Virginia Ferraresi
- Department of Medical Oncology 1, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, Department of Research, Advanced Diagnostics and Technological Innovation, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Filippo Belardelli
- Institute of Translational Pharmacology, National Research Council (CNR), Rome, Italy
| | - Enrico Proietti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
- Medical Biotechnology and Translational Medicine PhD School, II University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
4
|
Singh K, Batich KA, Wen PY, Tan AC, Bagley SJ, Lim M, Platten M, Colman H, Ashley DM, Chang SM, Rahman R, Galanis E, Mansouri A, Puduvalli VK, Reardon DA, Sahebjam S, Sampson JH, Simes J, Berry DA, Zadeh G, Cloughesy TF, Mehta MP, Piantadosi S, Weller M, Heimberger AB, Khasraw M. Designing Clinical Trials for Combination Immunotherapy: A Framework for Glioblastoma. Clin Cancer Res 2022; 28:585-593. [PMID: 34561270 PMCID: PMC9306329 DOI: 10.1158/1078-0432.ccr-21-2681] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
Immunotherapy has revolutionized treatment for many hard-to-treat cancers but has yet to produce significant improvement in outcomes for patients with glioblastoma. This reflects the multiple and unique mechanisms of immune evasion and escape in this highly heterogeneous tumor. Glioblastoma engenders profound local and systemic immunosuppression and is remarkably effective at inducing T-cell dysfunction, posing a challenge to any immunotherapy-based approach. To overcome these mechanisms, multiple disparate modes of immune-oriented therapy will be required. However, designing trials that can evaluate these combinatorial approaches requires careful consideration. In this review, we explore the immunotherapy resistance mechanisms that have been encountered to date and how combinatorial approaches may address these. We also describe the unique aspects of trial design in both preclinical and clinical settings and consider endpoints and markers of response best suited for an intervention involving multiple agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Platten
- Medical Faculty Mannheim, MCTN, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | | | | | - Susan M. Chang
- University of California, San Francisco (UCSF), San Francisco, California
| | | | | | | | | | | | - Solmaz Sahebjam
- Moffitt Cancer Center, University of South Florida, Tampa, Florida
| | | | - John Simes
- NHMRC Clinical Trials Centre, University of Sydney, NSW, Australia
| | | | | | | | | | | | - Michael Weller
- University Hospital and University of Zurich, Department of Neurology, Zürich, Switzerland
| | | | | |
Collapse
|
5
|
Alburquerque-González B, López-Abellán MD, Luengo-Gil G, Montoro-García S, Conesa-Zamora P. Design of Personalized Neoantigen RNA Vaccines Against Cancer Based on Next-Generation Sequencing Data. Methods Mol Biol 2022; 2547:165-185. [PMID: 36068464 DOI: 10.1007/978-1-0716-2573-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The good clinical results of immune checkpoint inhibitors (ICIs) in recent cancer therapy and the success of RNA vaccines against SARS-nCoV2 have provided important lessons to the scientific community. On the one hand, the efficacy of ICI depends on the number and immunogenicity of tumor neoantigens (TNAs) which unfortunately are not abundantly expressed in many cancer subtypes. On the other hand, novel RNA vaccines have significantly improved both the stability and immunogenicity of mRNA and its efficient delivery, this way overcoming past technique limitations and also allowing a quick vaccine development at the same time. These two facts together have triggered a resurgence of therapeutic cancer vaccines which can be designed to include individual TNAs and be synthesized in a timeframe short enough to be suitable for the tailored treatment of a given cancer patient.In this chapter, we explain the pipeline for the synthesis of TNA-carrying RNA vaccines which encompasses several steps such as individual tumor next-generation sequencing (NGS), selection of immunogenic TNAs, nucleic acid synthesis, drug delivery systems, and immunogenicity assessment, all of each step comprising different alternatives and variations which will be discussed.
Collapse
Affiliation(s)
- Begoña Alburquerque-González
- Pathology and Histology Department Facultad de Ciencias de la Salud, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - María Dolores López-Abellán
- Laboratory Medicine Department, Group of Molecular Pathology and Pharmacogenetics, Biomedical Research Institute from Murcia (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain
| | - Ginés Luengo-Gil
- Laboratory Medicine Department, Group of Molecular Pathology and Pharmacogenetics, Biomedical Research Institute from Murcia (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain
| | - Silvia Montoro-García
- Cell Culture Lab, Facultad de Ciencias de la Salud, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Pablo Conesa-Zamora
- Pathology and Histology Department Facultad de Ciencias de la Salud, UCAM Universidad Católica San Antonio de Murcia, Murcia, Spain.
- Laboratory Medicine Department, Group of Molecular Pathology and Pharmacogenetics, Biomedical Research Institute from Murcia (IMIB), Hospital Universitario Santa Lucía, Cartagena, Spain.
| |
Collapse
|
6
|
Nguyen A, Ramesh A, Kumar S, Nandi D, Brouillard A, Wells A, Pobezinsky L, Osborne B, Kulkarni AA. Granzyme B nanoreporter for early monitoring of tumor response to immunotherapy. SCIENCE ADVANCES 2020; 6:6/40/eabc2777. [PMID: 33008894 PMCID: PMC7852386 DOI: 10.1126/sciadv.abc2777] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/14/2020] [Indexed: 05/08/2023]
Abstract
Despite recent advancements in cancer immunotherapy, accurate monitoring of its efficacy is challenging due to heterogeneous immune responses. Conventional imaging techniques lack the sensitivity and specificity for early response assessment. In this study, we designed a granzyme B (GrB) nanoreporter (GNR) that can deliver an immune checkpoint inhibitor to the tumor and track time-sensitive GrB activity as a direct way to monitor initiation of effective immune responses. Anti-programmed death-ligand 1 (PD-L1) antibody-conjugated GNRs inhibited PD-1/PD-L1 interactions efficiently and induced T cell-mediated GrB release that can be imaged using activatable imaging probe. GNRs enabled real-time immunotherapy response monitoring in a tumor-bearing mice model and distinguished between highly responsive and poorly responsive tumors. Furthermore, increasing doses resulted in a better response and enhanced sensitivity in poorly responsive tumors. These findings indicate that GNR has the potential to serve as a tool for sensitive and noninvasive evaluation of immunotherapy efficacy.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Anujan Ramesh
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Dipika Nandi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Anthony Brouillard
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Alexandria Wells
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Leonid Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Barbara Osborne
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Ashish A Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
7
|
Boccard M, Albert-Vega C, Mouton W, Durieu I, Brengel-Pesce K, Venet F, Trouillet-Assant S, Ader F. [Functional immunoassays in the setting of infectious risk and immunosuppressive therapy of non-HIV immunocompromised patients]. Rev Med Interne 2020; 41:545-551. [PMID: 32624260 DOI: 10.1016/j.revmed.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/24/2020] [Accepted: 04/09/2020] [Indexed: 11/25/2022]
Abstract
The holistic approach of the human immune system is based on the study of its components collectively driving a functional response to an immunogenic stimulus. To appreciate a specific immune dysfunction, a condition is mimicked ex vivo and the immune response induced is assessed. The application field of such assays are broad and expanding, from the diagnosis of primary and secondary immunodeficiencies, immunotherapy for cancer to the management of patients at-risk for infections and vaccination. These assays are immune monitoring tools that may contribute to a personalised and precision medicine. The purpose of this review is to describe immune functional assays available in the setting of non-HIV acquired immune deficiency. First, we will address the use of theses assays in the diagnosis of opportunistic infections such as viral reactivation. Secondly, we will report the usefulness of these assays to assess vaccine efficacy and to manage immunosuppressive therapies.
Collapse
Affiliation(s)
- M Boccard
- Centre International de Recherche en Infectiologie (CIRI), Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France; Département de médecine interne et vasculaire, centre hospitalier Lyon Sud, Hospices civils de Lyon, 69310 Pierre-Bénite, France; Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France.
| | - C Albert-Vega
- Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France
| | - W Mouton
- Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France; Laboratoire virologie et pathologies humaines (VirPath), faculté de médecine Lyon Est, université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - I Durieu
- Département de médecine interne et vasculaire, centre hospitalier Lyon Sud, Hospices civils de Lyon, 69310 Pierre-Bénite, France
| | - K Brengel-Pesce
- Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France
| | - F Venet
- Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France; Laboratoire d'immunologie, hôpital Édouard-Herriot, Hospices civils de Lyon, 69003 Lyon, France; EA7426 Pathophysiology of injury-induced immunosuppression, université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - S Trouillet-Assant
- Unité mixte Hospices civils de Lyon-bioMérieux, centre hospitalier Lyon Sud, Hospices civils de Lyon, Pierre-Bénite, 69495 Lyon, France; Laboratoire virologie et pathologies humaines (VirPath), faculté de médecine Lyon Est, université Claude-Bernard Lyon 1, 69008 Lyon, France
| | - F Ader
- Centre International de Recherche en Infectiologie (CIRI), Inserm 1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France; Département des maladies infectieuses et tropicales, hôpital de la Croix-Rousse, Hospices civils de Lyon, 69004 Lyon, France
| |
Collapse
|
8
|
Urbani F, Ferraresi V, Capone I, Macchia I, Palermo B, Nuzzo C, Torsello A, Pezzotti P, Giannarelli D, Pozzi AF, Santaquilani M, Roazzi P, Bastucci S, Catricalà C, La Malfa A, Vercillo G, Gualtieri N, Buccione C, Castiello L, Cognetti F, Nisticò P, Belardelli F, Moschella F, Proietti E. Clinical and Immunological Outcomes in High-Risk Resected Melanoma Patients Receiving Peptide-Based Vaccination and Interferon Alpha, With or Without Dacarbazine Preconditioning: A Phase II Study. Front Oncol 2020; 10:202. [PMID: 32211314 PMCID: PMC7069350 DOI: 10.3389/fonc.2020.00202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical studies based on novel rationales and mechanisms of action of chemotherapy agents and cytokines can contribute to the development of new concepts and strategies of antitumor combination therapies. In previous studies, we investigated the paradoxical immunostimulating effects of some chemotherapeutics and the immunoadjuvant activity of interferon alpha (IFN-α) in preclinical and clinical models, thus unraveling novel rationales and mechanisms of action of chemotherapy agents and cytokines for cancer immunotherapy. Here, we carried out a randomized, phase II clinical trial, in which we analyzed the relapse-free (RFS) and overall survival (OS) of 34 completely resected stage III–IV melanoma patients, treated with peptide-based vaccination (Melan-A/MART-1 and NY-ESO-1) in combination with IFN-α2b, with (arm 2) or without (arm 1) dacarbazine preconditioning. All patients were included in the intention-to-treat analysis. At a median follow-up of 4.5 years (interquartile range, 15.4–81.0 months), the rates of RFS were 52.9 and 35.3% in arms 1 and 2, respectively. The 4.5-year OS rates were 68.8% in arm 1 and 62.7% in arm 2. No significant differences were observed between the two arms for both RFS and OS. Interestingly, the RFS and OS curves remained stable starting from 18 and 42 months, respectively. Grade 3 adverse events occurred in 5.9% of patients, whereas grade 4 events were not observed. Both treatments induced a significant expansion of vaccine-specific CD8+ T cells, with no correlation with the clinical outcome. However, treatment-induced increase of polyfunctionality and of interleukin 2 production by Melan-A–specific CD8+ T cells and expansion/activation of natural killer cells correlated with RFS, being observed only in nonrelapsing patients. Despite the recent availability of different therapeutic options, low-cost, low-toxic therapies with long-lasting clinical effects are still needed in patients with high-risk resected stage III/IV melanoma. The combination of peptide vaccination with IFN-α2b showed a minimal toxicity profile and resulted in encouraging RFS and OS rates, justifying further evaluation in clinical trials, which may include the use of checkpoint inhibitors to further expand the antitumor immune response and the clinical outcome. Clinical Trial Registration:https://www.clinicaltrialsregister.eu/ctr-search/search, identifier: 2008-008211-26
Collapse
Affiliation(s)
- Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.,Medical Biotechnology and Translational Medicine, Tor Vergata University, Rome, Italy
| | - Virginia Ferraresi
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Imerio Capone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Belinda Palermo
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen Nuzzo
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Angela Torsello
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Patrizio Pezzotti
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Diana Giannarelli
- Biostatistical Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Fausta Pozzi
- Hospital Pharmacia, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Paolo Roazzi
- Health Technology Assessement, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Bastucci
- Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Antonia La Malfa
- Hospital Pharmacia, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Vercillo
- Clinical Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Novella Gualtieri
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carla Buccione
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Francesco Cognetti
- Department of Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Federica Moschella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Enrico Proietti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Mouton W, Albert-Vega C, Boccard M, Bartolo F, Oriol G, Lopez J, Pachot A, Textoris J, Mallet F, Brengel-Pesce K, Trouillet-Assant S. Towards standardization of immune functional assays. Clin Immunol 2019; 210:108312. [PMID: 31760096 DOI: 10.1016/j.clim.2019.108312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/16/2019] [Accepted: 11/18/2019] [Indexed: 01/08/2023]
Abstract
Recent advances in the immunotherapy field require evaluation of the immune function to adapt therapeutic decisions. Immune functional assays (IFA) are able to reveal the immune status and would be useful to further adapt and/or improve patient's care. However, standardized methods are needed to implement IFA in clinical settings. We carried out an independent validation of a published method used to characterize the underlying host response to infectious conditions using an IFA. We evaluated the reproducibility and robustness of this IFA and the associated readout using an independent healthy volunteers (HV) cohort. Expression of a 44-gene signature and IFNγ protein secretion was assessed after stimulation. We observed a strong host-response correlation between the two cohorts. We also highlight that standardized methods for immune function evaluation exist and could be implemented in larger-scale studies. This IFA could be a relevant tool to reveal innate and adaptive immune dysfunction in immune-related disorders patients.
Collapse
Affiliation(s)
- William Mouton
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France; Virologie et Pathologie Humaine - Virpath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Claude Bernard Lyon 1 University, Lyon, France.
| | - Chloé Albert-Vega
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France
| | - Mathilde Boccard
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - François Bartolo
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Soladis, Lyon, France
| | - Guy Oriol
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France
| | - Jonathan Lopez
- Hospices Civils de Lyon, Plateforme de Recherche de Transfert en Oncologie, Department of Biochemistry and Molecular biology, Lyon Sud Hospital, Pierre-Bénite, France.; Université de Lyon, Claude Bernard Lyon 1 University, Faculté de Médecine Lyon Est, Lyon, France.; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Lyon, France
| | - Alexandre Pachot
- Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France
| | - Julien Textoris
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University, Edouard Herriot Hospital, Lyon, France.; Hospices Civils de Lyon, Department of Anesthesia and Critical Care Medicine, Edouard Herriot Hospital, Lyon, France
| | - François Mallet
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France; Joint Research Unit Hospices Civils de Lyon-bioMérieux, EA 7426 Pathophysiology of Injury-Induced Immunosuppression, PI3, Claude Bernard Lyon 1 University, Edouard Herriot Hospital, Lyon, France
| | - Karen Brengel-Pesce
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Open Innovation & Partnerships (OIP), bioMérieux S.A., Marcy l'Etoile, France
| | - Sophie Trouillet-Assant
- Joint Research Unit Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France; Virologie et Pathologie Humaine - Virpath Team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
10
|
Lapenta C, Donati S, Spadaro F, Lattanzi L, Urbani F, Macchia I, Sestili P, Spada M, Cox MC, Belardelli F, Santini SM. Lenalidomide improves the therapeutic effect of an interferon-α-dendritic cell-based lymphoma vaccine. Cancer Immunol Immunother 2019; 68:1791-1804. [PMID: 31620858 DOI: 10.1007/s00262-019-02411-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/05/2019] [Indexed: 12/25/2022]
Abstract
The perspective of combining cancer vaccines with immunomodulatory drugs is currently regarded as a highly promising approach for boosting tumor-specific T cell immunity and eradicating residual malignant cells. The efficacy of dendritic cell (DC) vaccination in combination with lenalidomide, an anticancer drug effective in several hematologic malignancies, was investigated in a follicular lymphoma (FL) model. First, we evaluated the in vitro activity of lenalidomide in modulating the immune responses of lymphocytes co-cultured with a new DC subset differentiated with IFN-α (IFN-DC) and loaded with apoptotic lymphoma cells. We next evaluated the efficacy of lenalidomide and IFN-DC-based vaccination, either alone or in combination, in hu-PBL-NOD/SCID mice bearing established human lymphoma. We found that lenalidomide reduced Treg frequency and IL-10 production in vitro, improved the formation of immune synapses of CD8 + lymphocytes with lymphoma cells and enhanced anti-lymphoma cytotoxicity. Treatment of lymphoma-bearing mice with either IFN-DC vaccination or lenalidomide led to a significant decrease in tumor growth and lymphoma cell spread. Lenalidomide treatment was shown to substantially inhibit tumor-induced neo-angiogenesis rather than to exert a direct cytotoxic effect on lymphoma cells. Notably, the combined treatment with the vaccine plus lenalidomide was more effective than either single treatment, resulting in the significant regression of established tumors and delayed tumor regrowth upon treatment discontinuation. In conclusion, our data demonstrate that IFN-DC-based vaccination plus lenalidomide exert an additive therapeutic effect in xenochimeric mice bearing established lymphoma. These results may pave the way to evaluate this combination in the clinical ground.
Collapse
Affiliation(s)
- Caterina Lapenta
- Reparto di Immunologia dei Tumori, Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Simona Donati
- Reparto di Immunologia dei Tumori, Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesca Spadaro
- Servizio Grandi Strumentazioni e Core Facilities, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Laura Lattanzi
- Reparto di Immunologia dei Tumori, Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesca Urbani
- Reparto di Immunologia dei Tumori, Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.,Scuola di Dottorato in Biotecnologie Mediche e Medicina Traslazionale, Tor Vergata University, 00133, Rome, Italy
| | - Iole Macchia
- Reparto di Immunologia dei Tumori, Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paola Sestili
- Servizio Grandi Strumentazioni e Core Facilities, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Massimo Spada
- Centro nazionale sperimentazione e benessere animale, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Maria Christina Cox
- Unità di Ematologia, Azienda Ospedaliera Sant'Andrea, Università La Sapienza, 00189, Rome, Italy
| | - Filippo Belardelli
- Istituto di Farmacologia Traslazionale, Consiglio Nazionale delle Ricerche (CNR), 00133, Rome, Italy
| | - Stefano M Santini
- Reparto di Immunologia dei Tumori, Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
11
|
Zou LQ, Yang X, Li YD, Zhu ZF. Immune checkpoint inhibitors: a new era for esophageal cancer. Expert Rev Anticancer Ther 2019; 19:731-738. [PMID: 31424306 DOI: 10.1080/14737140.2019.1654379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: The poor prognosis for patients with esophageal cancer (EC) requires evolving current treatment regimens. Immune checkpoint inhibitors show clinical efficacy and a great safety profile in multiple tumors. And the monoclonal antibodies that target programmed death receptor-1/programmed death receptor ligand-1 or the cytotoxic T lymphocyte antigen-4 pathway has shown potential curable effect of EC. Areas covered: This review article covers the prognostic significance of immune checkpoint expression, the accumulating current clinical studies of checkpoint inhibitors in esophageal cancer patients, and future directions. Expert opinion: Many clinical studies have reported favorable survival results with manageable toxicity of anti-programmed death receptor-1/programmed death receptor ligand-1 and anti-cytotoxic T lymphocyte antigen-4 treatment. More results are expected from future clinical studies. It is believed that combining chemoradiotherapy and immune checkpoint inhibitors can induce safe and efficient anti-tumor immune responses and can be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Li-Qing Zou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center , Shanghai , China.,Department of Oncology, Shanghai Medical College, Fudan University , Shanghai , China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center , Shanghai , China.,Department of Oncology, Shanghai Medical College, Fudan University , Shanghai , China
| | - Yi-Da Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center , Shanghai , China.,Department of Oncology, Shanghai Medical College, Fudan University , Shanghai , China
| | - Zheng-Fei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center , Shanghai , China.,Department of Oncology, Shanghai Medical College, Fudan University , Shanghai , China
| |
Collapse
|
12
|
Navas A, Giraldo-Parra L, Prieto MD, Cabrera J, Gómez MA. Phenotypic and functional stability of leukocytes from human peripheral blood samples: considerations for the design of immunological studies. BMC Immunol 2019; 20:5. [PMID: 30658588 PMCID: PMC6339328 DOI: 10.1186/s12865-019-0286-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/07/2019] [Indexed: 03/24/2023] Open
Abstract
Background Human peripheral blood mononuclear cells (PBMCs) are extensively used for research of immune cell functions, identification of biomarkers and development of diagnostics and therapeutics for human diseases, among others. The assumption that “old blood samples” are not appropriate for isolation of PBMCs for functional assays has been a dogma in the scientific community. However, partial data on the impact of time after phlebotomy on the quality and stability of human PBMCs preparations impairs the design of studies in which time-controlled blood sampling is challenging such as field studies involving multiple sampling centers/sites. In this study, we evaluated the effect of time after phlebotomy over a 24 h time course, on the stability of human blood leukocytes used for immunological analyses. Blood samples from eight healthy adult volunteers were obtained and divided into four aliquots, each of which was left in gentle agitation at room temperature (24 °C) for 2 h (control), 7 h, 12 h and 24 h post phlebotomy. All samples at each time point were independently processed for quantification of mononuclear cell subpopulations, cellular viability, gene expression and cytokine secretion. Results A 24 h time delay in blood sample processing did not affect the viability of PBMCs. However, a significantly lower frequency of CD3+ T cells (p < 0.05) and increased LPS-induced CXCL10 secretion were observed at 12 h post-phlebotomy. Alterations in TNFα, CCL8, CCR2 and CXCL10 gene expression were found as early as 7 h after blood sample procurement. Conclusions These data reveal previously unrecognized early time-points for sample processing control, and provide an assay-specific time reference for the design of studies that involve immunological analyses of human blood samples. Electronic supplementary material The online version of this article (10.1186/s12865-019-0286-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adriana Navas
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia.,Universidad Icesi, Cali, Colombia
| | - Lina Giraldo-Parra
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
| | - Miguel Darío Prieto
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
| | - Juliana Cabrera
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia.,Universidad Icesi, Cali, Colombia
| | - María Adelaida Gómez
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia. .,Universidad Icesi, Cali, Colombia.
| |
Collapse
|
13
|
Doescher J, Jeske S, Weissinger SE, Brunner C, Laban S, Bölke E, Hoffmann TK, Whiteside TL, Schuler PJ. Polyfunctionality of CD4+ T lymphocytes is increased after chemoradiotherapy of head and neck squamous cell carcinoma. Strahlenther Onkol 2018; 194:392-402. [DOI: 10.1007/s00066-018-1289-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
|
14
|
Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ. Dendritic cells as cancer therapeutics. Semin Cell Dev Biol 2018; 86:77-88. [PMID: 29454038 DOI: 10.1016/j.semcdb.2018.02.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Accepted: 02/10/2018] [Indexed: 02/06/2023]
Abstract
The ability of immune therapies to control cancer has recently generated intense interest. This therapeutic outcome is reliant on T cell recognition of tumour cells. The natural function of dendritic cells (DC) is to generate adaptive responses, by presenting antigen to T cells, hence they are a logical target to generate specific anti-tumour immunity. Our understanding of the biology of DC is expanding, and they are now known to be a family of related subsets with variable features and function. Most clinical experience to date with DC vaccination has been using monocyte-derived DC vaccines. There is now growing experience with alternative blood-derived DC derived vaccines, as well as with multiple forms of tumour antigen and its loading, a wide range of adjuvants and different modes of vaccine delivery. Key insights from pre-clinical studies, and lessons learned from early clinical testing drive progress towards improved vaccines. The potential to fortify responses with other modalities of immunotherapy makes clinically effective "second generation" DC vaccination strategies a priority for cancer immune therapists.
Collapse
Affiliation(s)
- Christian E Bryant
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia.
| | - Sarah Sutherland
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Benjamin Kong
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Michael S Papadimitrious
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia
| | - Derek N J Hart
- Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, NSW Australia; Dendritic Cell Research, ANZAC Research Institute, Concord, NSW Australia; Sydney Medical School, The University of Sydney, Sydney, NSW Australia.
| |
Collapse
|
15
|
Ward BJ, Pillet S, Charland N, Trepanier S, Couillard J, Landry N. The establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines? Hum Vaccin Immunother 2018; 14:647-656. [PMID: 29252098 PMCID: PMC5861778 DOI: 10.1080/21645515.2017.1413518] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The search for a test that can predict vaccine efficacy is an important part of any vaccine development program. Although regulators hesitate to acknowledge any test as a true ‘correlate of protection’, there are many precedents for defining ‘surrogate’ assays. Surrogates can be powerful tools for vaccine optimization, licensure, comparisons between products and development of improved products. When such tests achieve ‘reference’ status however, they can inadvertently become barriers to new technologies that do not work the same way as existing vaccines. This is particularly true when these tests are based upon circularly-defined ‘reference’ or, even worse, proprietary reagents. The situation with inactivated influenza vaccines is a good example of this phenomenon. The most frequently used tests to define vaccine-induced immunity are all serologic assays: hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization (MN). The first two, and particularly the HI assay, have achieved reference status and criteria have been established in many jurisdictions for their use in licensing new vaccines and to compare the performance of different vaccines. However, all of these assays are based on biological reagents that are notoriously difficult to standardize and can vary substantially by geography, by chance (i.e. developing reagents in eggs that may not antigenitically match wild-type viruses) and by intention (ie: choosing reagents that yield the most favorable results). This review describes attempts to standardize these assays to improve their performance as surrogates, the dangers of over-reliance on ‘reference’ serologic assays, the ways that manufacturers can exploit the existing regulatory framework to make their products ‘look good’ and the implications of this long-established system for the introduction of novel influenza vaccines.
Collapse
Affiliation(s)
- Brian J Ward
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | - Stephane Pillet
- a Research Institute of the McGill University Health Centre, Infectious Diseases Division , Montreal , QC , Canada.,b Medicago Inc , Québec , QC , Canada
| | | | | | | | | |
Collapse
|
16
|
Baumgaertner P, Ioannidou K, Speiser DE. Immune Monitoring of Blood and Tumor Microenvironment. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
17
|
Patel T, Cunningham A, Holland M, Daley J, Lazo S, Hodi FS, Severgnini M. Development of an 8-color antibody panel for functional phenotyping of human CD8+ cytotoxic T cells from peripheral blood mononuclear cells. Cytotechnology 2017; 70:1-11. [PMID: 28551826 DOI: 10.1007/s10616-017-0106-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022] Open
Abstract
The study of CD8 positive cells in peripheral blood has become an essential part of research in the field of cancer immunotherapies, vaccine development, inflammation, autoimmune disease, etc. In this study, an 8-color flow cytometry panel, containing lineage and functional markers, was developed for the identification of CD8+ cytotoxic T cells in previously cryopreserved peripheral blood mononuclear cells from healthy human donors. By studying functional markers in naïve and CD3/CD28 activated T cells we demonstrate that the panel is capable of detecting protein markers corresponding to different T cell activation statuses. Data generated by flow cytometry were corroborated by different antibody based assay technologies to detect soluble cytokines. Our findings suggest that there is an inter donor variability in both baseline and activation responses. We have also successfully developed an antibody panel for flow cytometry that could be used to study cytotoxic function of CD8 T cells in clinical immunology research areas.
Collapse
Affiliation(s)
- Tara Patel
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline, Ave Jimmy Fund 406, Boston, MA, 02215, USA
| | - Amy Cunningham
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline, Ave Jimmy Fund 406, Boston, MA, 02215, USA
| | - Martha Holland
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline, Ave Jimmy Fund 406, Boston, MA, 02215, USA
| | - John Daley
- Department of Medical Oncology/Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Suzan Lazo
- Department of Medical Oncology/Hematologic Neoplasia, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - F Stephen Hodi
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline, Ave Jimmy Fund 406, Boston, MA, 02215, USA
| | - Mariano Severgnini
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline, Ave Jimmy Fund 406, Boston, MA, 02215, USA.
| |
Collapse
|
18
|
Verma K, Ogonek J, Varanasi PR, Luther S, Bünting I, Thomay K, Behrens YL, Mischak-Weissinger E, Hambach L. Human CD8+ CD57- TEMRA cells: Too young to be called "old". PLoS One 2017; 12:e0177405. [PMID: 28481945 PMCID: PMC5421808 DOI: 10.1371/journal.pone.0177405] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/26/2017] [Indexed: 11/25/2022] Open
Abstract
End-stage differentiation of antigen-specific T-cells may precede loss of immune responses against e.g. viral infections after allogeneic stem cell transplantation (SCT). Antigen-specific CD8+ T-cells detected by HLA/peptide multimers largely comprise CD45RA-/CCR7- effector memory (TEM) and CD45RA+/CCR7- TEMRA subsets. A majority of terminally differentiated T-cells is considered to be part of the heterogeneous TEMRA subset. The senescence marker CD57 has been functionally described in memory T-cells mainly composed of central memory (TCM) and TEM cells. However, its role specifically in TEMRA cells remained undefined. Here, we investigated the relevance of CD57 to separate human CD8+ TEMRA cells into functionally distinct subsets. CD57- CD8+ TEMRA cells isolated from healthy donors had considerably longer telomeres and showed significantly more BrdU uptake and IFN-γ release upon stimulation compared to the CD57+ counterpart. Cytomegalovirus (CMV) specific T-cells isolated from patients after allogeneic SCT were purified into CD57+ and CD57- TEMRA subsets. CMV specific CD57- TEMRA cells had longer telomeres and a considerably higher CMV peptide sensitivity in BrdU uptake and IFN-γ release assays compared to CD57+ TEMRA cells. In contrast, CD57+ and CD57- TEMRA cells showed comparable peptide specific cytotoxicity. Finally, CD57- CD8+ TEMRA cells partially changed phenotypically into TEM cells and gained CD57 expression, while CD57+ CD8+ TEMRA cells hardly changed phenotypically and showed considerable cell death after in vitro stimulation. To the best of our knowledge, these data show for the first time that CD57 separates CD8+ TEMRA cells into a terminally differentiated CD57+ population and a so far functionally undescribed “young” CD57- TEMRA subset with high proliferative capacity and differentiation plasticity.
Collapse
Affiliation(s)
- Kriti Verma
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Integrated Research and Treatment Center for Transplantation (IFB-Tx), Hannover, Germany
| | - Justyna Ogonek
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Pavankumar Reddy Varanasi
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Susanne Luther
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ivonne Bünting
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Katrin Thomay
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Eva Mischak-Weissinger
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lothar Hambach
- Dept. of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
19
|
Müller I, Altherr D, Eyrich M, Flesch B, Friedmann KS, Ketter R, Oertel J, Schwarz EC, Technau A, Urbschat S, Eichler H. Tumor antigen-specific T cells for immune monitoring of dendritic cell-treated glioblastoma patients. Cytotherapy 2016; 18:1146-61. [PMID: 27424145 DOI: 10.1016/j.jcyt.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/26/2016] [Accepted: 05/20/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS CD8(+) T cells are part of the adaptive immune system and, as such, are responsible for the elimination of tumor cells. Dendritic cells (DC) are professional antigen-presenting cells (APC) that activate CD8(+) T cells. Effector CD8(+) T cells in turn mediate the active immunotherapeutic response of DC vaccination against the aggressive glioblastoma (GBM). The lack of tumor response assays complicates the assessment of treatment success in GBM patients. METHODS A novel assay to identify specific cytotoxicity of activated T cells by APC was evaluated. Tumor antigen-pulsed DCs from HLA-A*02-positive GBM patients were cultivated to stimulate autologous cytotoxic T lymphocytes (CTL) over a 12-day culture period. To directly correlate antigen specificity and cytotoxic capacity, intracellular interferon (IFN)-γ fluorescence flow cytometry-based measurements were combined with anti-GBM tumor peptide dextramer staining. IFN-γ response was quantified by real-time polymerase chain reaction (PCR), and selected GBM genes were compared with healthy human brain cDNA by single specific primer PCR characterization. RESULTS Using CTL of GBM patients stimulated with GBM lysate-pulsed DCs increased IFN-γ messenger RNA levels, and intracellular IFN-γ protein expression was positively correlated with specificity against GBM antigens. Moreover, the GBM peptide-specific CD8(+) T-cell response correlated with specific GBM gene expression. Following DC vaccination, GBM patients showed 10-fold higher tumor-specific signals compared with unvaccinated GBM patients. DISCUSSION These data indicate that GBM tumor peptide-dextramer staining of CTL in combination with intracellular IFN-γ staining may be a useful tool to acquire information on whether a specific tumor antigen has the potential to induce an immune response in vivo.
Collapse
Affiliation(s)
- Isabelle Müller
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Medical Center, Homburg, Germany.
| | - Dominik Altherr
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Medical Center, Homburg, Germany
| | - Matthias Eyrich
- Stem Cell Laboratory, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Brigitte Flesch
- Immungenetic/HLA, German Red Cross Blood Service, Bad Kreuznach, Germany
| | - Kim S Friedmann
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University School of Medicine, Homburg, Germany
| | - Ralf Ketter
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Joachim Oertel
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine, Saarland University School of Medicine, Homburg, Germany
| | - Antje Technau
- Stem Cell Laboratory, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Steffi Urbschat
- Department of Neurosurgery, Saarland University Medical Center, Homburg, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
20
|
Chan RCF, Kotner JS, Chuang CMH, Gaur A. Stabilization of pre-optimized multicolor antibody cocktails for flow cytometry applications. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 92:508-524. [DOI: 10.1002/cyto.b.21371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/13/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Amitabh Gaur
- Custom Technology Team, BD Biosciences; San Diego California
| |
Collapse
|
21
|
Yang J, Diaz N, Adelsberger J, Zhou X, Stevens R, Rupert A, Metcalf JA, Baseler M, Barbon C, Imamichi T, Lempicki R, Cosentino LM. The effects of storage temperature on PBMC gene expression. BMC Immunol 2016; 17:6. [PMID: 26979060 PMCID: PMC4791795 DOI: 10.1186/s12865-016-0144-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/04/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cryopreservation of peripheral blood mononuclear cells (PBMCs) is a common and essential practice in conducting research. There are different reports in the literature as to whether cryopreserved PBMCs need to only be stored ≤ -150 °C or can be stored for a specified time at -80 °C. Therefore, we performed gene expression analysis on cryopreserved PBMCs stored at both temperatures for 14 months and PBMCs that underwent temperature cycling 104 times between these 2 storage temperatures. Real-time RT-PCR was performed to confirm the involvement of specific genes associated with identified cellular pathways. All cryopreserved/stored samples were compared to freshly isolated PBMCs and between storage conditions. RESULTS We identified a total of 1,367 genes whose expression after 14 months of storage was affected >3 fold in PBMCs following isolation, cryopreservation and thawing as compared to freshly isolated PBMC aliquots that did not undergo cryopreservation. Sixty-six of these genes were shared among two or more major stress-related cellular pathways (stress responses, immune activation and cell death). Thirteen genes involved in these pathways were tested by real-time RT-PCR and the results agreed with the corresponding microarray data. There was no significant change on the gene expression if the PBMCs experienced brief but repetitive temperature cycling as compared to those that were constantly kept ≤ -150 °C. However, there were 18 genes identified to be different when PBMCs were stored at -80 °C but did not change when stored < -150 °C. A correlation was also found between the expressions of 2'-5'- oligoadenylate synthetase (OAS2), a known interferon stimulated gene (IFSG), and poor PBMC recovery post-thaw. PBMC recovery and viability were better when the cells were stored ≤ -150 °C as compared to -80 °C. CONCLUSIONS Not only is the viability and recovery of PBMCs affected during cryopreservation but also their gene expression pattern, as compared to freshly isolated PBMCs. Different storage temperature of PBMCs can activate or suppress different genes, but the cycling between -80 °C and -150 °C did not produce significant alterations in gene expression when compared to PBMCs stored ≤ -150 °C. Further analysis by gene expression of various PBMC processing and cryopreservation procedures is currently underway, as is identifying possible molecular mechanisms.
Collapse
Affiliation(s)
- Jun Yang
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Norma Diaz
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | | | - Xueyuan Zhou
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Randy Stevens
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Adam Rupert
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Julia A. Metcalf
- />Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD 20852 USA
| | - Mike Baseler
- />Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | | | | | | | | |
Collapse
|
22
|
Li GY, Zheng YX, Sun FZ, Huang J, Lou MM, Gu JK, Wang JH. In Silico Analysis and Experimental Validation of Active Compounds from Cichorium intybus L. Ameliorating Liver Injury. Int J Mol Sci 2015; 16:22190-204. [PMID: 26389883 PMCID: PMC4613303 DOI: 10.3390/ijms160922190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 01/29/2023] Open
Abstract
This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury.
Collapse
Affiliation(s)
- Guo-Yu Li
- Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun 130012, China.
| | - Ya-Xin Zheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Fu-Zhou Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jian Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Meng-Meng Lou
- School of Pharmacy, Shihezi University, Shihezi 832002, China.
| | - Jing-Kai Gu
- Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun 130012, China.
| | - Jin-Hui Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
- School of Pharmacy, Shihezi University, Shihezi 832002, China.
| |
Collapse
|
23
|
Rozera C, Cappellini GA, D'Agostino G, Santodonato L, Castiello L, Urbani F, Macchia I, Aricò E, Casorelli I, Sestili P, Montefiore E, Monque D, Carlei D, Napolitano M, Rizza P, Moschella F, Buccione C, Belli R, Proietti E, Pavan A, Marchetti P, Belardelli F, Capone I. Intratumoral injection of IFN-alpha dendritic cells after dacarbazine activates anti-tumor immunity: results from a phase I trial in advanced melanoma. J Transl Med 2015; 13:139. [PMID: 25933939 PMCID: PMC4438625 DOI: 10.1186/s12967-015-0473-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/23/2015] [Indexed: 02/06/2023] Open
Abstract
Background Advanced melanoma patients have an extremely poor long term prognosis and are in strong need of new therapies. The recently developed targeted therapies have resulted in a marked antitumor effect, but most responses are partial and some degree of toxicity remain the major concerns. Dendritic cells play a key role in the activation of the immune system and have been typically used as ex vivo antigen-loaded cell drugs for cancer immunotherapy. Another approach consists in intratumoral injection of unloaded DCs that can exploit the uptake of a wider array of tumor-specific and individual unique antigens. However, intratumoral immunization requires DCs endowed at the same time with properties typically belonging to both immature and mature DCs (i.e. antigen uptake and T cell priming). DCs generated in presence of interferon-alpha (IFN-DCs), due to their features of partially mature DCs, capable of efficiently up-taking, processing and cross-presenting antigens to T cells, could successfully carry out this task. Combining intratumoral immunization with tumor-destructing therapies can induce antigen release in situ, facilitating the injected DCs in triggering an antitumor immune response. Methods We tested in a phase I clinical study in advanced melanoma a chemo-immunotherapy approach based on unloaded IFN-DCs injected intratumorally one day after administration of dacarbazine. Primary endpoint of the study was treatment safety and tolerability. Secondary endpoints were immune and clinical responses of patients. Results Six patients were enrolled, and only three completed the treatment. The chemo-immunotherapy was well tolerated with no major side effects. Three patients showed temporary disease stabilization and two of them showed induction of T cells specific for tyrosinase, NY-ESO-1 and gp100. Of interest, one patient showing a remarkable long-term disease stabilization kept showing presence of tyrosinase specific T cells in PBMC and high infiltration of memory T cells in the tumor lesion at 21 months. Conclusion We tested a chemo-immunotherapeutic approach based on IFN-DCs injected intratumorally one day after DTIC in advanced melanoma. The treatment was well tolerated, and clinical and immunological responses, including development of vitiligo, were observed, therefore warranting additional clinical studies aimed at evaluating efficacy of this approach. Trial registration Trial Registration Number not publicly available due to EudraCT regulations: https://www.clinicaltrialsregister.eu/doc/EU_CTR_FAQ.pdf
Collapse
Affiliation(s)
- Carmela Rozera
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Giancarlo Antonini Cappellini
- IV Dermatology Oncology Unit, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), via Monti Creta 104, Rome, 00167, Italy.
| | - Giuseppina D'Agostino
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Laura Santodonato
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Luciano Castiello
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Francesca Urbani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Iole Macchia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Eleonora Aricò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Ida Casorelli
- Immunohematology and Transfusion Medicine Unit, Sapienza University of Rome, Sant'Andrea Hospital, via di Grottarossa 1035, Rome, 00189, Italy.
| | - Paola Sestili
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Enrica Montefiore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Domenica Monque
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Davide Carlei
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Mariarosaria Napolitano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Paola Rizza
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Federica Moschella
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Carla Buccione
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Roberto Belli
- National AIDS Center, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Enrico Proietti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Antonio Pavan
- Immunohematology and Transfusion Medicine Unit, Sapienza University of Rome, Sant'Andrea Hospital, via di Grottarossa 1035, Rome, 00189, Italy.
| | - Paolo Marchetti
- IV Dermatology Oncology Unit, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), via Monti Creta 104, Rome, 00167, Italy. .,Department of Oncology, Sapienza University of Rome, Sant'Andrea Hospital, via di Grottarossa 1035, Rome, 00189, Italy.
| | - Filippo Belardelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Imerio Capone
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| |
Collapse
|