1
|
Olas B. The Pulp, Peel, Seed, and Food Products of Persea americana as Sources of Bioactive Phytochemicals with Cardioprotective Properties: A Review. Int J Mol Sci 2024; 25:13622. [PMID: 39769384 PMCID: PMC11728118 DOI: 10.3390/ijms252413622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Botanically speaking, avocado (Persea americana) is a fruit. It consists of a single large seed surrounded by a creamy, smooth-textured edible mesocarp or pulp covered by a thick, bumpy skin. Avocado is a nutrient-dense fruit, containing a range of bioactive compounds which have been independently associated with cardiovascular health. These compounds have been obtained from the pulp, peel, and seed. This narrative review summarizes the current understanding of the cardioprotective potential of avocado fruit, especially the pulp and seed, and its food products, and examines the biological mechanism behind it.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Vázquez-Meza MO, González-Ríos H, González-Aguilar GA, Viuda-Martos M, Dávila-Ramírez JL, Valenzuela-Melendres M. Effect of Fat Type and Mango Peel Powder on the Physicochemical Properties of Beef Patties During Cold Storage and In Vitro Digestion. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:2981134. [PMID: 39479468 PMCID: PMC11524697 DOI: 10.1155/2024/2981134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024]
Abstract
The aim of this research was to evaluate the effects of fat type and mango peel powder (MP) on the physicochemical properties of cooked beef patties during cold storage and after in vitro digestion. Beef patties were prepared with saturated beef fat (BF) and pre-emulsified avocado oil (AO) or pre-emulsified safflower oil (SO). MP was added at 0% or 1%. The treatments were as follows: T1 (BF, no added MP), T2 (AO, no added MP), T3 (SO, no added MP), T4 (BF + 1%MP), T5 (AO + 1%MP), and T6 (SO + 1%MP). Substituting saturated fat with AO and SO improved the fatty acid profile of beef patties. The addition of pre-emulsified oils increased (p < 0.05) the L ∗, a ∗, and b ∗ values. Moreover, the incorporation of MP in the meat formulation decreased (p < 0.05) lipid oxidation during cold storage. Adding MP to the meat formulation decreased (p < 0.05) lipid oxidation before and after in vitro digestion. Replacement of saturated fat with vegetable oils and incorporation of MP may be an alternative strategy to improve the quality of beef patties during cold storage and decrease lipid oxidation after in vitro digestion.
Collapse
Affiliation(s)
- Martha Olivia Vázquez-Meza
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Humberto González-Ríos
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Gustavo Adolfo González-Aguilar
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food and Agro-Environmental Research and Innovation Center, Miguel Hernández University (CIAGRO-UMH), Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - José Luis Dávila-Ramírez
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Martín Valenzuela-Melendres
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| |
Collapse
|
3
|
Kaimuangpak K, Rosalina R, Thumanu K, Weerapreeyakul N. Macromolecules with predominant β-pleated sheet proteins in extracellular vesicles released from Raphanus sativus L. var. caudatus Alef microgreens induce DNA damage-mediated apoptosis in HCT116 colon cancer cells. Int J Biol Macromol 2024; 269:132001. [PMID: 38702007 DOI: 10.1016/j.ijbiomac.2024.132001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Plant-derived bioactive macromolecules (i.e., proteins, lipids, and nucleic acids) were prepared as extracellular vesicles (EVs). Plant-derived EVs are gaining pharmaceutical research interest because of their bioactive components and delivery properties. The spherical nanosized EVs derived from Raphanus sativus L. var. caudatus Alef microgreens previously showed antiproliferative activity in HCT116 colon cancer cells from macromolecular compositions (predominantly proteins). To understand the mechanism of action, the biological activity studies, i.e., antiproliferation, cellular biochemical changes, DNA conformational changes, DNA damage, apoptotic nuclear morphological changes, apoptosis induction, and apoptotic pathways, were determined by neutral red uptake assay, synchrotron radiation-based Fourier transform infrared microspectroscopy, circular dichroism spectroscopy, comet assay, 4',6-diamidino-2-phenylindole (DAPI) staining, flow cytometry, and caspase activity assay, respectively. EVs inhibited HCT116 cell growth in concentration- and time-dependent manners, with a half-maximal inhibitory concentration of 675.4 ± 33.8 μg/ml at 48 h and a selectivity index of 1.5 ± 0.076. HCT116 treated with EVs mainly changed the cellular biochemical compositions in the nucleic acids and carbohydrates region. The DNA damage caused no changes in DNA conformation. The apoptotic nuclear morphological changes were associated with the increased apoptotic cell population. The apoptotic cell death was induced by both extrinsic and intrinsic pathways. EVs have potential as antiproliferative bioparticles.
Collapse
Affiliation(s)
- Karnchanok Kaimuangpak
- Graduate School (Research and Development in Pharmaceuticals Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Reny Rosalina
- Graduate School (Biomedical Sciences Program), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand.
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand; Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
4
|
Neves BB, Pinto S, Pais R, Batista J, Domingues MR, Melo T. Looking into the lipid profile of avocado and byproducts: Using lipidomics to explore value-added compounds. Compr Rev Food Sci Food Saf 2024; 23:e13351. [PMID: 38682674 DOI: 10.1111/1541-4337.13351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024]
Abstract
Consumer priorities in healthy diets and lifestyle boosted the demand for nutritious and functional foods as well as plant-based ingredients. Avocado has become a food trend due to its nutritional and functional values, which in turn is increasing its consumption and production worldwide. Avocado edible portion has a high content of lipids, with the pulp and its oil being rich in monounsaturated fatty acids and essential omega - 3 and omega - 6 polyunsaturated fatty acids (PUFA). These fatty acids are mainly esterified in triacylglycerides, the major lipids in pulp, but also in minor components such as polar lipids (phospholipids and glycolipids). Polar lipids of avocado have been overlooked despite being recently highlighted with functional properties as well. The growth in the industry of avocado products is generating an increased amount of their byproducts, such as seed and peels (nonedible portions), still undervalued. The few studies on avocado byproducts pointed out that they also contain interesting lipids, with seeds particularly rich in polar lipids bearing PUFA, and thus can be reused as a source of add-value phytochemical. Mass spectrometry-based lipidomics approaches appear as an essential tool to unveil the complex lipid signature of avocado and its byproducts, contributing to the recognition of value-added lipids and opening new avenues for their use in novel biotechnological applications. The present review provides an up-to-date overview of the lipid signature from avocado pulp, peel, seed, and its oils.
Collapse
Affiliation(s)
- Bruna B Neves
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Sara Pinto
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Rita Pais
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Joana Batista
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| |
Collapse
|
5
|
Allen TS, Doede AL, King CM, Pacheco LS, Talavera GA, Denenberg JO, Eastman AS, Criqui MH, Allison MA. Nutritional Avocado Intervention Improves Physical Activity Measures in Hispanic/Latino Families: A Cluster RCT. AJPM FOCUS 2023; 2:100145. [PMID: 37941823 PMCID: PMC10628653 DOI: 10.1016/j.focus.2023.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Introduction Nutrition and physical activity are key components for the prevention of cardiovascular disease. There remains a paucity of trial data on the effect of specific nutritional interventions on physical activity and sedentary time. One question is how a common nutrient-dense food such as avocado may impact physical activity and sedentary time in Hispanic/Latino families, a group that reports the lowest levels of physical activity. Design This is a 6-month clustered RCT. Setting/participants Seventy-two families (235 individuals) who identified as Hispanic/Latino were enrolled through the San Ysidro Health Center (San Diego, CA) between April 2017 and June 2018. Intervention After a 2-week run-in period, 35 families were randomized to the intervention arm (14 avocados/family/week), and 37 families were assigned to the control arm (3 avocados/family/week). Main outcome measures Linear mixed-effects models were used to assess changes in physical activity (MET minutes per week) between the groups during the 6-month trial. Secondary outcomes included sedentary time (minutes/week), BMI, and systolic and diastolic blood pressures. Results An adherence goal of >80% was achieved for both arms. Total mean physical activity increased by 2,197 MET minutes per week more in the intervention group (p<0.01) than in the control group, driven by between-group differences in moderate (p<0.01) versus vigorous (p=0.06) physical activity. After accounting for longitudinal repeated measures per participant and nested family effects, total adult physical activity remained significantly higher in the intervention than in the control group (+1,163 MET minutes per week on average per participant), with a significant intervention interaction term (p<0.01). There were no significant changes in sedentary time, BMI, or blood pressure. Conclusions Higher allocation of avocados was associated with significantly higher physical activity and no adverse changes in BMI or blood pressure, suggesting that this nutritional intervention may have beneficial pleiotropic effects.Trial registration: This study is registered at www.clinicaltrials.gov as NCT02903433.
Collapse
Affiliation(s)
- Tara Shrout Allen
- Division of Preventive Medicine, Department of Family Medicine, University of California, San Diego, La Jolla, California
| | - Aubrey L. Doede
- Division of Preventive Medicine, Department of Family Medicine, University of California, San Diego, La Jolla, California
| | - Colin M.B. King
- School of Public Health, University of California, San Diego, La Jolla, California
| | - Lorena S. Pacheco
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Julie O. Denenberg
- Department of Family Medicine, University of California, San Diego, La Jolla, California
| | - Amelia S. Eastman
- Department of Family Medicine, University of California, San Diego, La Jolla, California
| | - Michael H. Criqui
- Department of Family Medicine, University of California, San Diego, La Jolla, California
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Matthew A. Allison
- Department of Family Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
6
|
Kindernay L, Ferenczyová K, Farkašová V, Duľová U, Strapec J, Barteková M. Beneficial Effects of Polyphenol-Rich Food Oils in Cardiovascular Health and Disease. Rev Cardiovasc Med 2023; 24:190. [PMID: 39077008 PMCID: PMC11266476 DOI: 10.31083/j.rcm2407190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 07/31/2024] Open
Abstract
A variety of vegetable and fruit derived food oils are considered beneficial for human health due to their content of functional components including their positive effects in cardiovascular system. In addition to the favorable ratio of unsaturated versus saturated fatty acids, some of these oils include also other health beneficial compounds such as vitamins, minerals, pigments, enzymes and phenolic compounds. Particularly polyphenols have been documented to exert numerous positive effects in cardiovascular system including their anti-hypertensive, anti-atherogenic as well as cardio- and vasculo- protective effects in subjects suffering from various cardiovascular and cardiometabolic diseases, likely via their antioxidant, anti-inflammatory, anti-coagulant, anti-proliferative and anti-diabetic properties. However, it has not been proven so far whether the positive cardiovascular effects of polyphenol-rich food oils are, and to what measure, attributed to their phenolic content. Thus, the current review aims to summarize the main cardiovascular effects of major polyphenol-rich food oils including olive, flaxseed, soybean, sesame and coconut oils, and to uncover the role of their phenolic compounds in these effects.
Collapse
Affiliation(s)
- Lucia Kindernay
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
| | - Kristína Ferenczyová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
| | - Veronika Farkašová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
| | - Ulrika Duľová
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
| | - Jakub Strapec
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
| | - Monika Barteková
- Institute for Heart Research, Centre of Experimental Medicine, Slovak
Academy of Sciences, 84104 Bratislava, Slovakia
- Institute of Physiology, Faculty of Medicine, Comenius University in
Bratislava, 81372 Bratislava, Slovakia
| |
Collapse
|
7
|
Kim JO, Jung DY, Min BI. Avocado peel extract: The effect of radiation-induced on neuroanatomical and behavioral changes in rats. J Chem Neuroanat 2023; 129:102240. [PMID: 36738850 DOI: 10.1016/j.jchemneu.2023.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Avocado (Persea americana) contains a variety of physiological active substances such as polyphenol, which has excellent antioxidant properties. This study investigated the radioprotective effect of avocado peel extract on congenital malformations and on the behavior of Sprague-Dawley (SD) rats. Experimental animals were randomly classified into four groups: NC Group, normal control; PA Group, oral administration with avocado peel extract (200 mg/kg/day); IR Group, irradiation; and PA+IR Group, irradiation after orally administered with avocado peel extract. For irradiation, 2 Gy of 6 MV X-ray was used once for the whole body. After that, congenital malformations, histopathological evaluation of the brain, and behavioral evaluation were performed in the obtained offspring. Although the body weight of the offspring was decreased by radiation exposure, it was confirmed that the decrease in weight was smaller when treated with PA. As the congenital malformations, hydrocephalus, loss of eyes, and abnormal rat tail occurred, and the result for the PA+IR Group was significantly lower than that of IR Group. Histopathologically, the length of the cerebral cortex of the PA+IR Group was similar to that of the non-radiation group. It was confirmed that emotional and behavioral disorders such as anxiety and depression were improved in the open field test (OFT) and elevated plus maze (EPM) test. And proved that working memory and cognitive ability were enhanced in the novel object recognition (NOR) test and spontaneous alternation Y-maze (SAY) test. Therefore, it was concluded that avocado peel extract can reduce the incidence of congenital malformations and improve growth disorders, memory and cognitive abilities. In the future, based on these results, we will conduct research on the hippocampus and amygdala, which are major regions of the brain, and additional research on cell biology.
Collapse
Affiliation(s)
- Jang Oh Kim
- Department of Emergency and Disaster Management, Inje University, 197, Inje-ro, Gimhae-si, Gyeongsangnam-do 50834, Republic of Korea
| | - Do Young Jung
- Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences Cancer Center, 40, Jwadong-gil, Jangan-eup, Gijang-gun, Busan 46033, Republic of Korea
| | - Byung In Min
- Department of Emergency and Disaster Management, Inje University, 197, Inje-ro, Gimhae-si, Gyeongsangnam-do 50834, Republic of Korea; Department of Nuclear Applied Engineering, Inje University, 197, Inje-ro, Gimhae-si, Gyeongsangnam-do 50834, Republic of Korea.
| |
Collapse
|
8
|
Effects of Avocado Oil Supplementation on Insulin Sensitivity, Cognition, and Inflammatory and Oxidative Stress Markers in Different Tissues of Diet-Induced Obese Mice. Nutrients 2022; 14:nu14142906. [PMID: 35889863 PMCID: PMC9319255 DOI: 10.3390/nu14142906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity induces insulin resistance, chronic inflammation, oxidative stress, and neurocognitive impairment. Avocado oil (AO) has antioxidants and anti-inflammatory effects. This study evaluated the effect of AO supplementation on obese mice in the adipose tissue, muscle, liver, and hippocampus. Male C57BL/6J mice received a standard and high-fat diet (20 weeks) and then were supplemented with AO (4 mL/kg of body weight, 90 days) and divided into the following groups: control (control), control + avocado oil (control + AO), diet-induced obesity (DIO), and diet-induced obesity + avocado oil (DIO + AO) (n = 10/group). AO supplementation was found to improve insulin sensitivity and decrease hepatic fat accumulation and serum triglyceride levels in DIO mice. AO improved cognitive performance and did not affect mood parameters. Oxidative marker levels were decreased in DIO + AO mice in all the tissues and were concomitant with increased catalase and superoxide dismutase activities in the epididymal adipose tissue and quadriceps, as well as increased catalase activity in the liver. AO in obese animals further induced reductions in TNF-α and IL-1β expressions in the epididymal adipose tissue and quadriceps. These results suggest that AO supplementation has the potential to be an effective strategy for combating the effects of obesity in rats, and human studies are needed to confirm these findings.
Collapse
|
9
|
Guzmán-Gerónimo RI, Ayala-Tirado RC, Mendoza-López R, Cocotle-Ronzón Y, Herrera-Meza MDS. A novel mayonnaise-type dressing added with avocado pulp and oil as health ingredients processed with ultrasound. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2051606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rosa Isela Guzmán-Gerónimo
- Laboratorio de Innovación de Alimentos, Instituto de Ciencias Básicas, Universidad Veracruzana, Xalapa, México
| | | | | | - Yolanda Cocotle-Ronzón
- Facultad de Ciencias Químicas, Universidad Veracruzana, Zona Universitaria, Xalapa, México
| | | |
Collapse
|
10
|
Zuraini NZA, Sekar M, Wu YS, Gan SH, Bonam SR, Mat Rani NNI, Begum MY, Lum PT, Subramaniyan V, Fuloria NK, Fuloria S. Promising Nutritional Fruits Against Cardiovascular Diseases: An Overview of Experimental Evidence and Understanding Their Mechanisms of Action. Vasc Health Risk Manag 2021; 17:739-769. [PMID: 34858028 PMCID: PMC8631183 DOI: 10.2147/vhrm.s328096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of morbidity and mortality in both developed and developing countries, affecting millions of individuals each year. Despite the fact that successful therapeutic drugs for the management and treatment of CVDs are available on the market, nutritional fruits appear to offer the greatest benefits to the heart and have been proved to alleviate CVDs. Experimental studies have also demonstrated that nutritional fruits have potential protective effects against CVDs. The aim of the review was to provide a comprehensive summary of scientific evidence on the effect of 10 of the most commonly available nutritional fruits reported against CVDs and describe the associated mechanisms of action. Relevant literatures were searched and collected from several scientific databases including PubMed, ScienceDirect, Google Scholar and Scopus. In the context of CVDs, 10 commonly consumed nutritious fruits including apple, avocado, grapes, mango, orange, kiwi, pomegranate, papaya, pineapple, and watermelon were analysed and addressed. The cardioprotective mechanisms of the 10 nutritional fruits were also compiled and highlighted. Overall, the present review found that the nutritious fruits and their constituents have significant benefits for the management and treatment of CVDs such as myocardial infarction, hypertension, peripheral artery disease, coronary artery disease, cardiomyopathies, dyslipidemias, ischemic stroke, aortic aneurysm, atherosclerosis, cardiac hypertrophy and heart failure, diabetic cardiovascular complications, drug-induced cardiotoxicity and cardiomyopathy. Among the 10 nutritional fruits, pomegranate and grapes have been well explored, and the mechanisms of action are well documented against CVDs. All of the nutritional fruits mentioned are edible and readily accessible on the market. Consuming these fruits, which may contain varying amounts of active constituents depending on the food source and season, the development of nutritious fruits-based health supplements would be more realistic for consistent CVD protection.
Collapse
Affiliation(s)
- Nur Zulaikha Azwa Zuraini
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherché des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Neeraj Kumar Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| | - Shivkanya Fuloria
- Faculty of Pharmacy & Centre of Excellence for Biomaterials Engineering, AIMST University, Kedah, 08100, Malaysia
| |
Collapse
|
11
|
Samaniego-Sánchez C, Martín-del-Campo ST, Castañeda-Saucedo MC, Blanca-Herrera RM, Quesada-Granados JJ, Ramírez-Anaya JDP. Migration of Avocado Virgin Oil Functional Compounds during Domestic Cooking of Eggplant. Foods 2021; 10:1790. [PMID: 34441567 PMCID: PMC8391506 DOI: 10.3390/foods10081790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Avocado virgin oil (AVO) was used during eggplant deep-frying, boil, and boil in a water-oil mixture (W/O). There were measured the contents of moisture, dry matter, fat, total (TPC) and ten individual phenols, antioxidant activity (ABTS and DPPH), and total sterols; as well as the profiles of eight fatty acids and fourteen sterols/stanols. The values of raw and processed foods were compared and studied with multivariate analysis. The antioxidant capacity of AVO lowered after deep frying but augmented in eggplant and water after all treatments. The TPC was steady in AVO and raised in fried eggplant. Thermal treatments added to the initial profiles of the AVO, eggplant and water, nine, eight, and four phenols, respectively. Percentages of the main fatty acids (oleic, palmitic and linoleic), and sterols (β-sitosterol, campesterol, and Δ5-avenasterol), remained unchanged between the raw and treated AVO; and the lipidic fractions from processed eggplant. Cooking leads to the movement of hydrophilic and lipophilic functional compounds between AVO, eggplant and water. Migration of sterols and unsaturated fatty acids from AVO to eggplant during deep frying and W/O boiling improved the functional properties of eggplant by adding the high biological value lipophilic fraction to the naturally occurring polyphenols.
Collapse
Affiliation(s)
- Cristina Samaniego-Sánchez
- Department of Nutrition and Bromatology, Pharmacy Faculty UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain; (C.S.-S.); (R.M.B.-H.); (J.J.Q.-G.)
| | | | - Ma. Claudia Castañeda-Saucedo
- Department of Nature Sciences, Centro Universitario del Sur (UdeG), Av. Enrique Arreola Silva 883, Ciudad Guzmán C.P. 49000, Jalisco, Mexico;
| | - Rosa María Blanca-Herrera
- Department of Nutrition and Bromatology, Pharmacy Faculty UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain; (C.S.-S.); (R.M.B.-H.); (J.J.Q.-G.)
| | - José Javier Quesada-Granados
- Department of Nutrition and Bromatology, Pharmacy Faculty UGR, Campus Cartuja s/n, C.P. 10871 Granada, Spain; (C.S.-S.); (R.M.B.-H.); (J.J.Q.-G.)
| | - Jessica del Pilar Ramírez-Anaya
- Department of Computational Sciences and Technological Innovation, Centro Universitario del Sur (UdeG), Av. Enrique Arreola Silva 883, Ciudad Guzmán C.P. 49000, Jalisco, Mexico
| |
Collapse
|
12
|
Cervantes-Paz B, Yahia EM. Avocado oil: Production and market demand, bioactive components, implications in health, and tendencies and potential uses. Compr Rev Food Sci Food Saf 2021; 20:4120-4158. [PMID: 34146454 DOI: 10.1111/1541-4337.12784] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
Avocado is a subtropical/tropical fruit with creamy texture, peculiar flavor, and high nutritional value. Due to its high oil content, a significant quantity of avocado fruit is used for the production of oil using different methods. Avocado oil is rich in lipid-soluble bioactive compounds, but their content depends on different factors. Several phytochemicals in the oil have been linked to prevention of cancer, age-related macular degeneration, and cardiovascular diseases and therefore have generated an increase in consumer demand for avocado oil. The aim of this review is to critically and systematically analyze the worldwide production and commercialization of avocado oil, its extraction methods, changes in its fat-soluble phytochemical content, health benefits, and new trends and applications. There is a lack of information on the production and commercialization of the different types of avocado oil, but there are abundant data on extraction methods using solvents, centrifugation-assisted aqueous extraction, mechanical extraction by cold pressing (varying concentration and type of enzymes, temperature and time of reaction, and dilution ratio), ultrasound-assisted extraction, and supercritical fluid to enhance the yield and quality of oil. Extensive information is available on the content of fatty acids, although it is limited on carotenoids and chlorophylls. The effect of avocado oil on cancer, diabetes, and cardiovascular diseases has been demonstrated through in vitro and animal studies, but not in humans. Avocado oil continues to be of interest to the food, pharmaceutical, and cosmetic industries and is also generating increased attention in other areas including structured lipids, nanotechnology, and environmental care.
Collapse
Affiliation(s)
- Braulio Cervantes-Paz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México.,Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Elhadi M Yahia
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Juriquilla, México
| |
Collapse
|
13
|
Efects of Coconut Oil (Cocos nucifera), Avocado Oil (Persea americana), Melon Seed Oil (Citrullus colocynthis L.) on Growth Performance, Blood, Biochemical, Haematological Parameters, and Total Microbial Loads of Noiler Birds. FOLIA VETERINARIA 2020. [DOI: 10.2478/fv-2020-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
This study was carried out to examine the comparative effects of coconut oil (CO), avocado oil (AO), and melon seed oil (MSO) on the growth performance, blood, biochemical, hematological parameters, and total microbial loads of Noiler birds. A total of 120 Noiler birds with an average weight of 50.3 ± 0.13 g were randomized into four treatment groups with 3 replications (10 per pen) for six weeks of fattening. Weekly body weight gain and daily feed intake of the birds were recorded for six weeks, after which average weight gain and feed conversion ratios were calculated. At the end of the feeding trials, blood samples were collected for biochemical and hematological parameter assessments, and the digesta from the colon and ileum were collected for their intestinal total microbial load analysis. The average weight gains and feed conversion ratios (FCR) of the birds supplemented with CO (1229.40 ± 15.00) and MSO (1232.66 ± 43.18) were observed to be significantly higher (P < 0.05), compared to the birds supplemented with AO (1110.73 ± 18.29) and the birds fed feed only (1034.79 ± 2.04) having the least weight gained. The biochemical parameters of the birds across the treatment were not significantly different (P > 0.05). White blood cells, packed cell volume, red blood cells and lymphocytes were significantly higher in the CO group compared to the birds supplemented with the avocado oil and melon seed oil. There was no significant difference (P > 0.05) in the weight of the spleen, bursa and gall bladder among the birds. The Lactobacillus spp. in the colon of birds supplemented with coconut oil (6.43 ± 0.56) and melon oil (6.25 ± 0.65) were significantly higher. It can be concluded that coconut oil and melon seed oil have the potential to serve as growth promoters for chicken production.
Collapse
|
14
|
Consumption of avocado oil (Persea americana) improves the biochemical profile of rats submitted to long-term androgenic stimulation. NUTR HOSP 2020; 37:1033-1038. [PMID: 32960628 DOI: 10.20960/nh.03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: indiscriminate use of anabolic steroids is associated with cardiovascular diseases, renal damage, and hepatic toxicity. Contrastingly, nutraceutical foods such as avocados prevent and control several diseases, as they can reduce the effects of oxidative stress. Objective: this study evaluates the benefits of consuming an avocado oil-based diet to attenuate the systemic damage caused by supraphysiological doses of testosterone, by analyzing the biochemical profile of 28 42-day-old male Wistar rats. Methods: silicone pellets containing testosterone were surgically implanted, and they received control or avocado oil-based feed. After 20 weeks, all the male rats were anesthetized and their blood samples collected. Results: although the high hormone concentration had a negative influence on the biochemical profile of these animals, the groups that consumed avocado oil exhibited a reduction in serum triacylglycerols (-21 %; p = 0.0001), VLDL (-20 %; p = 0.0085), LDL (-78 %; p < 0.0001), and total cholesterol (-12 %; p < 0.0001), along with positive changes in their HDL concentrations (+7 %; p = 0.001). The avocado oil groups also manifested a reduction in the total concentration of serum proteins (-24 %; p = 0.0357), albumin (-26 %; p = 0.0015), urea (-14 %; p = 0.04), and creatinine (-33 %; p < 0.0001). The concentration of liver transaminases was found to be higher in the animals included in the induced group (ALT, +66 %; p = 0.0005, and AST, +23 %; p = 0.0021), whereas they remained stable in the avocado oil group. Conclusion: from the above, it may be concluded that supraphysiological doses of testosterone are related to increased risk factors for cardiovascular, renal, and hepatic diseases, and that the consumption of avocado oil shields the biochemical profile, thus reducing the associated risk factors.
Collapse
|
15
|
Avocado (Persea americana) pulp improves cardiovascular and autonomic recovery following submaximal running: a crossover, randomized, double-blind and placebo-controlled trial. Sci Rep 2020; 10:10703. [PMID: 32612186 PMCID: PMC7329896 DOI: 10.1038/s41598-020-67577-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/19/2020] [Indexed: 11/28/2022] Open
Abstract
Previous studies have demonstrated that regular avocado consumption presents advantageous effects on cardiovascular system. However, little attention has been paid to the use of avocado as a dietary supplement, in particular, for individuals involved in physical exercise training. Therefore, this study aims to evaluate the effect of acute avocado pulp intake on cardiovascular and autonomic recovery subsequent to moderate exercise. Using a crossover, randomized, double-blind and placebo-controlled trial design, 16 healthy female adults underwent two protocols: Avocado pulp (600 mg in capsule) and placebo (600 mg starch in capsule). After the ingestion of Avocado pulp or placebo, the subjects were seated for 60 min at rest, followed by running on a treadmill at a submaximal level and then remained seated for 60 min during recovery from the exercise. Heart rate (HR), heart rate variability (HRV) [rMSSD, SD1, HF (ms2)] and skin conductance were evaluated before and during exercise, as well as during recovery. HR, systolic blood pressure, HRV and skin conductance recovered faster when subjects were given avocado pulp prior to exercise. In conclusion, avocado pulp improved cardiovascular and autonomic recovery after exercise, suggesting a reduced risk of cardiovascular events after exertion. The current results support the beneficial effects of ingestion of avocado prior to submaximal treadmill running.
Collapse
|
16
|
Tramontin NDS, Luciano TF, Marques SDO, de Souza CT, Muller AP. Ginger and avocado as nutraceuticals for obesity and its comorbidities. Phytother Res 2020; 34:1282-1290. [PMID: 31989713 DOI: 10.1002/ptr.6619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/19/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2023]
Abstract
Obesity is a worldwide epidemic and is one of the factors involved in the etiology of type 2 diabetes mellitus. Obesity induces low-grade inflammation and oxidative stress. The treatment for obesity involves changes in diet, physical activity, and even medication and surgery. Currently, the use of nutraceutical compounds is associated with health benefits. Ginger and avocado are used for many people all around the world; however, its effect as a nutraceutical compound is less known by the general population. For this reason, we searched information of the literature to point its effects on distinct mechanisms of defense against the obesity its comorbidities. The present review aimed showing that these nutraceuticals may be useful in obesity treatment. Reports have shown that ginger and avocado induce antioxidant and anti-inflammatory effects by improving enzymatic activity and modulating obesity-related impairments in the anti-inflammatory system in different tissues, without side effects. Furthermore, ginger and avocado were found to be effective in reversing the harmful effects of obesity on blood lipids. In conclusion, on the basis of the positive effects of ginger and avocado in in vitro, animal, and human studies, these nutraceuticals may be useful in obesity treatment.
Collapse
Affiliation(s)
| | - Thais F Luciano
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Claudio T de Souza
- Department of Internal Medicine, Medicine School, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Alexandre P Muller
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
17
|
Landa-Galvan HV, Rios-Castro E, Romero-Garcia T, Rueda A, Olivares-Reyes JA. Metabolic syndrome diminishes insulin-induced Akt activation and causes a redistribution of Akt-interacting proteins in cardiomyocytes. PLoS One 2020; 15:e0228115. [PMID: 31995605 PMCID: PMC6988918 DOI: 10.1371/journal.pone.0228115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors, with insulin resistance as a critical component for its development. Insulin signaling in the heart leads to Akt (also known as PKB) activation, a serine/threonine protein kinase, which regulates cardiac glucose metabolism and growth. Cardiac metabolic inflexibility, characterized by impaired insulin-induced glucose uptake and oxidation, has been reported as an early and consistent change in the heart of different models of MetS and diabetes; however, the evaluation of Akt activation has yielded variable results. Here we report in cardiomyocytes of MetS rats, diminished insulin-induced glucose uptake and Akt activation, evaluated by its impaired mobilization towards the plasma membrane and phosphorylation, and reflected in a re-distribution of its interacting proteins, assessed by label-free mass spectrometry (data are available via ProteomeXchange with identifier PXD013260). We report 45 proteins with diminished abundance in Akt complex of MetS cardiomyocytes, mainly represented by energy metabolism-related proteins, and also, 31 Akt-interacting proteins with increased abundance, which were mainly related to contraction, endoplasmic reticulum stress, and Akt negative regulation. These results emphasize the relevance of Akt in the regulation of energy metabolism in the heart and highlight Akt-interacting proteins that could be involved in the detrimental effects of MetS in the heart.
Collapse
Affiliation(s)
| | - Emmanuel Rios-Castro
- Unidad de Genomica, Proteomica y Metabolomica (UGPM), LaNSE-Cinvestav-IPN, Mexico City, Mexico
| | | | - Angelica Rueda
- Departamento de Bioquimica, Cinvestav-IPN, Mexico City, Mexico
| | | |
Collapse
|
18
|
Olas B. Biochemistry of blood platelet activation and the beneficial role of plant oils in cardiovascular diseases. Adv Clin Chem 2019; 95:219-243. [PMID: 32122524 DOI: 10.1016/bs.acc.2019.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The main function of blood platelets is to form hemostatic plugs and enable thrombosis. These properties, however, can be greatly influenced by dietary components which may inhibit certain steps of platelet activation, including platelet aggregation. Such inhibition can play a role in the prophylaxis and treatment of cardiovascular diseases associated with blood platelet hyperactivation. In fact, plant and fish oils have been identified and specifically used for this purpose. Numerous in vivo and in vitro experiments have explored the potential use of these oils to inhibit platelet activation as well as their role in reducing oxidative stress and blood pressure, and lowering triglyceride and cholesterol. This chapter presents and compares the anti-platelet effects of fish and plant oils and their constituents, especially fatty acids. Studies on healthy subjects and patients with various cardiovascular diseases are also examined. Findings indicate that both fish and plant oils contain protective components with anti-platelet activity having clearly defined mechanisms of action. Although both are excellent sources of omega fatty acids and vitamins, plant oils contain components with cardioprotective benefit in hypercholesterolemics, i.e., phytosterols. Plant oils may hence play a key role in strategies for preventing and treating cardiovascular diseases associated with platelet hyperactivation. Further studies are clearly needed to determine the precise dose of these components needed for effective prophylaxis and treatment.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
19
|
Bhuyan DJ, Alsherbiny MA, Perera S, Low M, Basu A, Devi OA, Barooah MS, Li CG, Papoutsis K. The Odyssey of Bioactive Compounds in Avocado ( Persea americana) and Their Health Benefits. Antioxidants (Basel) 2019; 8:E426. [PMID: 31554332 PMCID: PMC6826385 DOI: 10.3390/antiox8100426] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Persea americana, commonly known as avocado, has recently gained substantial popularity and is often marketed as a "superfood" because of its unique nutritional composition, antioxidant content, and biochemical profile. However, the term "superfood" can be vague and misleading, as it is often associated with unrealistic health claims. This review draws a comprehensive summary and assessment of research performed in the last few decades to understand the nutritional and therapeutic properties of avocado and its bioactive compounds. In particular, studies reporting the major metabolites of avocado, their antioxidant as well as bioavailability and pharmacokinetic properties, are summarized and assessed. Furthermore, the potential of avocado in novel drug discovery for the prevention and treatment of cancer, microbial, inflammatory, diabetes, and cardiovascular diseases is highlighted. This review also proposes several interesting future directions for avocado research.
Collapse
Affiliation(s)
- Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Muhammad A Alsherbiny
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Saumya Perera
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Amrita Basu
- Research Centre for Toxic Compounds in the Environment, Masaryk University, Brno 62500, Czech.
| | - Okram Abemsana Devi
- Department of Food Science and Nutrition, College of Community Science, Assam Agricultural University, Assam 785013, India.
| | - Mridula Saikia Barooah
- Department of Food Science and Nutrition, College of Community Science, Assam Agricultural University, Assam 785013, India.
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia.
| | - Konstantinos Papoutsis
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
20
|
Avocado Oil: Characteristics, Properties, and Applications. Molecules 2019; 24:molecules24112172. [PMID: 31185591 PMCID: PMC6600360 DOI: 10.3390/molecules24112172] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/20/2022] Open
Abstract
Avocado oil has generated growing interest among consumers due to its nutritional and technological characteristics, which is evidenced by an increase in the number of scientific articles that have been published on it. The purpose of the present research was to discuss the extraction methods, chemical composition, and various applications of avocado oil in the food and medicine industries. Our research was carried out through a systematic search in scientific databases. Even though there are no international regulations concerning the quality of avocado oil, some authors refer to the parameters used for olive oil, as stated by the Codex Alimentarius or the International Olive Oil Council. They indicate that the quality of avocado oil will depend on the quality and maturity of the fruit and the extraction technique in relation to temperature, solvents, and conservation. While the avocado fruit has been widely studied, there is a lack of knowledge about avocado oil and the potential health effects of consuming it. On the basis of the available data, avocado oil has established itself as an oil that has a very good nutritional value at low and high temperatures, with multiple technological applications that can be exploited for the benefit of its producers.
Collapse
|
21
|
Fernandes GD, Gómez-Coca RB, Pérez-Camino MC, Moreda W, Barrera-Arellano D. Chemical characterization of commercial and single-variety avocado oils. GRASAS Y ACEITES 2018. [DOI: 10.3989/gya.0110181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This work aimed to determine the major and minor compounds of avocado oils. Mono-varietal oils from the Bacon, Fuerte, Hass, and Pinkerton cultivars were obtained by means of an Abencor® system, while commercial oils from Brazil, Chile, Ecuador and New Zealand were purchased locally. The content of triacylglycerols, fatty acids, aliphatic and terpenic alcohols, desmethyl- methyl- and dimethyl-sterols, squalene and tocopherols were determined. The main triacylglycerols were those with ECN48. In addition, the oleic, palmitic and linoleic acids prevailed. Desmethyl-sterols were the principal minor compounds. Low amounts of aliphatic and terpenic alcohols were also found. Squalene concentrations were higher in Bacon, Fuerte and Pinkerton oils than in the other oils. The most abundant tocopherol was α-tocopherol. Partial least squares discriminant analysis made it possible to express the differences among the samples. To summarize, this work brings a different approach to the complete characterization of avocado oil.
Collapse
|
22
|
Furlan CPB, Valle SC, Östman E, Maróstica MR, Tovar J. Inclusion of Hass avocado-oil improves postprandial metabolic responses to a hypercaloric-hyperlipidic meal in overweight subjects. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
23
|
Zhao CN, Meng X, Li Y, Li S, Liu Q, Tang GY, Li HB. Fruits for Prevention and Treatment of Cardiovascular Diseases. Nutrients 2017; 9:E598. [PMID: 28608832 PMCID: PMC5490577 DOI: 10.3390/nu9060598] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are leading global health problems. Accumulating epidemiological studies have indicated that consuming fruits was inversely related to the risk of CVDs. Moreover, substantial experimental studies have supported the protective role of fruits against CVDs, and several fruits (grape, blueberry, pomegranate, apple, hawthorn, and avocado) have been widely studied and have shown potent cardiovascular protective action. Fruits can prevent CVDs or facilitate the restoration of morphology and functions of heart and vessels after injury. The involved mechanisms included protecting vascular endothelial function, regulating lipids metabolism, modulating blood pressure, inhibiting platelets function, alleviating ischemia/reperfusion injury, suppressing thrombosis, reducing oxidative stress, and attenuating inflammation. The present review summarizes recent discoveries about the effects of fruits on CVDs and discusses potential mechanisms of actions based on evidence from epidemiological, experimental, and clinical studies.
Collapse
Affiliation(s)
- Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
24
|
Kiokias S, Varzakas T. Innovative applications of food-related emulsions. Crit Rev Food Sci Nutr 2017; 57:3165-3172. [DOI: 10.1080/10408398.2015.1130017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- S. Kiokias
- Technological Educational Institute of Peloponnese, Deptartment of Food Technology, Kalamata, Hellas, Greece
| | - T. Varzakas
- Technological Educational Institute of Peloponnese, Deptartment of Food Technology, Kalamata, Hellas, Greece
| |
Collapse
|
25
|
Tabeshpour J, Razavi BM, Hosseinzadeh H. Effects of Avocado (Persea americana) on Metabolic Syndrome: A Comprehensive Systematic Review. Phytother Res 2017; 31:819-837. [PMID: 28393409 DOI: 10.1002/ptr.5805] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
Metabolic syndrome (MetS) is a clustering of risk factors including high blood glucose, dyslipidemia, hypertension, and obesity that lead to the increased risk of type 2 diabetes mellitus and cardiovascular diseases (CVDs), which are among leading causes of death in the world. Metabolic syndrome increases the risk of type 2 diabetes mellitus and CVDs by approximately five and three folds, respectively. Therefore, it is of vital importance to manage such conditions with herbal options which have less undesirable adverse effects and may be more efficacious in comparison with synthetic options. Avocado is a well-known source of carotenoids, minerals, phenolics, vitamins, and fatty acids. The lipid-lowering, antihypertensive, antidiabetic, anti-obesity, antithrombotic, antiatherosclerotic, and cardioprotective effects of avocado have been demonstrated in several studies. In this review, we aimed to find out avocado's pharmacological effects on different components of MetS. Moreover, this review report is performed on the MetS effects of peel, seed, flesh, and leaves of avocado. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Gupta V, Mah XJ, Garcia MC, Antonypillai C, van der Poorten D. Oily fish, coffee and walnuts: Dietary treatment for nonalcoholic fatty liver disease. World J Gastroenterol 2015; 21:10621-35. [PMID: 26457022 PMCID: PMC4588084 DOI: 10.3748/wjg.v21.i37.10621] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/28/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Rates of non-alcoholic fatty liver disease (NAFLD) are increasing worldwide in tandem with the metabolic syndrome, with the progressive form of disease, non-alcoholic steatohepatitis (NASH) likely to become the most common cause of end stage liver disease in the not too distant future. Lifestyle modification and weight loss remain the main focus of management in NAFLD and NASH, however, there has been growing interest in the benefit of specific foods and dietary components on disease progression, with some foods showing protective properties. This article provides an overview of the foods that show the most promise and their potential benefits in NAFLD/NASH, specifically; oily fish/ fish oil, coffee, nuts, tea, red wine, avocado and olive oil. Furthermore, it summarises results from animal and human trials and highlights potential areas for future research.
Collapse
|