1
|
Ye YM, Zhao YX, Xiang LR, Zou CY, Xiao H, Lu H, Yang H, Hu JJ, Xie HQ. The Immunomodulatory mechanism and research progress of mesenchymal stem cells in the treatment of allergic rhinitis. Stem Cell Res Ther 2025; 16:188. [PMID: 40251675 PMCID: PMC12008879 DOI: 10.1186/s13287-025-04333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/10/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Allergic rhinitis (AR) affects 10-40% of the global population, yet current therapies (drugs, immunotherapy) face limitations in efficacy and safety. Mesenchymal stem cells (MSCs) have emerged as a promising alternative due to their immunomodulatory properties. KEY FINDINGS Preclinical studies demonstrate that MSCs from adipose, bone marrow, umbilical cord, and tonsils reduce AR symptoms (sneezing, nasal inflammation) and serum IgE (Immunoglobulin E) levels by restoring Th1/Th2 immune equilibrium and enhancing Treg (Regulatory T cells) activity. MSC-derived exosomes and hydrogel-encapsulated formulations further improve targeting and safety. However, clinical translation is hindered by heterogeneous protocols and unresolved long-term risks (e.g., tumorigenicity). CLINICAL SIGNIFICANCE MSC-based therapies offer potential for durable AR remission by addressing immune dysregulation at its root. Future efforts must prioritize standardized production, phase I safety trials, and combination strategies (e.g., exosomes + hydrogels) to accelerate clinical adoption.
Collapse
Affiliation(s)
- Yu-Meng Ye
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Yu-Xin Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Li-Rong Xiang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Hao Xiao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Huan Lu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Department of Otolaryngology-Head & Neck Surgery, West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610213, P. R. China
| | - Hui Yang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Juan-Juan Hu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
2
|
Valencia J, Yáñez RM, Muntión S, Fernández-García M, Martín-Rufino JD, Zapata AG, Bueren JA, Vicente Á, Sánchez-Guijo F. Improving the therapeutic profile of MSCs: Cytokine priming reduces donor-dependent heterogeneity and enhances their immunomodulatory capacity. Front Immunol 2025; 16:1473788. [PMID: 40034706 PMCID: PMC11872697 DOI: 10.3389/fimmu.2025.1473788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction MSCs exhibit regenerative, anti-inflammatory and immunomodulatory properties due to the large amount of cytokines, chemokines and growth factors they secrete. MSCs have been extensively evaluated in clinical trials, however, in some cases their therapeutic effects are variable. Therefore, strategies to improve their therapeutic potential, such as preconditioning with proinflammatory factors, have been proposed. Several priming approaches have provided non-conclusive results, and the duration of priming effects on MSC properties or their response to a second inflammatory stimulus have not been fully addressed. Methods We have investigated the impact of triple cytokine priming in MSCs on their characterization and viability, their transcriptomic profile, the functionality of innate and acquired immune cells, as well as the maintenance of the response to priming over time, their subsequent responsiveness to a second inflammatory stimulus. Results Priming MSCs with proinflammatory cytokines (CK-MSCs) do not modify the differentiation capacity of MSCs, nor their immunophenotype and viability. Moreover, cytokine priming enhances the anti-inflammatory and immunomodulatory properties of MSCs against NK and dendritic cells, while maintaining the same T cell immunomodulatory capacity as unstimulated MSCs. Thus, they decrease T-lymphocytes and NK cell proliferation, inhibit the differentiation and allostimulatory capacity of dendritic cells and promote the differentiation of monocytes with an immunosuppressive profile. In addition, we have shown for the first time that proinflammatory priming reduces the variability between different donors and MSC origins. Finally, the effect on CK-MSC is maintained over time and even after a secondary inflammatory stimulus. Conclusions Cytokine-priming improves the therapeutic potential of MSCs and reduces inter-donor variability.
Collapse
Affiliation(s)
- Jaris Valencia
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Heath Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosa M. Yáñez
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Sandra Muntión
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, University of Salamanca and Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, Salamanca, Spain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, Salamanca, Spain
| | - María Fernández-García
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jorge Diego Martín-Rufino
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Agustín G. Zapata
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Heath Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Juan A. Bueren
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ángeles Vicente
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Heath Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Fermín Sánchez-Guijo
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, University of Salamanca and Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, Salamanca, Spain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, Salamanca, Spain
| |
Collapse
|
3
|
Yordanova A, Ivanova M, Tumangelova-Yuzeir K, Angelov A, Kyurkchiev S, Belemezova K, Kurteva E, Kyurkchiev D, Ivanova-Todorova E. Umbilical Cord Mesenchymal Stem Cell Secretome: A Potential Regulator of B Cells in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:12515. [PMID: 39684227 DOI: 10.3390/ijms252312515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Autoimmune diseases represent a severe personal and healthcare problem that seeks novel therapeutic solutions. Mesenchymal stem cells (MSCs) are multipotent cells with interesting cell biology and promising therapeutic potential. The immunoregulatory effects of secretory factors produced by umbilical cord mesenchymal stem cells (UC-MSCs) were assessed on B lymphocytes from 17 patients with systemic lupus erythematosus (SLE), as defined by the 2019 European Alliance of Associations for Rheumatology (EULAR)/American College of Rheumatology (ACR) classification criteria for SLE, and 10 healthy volunteers (HVs). Peripheral blood mononuclear cells (PBMCs) from patients and HVs were cultured in a UC-MSC-conditioned medium (UC-MSCcm) and a control medium. Flow cytometry was used to detect the surface expression of CD80, CD86, BR3, CD40, PD-1, and HLA-DR on CD19+ B cells and assess the percentage of B cells in early and late apoptosis. An enzyme-linked immunosorbent assay (ELISA) quantified the production of BAFF, IDO, and PGE2 in PBMCs and UC-MSCs. Under UC-MSCcm influence, the percentage and mean fluorescence intensity (MFI) of CD19+BR3+ cells were reduced in both SLE patients and HVs. Regarding the effects of the MSC secretome on B cells in lupus patients, we observed a decrease in CD40 MFI and a reduced percentage of CD19+PD-1+ and CD19+HLA-DR+ cells. In contrast, in the B cells of healthy participants, we found an increased percentage of CD19+CD80+ cells and decreased CD80 MFI, along with a decrease in CD40 MFI and the percentage of CD19+PD-1+ cells. The UC-MSCcm had a minimal effect on B-cell apoptosis. The incubation of patients' PBMCs with the UC-MSCcm increased PGE2 levels compared to the control medium. This study provides new insights into the impact of the MSC secretome on the key molecules involved in B-cell activation and antigen presentation and survival, potentially guiding the development of future SLE treatments.
Collapse
Affiliation(s)
- Adelina Yordanova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Mariana Ivanova
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | - Kalina Tumangelova-Yuzeir
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Alexander Angelov
- University Hospital St. Ivan Rilski, Clinic of Rheumatology, Department of Rheumatology, Medical Faculty, Medical University of Sofia, 13 Urvich St., 1612 Sofia, Bulgaria
| | | | | | - Ekaterina Kurteva
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Dobroslav Kyurkchiev
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| | - Ekaterina Ivanova-Todorova
- University Hospital St. Ivan Rilski, Laboratory of Clinical Immunology, Department of Clinical Immunology, Medical Faculty, Medical University of Sofia, 15 Akademik Iv. E. Geshov Blvd., 1431 Sofia, Bulgaria
| |
Collapse
|
4
|
Liu Y, Liu S, Meng L, Fang L, Yu J, Yue J, Li T, Tu Y, Jiang T, Yu P, Wan YZ, Lu Y, Shi L. The function and mechanism of Human nasal mucosa-derived mesenchymal stem cells in allergic rhinitis in mice. Inflamm Res 2024; 73:1819-1832. [PMID: 39180692 PMCID: PMC11445352 DOI: 10.1007/s00011-024-01933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
PURPOSE To investigate the immunomodulatory effects and potential mechanisms of human nasal mucosa-derived mesenchymal stem cells(hNMSCs) on mouse allergic rhinitis, and to compare them with human umbilical cord-derived mesenchymal stem cells (hUCMSCs). METHOD hNMSCs and hUCMSCs were isolated and cultured for identification from human nasal mucosa and umbilical cord tissues. A co-culture system of LPS-stimulated RAW264.7 cells/mouse peritoneal macrophages and MSCs was employed.Changes in inflammatory factors in RAW264.7 cells and the culture medium as well as the expression of NF-κB signaling pathway in RAW264.7 cells were detected. Forty-eight BALB/c mice were randomly divided into control, OVA, hNMSCs, and hUCMSCs groups. An allergic rhinitis (AR) model was established through ovalbumin (OVA) stimulation and treated with hNMSCs and hUCMSCs. Subsequent assessments included related symptoms, biological changes, and the expression of the NF-κB signaling pathway in the nasal mucosa of mice. RESULTS MSCs can be successfully isolated from human nasal mucosa. Both hNMSCs and hUCMSCs interventions significantly reverseed the inflammation induced by LPS and suppressed the upregulation of the NF-κB signaling pathway in RAW264.7 cells. Treatment with hNMSCs and hUCMSCs alleviated mouse allergic symptoms, reduced levels of total IgE, OVA-specific IgE and IgG1 in mouse serum, TH2-type cytokines and chemokines in mouse nasal mucosa, and TH2-type cytokines in mouse spleen culture medium, while also inhibiting the expression of the NF-κB signaling pathway in the nasal mucosa of mice. moreover, the hNMSCs group showed a more significant reduction in OVA-specific IgG1 in serum and IL-4 expression levels in mouse spleen culture medium compared to the hUCMSCs group. CONCLUSION Our findings suggest that hNMSCs can ameliorate allergic rhinitis in mice, with a certain advantage in anti-inflammatory effects compared to hUCMSCs. The NF-κB pathway is likely involved in the anti-inflammatory regulation process by hNMSCs.Therefore, hNMSCs might represent a novel therapeutic approach for allergic rhinitis.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otorhinolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang West Road, Shenzhen, Guangdong Province, 518000, China
| | - Shengyang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Linghui Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Li Fang
- Department of Otorhinolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang West Road, Shenzhen, Guangdong Province, 518000, China
| | - Jinzhuang Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Jing Yue
- Department of Traditional Chinese Medicine, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Tao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Yanyi Tu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Tianjiao Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Yu-Zhu Wan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China
| | - Yongtian Lu
- Department of Otorhinolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang West Road, Shenzhen, Guangdong Province, 518000, China.
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Duanxing West Road, Jinan, Shandong, 250033, China.
- Department of Otolaryngology-Head and Neck Surgery, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
- Shandong Provincial Key Medical and Health Laboratory of Airway Inflammatory Disease, Jinan, China.
| |
Collapse
|
5
|
Kangari P, Salahlou R, Vandghanooni S. Harnessing the Therapeutic Potential of Mesenchymal Stem Cells in Cancer Treatment. Adv Pharm Bull 2024; 14:574-590. [PMID: 39494266 PMCID: PMC11530882 DOI: 10.34172/apb.2024.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer, as a complicated disease, is considered to be one of the major leading causes of death globally. Although various cancer therapeutic strategies have been established, however, some issues confine the efficacies of the treatments. In recent decades researchers for finding efficient therapeutic solutions have extensively focused on the abilities of stem cells in cancer inhibition. Mesenchymal stem cells (MSCs) are multipotent stromal cells that can the most widely extracted from various sources such as the bone marrow (BM), placenta, umbilical cord (UC), menses blood, Wharton's jelly (WJ), adipose tissue and dental pulp (DP). These cells are capable of differentiating into the osteoblasts, chondrocytes, and adipocytes. Due to the unique characteristics of MSCs such as paracrine effects, immunomodulation, tumor-tropism, and migration, they are considered promising candidates for cancer therapeutics. Currently, MSCs are an excellent living carrier for delivery of therapeutic genes and chemical agents to target tumor sites. Also, exosomes, the most important extracellular vesicle released from MSCs, act as a strong cell-free tool for cancer therapeutics. MSCs can prevent cancer progression by inhibiting several signaling pathways, such as wnt/β-catenin and PI3K/AKT/mTOR. However, there are several challenges associated with the use of MSCs and their exosomes in the field of therapy that need to be considered. This review explores the significance of MSCs in cell-based therapy, focusing on their homing properties and immunomodulatory characteristics. It also examines the potential of using MSCs as carriers for delivery of anticancer agents and their role in modulating the signal transduction pathways of cancer cells.
Collapse
Affiliation(s)
- Parisa Kangari
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Salahlou
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Liu L, Fandiño J, McCarthy SD, Masterson CH, Sallent I, Du S, Warren A, Laffey JG, O’Toole D. The Effects of the Pneumonia Lung Microenvironment on MSC Function. Cells 2024; 13:1581. [PMID: 39329762 PMCID: PMC11430541 DOI: 10.3390/cells13181581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Despite promise in preclinical models of acute respiratory distress syndrome (ARDS), mesenchymal stem cells (MSC) have failed to translate to therapeutic benefit in clinical trials. The MSC is a live cell medicine and interacts with the patient's disease state. Here, we explored this interaction, seeking to devise strategies to enhance MSC therapeutic function. METHODS Human bone-marrow-derived MSCs were exposed to lung homogenate from healthy and E. coli-induced ARDS rat models. Apoptosis and functional assays of the MSCs were performed. RESULTS The ARDS model showed reduced arterial oxygenation, decreased lung compliance and an inflammatory microenvironment compared to controls. MSCs underwent more apoptosis after stimulation by lung homogenate from controls compared to E. coli, which may explain why MSCs persist longer in ARDS subjects after administration. Changes in expression of cell surface markers and cytokines were associated with lung homogenate from different groups. The anti-microbial effects of MSCs did not change with the stimulation. Moreover, the conditioned media from lung-homogenate-stimulated MSCs inhibited T-cell proliferation. CONCLUSIONS These findings suggest that the ARDS microenvironment plays an important role in the MSC's therapeutic mechanism of action, and changes can inform strategies to modulate MSC-based cell therapy for ARDS.
Collapse
Affiliation(s)
- Lanzhi Liu
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- Discipline of Physiology, University of Galway, H91 W5P7 Galway, Ireland
| | - Juan Fandiño
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Sean D. McCarthy
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Claire H. Masterson
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Ignacio Sallent
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Shanshan Du
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- School of Medicine, University of Galway, H91 W5P7 Galway, Ireland
| | - Abigail Warren
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- Discipline of Anaesthesia, University of Galway, H91 V4AY Galway, Ireland
| | - John G. Laffey
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- Discipline of Anaesthesia, University of Galway, H91 V4AY Galway, Ireland
- Anaesthesia and Critical Care, Galway University Hospital, H91 V4AY Galway, Ireland
| | - Daniel O’Toole
- CÚRAM Institute for Medical Devices, University of Galway, H91 W2TY Galway, Ireland; (L.L.); (J.F.); (S.D.M.); (C.H.M.); (I.S.); (S.D.); (A.W.); (J.G.L.)
- Discipline of Physiology, University of Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
7
|
Poblano-Pérez LI, Monroy-García A, Fragoso-González G, Mora-García MDL, Castell-Rodríguez A, Mayani H, Álvarez-Pérez MA, Pérez-Tapia SM, Macías-Palacios Z, Vallejo-Castillo L, Montesinos JJ. Mesenchymal Stem/Stromal Cells Derived from Dental Tissues Mediate the Immunoregulation of T Cells through the Purinergic Pathway. Int J Mol Sci 2024; 25:9578. [PMID: 39273524 PMCID: PMC11395442 DOI: 10.3390/ijms25179578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Gladis Fragoso-González
- Institute of Biomedical Research, Department of Immunology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Cell Differentiation and Cancer Unit, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Andrés Castell-Rodríguez
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Héctor Mayani
- Hematopoietic Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Marco Antonio Álvarez-Pérez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sonia Mayra Pérez-Tapia
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Zaira Macías-Palacios
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
8
|
Silva-Carvalho AÉ, Bispo ECI, da Silva IGM, Correa JR, Carvalho JL, Gelfuso GM, Saldanha-Araujo F. Characterization of ibrutinib's effects on the morphology, proliferation, phenotype, viability, and anti-inflammatory potential of adipose-derived mesenchymal stromal cells. Sci Rep 2024; 14:19906. [PMID: 39191849 DOI: 10.1038/s41598-024-71054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
Ibrutinib (IB) is a tyrosine kinase inhibitor (TKI) that has immunomodulatory action and can be used as second-line therapy for steroid-refractory or steroid-resistant chronic Graft versus Host Disease (cGVHD). Mesenchymal stromal cells (MSCs) are distributed throughout the body and their infusion has also been explored as a second-line therapeutic alternative for the treatment of cGVHD. Considering the currently unknown effects of IB on endogenous MSCs, as well as the possible combined use of IB and MSCs for cGVHD, we investigated whether adipose tissue-derived MSCs present IB-targets, as well as the consequences of treating MSCs with this drug, regarding cell viability, proliferation, phenotype, and anti-inflammatory potential. Interestingly, we show for the first time that MSCs express several IB target genes. Also of note, the treatment of such cells with this TKI elevated the levels of CD90 and CD105 surface proteins, as well as VCAM-1. Furthermore, IB-treated MSCs presented increased mRNA expression of the anti-inflammatory genes PD-L1, TSG-6, and IL-10. However, continued exposure to IB, even at low doses, compromised the viability of MSCs. These data indicate that the use of IB can stimulate an anti-inflammatory profile in MSCs, but also that a continued exposure to IB can compromise MSC viability over time.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia E Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brasil
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Brasília, Brasil
| | - Elizabete Cristina Iseke Bispo
- Laboratório de Hematologia E Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brasil
| | | | - José Raimundo Correa
- Laboratório de Microscopia E Microanálises, Universidade de Brasília, Brasília, Brasil
| | - Juliana Lott Carvalho
- Laboratório Multidisciplinar de Biociências, Universidade de Brasília, Brasília, Brasil
| | | | - Felipe Saldanha-Araujo
- Laboratório de Hematologia E Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brasil.
| |
Collapse
|
9
|
Starska-Kowarska K. Role of Mesenchymal Stem/Stromal Cells in Head and Neck Cancer-Regulatory Mechanisms of Tumorigenic and Immune Activity, Chemotherapy Resistance, and Therapeutic Benefits of Stromal Cell-Based Pharmacological Strategies. Cells 2024; 13:1270. [PMID: 39120301 PMCID: PMC11311692 DOI: 10.3390/cells13151270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Head and neck cancer (HNC) entails a heterogenous neoplastic disease that arises from the mucosal epithelium of the upper respiratory system and the gastrointestinal tract. It is characterized by high morbidity and mortality, being the eighth most common cancer worldwide. It is believed that the mesenchymal/stem stromal cells (MSCs) present in the tumour milieu play a key role in the modulation of tumour initiation, development and patient outcomes; they also influence the resistance to cisplatin-based chemotherapy, the gold standard for advanced HNC. MSCs are multipotent, heterogeneous and mobile cells. Although no MSC-specific markers exist, they can be recognized based on several others, such as CD73, CD90 and CD105, while lacking the presence of CD45, CD34, CD14 or CD11b, CD79α, or CD19 and HLA-DR antigens; they share phenotypic similarity with stromal cells and their capacity to differentiate into other cell types. In the tumour niche, MSC populations are characterized by cell quiescence, self-renewal capacity, low reactive oxygen species production and the acquisition of epithelial-to-mesenchymal transition properties. They may play a key role in the process of acquiring drug resistance and thus in treatment failure. The present narrative review examines the links between MSCs and HNC, as well as the different mechanisms involved in the development of resistance to current chemo-radiotherapies in HNC. It also examines the possibilities of pharmacological targeting of stemness-related chemoresistance in HNSCC. It describes promising new strategies to optimize chemoradiotherapy, with the potential to personalize patient treatment approaches, and highlights future therapeutic perspectives in HNC.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-42-2725237
- Department of Otorhinolaryngology, EnelMed Center Expert, Lodz, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
10
|
Umapathy A, Clark A, Sehgal A, Karanam V, Rajaraman G, Kalionis B, Jones H, James J, Murthi P. Molecular regulators of defective placental and cardiovascular development in fetal growth restriction. Clin Sci (Lond) 2024; 138:761-775. [PMID: 38904187 PMCID: PMC11193155 DOI: 10.1042/cs20220428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
Placental insufficiency is one of the major causes of fetal growth restriction (FGR), a significant pregnancy disorder in which the fetus fails to achieve its full growth potential in utero. As well as the acute consequences of being born too small, affected offspring are at increased risk of cardiovascular disease, diabetes and other chronic diseases in later life. The placenta and heart develop concurrently, therefore placental maldevelopment and function in FGR may have profound effect on the growth and differentiation of many organ systems, including the heart. Hence, understanding the key molecular players that are synergistically linked in the development of the placenta and heart is critical. This review highlights the key growth factors, angiogenic molecules and transcription factors that are common causes of defective placental and cardiovascular development.
Collapse
Affiliation(s)
- Anandita Umapathy
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Alys Clark
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
- Auckland Bioengineering Institute, Bioengineering Institute, New Zealand
| | - Arvind Sehgal
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia and Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| | - Vijaya Karanam
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne and Royal Women’s Hospital, Victoria, Australia
| | - Gayathri Rajaraman
- First year college, Victoria University, St Albans, Victoria 3021, Australia
| | - Bill Kalionis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne and Royal Women’s Hospital, Victoria, Australia
- Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women’s Hospital, Victoria, Australia
| | - Helen N. Jones
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, U.S.A
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, U.S.A
| | - Jo James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
- Auckland Bioengineering Institute, Bioengineering Institute, New Zealand
| | - Padma Murthi
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne and Royal Women’s Hospital, Victoria, Australia
- Department of Maternal Fetal Medicine, Pregnancy Research Centre, Royal Women’s Hospital, Victoria, Australia
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Velikova T, Dekova T, Miteva DG. Controversies regarding transplantation of mesenchymal stem cells. World J Transplant 2024; 14:90554. [PMID: 38947963 PMCID: PMC11212595 DOI: 10.5500/wjt.v14.i2.90554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 06/13/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tantalized regenerative medicine with their therapeutic potential, yet a cloud of controversies looms over their clinical transplantation. This comprehensive review navigates the intricate landscape of MSC controversies, drawing upon 15 years of clinical experience and research. We delve into the fundamental properties of MSCs, exploring their unique immunomodulatory capabilities and surface markers. The heart of our inquiry lies in the controversial applications of MSC transplantation, including the perennial debate between autologous and allogeneic sources, concerns about efficacy, and lingering safety apprehensions. Moreover, we unravel the enigmatic mechanisms surrounding MSC transplantation, such as homing, integration, and the delicate balance between differentiation and paracrine effects. We also assess the current status of clinical trials and the ever-evolving regulatory landscape. As we peer into the future, we examine emerging trends, envisioning personalized medicine and innovative delivery methods. Our review provides a balanced and informed perspective on the controversies, offering readers a clear understanding of the complexities, challenges, and potential solutions in MSC transplantation.
Collapse
Affiliation(s)
- Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | - Tereza Dekova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | |
Collapse
|
12
|
De Sousa PA, Perfect L, Ye J, Samuels K, Piotrowska E, Gordon M, Mate R, Abranches E, Wishart TM, Dockrell DH, Courtney A. Hyaluronan in mesenchymal stromal cell lineage differentiation from human pluripotent stem cells: application in serum free culture. Stem Cell Res Ther 2024; 15:130. [PMID: 38702837 PMCID: PMC11069290 DOI: 10.1186/s13287-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.
Collapse
Affiliation(s)
- Paul A De Sousa
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Stroma Therapeutics Ltd, Glasgow, UK.
| | - Leo Perfect
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Jinpei Ye
- Institute of Biomedical Science, Shanxi University, Taiyuan, Shanxi, China
| | - Kay Samuels
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Ewa Piotrowska
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Molecular Biology, University of Gdansk, Gdańsk, Poland
| | - Martin Gordon
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Ryan Mate
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Elsa Abranches
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | | | - David H Dockrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
13
|
Xia Y, Sun M, Huang H, Jin WL. Drug repurposing for cancer therapy. Signal Transduct Target Ther 2024; 9:92. [PMID: 38637540 PMCID: PMC11026526 DOI: 10.1038/s41392-024-01808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Cancer, a complex and multifactorial disease, presents a significant challenge to global health. Despite significant advances in surgical, radiotherapeutic and immunological approaches, which have improved cancer treatment outcomes, drug therapy continues to serve as a key therapeutic strategy. However, the clinical efficacy of drug therapy is often constrained by drug resistance and severe toxic side effects, and thus there remains a critical need to develop novel cancer therapeutics. One promising strategy that has received widespread attention in recent years is drug repurposing: the identification of new applications for existing, clinically approved drugs. Drug repurposing possesses several inherent advantages in the context of cancer treatment since repurposed drugs are typically cost-effective, proven to be safe, and can significantly expedite the drug development process due to their already established safety profiles. In light of this, the present review offers a comprehensive overview of the various methods employed in drug repurposing, specifically focusing on the repurposing of drugs to treat cancer. We describe the antitumor properties of candidate drugs, and discuss in detail how they target both the hallmarks of cancer in tumor cells and the surrounding tumor microenvironment. In addition, we examine the innovative strategy of integrating drug repurposing with nanotechnology to enhance topical drug delivery. We also emphasize the critical role that repurposed drugs can play when used as part of a combination therapy regimen. To conclude, we outline the challenges associated with repurposing drugs and consider the future prospects of these repurposed drugs transitioning into clinical application.
Collapse
Affiliation(s)
- Ying Xia
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
- Division of Gastroenterology and Hepatology, Department of Medicine and, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Ming Sun
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China
| | - Hai Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, PR China.
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
14
|
Poblano-Pérez LI, Castro-Manrreza ME, González-Alva P, Fajardo-Orduña GR, Montesinos JJ. Mesenchymal Stromal Cells Derived from Dental Tissues: Immunomodulatory Properties and Clinical Potential. Int J Mol Sci 2024; 25:1986. [PMID: 38396665 PMCID: PMC10888494 DOI: 10.3390/ijms25041986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells located in different areas of the human body. The oral cavity is considered a potential source of MSCs because they have been identified in several dental tissues (D-MSCs). Clinical trials in which cells from these sources were used have shown that they are effective and safe as treatments for tissue regeneration. Importantly, immunoregulatory capacity has been observed in all of these populations; however, this function may vary among the different types of MSCs. Since this property is of clinical interest for cell therapy protocols, it is relevant to analyze the differences in immunoregulatory capacity, as well as the mechanisms used by each type of MSC. Interestingly, D-MSCs are the most suitable source for regenerating mineralized tissues in the oral region. Furthermore, the clinical potential of D-MSCs is supported due to their adequate capacity for proliferation, migration, and differentiation. There is also evidence for their potential application in protocols against autoimmune diseases and other inflammatory conditions due to their immunosuppressive capacity. Therefore, in this review, the immunoregulatory mechanisms identified at the preclinical level in combination with the different types of MSCs found in dental tissues are described, in addition to a description of the clinical trials in which MSCs from these sources have been applied.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Marta Elena Castro-Manrreza
- Immunology and Stem Cells Laboratory, FES Zaragoza, National Autonomous University of Mexico (UNAM), Mexico City 09230, Mexico;
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Guadalupe R. Fajardo-Orduña
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| |
Collapse
|
15
|
Amend B, Buttgereit L, Abruzzese T, Harland N, Abele H, Jakubowski P, Stenzl A, Gorodetsky R, Aicher WK. Regulation of Immune Checkpoint Antigen CD276 (B7-H3) on Human Placenta-Derived Mesenchymal Stromal Cells in GMP-Compliant Cell Culture Media. Int J Mol Sci 2023; 24:16422. [PMID: 38003612 PMCID: PMC10671289 DOI: 10.3390/ijms242216422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Therapies utilizing autologous mesenchymal cell delivery are being investigated as anti-inflammatory and regenerative treatments for a broad spectrum of age-related diseases, as well as various chronic and acute pathological conditions. Easily available allogeneic full-term human placenta mesenchymal stromal cells (pMSCs) were used as a potential pro-regenerative, cell-based therapy in degenerative diseases, which could be applied also to elderly individuals. To explore the potential of allogeneic pMSCs transplantation for pro-regenerative applications, such cells were isolated from five different term-placentas, obtained from the dissected maternal, endometrial (mpMSCs), and fetal chorion tissues (fpMSCs), respectively. The proliferation rate of the cells in the culture, as well as their shape, in vitro differentiation potential, and the expression of mesenchymal lineage and stem cell markers, were investigated. Moreover, we studied the expression of immune checkpoint antigen CD276 as a possible modulation of the rejection of transplanted non-HLA-matched homologous or even xeno-transplanted pMSCs. The expression of the cell surface markers was also explored in parallel in the cryosections of the relevant intact placenta tissue samples. The expansion of pMSCs in a clinical-grade medium complemented with 5% human platelet lysate and 5% human serum induced a significant expression of CD276 when compared to mpMSCs expanded in a commercial medium. We suggest that the expansion of mpMSCs, especially in a medium containing platelet lysate, elevated the expression of the immune-regulatory cell surface marker CD276. This may contribute to the immune tolerance towards allogeneic pMSC transplantations in clinical situations and even in xenogenic animal models of human diseases. The endurance of the injected comparably young human-term pMSCs may promote prolonged effects in clinical applications employing non-HLA-matched allogeneic cell therapy for various degenerative disorders, especially in aged adults.
Collapse
Affiliation(s)
- Bastian Amend
- Department of Urology, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Lea Buttgereit
- Centre for Medical Research, Department of Urology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Tanja Abruzzese
- Centre for Medical Research, Department of Urology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Niklas Harland
- Department of Urology, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Harald Abele
- Department of Gynaecology and Obstetrics, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Peter Jakubowski
- Department of Gynaecology and Obstetrics, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Raphael Gorodetsky
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Centre, Jerusalem 91120, Israel
| | - Wilhelm K. Aicher
- Centre for Medical Research, Department of Urology, Eberhard Karls University, 72076 Tuebingen, Germany
| |
Collapse
|
16
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
17
|
Yudhawati R, Shimizu K. PGE2 Produced by Exogenous MSCs Promotes Immunoregulation in ARDS Induced by Highly Pathogenic Influenza A through Activation of the Wnt-β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:ijms24087299. [PMID: 37108459 PMCID: PMC10138595 DOI: 10.3390/ijms24087299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Acute respiratory distress syndrome is an acute respiratory failure caused by cytokine storms; highly pathogenic influenza A virus infection can induce cytokine storms. The innate immune response is vital in this cytokine storm, acting by activating the transcription factor NF-κB. Tissue injury releases a danger-associated molecular pattern that provides positive feedback for NF-κB activation. Exogenous mesenchymal stem cells can also modulate immune responses by producing potent immunosuppressive substances, such as prostaglandin E2. Prostaglandin E2 is a critical mediator that regulates various physiological and pathological processes through autocrine or paracrine mechanisms. Activation of prostaglandin E2 results in the accumulation of unphosphorylated β-catenin in the cytoplasm, which subsequently reaches the nucleus to inhibit the transcription factor NF-κB. The inhibition of NF-κB by β-catenin is a mechanism that reduces inflammation.
Collapse
Affiliation(s)
- Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga-Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia
| | - Kazufumi Shimizu
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
18
|
Hoseinzadeh A, Rezaieyazdi Z, Afshari JT, Mahmoudi A, Heydari S, Moradi R, Esmaeili SA, Mahmoudi M. Modulation of Mesenchymal Stem Cells-Mediated Adaptive Immune Effectors' Repertoire in the Recovery of Systemic Lupus Erythematosus. Stem Cell Rev Rep 2023; 19:322-344. [PMID: 36272020 DOI: 10.1007/s12015-022-10452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 02/07/2023]
Abstract
The breakdown of self-tolerance of the immune response can lead to autoimmune conditions in which chronic inflammation induces tissue damage. Systemic lupus erythematosus (SLE) is a debilitating multisystemic autoimmune disorder with a high prevalence in women of childbearing age; however, SLE incidence, prevalence, and severity are strongly influenced by ethnicity. Although the mystery of autoimmune diseases remains unsolved, disturbance in the proportion and function of B cell subsets has a major role in SLE's pathogenesis. Additionally, colocalizing hyperactive T helper cell subgroups within inflammatory niches are indispensable. Despite significant advances in standard treatments, nonspecific immunosuppression, the risk of serious infections, and resistance to conventional therapies in some cases have raised the urgent need for new treatment strategies. Without the need to suppress the immune system, mesenchymal stem cells (MSCs), as ''smart" immune modulators, are able to control cellular and humoral auto-aggression responses by participating in precursor cell development. In lupus, due to autologous MSCs disorder, the ability of allogenic engrafted MSCs in tissue regeneration and resetting immune homeostasis with the provision of a new immunocyte repertoire has been considered simultaneously. In Brief The bone marrow mesenchymal stem cells (BM-MSCs) lineage plays a critical role in maintaining the hematopoietic stem-cell microstructure and modulating immunocytes. The impairment of BM-MSCs and their niche partially contribute to the pathogenesis of SLE-like diseases. Allogenic MSC transplantation can reconstruct BM microstructure, possibly contributing to the recovery of immunocyte phenotype restoration of immune homeostasis. In terms of future prospects of MSCs, artificially gained by ex vivo isolation and culture adaptation, the wide variety of potential mediators and mechanisms might be linked to the promotion of the immunomodulatory function of MSCs.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Department of Rheumatology, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran.,Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Moradi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Mashhad University of Medical Sciences, Azadi Square, Kalantari Blvd, Pardi's campusMashhad, Iran.
| |
Collapse
|
19
|
Wuttisarnwattana P, Eid S, Wilson DL, Cooke KR. Assessment of therapeutic role of mesenchymal stromal cells in mouse models of graft-versus-host disease using cryo-imaging. Sci Rep 2023; 13:1698. [PMID: 36717650 PMCID: PMC9886911 DOI: 10.1038/s41598-023-28478-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Insights regarding the biodistribution and homing of mesenchymal stromal cells (MSCs), as well as their interaction with alloreactive T-cells are critical for understanding how MSCs can regulate graft-versus-host disease (GVHD) following allogeneic (allo) bone marrow transplantation (BMT). We developed novel assays based on 3D, microscopic, cryo-imaging of whole-mouse-sized volumes to assess the therapeutic potential of human MSCs using an established mouse GVHD model. Following infusion, we quantitatively tracked fluorescently labeled, donor-derived, T-cells and third party MSCs in BMT recipients using multispectral cryo-imaging. Specific MSC homing sites were identified in the marginal zones in the spleen and the lymph nodes, where we believe MSC immunomodulation takes place. The number of MSCs found in spleen of the allo BMT recipients was about 200% more than that observed in the syngeneic group. To more carefully define the effects MSCs had on T cell activation and expansion, we developed novel T-cell proliferation assays including secondary lymphoid organ (SLO) enlargement and Carboxyfluoescein succinimidyl ester (CFSE) dilution. As anticipated, significant SLO volume enlargement and CFSE dilution was observed in allo but not syn BMT recipients due to rapid proliferation and expansion of labeled T-cells. MSC treatment markedly attenuated CFSE dilution and volume enlargement of SLO. These assays confirm evidence of potent, in vivo, immunomodulatory properties of MSC following allo BMT. Our innovative platform includes novel methods for tracking cells of interest as well as assessing therapeutic function of MSCs during GVHD induction. Our results support the use of MSCs treatment or prevention of GVHD and illuminate the wider adoption of MSCs as a standard medicinal cell therapy.
Collapse
Affiliation(s)
- Patiwet Wuttisarnwattana
- Optimization Theory and Applications for Engineering Systems Research Group, Department of Computer Engineering, Excellence Center in Infrastructure Technology and Transportation Engineering, Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Saada Eid
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Kenneth R Cooke
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins Hospital, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Silva-Carvalho AÉ, da Silva IGM, Corrêa JR, Saldanha-Araujo F. Regulatory T-Cell Enhancement, Expression of Adhesion Molecules, and Production of Anti-Inflammatory Factors Are Differentially Modulated by Spheroid-Cultured Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232214349. [PMID: 36430835 PMCID: PMC9695986 DOI: 10.3390/ijms232214349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
The culture of mesenchymal stem cells (MSCs) as spheroids promotes a more physiological cellular behavior, as it more accurately reflects the biological microenvironment. Nevertheless, mixed results have been found regarding the immunosuppressive properties of spheroid-cultured MSCs (3D-MSCs), the mechanisms of immunoregulation of 3D-MSCs being scarcely described at this point. In the present study, we constructed spheroids from MSCs and compared their immunosuppressive potential with that of MSCs cultured in monolayer (2D-MSCs). First, we evaluated the ability of 2D-MSCs and 3D-MSCs to control the activation and proliferation of T-cells. Next, we evaluated the percentage of regulatory T-cells (Tregs) after the co-culturing of peripheral blood mononuclear cells (PBMCs) with 2D-MSCs and 3D-MSCs. Finally, we investigated the expression of adhesion molecules, as well as the expressions of several anti-inflammatory transcripts in 2D-MSCs and 3D-MSCs maintained in both inflammatory and non-inflammatory conditions. Interestingly, our data show that several anti-inflammatory genes are up-regulated in 3D-MSCs, and that these cells can control T-cell proliferation. Nevertheless, 2D-MSCs are more efficient in suppressing the immune cell proliferation. Importantly, contrary to what was observed in 3D-MSCs, the expressions of ICAM-1 and VCAM-1 are significantly upregulated in 2D-MSCs exposed to an inflammatory environment. Furthermore, only 2D-MSCs are able to promote the enhancement of Tregs. Taken together, our data clearly show that the immunosuppressive potential of MSCs is significantly impacted by their shape, and highlights the important role of cell-cell adhesion molecules for optimal MSC immunomodulatory function.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Hematology and Stem Cells Laboratory, University of Brasília, Brasilia 70910-900, Brazil
- Molecular Pharmacology Laboratory, University of Brasília, Brasilia 70910-900, Brazil
| | | | - José Raimundo Corrêa
- Microscopy and Microanalysis Laboratory, University of Brasília, Brasilia 70910-900, Brazil
| | - Felipe Saldanha-Araujo
- Hematology and Stem Cells Laboratory, University of Brasília, Brasilia 70910-900, Brazil
- Correspondence: ; Tel./Fax: +55-61-3107-2008
| |
Collapse
|
21
|
Enciso N, Amiel J, Fabián-Domínguez F, Pando J, Rojas N, Cisneros-Huamaní C, Nava E, Enciso J. Model of Liver Fibrosis Induction by Thioacetamide in Rats for Regenerative Therapy Studies. Anal Cell Pathol (Amst) 2022; 2022:2841894. [PMID: 36411771 PMCID: PMC9675604 DOI: 10.1155/2022/2841894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/15/2022] [Accepted: 10/26/2022] [Indexed: 03/14/2024] Open
Abstract
Hepatic fibrosis is caused by chronic injury due to toxic, infectious, or metabolic causes, and it may progress to cirrhosis and hepatocellular carcinoma. There is currently no antifibrotic therapy authorized for human use; however, there are promising studies using cell therapies. There are also no animal models that exactly reproduce human liver fibrosis that can be used to better understand the mechanisms of its regression and identify new targets for treatment and therapeutic approaches. On the other hand, mesenchymal stem cells (MSC) have experimentally demonstrated fibrosis regression effects, but it is necessary to have an animal model of advanced liver fibrosis to evaluate the effect of these cells. The aim of this work was to establish a protocol for the induction of advanced liver fibrosis in rats using thioacetamide (TAA), which will allow us to perform trials using MSC as a possible therapy for fibrosis regression. For this purpose, we selected 24 female rats and grouped them into three experimental groups: the control group (G-I) without treatment and groups II (G-II) and III (G-III) that received TAA by intraperitoneal injection for 24 weeks. Then, 1 × 106/kg adipose mesenchymal stem cells (ASCs) were infused intravenously. Groups G-I and G-II were sacrificed 7 days after the last dose of ASC, and G-III was sacrificed 8 weeks after the last ASC infusion, all with xylazine/ketamine (40 mg/kg). The protocol used in this work established a model of advanced hepatic fibrosis as corroborated by METAVIR tests of the histological lesions; by the high levels of the markers α-SMA, CD68, and collagen type I; by functional alterations due to elevated markers of the hepatic lesions; and by alterations of the leukocytes, lymphocytes, and platelets. Finally, transplanted cells in the fibrous liver were detected. We conclude that TAA applied using the protocol introduced in this study induces a good model of advanced liver fibrosis in rats.
Collapse
Affiliation(s)
- Nathaly Enciso
- Grupo de Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
- Dirección General de Investigación, Desarrollo e Innovación, Universidad Científica del Sur, Lima 150142, Peru
| | - José Amiel
- Grupo de Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
| | - Fredy Fabián-Domínguez
- Investigador Adjunto, Grupo de Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
| | - Jhon Pando
- Instituto de Criopreservación y Terapia Celular, Lima 15074, Peru
| | - Nancy Rojas
- Laboratorio de Microscopía Electrónica, Universidad Nacional Mayor de San Marcos, Lima 506, Peru
| | - Carlos Cisneros-Huamaní
- Investigador Adjunto, Grupo de Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
| | - Ernesto Nava
- Laboratorio de Microscopía Electrónica, Universidad Nacional Mayor de San Marcos, Lima 506, Peru
| | - Javier Enciso
- Grupo de Medicina Regenerativa, Universidad Científica del Sur, Lima 150142, Peru
| |
Collapse
|
22
|
Sadri B, Tamimi A, Nouraein S, Bagheri Fard A, Mohammadi J, Mohammadpour M, Hassanzadeh M, Bajouri A, Madani H, Barekat M, Karimi Torshizi S, Malek M, Ghorbani Liastani M, Beheshti Maal A, Niknejadi M, Vosough M. Clinical and laboratory findings following transplantation of allogeneic adipose-derived mesenchymal stromal cells in knee osteoarthritis, a brief report. Connect Tissue Res 2022; 63:663-674. [PMID: 35856397 DOI: 10.1080/03008207.2022.2074841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) injection has been proposed as an innovative treatment for knee osteoarthritis (KOA). Since, allogeneic MSCs can be available as off-the-shelf products, they are preferable in regenerative medicine. Among different sources for MSCs, adipose-derived MSCs (AD-MSCs) appear to be more available. METHODS Three patients with KOA were enrolled in this study. A total number of 100 × 106 AD-MSCs was injected intra-articularly, per affected knee. They were followed up for 6 months by the assessment of clinical outcomes, magnetic resonance imaging (MRI), and serum inflammatory biomarkers. RESULTS The primary outcome of this study was safety and feasibility of allogeneic AD-MSCs injection during the 6 months follow-up. Fortunately, no serious adverse events (SAEs) were reported. Assessment of secondary outcomes of visual analogue scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and knee osteoarthritis outcome score (KOOS) indicated improvement in all patients. Comparison between baseline and endpoint findings of MRI demonstrated a slight improvement in two patients. In addition, decrease in serum cartilage oligomeric matrix protein (COMP) and hyaluronic acid (HA) indicated the possibility of reduced cartilage degeneration. Moreover, quantification of serum interleukin-10 (IL-10) and interleukin-6 (IL-6) levels indicated that the host immune system immunomodulated after infusion of AD-MSCs. CONCLUSION Intra-articular injection of AD-MSCs is safe and could be effective in cartilage regeneration in KOA. Preliminary assessment after six-month follow-up suggests the potential efficacy of this intervention which would need to be confirmed in randomized controlled trials on a larger population. TRIAL REGISTRATION This study was registered in the Iranian registry of clinical trials (https://en.irct.ir/trial/46) in 24 April 2018 with identifier IRCT20080728001031N23.
Collapse
Affiliation(s)
- Bahareh Sadri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Atena Tamimi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shirin Nouraein
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Abolfazl Bagheri Fard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Mohammadpour
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassanzadeh
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Bajouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hoda Madani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Barekat
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahedeh Karimi Torshizi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahrooz Malek
- Department of Radiology, Medical Imaging Center, Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Imam Khomeini Hospital, Tehran, Iran
| | - Maede Ghorbani Liastani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Beheshti Maal
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Niknejadi
- Department of Reproductive Imaging, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
23
|
Cequier A, Vázquez FJ, Romero A, Vitoria A, Bernad E, García-Martínez M, Gascón I, Barrachina L, Rodellar C. The immunomodulation-immunogenicity balance of equine Mesenchymal Stem Cells (MSCs) is differentially affected by the immune cell response depending on inflammatory licensing and major histocompatibility complex (MHC) compatibility. Front Vet Sci 2022; 9:957153. [PMID: 36337202 PMCID: PMC9632425 DOI: 10.3389/fvets.2022.957153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/22/2022] [Indexed: 07/25/2023] Open
Abstract
The immunomodulatory properties of equine mesenchymal stem cells (MSCs) are important for their therapeutic potential and for their facilitating role in their escape from immune recognition, which may also be influenced by donor-recipient major histocompatibility complex (MHC) matching/mismatching and MHC expression level. Factors such as inflammation can modify the balance between regulatory and immunogenic profiles of equine MSCs, but little is known about how the exposure to the immune system can affect these properties in equine MSCs. In this study, we analyzed the gene expression and secretion of molecules related to the immunomodulation and immunogenicity of equine MSCs, either non-manipulated (MSC-naive) or stimulated by pro-inflammatory cytokines (MSC-primed), before and after their exposure to autologous or allogeneic MHC-matched/-mismatched lymphocytes, either activated or resting. Cytokine priming induced the immunomodulatory profile of MSCs at the baseline (MSCs cultured alone), and the exposure to activated lymphocytes further increased the expression of interleukin 6 (IL6), cyclooxygenase 2, and inducible nitric oxide synthase, and IL6 secretion. Activated lymphocytes were also able to upregulate the regulatory profile of MSC-naive to levels comparable to cytokine priming. On the contrary, resting lymphocytes did not upregulate the immunomodulatory profile of equine MSCs, but interestingly, MSC-primed exposed to MHC-mismatched lymphocytes showed the highest expression and secretion of these mediators, which may be potentially linked to the activation of lymphocytes upon recognition of foreign MHC molecules. Cytokine priming alone did not upregulate the immunogenic genes, but MSC-primed exposed to activated or resting lymphocytes increased their MHC-I and MHC-II expression, regardless of the MHC-compatibility. The upregulation of immunogenic markers including CD40 in the MHC-mismatched co-culture might have activated lymphocytes, which, at the same time, could have promoted the immune regulatory profile aforementioned. In conclusion, activated lymphocytes are able to induce the equine MSC regulatory profile, and their effects seem to be additive to the priming action. Importantly, our results suggest that the lymphocyte response against MHC-mismatched MSC-primed would promote further activation of their immunomodulatory ability, which eventually might help them evade this reaction. Further studies are needed to clarify how these findings might have clinical implications in vivo, which will help developing safer and more effective therapies.
Collapse
Affiliation(s)
- Alina Cequier
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Francisco José Vázquez
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Romero
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Arantza Vitoria
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Elvira Bernad
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Mirta García-Martínez
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Isabel Gascón
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Laura Barrachina
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
- Servicio de Cirugía y Medicina Equina, Hospital Veterinario, Universidad de Zaragoza, Zaragoza, Spain
| | - Clementina Rodellar
- Laboratorio de Genética Bioquímica LAGENBIO, Instituto de Investigación Sanitaria de Aragón (IIS), Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| |
Collapse
|
24
|
Jeon S, Ha JH, Kim I, Bae J, Kim SW. The Immunomodulatory Effect of Adipose-Derived Stem Cells in Xenograft Transplantation Model. Transplant Proc 2022; 54:2388-2395. [PMID: 36184343 DOI: 10.1016/j.transproceed.2022.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 10/14/2022]
Abstract
Adipose-derived stem cells (ASCs) have demonstrated immunomodulatory and anti-inflammatory effects in preclinical studies. The purpose of this study was to evaluate the effects of ASCs on the survival of xenogeneic full-thickness skin grafts and compare intravenous and subcutaneous injections of ASCs. We divided 30 male C57BL/6 mice into control, intravenous (IV), and subcutaneous (SC) injection groups. In one group of 10 mice, mouse ASCs were intravenously injected after human full-thickness skin grafting (IV group). In another group of 10 mice, ASCs were directly injected into the subcutaneous plane under the xenogeneic grafts (SC group). An additional group of 10 mice received no treatment and served as controls. Bioluminescent imaging showed that ASCs were concentrated at the grafts during the study period in both IV and SC groups. We performed graft survival assessment, histologic examination, and immunohistochemistry analysis. ASCs significantly prolonged xenograft survival at postoperative week 2 in the SC group compared with the control group (P < .05). Histologic evaluation revealed fewer inflammatory reactions in the SC group than in the control group at 1 week posttransplantation. In addition, we observed relative reduction in CD4- and CD8-positive cells in the SC group compared with the control group. Intravenous injection of ASCs led to increased graft survival and decreased inflammatory reactions, but these differences were not statistically significant. The results of this study indicate that subcutaneous injection of ASCs promoted the survival of xenogeneic full-thickness skin grafts in mice. The underlying mechanisms of the immunosuppressive effects of ASCs should be further investigated.
Collapse
Affiliation(s)
- Sungmi Jeon
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hyun Ha
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Iljin Kim
- Department of Pharmacology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Jiyoon Bae
- Department of Pathology, National Police Hospital, Seoul, Republic of Korea
| | - Sang Wha Kim
- Department of Plastic and Reconstructive Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Dadgar N, Altemus J, Li Y, Lightner AL. Effect of Crohn's disease mesenteric mesenchymal stem cells and their extracellular vesicles on T-cell immunosuppressive capacity. J Cell Mol Med 2022; 26:4924-4939. [PMID: 36047483 PMCID: PMC9549497 DOI: 10.1111/jcmm.17483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal intestinal tract and has characteristic hypertrophic adipose changes observed in the mesentery. To better understand the role of the mesentery in the pathophysiology of Crohn's disease (CD), we evaluated the immunomodulatory potential of mesenchymal stem cells (MSCs) and their secreted extracellular vesicles (EVs) derived from Crohn's patients. MSCs and EVs were isolated from the mesentery and subcutaneous tissues of CD patients and healthy individuals subcutaneous tissues, and were analysed for differentiation, cytokine expression, self‐renewal and proliferation. The varying capacity of these tissue‐derived MSCs and EVs to attenuate T‐cell activation was measured in in vitro and an in vivo murine model. RNA sequencing of inflamed Crohn's disease mesentery tissue revealed an enrichment of T‐cell activation compared to non‐inflamed subcutaneous tissue. MSCs and MSC‐derived EVs isolated from Crohn's mesentery lose their ability to attenuate DSS‐induced colitis compared to subcutaneous tissue‐derived cell or EV therapy. We found that treatment with subcutaneous isolated MSCs and their EV product compared to Crohn's mesentery MSCs or EVs, the inhibition of T‐cell proliferation and IFN‐γ, IL‐17a production increased, suggesting a non‐inflamed microenvironment allows for T‐cell inhibition by MSCs/EVs. Our results demonstrate that Crohn's patient‐derived diseased mesentery tissue MSCs lose their immunosuppressive capacity in the treatment of colitis by distinct regulation of pathogenic T‐cell responses and/or T‐cell infiltration into the colon.
Collapse
Affiliation(s)
- Neda Dadgar
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland, Ohio, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Jessica Altemus
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Yan Li
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland, Ohio, USA
| | - Amy L Lightner
- Department of Colorectal Surgery, Digestive Disease Surgical Institute, Cleveland, Ohio, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Saeed Y, Liu X. Mesenchymal stem cells to treat female infertility; future perspective and challenges: A review. Int J Reprod Biomed 2022; 20:709-722. [PMID: 36340664 PMCID: PMC9619121 DOI: 10.18502/ijrm.v20i9.12061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/10/2021] [Accepted: 01/15/2022] [Indexed: 11/19/2022] Open
Abstract
Infertility negatively impacts the overall health and social life of affected individuals and couples. Female infertility is their inability to perceive pregnancy. To date, polycystic ovary syndrome, primary ovarian insufficiency, fallopian tube obstruction, endometriosis, and intrauterine synechiae have been identified as the primary causes of infertility in women. However, despite the mutual efforts of clinicians and research scientists, the development of an effective treatment modality has met little success in combating female infertility. Intriguingly, significant research has demonstrated mesenchymal stem cells as an optimal source for treating infertility disorders. Therefore, here we attempted to capsulize to date available studies to summarize the therapeutic potential of mesenchymal stem cells in combating infertility in women by focusing on the underlying mechanism through which stem cells can reduce the effects of ovarian disorders. Furthermore, we also discussed the preclinical and clinical application of stem cell therapy, their limitation, and the future perspective to minimize these limitations.
Collapse
Affiliation(s)
- Yasmeen Saeed
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan City, Guangdong Province, China
| | - Xiaocui Liu
- Guangdong VitaLife Biotechnology Co., LTD, Foshan, Guangdong, China
| |
Collapse
|
27
|
Islas JF, Quiroz-Reyes AG, Delgado-Gonzalez P, Franco-Villarreal H, Delgado-Gallegos JL, Garza-Treviño EN, Gonzalez-Villarreal CA. Cancer Stem Cells in Tumor Microenvironment of Adenocarcinoma of the Stomach, Colon, and Rectum. Cancers (Basel) 2022; 14:3948. [PMID: 36010940 PMCID: PMC9405851 DOI: 10.3390/cancers14163948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Gastrointestinal adenocarcinomas are one of the world's deadliest cancers. Cancer stem cells and the tissue microenvironment are highly regulated by cell and molecular mechanisms. Cancer stem cells are essential for maintenance and progression and are associated with resistance to conventional treatments. This article reviews the current knowledge of the role of the microenvironment during the primary establishment of gastrointestinal adenocarcinomas in the stomach, colon, and rectum and its relationship with cancer stem cells. We also describe novel developments in cancer therapeutics, such as targeted therapy, and discuss the advantages and disadvantages of different treatments for improving gastrointestinal cancer prognosis.
Collapse
Affiliation(s)
- Jose Francisco Islas
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | - Adriana G. Quiroz-Reyes
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | - Paulina Delgado-Gonzalez
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | | | - Juan Luis Delgado-Gallegos
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | - Elsa N. Garza-Treviño
- Biochemistry and Molecular Medicine Department, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, Mexico
| | | |
Collapse
|
28
|
Gu F, Lu D, Zhang L. MicroRNA-30a contributes to pre-eclampsia through regulating the proliferation, apoptosis, and angiogenesis modulation potential of mesenchymal stem cells by targeting AVEN. Bioengineered 2022; 13:8724-8734. [PMID: 35322749 PMCID: PMC9161923 DOI: 10.1080/21655979.2022.2054909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pre-eclampsia (PE) is a pregnancy-associated disease related to an unprecedented hypertension attack. Mesenchymal stem cells (MSCs) play a crucial role in PE pathology. . Our research was designed to illustrate the functions of microRNA-30a (miR-30a) in proliferation, apoptosis, and the potential of regulating angiogenesis in MSCs, and to analyze its potential molecular mechanisms. TargetScan software and the luciferase reporter assay were used to forecast and verify the relationship between miR-30a and AVEN. MiR-30a and AVEN expression in the decidual tissue and decidua (d)MSCs of healthy pregnant women and PE patients were assessed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell proliferation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT), flow cytometry, and transwell assays were used to evaluate cell proliferation, growth, the cell cycle, apoptosis, and migration. Furthermore, the tube formation ability was evaluated using the human umbilical vein endothelial cell (HUVEC) tube formation assay. AVEN is the target gene of miR-30a. MiR-30a was upregulated in decidual tissues and dMSCs of PE patients. However, AVEN was weakly expressed, and AVEN expression was negatively related to miR-30a levels in decidual tissues and dMSCs of PE patients. Compared to the mimic control group, upregulation of miR-30a inhibited dMSC proliferation and cell growth, promoted G0/G1 phase arrest, and induced apoptosis. Furthermore, the miR-30a mimic transfected dMSC culture supernatant suppressed HTR-8/SVneo cell migration ability and HUVEC tube formation ability. However, AVEN reversed these changes. In conclusion, miR-30a/AVEN may serve as a new axis for PE treatment.
Collapse
Affiliation(s)
- Fangle Gu
- Department of Obstetrics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou China
| | - Dan Lu
- Department of Obstetrics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou China
| | - Liying Zhang
- Department of Obstetrics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou China
| |
Collapse
|
29
|
Genç D, Günaydın B, Sezgin S, Aladağ A, Tarhan EF. Immunoregulatory effects of dental mesenchymal stem cells on T and B lymphocyte responses in primary Sjögren's syndrome. Immunotherapy 2022; 14:225-247. [PMID: 35012368 DOI: 10.2217/imt-2021-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: In this article, the authors investigate the modulatory effects of dental mesenchymal stem cells (MSCs) on lymphocyte responses in primary Sjögren's syndrome (pSS), which is an autoimmune disease resulting from keratoconjunctivitis sicca and xerostomia. Methods: Mononuclear cells isolated from pSS patients cultured with or without dental MSCs and analyzed for lymphocyte responses via flow cytometry. Results: Dental-follicle (DF)- and dental-pulp (DP)-MSCs downregulated CD4+ T lymphocyte proliferation by increasing Fas-ligand expression on T lymphocytes and FoxP3 expressing Tregs, and decreasing intracellular IFN-γ and IL-17 secretion in pSS patients. DF-MSCs decreased the plasma B cell ratio in the favor of naive B cell population in pSS patients' mononuclear cells. Conclusion: DF- and DP-MSCs can be the new cellular therapeutic candidates for the regulation of immune responses in pSS.
Collapse
Affiliation(s)
- Deniz Genç
- Muğla Sıtkı Koçman University, Faculty of Health Sciences, Muğla, 48000, Turkey.,Muğla Sıtkı Koçman University, Research Laboratories Center, Muğla, 48000, Turkey
| | - Burcu Günaydın
- Department of Histology & Embryology, Muğla Sıtkı Koçman University, Institute of Health Sciences, Muğla, 48000, Turkey
| | - Serhat Sezgin
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Muğla, 48000, Turkey
| | - Akın Aladağ
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Muğla, 48000, Turkey
| | - Emine Figen Tarhan
- Department of Rheumatology, Muğla Sıtkı Koçman University, Faculty of Medicine, Muğla, 48000, Turkey
| |
Collapse
|
30
|
Prajoko YW, Putra A, Dirja BT, Muhar AM, Amalina ND. The Ameliorating Effects of MSCs in Controlling Treg-mediated B-Cell Depletion by Indoleamine 2, 3-dioxygenase Induction in PBMC of SLE Patients. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Mesenchymal stem cells (MSCs) have potent immunosuppressive properties to control systemic lupus erythematosus (SLE) disease by releasing several anti-inflammatory molecules, particularly indoleamine 2, 3-dioxygenase (IDO), and increasing regulatory T cells (Treg) to control innate and adaptive immune cells. However, how MSCs release IDO to modulate Treg in controlling B is poorly understood. Therefore, investigating IDO, Treg, and B cells following MSC administration in SLE is needed.
AIM: This study aimed to investigate the ameliorating effects of MSCs in controlling B cells mediated by an increase of IDO-induced Treg in PBMC of SLE patients.
METHODS: This study used a post-test control group design. MSCs were obtained from human umbilical cord blood and characterized according to their surface antigen expression and multilineage differentiation capacities. PBMCs isolated from SLE patients were divided into five groups: Sham (placebo group), control, and three treatment groups. The treatment groups were treated by coculturing MSCs to PBMCs with a ratio of 1:10, 1:25, and 1:40 for 72 h incubation. Treg and B-cell levels were analyzed by flow cytometry with cytometric bead array (CBA) while the IDO levels were determined by ELISA.
RESULTS: This study showed that the percentages of B cells decreased significantly in groups treated by dose-dependent MSCs, particularly in T1 and T2 groups followed by increased Treg cell percentages. These findings were aligned with the significant increase of the IDO levels.
CONCLUSIONS: MSCs regulated B cells through an increase of IDO-induced Treg in SLE patients’ PBMC.
Collapse
|
31
|
Ebrahimi M, Rad MTS, Zebardast A, Ayyasi M, Goodarzi G, Tehrani SS. The critical role of mesenchymal stromal/stem cell therapy in COVID-19 patients: An updated review. Cell Biochem Funct 2021; 39:945-954. [PMID: 34545605 PMCID: PMC8652792 DOI: 10.1002/cbf.3670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/20/2022]
Abstract
New coronavirus disease 2019 (COVID-19), as a pandemic disaster, has drawn the attention of researchers in various fields to discover suitable therapeutic approaches for the management of COVID-19 patients. Currently, there are many worries about the rapid spread of COVID-19; there is no approved treatment for this infectious disease, despite many efforts to develop therapeutic procedures for COVID-19. Emerging evidence shows that mesenchymal stromal/stem cell (MSC) therapy can be a suitable option for the management of COVID-19. These cells have many biological features (including the potential of differentiation, high safety and effectiveness, secretion of trophic factors and immunoregulatory features) that make them suitable for the treatment of various diseases. However, some studies have questioned the positive role of MSC therapy in the treatment of COVID-19. Accordingly, in this paper, we will focus on the therapeutic impacts of MSCs and their critical role in cytokine storm of COVID-19 patients.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Neonatal and Child Health Research CenterGolestan University of Medical SciencesGorganIran
| | - Mohammad Taha Saadati Rad
- Psychiatric and Behavioral Sciences Research Center, Addiction Research InstituteMazandaran University of Medical SciencesSariIran
| | - Arghavan Zebardast
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Mitra Ayyasi
- Critical Care NursingIslamic Azad University, Sari BranchSariIran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
- Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
- Scientific Research CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
32
|
Immunomodulatory Actions of Mesenchymal Stromal Cells (MSCs) in Osteoarthritis of the Knee. OSTEOLOGY 2021. [DOI: 10.3390/osteology1040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cellular therapy offers regeneration which curbs osteoarthritis of the knee. Among cellular therapies, mesenchymal stromal cells (MSCs) are readily isolated from various sources as culture expanded and unexpanded cellular population which are used as therapeutic products. Though MSCs possess a unique immunological and regulatory profile through cross-talk between MSCs and immunoregulatory cells (T cells, NK cells, dendritic cells, B cells, neutrophils, monocytes, and macrophages), they provide an immunotolerant environment when transplanted to the site of action. Immunophenotypic profile allows MSCs to escape immune surveillance and promotes their hypoimmunogenic or immune-privileged status. MSCs do not elicit a proliferative response when co-cultured with allogeneic T cells in vitro. MSCs secrete a wide range of anti-inflammatory mediators such as PGE-2, IDO, IL-1Ra, and IL-10. They also stimulate the resilient chondrogenic progenitors and enhance the chondrocyte differentiation by secretion of BMPs and TGFβ1. We highlight the various mechanisms of MSCs during tissue healing signals, their interaction with the immune system, and the impact of their lifespan in the management of osteoarthritis of the knee. A better understanding of the immunobiology of MSC renders them as an efficient therapeutic product for the management of osteoarthritis of the knee.
Collapse
|
33
|
Sharma S, Muthu S, Jeyaraman M, Ranjan R, Jha SK. Translational products of adipose tissue-derived mesenchymal stem cells: Bench to bedside applications. World J Stem Cells 2021; 13:1360-1381. [PMID: 34786149 PMCID: PMC8567449 DOI: 10.4252/wjsc.v13.i10.1360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/02/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
With developments in the field of tissue engineering and regenerative medicine, the use of biological products for the treatment of various disorders has come into the limelight among researchers and clinicians. Among all the available biological tissues, research and exploration of adipose tissue have become more robust. Adipose tissue engineering aims to develop by-products and their substitutes for their regenerative and immunomodulatory potential. The use of biodegradable scaffolds along with adipose tissue products has a major role in cellular growth, proliferation, and differentiation. Adipose tissue, apart from being the powerhouse of energy storage, also functions as the largest endocrine organ, with the release of various adipokines. The progenitor cells among the heterogeneous population in the adipose tissue are of paramount importance as they determine the capacity of regeneration of these tissues. The results of adipose-derived stem-cell assisted fat grafting to provide numerous growth factors and adipokines that improve vasculogenesis, fat graft integration, and survival within the recipient tissue and promote the regeneration of tissue are promising. Adipose tissue gives rise to various by-products upon processing. This article highlights the significance and the usage of various adipose tissue by-products, their individual characteristics, and their clinical applications.
Collapse
Affiliation(s)
- Shilpa Sharma
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi 110029, India
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
| | - Sathish Muthu
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
- Department of Orthopaedics, Government Medical College and Hospital, Dindigul, Tamil Nadu 624304, India
- Research Scholar, Department of Biotechnology, School of Engineering and Technology, Greater Noida, Sharda University, Uttar Pradesh 201306, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group, Lucknow, Uttar Pradesh 226010, India
- Research Scholar, Department of Biotechnology, School of Engineering and Technology, Greater Noida, Sharda University, Uttar Pradesh 201306, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India.
| | - Rajni Ranjan
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
34
|
Mrahleh MA, Matar S, Jafar H, Wehaibi S, Aslam N, Awidi A. Human Wharton's Jelly-Derived Mesenchymal Stromal Cells Primed by Tumor Necrosis Factor-α and Interferon-γ Modulate the Innate and Adaptive Immune Cells of Type 1 Diabetic Patients. Front Immunol 2021; 12:732549. [PMID: 34650558 PMCID: PMC8506215 DOI: 10.3389/fimmu.2021.732549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
The unique immunomodulation and immunosuppressive potential of Wharton’s jelly-derived mesenchymal stromal cells (WJ-MSCs) make them a promising therapeutic approach for autoimmune diseases including type 1 diabetes (T1D). The immunomodulatory effect of MSCs is exerted either by cell-cell contact or by secretome secretion. Cell-cell contact is a critical mechanism by which MSCs regulate immune-responses and generate immune regulatory cells such as tolerogenic dendritic cells (tolDCs) and regulatory T cell (Tregs). In this study, we primed WJ-MSCs with TNF-α and IFN-γ and investigated the immunomodulatory properties of primed WJ-MSCs on mature dendritic cells (mDCs) and activated T cells differentiated from mononuclear cells (MNCs) of T1D patient’s. Our findings revealed that primed WJ-MSCs impaired the antigen-mediated immunity, upregulated immune-tolerance genes and downregulated immune-response genes. We also found an increase in the production of anti-inflammatory cytokines and suppression of the production of pro-inflammatory cytokines. Significant upregulation of FOXP3, IL10 and TGFB1 augmented an immunosuppressive effect on adaptive T cell immunity which represented a strong evidence in support of the formation of Tregs. Furthermore, upregulation of many critical genes involved in the immune-tolerance mechanism (IDO1 and PTGES2/PTGS) was detected. Interestingly, upregulation of ENTPD1/NT5E genes express a strong evidence to switch immunostimulatory response toward immunoregulatory response. We conclude that WJ-MSCs primed by TNF-α and IFN-γ may represent a promising tool to treat the autoimmune disorders and can provide a new evidence to consider MSCs- based therapeutic approach for the treatment of TID.
Collapse
Affiliation(s)
| | - Suzan Matar
- Department of Clinical Laboratory Science, The University of Jordan, School of Science, Amman, Jordan
| | - Hanan Jafar
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Anatomy & Histology, The University of Jordan, School of Medicine, Amman, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Nazneen Aslam
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Hematology & Oncology, The University of Jordan, School of Medicine, Amman, Jordan
| |
Collapse
|
35
|
Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021; 233:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil
| | - Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gabriela Muller Reche Bogéa
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
36
|
Mallis P, Michalopoulos E, Chatzistamatiou T, Giokas CS. Interplay between mesenchymal stromal cells and immune system: clinical applications in immune-related diseases. EXPLORATION OF IMMUNOLOGY 2021. [DOI: 10.37349/ei.2021.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2024]
Abstract
Mesenchymal stromal cells (MSCs) are a mesodermal stem cell population, with known self-renewal and multilineage differentiation properties. In the last century, MSCs have been widely used in regenerative medicine and tissue engineering approaches. MSCs initially were isolated from bone marrow aspirates, but currently have been identified in a great number of tissues of the human body. Besides their utilization in regenerative medicine, MSCs possess significant immunoregulatory/immunosuppressive properties, through interaction with the cells of innate and adaptive immunity. MSCs can exert their immunomodulatory properties with either cell-cell contact or via paracrine secretion of molecules, such as cytokines, growth factors and chemokines. Of particular importance, the MSCs’ immunomodulatory properties are explored as promising therapeutic strategies in immune-related disorders, such as autoimmune diseases, graft versus host disease, cancer. MSCs may also have an additional impact on coronavirus disease-19 (COVID-19), by attenuating the severe symptoms of this disorder. Nowadays, a great number of clinical trials, of MSC-mediated therapies are evaluated for their therapeutic potential. In this review, the current knowledge on cellular and molecular mechanisms involved in MSC-mediated immunomodulation were highlighted. Also, the most important aspects, regarding their potential application in immune-related diseases, will be highlighted. The broad application of MSCs has emerged their role as key immunomodulatory players, therefore their utilization in many disease situations is full of possibilities for future clinical treatment.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | - Theofanis Chatzistamatiou
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece 2Histocompatibility & Immunogenetics Lab, Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece
| | | |
Collapse
|
37
|
Immune modulation via adipose derived Mesenchymal Stem cells is driven by donor sex in vitro. Sci Rep 2021; 11:12454. [PMID: 34127731 PMCID: PMC8203671 DOI: 10.1038/s41598-021-91870-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are currently being used in clinical trials as proposed treatments for a large range of genetic, immunological, orthopaedic, cardiovascular, endocrine and neurological disorders. MSCs are potent anti-inflammatory mediators which are considered immune evasive and employ a large range of secreted vesicles to communicate and repair damaged tissue. Despite their prolific use in therapy, sex specific mechanism of action is rarely considered as a potential confounding factor for use. The purpose of this study was to examine the potency and functionality of both female and male adipose derived MSCs in order to gain further insights into donor selection. Methods MSC were expanded to passage 4, secretome was harvested and stored at − 80c. To assess potency MSC were also primed and assessed via functional immune assays, ELISA, multiplex and immunophenotyping. Results Female MSCs (fMSC), consistently suppressed Peripheral blood mononuclear cell (PBMC) proliferation significantly (p < 0.0001) more than male MSC (mMSC). In co-culture mPBMCs, showed 60.7 ± 15.6% suppression with fMSCs compared with 22.5 ± 13.6% suppression with mMSCs. Similarly, fPBMCs were suppressed by 67.9 ± 10.4% with fMSCs compared to 29.4 ± 9.3% with mMSCs. The enhanced immunosuppression of fMSCs was attributed to the production of higher concentrations of the anti-inflammatory mediators such as IDO1 (3301 pg/mL vs 1699 pg/mL) and perhaps others including IL-1RA (1025 pg/mL vs 701 pg/mL), PGE-2 (6142 pg/mL vs 2448 pg/mL) and prolonged expression of VCAM-1 post activation relative to mMSCs. In contrast, mMSCs produces more inflammatory G-CSF than fMSCs (806 pg/mL vs 503 pg/mL). Moreover, IDO1 expression was correlated to immune suppression and fMSCs, but not mMSCs induced downregulation of the IL-2 receptor and sustained expression of the early T cell activation marker, CD69 in PBMCs further highlighting the differences in immunomodulation potentials between the sexes. Conclusion In conclusion, our data shows that female MSC are more potent in vitro than their male counterparts. The inability of male MSC to match female MSC driven immunomodulation and to use the inflammatory microenvironment to their advantage is evident and is likely a red flag when using allogeneic male MSC as a therapeutic for disease states.
Collapse
|
38
|
Somal A, Bhat IA, Pandey S, Ansari MM, Indu B, Panda BSK, Bharti MK, Chandra V, Saikumar G, Sharma GT. Comparative analysis of the immunomodulatory potential of caprine fetal adnexa derived mesenchymal stem cells. Mol Biol Rep 2021; 48:3913-3923. [PMID: 34050503 DOI: 10.1007/s11033-021-06383-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
The caprine mesenchymal stem cells (MSCs) derived from fetal adnexa are highly proliferative. These cells possess tri-lineage differentiation potential and express MSC surface antigens and pluripotency markers with a wound-healing potential. This present study was conducted to compare the immunomodulatory potential of caprine MSCs derived from the fetal adnexa. Mid-gestation caprine uteri (2-3 months) were collected from the abattoir to isolate MSCs from amniotic fluid (cAF), amniotic sac (cAS), Wharton's jelly (cWJ) and cord blood (cCB), which were expanded and characterized at the 3rd passage. These MSCs were then stimulated with inflammatory cytokines (IFN-γ and TNF-α) to assess the percentage of inhibition produced on peripheral blood mononuclear cells (PBMCs) proliferation. The percentage of inhibition on activated PBMCs proliferation produced by cWJ MSCs and cAS MSCs was significantly higher than cCB and cAF MSCs. The relative mRNA expression profile and immunofluorescent localization of different immunomodulatory cytokines and growth factors were conducted upon stimulation. The mRNA expression profile of a set of different cytokines and growth factors in each caprine fetal adnexa MSCs were modulated. Indoleamine 2, 3 dioxygenase appeared to be the major immunomodulator in cWJ, cAF, and cCB MSCs whereas inducible nitric oxide synthase in cAS MSCs. This study suggests that caprine MSCs derived from fetal adnexa display variable immunomodulatory potential, which appears to be modulated by different molecules among sources.
Collapse
Affiliation(s)
- Anjali Somal
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Irfan A Bhat
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Sriti Pandey
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Mohd Matin Ansari
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | | | - Bibhudatta S K Panda
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Mukesh Kumar Bharti
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - Vikash Chandra
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - G Saikumar
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India
| | - G Taru Sharma
- Division of Physiology and Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar-243 122, Bareilly, U.P, India.
| |
Collapse
|
39
|
Kwon DH, Park JB, Lee JS, Kim SJ, Choi B, Lee KY. Human delta like 1-expressing human mesenchymal stromal cells promote human T cell development and antigen-specific response in humanized NOD/SCID/IL-2R[Formula: see text] null (NSG) mice. Sci Rep 2021; 11:10603. [PMID: 34011992 PMCID: PMC8134586 DOI: 10.1038/s41598-021-90110-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023] Open
Abstract
Human delta-like 1 (hDlk1) is known to be able to regulate cell fate decisions during hematopoiesis. Mesenchymal stromal cells (MSCs) are known to exhibit potent immunomodulatory roles in a variety of diseases. Herein, we investigated in vivo functions of hDlk1-hMSCs and hDlk1+hMSCs in T cell development and T cell response to viral infection in humanized NOD/SCID/IL-2Rγnull (NSG) mice. Co-injection of hDlk1-hMSC with hCD34+ cord blood (CB) cells into the liver of NSG mice markedly suppressed the development of human T cells. In contrast, co-injection of hDlk1+hMSC with hCD34+ CB cells into the liver of NSG dramatically promoted the development of human T cells. Human T cells developed in humanized NSG mice represent markedly diverse, functionally active, TCR V[Formula: see text] usages, and the restriction to human MHC molecules. Upon challenge with Epstein-Barr virus (EBV), EBV-specific hCD8+ T cells in humanized NSG mice were effectively mounted with phenotypically activated T cells presented as hCD45+hCD3+hCD8+hCD45RO+hHLA-DR+ T cells, suggesting that antigen-specific T cell response was induced in the humanized NSG mice. Taken together, our data suggest that the hDlk1-expressing MSCs can effectively promote the development of human T cells and immune response to exogenous antigen in humanized NSG mice. Thus, the humanized NSG model might have potential advantages for the development of therapeutics targeting infectious diseases in the future.
Collapse
Affiliation(s)
- Do Hee Kwon
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joo Sang Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon-Si, 440-746 Kyonggi-Do Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| | - Sung Joo Kim
- GenNBio, Inc., Seoul, Republic of Korea
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon-Si, Kyonggi-Do, 440-746 Korea
| | - Bongkum Choi
- GenNBio, Inc., Seoul, Republic of Korea
- Department of Medicine, Sungkyunkwan University School of Medicine, Suwon-Si, Kyonggi-Do, 440-746 Korea
| | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Gyeonggi-do Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| |
Collapse
|
40
|
Precision oncology for breast cancer through clinical trials. Clin Exp Metastasis 2021; 39:71-78. [PMID: 33950412 DOI: 10.1007/s10585-021-10092-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 12/26/2022]
Abstract
Precision treatment for breast cancers has made several notable advances in recent decades, but challenges of tumor heterogeneity, drug resistance, and aggressive recurrence and metastases remain. To meet and overcome these challenges, we must refine our understanding of breast subtypes and treatment biomarkers according to the knowledge afforded across the spectrum of 'omics assays. A critical aspect of harnessing this knowledge into actionable biomarkers for treatment decision relies on our ability to integrate knowledge across data types and leverage our insight in evidence-based clinical trials. We review recent advances in cutting-edge clinical trials for precision treatment of breast cancer, including chemotherapies, targeted therapies, immunotherapies, and combination therapies. We comment on promising future areas of development for this exciting point in precision breast cancer research.
Collapse
|
41
|
Wang X, Zhao X, He Z. Mesenchymal stem cell carriers enhance anti-tumor efficacy of oncolytic virotherapy. Oncol Lett 2021; 21:238. [PMID: 33664802 PMCID: PMC7882891 DOI: 10.3892/ol.2021.12499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Oncolytic viruses (OVs) specifically infect, replicate and eventually destroy tumor cells, with no concomitant toxicity to adjacent normal cells. Furthermore, OVs can regulate tumor microenvironments and stimulate anti-tumor immune responses. Mesenchymal stem cells (MSCs) have inherent tumor tropisms and immunosuppressive functions. MSCs carrying OVs not only protect viruses from clearing by the immune system, but they also deliver the virus to tumor lesions. Equally, cytokines released by MSCs enhance anti-tumor immune responses, suggesting that MSCs carrying OVs may be considered as a promising strategy in enhancing the anti-tumor efficacies of virotherapy. In the present review, preclinical and clinical studies were evaluated and discussed, as well as the effectiveness of MSCs carrying OVs for tumor treatment.
Collapse
Affiliation(s)
- Xianyao Wang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Xing Zhao
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Immunology, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Zhixu He
- Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, Guizhou 550004, P.R. China
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
42
|
Zhou JH, Lu X, Yan CL, Sheng XY, Cao HC. Mesenchymal stromal cell-dependent immunoregulation in chemically-induced acute liver failure. World J Stem Cells 2021; 13:208-220. [PMID: 33815670 PMCID: PMC8006015 DOI: 10.4252/wjsc.v13.i3.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/08/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI), which refers to liver damage caused by a drug or its metabolites, has emerged as an important cause of acute liver failure (ALF) in recent years. Chemically-induced ALF in animal models mimics the pathology of DILI in humans; thus, these models are used to study the mechanism of potentially effective treatment strategies. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties, and they alleviate acute liver injury and decrease the mortality of animals with chemically-induced ALF. Here, we summarize some of the existing research on the interaction between MSCs and immune cells, and discuss the possible mechanisms underlying the immuno-modulatory activity of MSCs in chemically-induced ALF. We conclude that MSCs can impact the phenotype and function of macrophages, as well as the differentiation and maturation of dendritic cells, and inhibit the proliferation and activation of T lymphocytes or B lymphocytes. MSCs also have immuno-modulatory effects on the production of cytokines, such as prostaglandin E2 and tumor necrosis factor-alpha-stimulated gene 6, in animal models. Thus, MSCs have significant benefits in the treatment of chemically-induced ALF by interacting with immune cells and they may be applied to DILI in humans in the near future.
Collapse
Affiliation(s)
- Jia-Hang Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xuan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Cui-Lin Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Yu Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hong-Cui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
43
|
Zhang T, Huang T, Su Y, Gao J. Mesenchymal Stem Cells‐Based Targeting Delivery System: Therapeutic Promises and Immunomodulation against Tumor. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tianyuan Zhang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Ting Huang
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Yuanqin Su
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| | - Jianqing Gao
- Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
- Cancer Center of Zhejiang University 866 Yuhangtang Rd Hangzhou 310058 China
| |
Collapse
|
44
|
van de Vyver M, Powrie YSL, Smith C. Targeting Stem Cells in Chronic Inflammatory Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:163-181. [PMID: 33725353 DOI: 10.1007/978-3-030-55035-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell (MSC) dysfunction is a serious complication in ageing and age-related inflammatory diseases such as type 2 diabetes mellitus. Inflammation and oxidative stress-induced cellular senescence alter the immunomodulatory ability of MSCs and hamper their pro-regenerative function, which in turn leads to an increase in disease severity, maladaptive tissue damage and the development of comorbidities. Targeting stem/progenitor cells to restore their function and/or protect them against impairment could thus improve healing outcomes and significantly enhance the quality of life for diabetic patients. This review discusses the dysregulation of MSCs' immunomodulatory capacity in the context of diabetes mellitus and focuses on intervention strategies aimed at MSC rejuvenation. Research pertaining to the potential therapeutic use of either pharmacological agents (NFкB antagonists), natural products (phytomedicine) or biological agents (exosomes, probiotics) to improve MSC function is discussed and an overview of the most pertinent methodological considerations given. Based on in vitro studies, numerous anti-inflammatory agents, antioxidants and biological agents show tremendous potential to revitalise MSCs. An integrated systems approach and a thorough understanding of complete disease pathology are however required to identify feasible candidates for in vivo targeting of MSCs.
Collapse
Affiliation(s)
- Mari van de Vyver
- Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Yigael S L Powrie
- Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.,Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
45
|
Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther 2021; 6:72. [PMID: 33608497 PMCID: PMC7896069 DOI: 10.1038/s41392-020-00449-4] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/31/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Despite great success in cancer immunotherapy, immune checkpoint-targeting drugs are not the most popular weapon in the armory of cancer therapy. Accumulating evidence suggests that the tumor immune microenvironment plays a critical role in anti-cancer immunity, which may result in immune checkpoint blockade therapy being ineffective, in addition to other novel immunotherapies in cancer patients. In the present review, we discuss the deficiencies of current cancer immunotherapies. More importantly, we highlight the critical role of tumor immune microenvironment regulators in tumor immune surveillance, immunological evasion, and the potential for their further translation into clinical practice. Based on their general targetability in clinical therapy, we believe that tumor immune microenvironment regulators are promising cancer immunotherapeutic targets. Targeting the tumor immune microenvironment, alone or in combination with immune checkpoint-targeting drugs, might benefit cancer patients in the future.
Collapse
Affiliation(s)
- Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China.
| | - Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Zhengtao Hong
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, Zhejiang, China.
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, 310003, Hangzhou, Zhejiang, China.
- Zhejiang University Cancer Center, 310003, Hangzhou, Zhejiang, China.
| |
Collapse
|
46
|
Zidan AA, Perkins GB, Al-Hawwas M, Elhossiny A, Yang J, Bobrovskaya L, Mourad GM, Zhou XF, Hurtado PR. Urine stem cells are equipped to provide B cell survival signals. STEM CELLS (DAYTON, OHIO) 2021; 39:803-818. [PMID: 33554422 PMCID: PMC8248326 DOI: 10.1002/stem.3351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
The interplay between mesenchymal stem cells (MSCs) and immune cells has been studied for MSCs isolated from different tissues. However, the immunomodulatory capacity of urine stem cells (USCs) has not been adequately researched. The present study reports on the effect of USCs on peripheral blood lymphocytes. USCs were isolated and characterized before coculture with resting and with anti‐CD3/CD28 bead stimulated lymphocytes. Similarly to bone marrow mesenchymal stem cells (BM‐MSCs), USCs inhibited the proliferation of activated T lymphocytes and induced their apoptosis. However, they also induced strong activation, proliferation, and cytokine and antibody production by B lymphocytes. Molecular phenotype and supernatant analysis revealed that USCs secrete a range of cytokines and effector molecules, known to play a central role in B cell biology. These included B cell‐activating factor (BAFF), interleukin 6 (IL‐6) and CD40L. These findings raise the possibility of an unrecognized active role for kidney stem cells in modulating local immune cells.
Collapse
Affiliation(s)
- Asmaa A Zidan
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,Department of Medical Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Centre of Excellence for Research in Regenerative Medicine Applications, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Griffith B Perkins
- Department of Molecular & Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Mohammed Al-Hawwas
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ahmed Elhossiny
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianyu Yang
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.,School of Pharmacy, Kunming Medical University, Kunming, People's Republic of China
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ghada M Mourad
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.,Centre of Excellence for Research in Regenerative Medicine Applications, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Xin-Fu Zhou
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Plinio R Hurtado
- Department of Renal Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
47
|
Teng SW, Sung HY, Wen YC, Chen SY, Lovel R, Chang WY, Wu TBC, Hsuan YCY, Lin W. Potential surrogate quantitative immunomodulatory potency assay for monitoring human umbilical cord-derived mesenchymal stem cells production. Cell Biol Int 2021; 45:1072-1081. [PMID: 33470478 DOI: 10.1002/cbin.11553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/01/2020] [Accepted: 12/27/2020] [Indexed: 11/11/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role as immune modulator through interaction with several immune cells, including macrophages. In this study, the immunomodulatory potency of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) was demonstrated in the in vivo middle cerebral artery occlusion (MCAo)-induced brain injury rat model and in vitro THP-1-derived macrophages model. At 24 h after induction of MCAo, hUC-MSCs was administered via tail vein as a single dose. Remarkably, hUC-MSCs could inhibit M1 polarization and promote M2 polarization of microglia in vivo after 14 days induction of MCAo. Compared with THP-1-derived macrophages which had been stimulated by lipopolysaccharide, the secretion of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interferon-γ inducible protein (IP-10), were significantly reduced in the presence of hUC-MSCs. Moreover, the secretion of anti-inflammatory cytokine, interleukin-10 (IL-10), was significantly increased after cocultured with hUC-MSCs. Prostaglandins E2 (PGE2), secreted by hUC-MSCs, is one of the crucial immunomodulatory factors and could be inhibited in the presence of COX2 inhibitor, NS-398. PGE2 inhibition suppressed hUC-MSCs immunomodulatory capability, which was restored after addition of synthetic PGE2, establishing the minimum amount of PGE2 required for immunomodulation. In conclusion, our data suggested that PGE2 is a crucial potency marker involved in the therapeutic activity of hUC-MSCs through macrophages immune response modulation and cytokines regulation. This study provides the model for the development of a surrogate quantitative potency assay of immunomodulation in stem cells production.
Collapse
Affiliation(s)
- Sen-Wen Teng
- Department of Obstetrics and Gynecology, Cardinal Tien Hospital, New Taipei, Taiwan.,School of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | | | | | | | | | | | | | - Yogi Cheng-Yo Hsuan
- Meribank Biotech Co., Ltd., Taipei, Taiwan.,Meridigen Biotech Co., Ltd., Taipei, Taiwan
| | - Willie Lin
- Meridigen Biotech Co., Ltd., Taipei, Taiwan
| |
Collapse
|
48
|
Liang W, Chen X, Zhang S, Fang J, Chen M, Xu Y, Chen X. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett 2021; 26:3. [PMID: 33472580 PMCID: PMC7818947 DOI: 10.1186/s11658-020-00246-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show homing capacity towards tumor sites. Numerous reports indicate that they are involved in multiple tumor-promoting processes through several mechanisms, including immunosuppression; stimulation of angiogenesis; transition to cancer-associated fibroblasts; inhibition of cancer cell apoptosis; induction of epithelial-mesenchymal transition (EMT); and increase metastasis and chemoresistance. However, other studies have shown that MSCs suppress tumor growth by suppressing angiogenesis, incrementing inflammatory infiltration, apoptosis and cell cycle arrest, and inhibiting the AKT and Wnt signaling pathways. In this review, we discuss the supportive and suppressive impacts of MSCs on tumor progression and metastasis. We also discuss MSC-based therapeutic strategies for cancer based on their potential for homing to tumor sites.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Jian Fang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Meikai Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yifan Xu
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| |
Collapse
|
49
|
Human Adipose Tissue-Derived Mesenchymal Stromal Cells Inhibit CD4+ T Cell Proliferation and Induce Regulatory T Cells as Well as CD127 Expression on CD4+CD25+ T Cells. Cells 2021; 10:cells10010058. [PMID: 33401501 PMCID: PMC7824667 DOI: 10.3390/cells10010058] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSC) exert their immunomodulatory potential on several cell types of the immune system, affecting and influencing the immune response. MSC efficiently inhibit T cell proliferation, reduce the secretion of pro-inflammatory cytokines, limit the differentiation of pro-inflammatory Th subtypes and promote the induction of regulatory T cells (Treg). In this study, we analyzed the immunomodulatory potential of human adipose tissue-derived MSC (ASC), on CD4+ T cells, addressing potential cell-contact dependency in relation to T cell receptor stimulation of whole human peripheral blood mononuclear cells (PBMC). ASC were cultured with not stimulated or anti-CD3/CD28-stimulated PBMC in direct and transwell cocultures; PBMC alone were used as controls. After 7 days, cocultures were harvested and we analyzed: (1) the inhibitory potential of ASC on CD4+ cell proliferation and (2) phenotypic changes in CD4+ cells in respect of Treg marker (CD25, CD127 and FoxP3) expression. We confirmed the inhibitory potential of ASC on CD4+ cell proliferation, which occurs upon PBMC stimulation and is mediated by indoleamine 2,3-dioxygenase. Importantly, ASC reduce both pro- and anti-inflammatory cytokine secretion, without indications on specific Th differentiation. We found that stimulation induces CD25 expression on CD4+ cells and that, despite inhibiting overall CD4+ cell proliferation, ASC can specifically induce the proliferation of CD4+CD25+ cells. We observed that ASC induce Treg (CD4+CD25+CD127−FoxP3+) only in not stimulated cocultures and that ASC increase the ratio of CD4+CD25+CD127+FoxP3− cells at the expense of CD4+CD25+CD127−FoxP3− cells. Our study provides new insights on the interplay between ASC and CD4+ T cells, proposing that ASC-dependent induction of Treg depends on PBMC activation which affects the balance between the different subpopulations of CD4+CD25+ cells expressing CD127 and/or FoxP3.
Collapse
|
50
|
Analysis of Same Selected Immunomodulatory Properties of Chorionic Mesenchymal Stem Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mesenchymal stem cells (MSCs) represent a population of adherent cells that can be isolated from multiple adult tissues. MSCs have immunomodulatory capacity and the ability to differentiate into many cell lines. Research study examines the immunomodulatory properties of MSCs isolated from chorion (CMSCs). Following the stimulation process, it was found that MSCs are capable of immunomodulatory action via the release of bioactive molecules as well as through direct contact with the immune cells. Immunomodulatory potential of the CMSCs was analyzed by modifying proliferative capacity of mitogen-activated lymphocytes. CMSCs and lymphocytes were tested in cell-to-cell contact. Lymphocytes were stained with carboxyfluorescein diacetate succinimidyl ester. Inhibition of the proliferation of activated lymphocytes was observed. Following the co-cultivation, the expression of markers involved in the immune response modulation was assessed. Afterwards, an increase in CMSCs expression of IL-10 was detected. Following the co-cultivation with activated lymphocyte, adhesion molecules CD54 and CD44 in the CMSCs increased. An increase of CD54 expression was observed. The properties of CMSCs, adherence and differentiation ability, were confirmed. The phenotype of CMSCs CD105+, CD90+, CD73+, CD44+, CD29+, CD45−, CD34−, CD54+ was characterized. It was demonstrated that chorion-derived MSCs have important immunomodulatory effects.
Collapse
|