1
|
Silva GDC, Ferreira MJ, Araujo AA, Nascimento Filho AVD, Bernardes N, do Amaral JB, Irigoyen MC, De Angelis K. Cardiovascular and neuroimmune adaptations to enalapril and exercise training: A comparative study in male and ovariectomized female spontaneously hypertensive rats. Auton Neurosci 2025; 260:103280. [PMID: 40253895 DOI: 10.1016/j.autneu.2025.103280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/22/2025]
Abstract
Antihypertensive drug and exercise training are commonly prescribed to treat arterial hypertension. However, there is a considerable gap in understanding how physiological mechanisms of male and female adapt to the combination of these approaches. Therefore, we focused to investigate sexual differences in cardiovascular, autonomic, inflammation and systemic oxidative stress adaptations in male and OVX female ovariectomized spontaneously hypertensive rats (SHR) treated with enalapril associated with moderate-intensity concurrent exercise training. Enalapril (3 mg/kg, diluted in drinking water) and exercise training (3 days/week, moderate intensity) was carried out for 8 weeks. Blood pressure (BP), heart rate (HR) and its variabilities were assessed. Serum and plasma were used for inflammatory and oxidative stress analyses. Enalapril, associated or not with exercise training, induced a reduction in diastolic and mean BP in both sexes; however, only the OVX female groups showed a reduction in systolic BP, as well as resting bradycardia. Both sexes showed improvements in BP and HR variability following the treatments; however, improvement in SD2/SD1 ratio, which indicates how much the heartbeats occur at irregular intervals, and in variance of systolic BP were observed only in trained groups. A higher spontaneous baroreflex sensitivity, as well as reduced IL-6/IL-10 were found only in the trained groups. Increased IL-10 was observed in male trained group (vs. other groups). Finally, combination enalapril and exercise training reduced systemic pro-oxidants such as NADPH oxidase and hydrogen peroxide. The findings of our study showed that OVX female SHR, after ovarian hormone deprivation, presented more pronounced effects on hemodynamics, BP variability, and anti-inflammatory profile than hypertensive males with the combination of treatments. BACKGROUND Researchers are investigating how the body responds differently in males and females. These differences are also evident when examining how pharmacological and non-pharmacological approaches help the body control arterial hypertension. This study aimed to investigate how drug medication combined with exercise affects the heart's ability to self-regulate and how it relates to immune and oxidant defense, with a focus on differences in male and ovariectomized (OVX) female adaptations. METHODS The study was conducted using hypertensive male and OVX female rats, allocated into: a) sedentary, b) enalapril, or c) enalapril plus exercise groups, totaling six groups (3 males and 3 OVX females, respectively). Enalapril (3 mg/kg/day) and exercise (aerobic and resistance exercises) were prescribed for eight weeks. The effects on blood pressure control, serum, and plasma were assessed. RESULTS Although both males and OVX females showed improvements in blood pressure after medication, combined or not with exercise, OVX females had better control of blood pressure and heart rhythm regulation. Furthermore, including an exercise program during medication treatment improved immune defense in OVX females only, as well as the levels of key enzymes involved in the process of organ damage development in both sexes. CONCLUSION OVX female rats benefited more from the combination of medication and exercise compared to male rats. This suggests that OVX females may experience additional health benefits from the combination of antihypertensive approaches, highlighting the importance of understanding how exercise impacts the body differently in males and OVX females, which could contribute to better long-term disease management.
Collapse
Affiliation(s)
- Gabriel do Carmo Silva
- Exercise Physiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Maycon Junior Ferreira
- Exercise Physiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Amanda Aparecida Araujo
- Exercise Physiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Nathalia Bernardes
- Human Movement Laboratory, São Judas Tadeu University (USJT), São Paulo, SP, Brazil
| | - Jônatas Bussador do Amaral
- Otorhinolaryngology Research Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Kátia De Angelis
- Exercise Physiology Laboratory, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Zhao Y, Jia Q, Hao G, Han L, Gao Y, Zhang X, Yan Z, Li B, Wu Y, Zhang B, Li Y, Qin J. JiangyaTongluo decoction ameliorates tubulointerstitial fibrosis via regulating the SIRT1/PGC-1α/mitophagy axis in hypertensive nephropathy. Front Pharmacol 2024; 15:1491315. [PMID: 39726785 PMCID: PMC11669701 DOI: 10.3389/fphar.2024.1491315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction With the increasing prevalence of hypertension, the incidence of kidney diseases is also increasing, resulting in a serious public burden. Jiangya Tongluo decoction (JYTL), a recognized prescription in traditional Chinese medicine (TCM), is commonly used to calm an overactive liver and reduce excess yang, while also promoting blood flow to alleviate obstructions in the meridians. Previous research has indicated that JYTL may help mitigate kidney damage caused by hypertension; however, the underlying mechanisms have not been thoroughly assessed. Methods First, an amalgamation of UPLC-QE/MS and network pharmacology techniques was employed to pinpoint potential active components, primary targets, and crucial action mechanisms of JYTL in treating hypertensive nephropathy (HN). Then, we used spontaneous hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) to evaluate the efficacy of JYTL on HN with valsartan as a positive reference. We also conducted DCFH-DA fluorescence staining in rat renal tissues to detect the level of ROS. Western blotting and immunohistochemistry were performed to investigate further the effect of JYTL decoction on key targets and signaling pathways. Results Through UPLC-QE/MS and network analysis, 189 active ingredients and 5 hub targets were identified from JYTL. GSEA in the MitoCarta3.0 database and PPI network analysis revealed that JYTL predominantly engages in the Sirt1-mitophagy signaling pathway. Tanshinone iia, quercetin, and adenosine in JYTL are the main active ingredients for treating HN. In vivo validation showed that JYTL decoction could improve kidney function, ameliorate tubulointerstitial fibrosis (TIF), and improve mitochondrial function by inhibiting ROS production and regulating mitochondrial dynamics in SHRs. JYTL treatment could also increase the expression of SIRT1, PGC-1α, Nrf1, and TFAM, and activate PINK1/Parkin-mediated mitophagy. Conclusion JYTL decoction may exert renal function protective and anti-fibrosis effects in HN by ameliorating mitochondrial function and regulating the SIRT1/PGC-1α-mitophagy pathway.
Collapse
Affiliation(s)
- Yun Zhao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Han
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yushan Gao
- School of Basic Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziming Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yiping Wu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Boya Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yubo Li
- Institute of Basic Theory for Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianguo Qin
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Ujah GA, Ofutet EO, Ukam CIO, Omiunu PE, Ackley EU, Japhet IG, Ntauko JC, Clement QC, Atu R, Nna VU. Protective effect of tert-butylhydroquinone against cisplatin-induced hepatorenal injury via modulating oxidative stress, inflammation, and apoptosis. Arch Physiol Biochem 2024; 130:951-961. [PMID: 38993034 DOI: 10.1080/13813455.2024.2376812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
CONTEXT Cisplastin (CDDP) is a chemotherapeutic drug frequently used to manage a variety of cancers. However, its use is associated with hepatorenal toxicity resulting from elevated reactive oxygen species production. OBJECTIVE Herein, the hepatorenal protective effect of tert-butylhydroquinone (tBHQ) in cisplatin (CDDP)-treated rats was examined. METHODS Wistar male rats randomly divided into four groups: normal control, tBHQ, CDDP and tBHQ + CDDP received 50 mg/kg b.w./day of tBHQ orally for 14 days while 7 mg/kg b.w of CDDP was administered intraperitoneally on Day 8. RESULTS CDDP increased serum biomarkers of hepatic (AST, ALP, ALT, GGT) and renal (creatinine, urea, uric acid, kidney injury molecule 1) function. The levels of nuclear factor erythroid-2-related factor 2 protein and the activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities were decreased in liver and kidney. Also, CDDP increased hepatic and renal levels of NF-κB, TNFα, Bax and caspase-3 proteins and decreased hepatorenal levels of Bcl-2 protein in the liver and kidney. Pre-treatment with tBHQ prevented these negative effects. SIGNIFICANCE Pre-intervention with tBHQ attenuates hepatorenal toxicity of CDDP by dampening oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Godwin Adakole Ujah
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Emmanuel Oleba Ofutet
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
- Department of Physiology, Faculty of Medicine and Pharmaceutical Science, Kampala International University, Tanzania
| | - Catherine Ironya-Ogar Ukam
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Precious Evangeline Omiunu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Emaediong Ufot Ackley
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Iboro Godwin Japhet
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Jane Charles Ntauko
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Queen Comfort Clement
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Racheal Atu
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| | - Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Cross River State, Nigeria
| |
Collapse
|
4
|
Pelpolage SW, Sasaki R, Shimada K, Nagura T, Uchino H, Han KH, Fukushima M. Oral Supplementation with Betaine Powder Ameliorated High Blood Pressure in Spontaneously Hypertensive Rats. Metabolites 2024; 14:390. [PMID: 39057713 PMCID: PMC11279126 DOI: 10.3390/metabo14070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Supplementation of betaine is associated with improved cardiac health, potentially due to its function in re-methylation of homocysteine, an independent risk factor for cardiovascular diseases. We investigated the effects of oral betaine supplementation on blood pressure homeostasis in spontaneously hypertensive (SHR) rats and Wistar Kyoto (WKY) rats in an 8 week-feeding trial with control (SHR-con and WKY-con) and 1% betaine supplemented (SHR-b and WKY-b) diets. Systolic, diastolic, and mean blood pressure in the SHR-b group were significantly lower at week 8 (p = 0.013, p = 0.011, p = 0.010, respectively). Furthermore, serum nitric oxide (NO) levels were significantly (p < 0.05) improved in the WKY-b and SHR-b groups, suggesting a healthy endothelial function. Additionally, the serum angiotensin I converting enzyme level in SHR-b rats was also significantly lowered, which may have been another reason for lower blood pressure. A significantly higher non-HDL level in the SHR-b group might reflect enhanced lipid secretion into the circulation in the form of very-low-density lipoprotein (VLDL). Betaine is known for its effect on the synthesis of phosphatidylcholine, a key component of VLDL. However, the long-term net outcomes of both blood pressure lowering and serum lipid increment should be further studied.
Collapse
Affiliation(s)
- Samanthi Wathsala Pelpolage
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan; (S.W.P.); (R.S.); (K.S.)
| | - Rie Sasaki
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan; (S.W.P.); (R.S.); (K.S.)
| | - Kenichiro Shimada
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan; (S.W.P.); (R.S.); (K.S.)
| | - Taizo Nagura
- Research Center, Nippon Beet Sugar Mfg., Co., Ltd., Obihiro 080-0831, Hokkaido, Japan; (T.N.)
| | - Hirokatsu Uchino
- Research Center, Nippon Beet Sugar Mfg., Co., Ltd., Obihiro 080-0831, Hokkaido, Japan; (T.N.)
| | - Kyu-Ho Han
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan; (S.W.P.); (R.S.); (K.S.)
| | - Michihiro Fukushima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro 080-8555, Hokkaido, Japan; (S.W.P.); (R.S.); (K.S.)
| |
Collapse
|
5
|
Ma C, Li H, Lu S, Li X. Thyroid-associated ophthalmopathy: the role of oxidative stress. Front Endocrinol (Lausanne) 2024; 15:1400869. [PMID: 39055057 PMCID: PMC11269105 DOI: 10.3389/fendo.2024.1400869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Thyroid-associated ophthalmopathy (TAO) is an autoimmune condition affecting the eyes, characterized by proptosis, extraocular muscle involvement, and in severe cases, vision impairment including diplopia, optic neuropathy, and potential blindness. The exact etiology of TAO remains elusive; however, increased oxidative stress and decreased antioxidant capacity are pivotal in its pathogenesis. Elevated oxidative stress not only directly damages orbital tissues but also influences thyroid function and autoimmune responses, exacerbating tissue destruction. This review explores the role of oxidative stress in TAO, elucidates its mechanisms, and evaluates the efficacy and limitations of antioxidant therapies in managing TAO. The findings aim to enhance understanding of oxidative stress mechanisms in TAO and propose potential antioxidant strategies for future therapeutic development.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haoyu Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Research Centre of Ophthalmic Disease, Changsha, Hunan, China
| | - Shuwen Lu
- Department of Ophthalmology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xian Li
- Manchester Royal Eye Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Achi NK, Eleazu CO, Onyeabo C, Kalu W, Eleazu K. Syzygium malaccense leaves methanol extract modulate some biochemical and inflammatory markers and prostate histology of testosterone-estradiol valerate induced benign prostatic hyperplasia in rats. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:305-324. [PMID: 39086866 PMCID: PMC11287027 DOI: 10.22038/ajp.2023.23526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/02/2023] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The effect of Syzygium malaccense methanol leaf extract (SMLE) on some parameters of testosterone-estradiol valerate induced benign prostatic hyperplasia (BPH) in rats was assayed. MATERIALS AND METHODS Thirty male albino rats were used and they were grouped as: Control: received 1 mL/kg olive oil (oral and subcutaneous); BPH: received subcutaneously 9 mg/kg dihydrotestosterone (DHT)+0.9 mg/kg estradiol valerate (ESV) and orally 1 ml/kg olive oil; finasteride: received 9 mg/kg of DHT+0.9 mg/kg ESV (subcutaneously) and 5 mg/kg finasteride (orally) and test groups 1 and 2: received 9 mg/kg of DHT+0.9 mg/kg ESV (subcutaneously) and 200 and 400 mg/kg SMLE (orally). The duration of the treatment was 28 days. RESULTS The BPH group had increased prostatic total proteins, oxidative stress, interleukin 8, tumor necrosis factor-α, prostate weights, serum concentrations of prostate specific antigen, estradiol, follicle stimulating hormone, and C-reactive protein, dyslipidaemia, altered prostate histology and hormonal levels but had no significant change (p>0.05) in haematological indices relative to the control. Finasteride or S. malaccense modulated most of these parameters as corroborated by prostate histology. Acute toxicity study indicated the non-toxicity of SMLE. SMLE showed strong in vitro antioxidant activity which corroborated its in vivo antioxidant activity. CONCLUSION The study showed that S. malaccense could be useful in the management of BPH.
Collapse
Affiliation(s)
- Ngozi Kalu Achi
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
| | | | - Chimaraoke Onyeabo
- Department of Biochemistry, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria
| | - Winner Kalu
- Department of Biochemistry, Rhema University, Aba, Abia State, Nigeria
| | - Kate Eleazu
- Department of Biochemistry, Ebonyi State University, Ebonyi State, Abakaliki, Nigeria
| |
Collapse
|
7
|
Buonfiglio F, Ponto KA, Pfeiffer N, Kahaly GJ, Gericke A. Redox mechanisms in autoimmune thyroid eye disease. Autoimmun Rev 2024; 23:103534. [PMID: 38527685 DOI: 10.1016/j.autrev.2024.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Thyroid eye disease (TED) is an autoimmune condition affecting the orbit and the eye with its adnexa, often occurring as an extrathyroidal complication of Graves' disease (GD). Orbital inflammatory infiltration and the stimulation of orbital fibroblasts, triggering de novo adipogenesis, an overproduction of hyaluronan, myofibroblast differentiation, and eventual tissue fibrosis are hallmarks of the disease. Notably, several redox signaling pathways have been shown to intensify inflammation and to promote adipogenesis, myofibroblast differentiation, and fibrogenesis by upregulating potent cytokines, such as interleukin (IL)-1β, IL-6, and transforming growth factor (TGF)-β. While existing treatment options can manage symptoms and potentially halt disease progression, they come with drawbacks such as relapses, side effects, and chronic adverse effects on the optic nerve. Currently, several studies shed light on the pathogenetic contributions of emerging factors within immunological cascades and chronic oxidative stress. This review article provides an overview on the latest advancements in understanding the pathophysiology of TED, with a special focus of the interplay between oxidative stress, immunological mechanisms and environmental factors. Furthermore, cutting-edge therapeutic approaches targeting redox mechanisms will be presented and discussed.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Katharina A Ponto
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| | - George J Kahaly
- Medicine I (GJK), University Medical Center of the Johannes Gutenberg- University, Mainz, Germany.
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
8
|
Ferreira MJ, Dias DDS, Silva GDC, de Araujo AA, Dutra MRH, Bernardes N, Irigoyen MC, De Angelis K. Concurrent exercise training potentiates the effects of angiotensin-converting enzyme inhibitor on regulatory systems of blood pressure control in ovariectomized hypertensive rats. J Hypertens 2024; 42:650-661. [PMID: 38441185 DOI: 10.1097/hjh.0000000000003670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
OBJECTIVE Enalapril has shown satisfactory potential in controlling increased and sustained blood pressure (BP). However, multiple dysregulated mechanisms that interact with each other and are involved in the pathophysiology of arterial hypertension may not be affected, contributing to the remaining cardiovascular risk. Using an exercise training protocol, we investigated whether adding both approaches to arterial hypertension management could promote higher modulation of regulatory mechanisms of BP in postmenopausal rats. METHODS Spontaneously hypertensive rats were allocated into sedentary (S) and ovariectomized groups: sedentary (OS), sedentary treated with enalapril maleate (OSE) and trained treated with enalapril maleate (OTE). Both the pharmacological and exercise training protocols lasted for 8 weeks. The BP was directly recorded. Inflammation and oxidative stress were evaluated in the cardiac tissue. RESULTS Although BP reduction was similar between OSE and OTE, trained group showed lower vasopressor systems outflow after sympathetic ganglion blocking by hexamethonium (mean BP) (OTE: -53.7 ± 9.86 vs. OS: -75.7 ± 19.2 mmHg). Bradycardic and tachycardic response were increased in OTE group (-1.4 ± 0.4 and -2.6 ± 0.4 vs. OS: -0.6 ± 0.3 and -1.3 ± 0.4 bpm/mmHg, respectively), as well as BP variability. In addition, the combination of approaches induced an increase in interleukin 10, antioxidant defense (catalase and glutathione peroxidase) and nitrite levels compared with the OS group. CONCLUSION Despite similar BP, the inclusion of exercise training in antihypertensive drug treatment exacerbates the positive adaptations induced by enalapril alone on autonomic, inflammatory and oxidative stress profiles, probably affecting end-organ damage and remaining risk.
Collapse
Affiliation(s)
- Maycon Junior Ferreira
- Exercise Physiology Laboratory, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Danielle da Silva Dias
- Postgraduate Program in Physical Education, Universidade Federal do Maranhão (UFMA), São Luís, MA
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE)
| | - Gabriel do Carmo Silva
- Exercise Physiology Laboratory, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | | | | | - Maria-Cláudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Kátia De Angelis
- Exercise Physiology Laboratory, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE)
| |
Collapse
|
9
|
Buonfiglio F, Böhm EW, Pfeiffer N, Gericke A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants (Basel) 2023; 12:1465. [PMID: 37508003 PMCID: PMC10376185 DOI: 10.3390/antiox12071465] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Optic nerve disorders encompass a wide spectrum of conditions characterized by the loss of retinal ganglion cells (RGCs) and subsequent degeneration of the optic nerve. The etiology of these disorders can vary significantly, but emerging research highlights the crucial role of oxidative stress, an imbalance in the redox status characterized by an excess of reactive oxygen species (ROS), in driving cell death through apoptosis, autophagy, and inflammation. This review provides an overview of ROS-related processes underlying four extensively studied optic nerve diseases: glaucoma, Leber's hereditary optic neuropathy (LHON), anterior ischemic optic neuropathy (AION), and optic neuritis (ON). Furthermore, we present preclinical findings on antioxidants, with the objective of evaluating the potential therapeutic benefits of targeting oxidative stress in the treatment of optic neuropathies.
Collapse
Affiliation(s)
- Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (E.W.B.); (N.P.)
| |
Collapse
|
10
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
11
|
The Effect of Enalapril, Losartan, or Not Antihypertensive on the Oxidative Status in Renal Transplant Recipients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5622626. [PMID: 35308174 PMCID: PMC8930264 DOI: 10.1155/2022/5622626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022]
Abstract
The clinical and biochemical improvement observed in kidney transplant (RT) recipients is remarkable. The correct functioning of the allograft depends on various factors such as the donor's age, the alloimmune response, the ischemia-reperfusion injury, arterial hypertension, and the interstitial fibrosis of the allograft, among others. Antihypertensive drugs are necessary for arterial hypertension patients to avoid or reduce the probability of affecting graft function in RT recipients. Oxidative stress (OS) is another complex pathophysiological process with the ability to alter posttransplant kidney function. The study's objective was to determine the effect of the administration of Enalapril, Losartan, or not antihypertensive medication on the oxidative state in RT recipients at the beginning of the study and one year of follow-up. All patients included in the study found significant overexpression of the oxidative damage marker to DNA and the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In contrast, it was found that the determination of the total antioxidant capacity decreased significantly in the final determination at one year of follow-up in all the patients who ingested Enalapril and Losartan. We found dysregulation of the oxidative state characterized mainly by oxidative damage to DNA and a significant increase in antioxidant enzymes, which could suggest a compensatory effect against the imbalance of the oxidative state.
Collapse
|
12
|
Gutsol AA, Blanco P, Hale TM, Thibodeau JF, Holterman CE, Nasrallah R, Correa JWN, Afanasiev SA, Touyz RM, Kennedy CRJ, Burger D, Hébert RL, Burns KD. Comparative analysis of hypertensive nephrosclerosis in animal models of hypertension and its relevance to human pathology. Glomerulopathy. PLoS One 2022; 17:e0264136. [PMID: 35176122 PMCID: PMC8853553 DOI: 10.1371/journal.pone.0264136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/03/2022] [Indexed: 01/09/2023] Open
Abstract
Current research on hypertension utilizes more than fifty animal models that rely mainly on stable increases in systolic blood pressure. In experimental hypertension, grading or scoring of glomerulopathy in the majority of studies is based on a wide range of opinion-based histological changes that do not necessarily comply with lesional descriptors for glomerular injury that are well-established in clinical pathology. Here, we provide a critical appraisal of experimental hypertensive glomerulopathy with the same approach used to assess hypertensive glomerulopathy in humans. Four hypertensive models with varying pathogenesis were analyzed–chronic angiotensin II infused mice, mice expressing active human renin in the liver (TTRhRen), spontaneously hypertensive rats (SHR), and Goldblatt two-kidney one-clip rats (2K1C). Analysis of glomerulopathy utilized the same criteria applied in humans–hyalinosis, focal segmental glomerulosclerosis (FSGS), ischemic, hypertrophic and solidified glomeruli, or global glomerulosclerosis (GGS). Data from animal models were compared to human reference values. Kidneys in TTRhRen mice, SHR and the nonclipped kidneys in 2K1C rats had no sign of hyalinosis, FSGS or GGS. Glomerulopathy in these groups was limited to variations in mesangial and capillary compartment volumes, with mild increases in collagen deposition. Histopathology in angiotensin II infused mice corresponded to mesangioproliferative glomerulonephritis, but not hypertensive glomerulosclerosis. The number of nephrons was significantly reduced in TTRhRen mice and SHR, but did not correlate with severity of glomerulopathy. The most substantial human-like glomerulosclerotic lesions, including FSGS, ischemic obsolescent glomeruli and GGS, were found in the clipped kidneys of 2K1C rats. The comparison of affected kidneys to healthy control in animals produces lesion values that are numerically impressive but correspond to mild damage if compared to humans. Animal studies should be standardized by employing the criteria and classifications established in human pathology to make experimental and human data fully comparable for comprehensive analysis and model improvements.
Collapse
Affiliation(s)
- Alex A. Gutsol
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- * E-mail:
| | - Paula Blanco
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Taben M. Hale
- Basic Medical Sciences Faculty, University of Arizona, Tucson, AZ, United States of America
| | - Jean-Francois Thibodeau
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Chet E. Holterman
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Rania Nasrallah
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Jose W. N. Correa
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Amazonas, Manaus, Brazil
| | | | - Rhian M. Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Chris R. J. Kennedy
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dylan Burger
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Richard L. Hébert
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kevin D. Burns
- Ottawa Hospital Research Institute & Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
- Division of Nephrology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Zakaria Z, Othman ZA, Suleiman JB, Che Jalil NA, Ghazali WSW, Nna VU, Mohamed M. Hepatoprotective Effect of Bee Bread in Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) Rats: Impact on Oxidative Stress and Inflammation. Antioxidants (Basel) 2021; 10:antiox10122031. [PMID: 34943134 PMCID: PMC8698812 DOI: 10.3390/antiox10122031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a pathological accumulation of hepatic lipid closely linked with many metabolic disorders, oxidative stress and inflammation. We aimed to evaluate the hepatoprotective effect of bee bread on oxidative stress and inflammatory parameters in MAFLD rats. Twenty-eight male Sprague-Dawley rats were assigned into four groups (n = 7/group): normal control (NC), high-fat diet (HFD), bee bread (HFD + Bb, HFD + 0.5 g/kg/day bee bread) and orlistat (HFD + Or, HFD + 10 mg/kg/day orlistat) groups. After 12 weeks, the HFD group demonstrated significantly higher body weight gain, serum levels of lipids (TG, TC, LDL), liver enzymes (AST, ALT, ALP) and adiponectin, liver lipids (TG, TC) and insulin resistance (HOMA-IR). Furthermore, the HFD group showed significantly decreased antioxidant enzyme activities (GPx, GST, GR, SOD, CAT) and GSH level, and increased liver oxidative stress (TBARS, NO), translocation of Nrf2 to the nucleus, Keap1 expression and inflammation (TNF-α, NF-κβ, MCP-1) together with histopathological alterations (steatosis, hepatocyte hypertrophy, inflammatory cell infiltration, collagen deposition), which indicated the presence of non-alcoholic steatohepatitis (NASH) and fibrosis. Bee bread significantly attenuated all these changes exerted by HFD feeding. In conclusion, our results suggest that bee bread might have antioxidant, anti-inflammatory, anti-steatotic and anti-fibrotic effects that are beneficial in protecting liver progression towards NASH and fibrosis.
Collapse
Affiliation(s)
- Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (Z.A.O.); (W.S.W.G.)
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (Z.A.O.); (W.S.W.G.)
- Unit of Physiology, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
| | - Joseph Bagi Suleiman
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana P.M.B. 1007, Ebonyi State, Nigeria;
| | - Nur Asyilla Che Jalil
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Wan Syaheedah Wan Ghazali
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (Z.A.O.); (W.S.W.G.)
| | - Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar P.M.B. 1115, Nigeria;
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (Z.Z.); (Z.A.O.); (W.S.W.G.)
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence: ; Tel.: +60-97676158
| |
Collapse
|
14
|
The Role of Oxidative Stress and Therapeutic Potential of Antioxidants in Graves' Ophthalmopathy. Biomedicines 2021; 9:biomedicines9121871. [PMID: 34944687 PMCID: PMC8698567 DOI: 10.3390/biomedicines9121871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/22/2022] Open
Abstract
Graves’ ophthalmopathy (GO) is the most common extrathyroidal manifestation of Graves’ disease. It is characterized initially by an inflammatory process, followed by tissue remodeling and fibrosis, leading to proptosis, exposure keratopathy, ocular motility limitation, and compressive optic neuropathy. The pathogenic mechanism is complex and multifactorial. Accumulating evidence suggests the involvement of oxidative stress in the pathogenesis of GO. Cigarette smoking, a major risk factor for GO, has been shown to induce reactive oxygen species (ROS) generation and oxidative damage in GO orbital fibroblasts. In addition, an elevation in ROS and antioxidant enzymes is observed in tears, blood, and urine, as well as orbital fibroadipose tissues and fibroblasts from GO patients. In vitro and in vivo studies have examined the efficacy of various antioxidant supplements for GO. These findings suggest a therapeutic role of antioxidants in GO patients. This review summarizes the current understanding of oxidative stress in the pathogenesis and potential antioxidants for the treatment of GO.
Collapse
|
15
|
Hexahydrocurcumin ameliorates hypertensive and vascular remodeling in L-NAME-induced rats. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166317. [PMID: 34883248 DOI: 10.1016/j.bbadis.2021.166317] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Hexahydrocurcumin (HHC), a major metabolite of curcumin, possesses several biological activities such as antioxidant, anti-inflammation, and cardioprotective properties. This study aimed to investigate the effect of HHC on high blood pressure, vascular dysfunction, and remodeling induced by N-nitro L-arginine methyl ester (L-NAME) in rats. Male Wistar rats (200-250 g) received L-NAME (40 mg/kg) via drinking water for seven weeks. HHC at doses of 20, 40 or 80 mg/kg or enalapril 10 mg/kg was orally administered for the last three weeks. Blood pressure was measured weekly. Rats induced with L-NAME showed the development of hypertension, vascular dysfunction, and remodeling as demonstrated by an increase in wall thickness, cross-sectional area, and collagen deposition in the aorta. The overexpression of nuclear factor kappa B (NF-кB), vascular cell adhesion molecule 1 (VCAM1), intercellular adhesion molecule 1 (ICAM1), tumor necrosis factor-alpha (TNF-α), phosphorylated-extracellular-regulated kinase 1/2 (p-ERK1/2), phosphorylated-c-Jun N-terminal kinases (p-JNK), phosphorylated-mitogen activated protein kinase p38 (p-p38), transforming growth factor-beta 1 (TGF-β1), matrix metalloproteinase-9 (MMP-9) and collagen type 1 was observed in L-NAME-induced hypertensive rats. Increased oxidative stress markers, decreased plasma nitric oxide (NO) levels and the down-regulation of endothelial nitric oxide synthase (eNOS) expression in aortic tissues were also found in L-NAME-induced rats. Moreover, L-NAME-induced rats showed enhanced synthetic protein expression in aortic tissues. These alterations were suppressed in hypertensive rats treated with HHC or enalapril. The present study shows that HHC exhibited antihypertensive effects by improving vascular function and ameliorated the development of vascular remodeling. The responsible mechanism may involve antioxidant and anti-inflammation potential.
Collapse
|
16
|
Protective and Therapeutic Effects of Orlistat on Metabolic Syndrome and Oxidative Stress in High-Fat Diet-Induced Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD) in Rats: Role on Nrf2 Activation. Vet Sci 2021; 8:vetsci8110274. [PMID: 34822647 PMCID: PMC8622931 DOI: 10.3390/vetsci8110274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an excessive buildup of liver lipids closely associated with various kinds of undesirable metabolic effects and oxidative stress. We aimed to investigate the protective and therapeutic effects of orlistat on metabolic syndrome and oxidative stress parameters in high-fat diet (HFD) induced-MAFLD rats. Twenty-four male Sprague-Dawley rats were randomly divided into four groups (n = 6/group), i.e., Normal control (N), HFD, HFD + orlistat (HFD + O) (10 mg/kg/day administered concomitantly for 12 weeks as a protective model), and obese+orlistat (OB + O) (10 mg/kg/day administered 6 weeks after induction of obesity as a therapeutic model) groups. After 12 weeks, the HFD group had significantly increased Lee obesity index, serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, triglyceride, low-density lipoprotein levels, liver total cholesterol and triglyceride levels, insulin resistance and non-alcoholic steatohepatitis (NASH) together with decreased serum high-density lipoprotein level. Additionally, the HFD group also showed increased Nrf2 translocation to the nucleus with high Keap1 expression and increased liver oxidative stress parameters. Orlistat significantly improved all these alterations in HFD rats. We demonstrated that orlistat might have protective and therapeutic effects against HFD-induced MAFLD rats by its activation on Nrf2 signaling pathway, which subsequently improved metabolic syndrome and oxidative stress parameters.
Collapse
|
17
|
Aires RS, Francisco da Silva Filho L, Gomes Rebello Ferreira LF, Hernandes MZ, Machado Marcondes MF, Carmona AK, Oliveira da Paixão AD, Vieira LD. NPCdc, a synthetic natriuretic peptide, is a substrate to neprilysin and enhances blood pressure-lowering induced by enalapril in 5/6 nephrectomized rats. Toxicon 2021; 203:30-39. [PMID: 34571099 DOI: 10.1016/j.toxicon.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
NPCdc is a natriuretic peptide synthesized from the amino acid sequence of the Crotalus durissus cascavella snake venom peptide, NP2Casca. NPCdc presents hypotensive and antioxidants effects. This study aimed to investigate in vivo whether angiotensin I-converting enzyme (ACE) inhibition would influence the impact of NPCdc in arterial pressure of rats submitted to 5/6 nephrectomy (Nx). Adult male Wistar rats following a 5/6 Nx were treated with enalapril (NxE group, 10 mg/kg/day, n = 9) or vehicle (Nx group, n = 8) for two weeks. On the 15th day after Nx, rats were anaesthetized and submitted to mean arterial pressure (MAP) determination before and after receiving two intravenous injections of saline (vehicle, n = 9) or NPCdc (0.3 μg/kg dissolved in saline, n = 18) separated by a 20-min interval. The kidneys were submitted to oxidative stress analysis. The basal MAP of the NxE group was nearly 20% lower (P < 0.05) than non-treated rats. NPCdc administration decreased the MAP in both groups; however, in the NxE group, the effects were observed only in the second injection. The peptide also decreased the NADPH oxidase activity in the renal cortex. Additionally, the hydrolysis of NPCdc by recombinant neprilysin (NEP) was monitored by mass spectrometry. NPCdc was cleaved by NEP at different peptides with an inhibition constant (Ki) of 1.5 μM, determined by a competitive assay using the NEP fluorescence resonance energy transfer (FRET) peptide substrate Abz-(d)Arg-Gly-Leu-EDDnp. Docking experiments confirmed the high affinity of NPCdc toward NEP. These findings provide new insights into the antihypertensive and antioxidant mechanism of action of NPCdc. Altogether, the results presented here suggest that NPCdc must be further studied as a potential therapy for cardiorenal syndromes.
Collapse
Affiliation(s)
- Regina Souza Aires
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | | | | - Ana Durce Oliveira da Paixão
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Leucio Duarte Vieira
- Departamento de Fisiologia e Farmacologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
18
|
Suleiman JB, Abu Bakar AB, Noor MM, Nna VU, Othman ZA, Zakaria Z, Eleazu CO, Mohamed M. Bee bread mitigates downregulation of steroidogenic genes, decreased spermatogenesis, and epididymal oxidative stress in male rats fed with high-fat diet. Am J Physiol Endocrinol Metab 2021; 321:E351-E366. [PMID: 34229480 DOI: 10.1152/ajpendo.00093.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The pituitary-gonadal axis plays an important role in steroidogenesis and spermatogenesis, and by extension, fertility. The aim of this study was to investigate the protective role of bee bread, a natural bee product, against obesity-induced decreases in steroidogenesis and spermatogenesis. Thirty-two adult male Sprague-Dawley rats weighing between 200 and 300 g were divided into four groups (n = 8/group), namely: normal control (NC), high-fat diet (HFD), HFD plus bee bread administered concurrently for 12 wk (HFD + B), HFD plus orlistat administered concurrently for 12 wk (HFD + O) groups. Bee bread (0.5 g/kg) or orlistat (10 mg/kg/day) was suspended in distilled water and given by oral gavage daily for 12 wk. Levels of follicle-stimulating hormone, luteinizing hormone, testosterone, and adiponectin, as well as sperm count, motility, viability, normal morphology, and epididymal antioxidants decreased, whereas levels of leptin, malondialdehyde, and sperm nDNA fragmentation increased significantly in the HFD group relative to the NC group. There were significant decreases in the testicular mRNA transcript levels of androgen receptor, luteinizing hormone receptor, steroidogenic acute regulatory protein, cytochrome P450 enzyme, 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD in the testes of the HFD group. Furthermore, mount, intromission and ejaculatory latencies increased, and penile cGMP level decreased significantly in the HFD group. Supplementation with bee bread significantly reduced leptin level and increased adiponectin level, enhanced sperm parameters and reduced sperm nDNA fragmentation, upregulated the levels of steroidogenic genes and proteins in HFD-induced obese male rats. Bee bread improved steroidogenesis and spermatogenesis by upregulating steroidogenic genes. Therefore, bee bread may be considered as a potential supplementation to protect against infertility in overweight men or men with obesity.NEW & NOTEWORTHY The high-fat diet utilized in the present study induced obesity in the male rats. Bee bread supplementation mitigated impaired steroidogenesis, spermatogenesis, mating behavior, and fertility potential by counteracting the downregulation of steroidogenic genes, thus increasing testosterone levels and suppressing epididymal oxidative stress. These benefits may be due to the abundance of phenolic and flavonoid compounds in bee bread.
Collapse
Affiliation(s)
- Joseph Bagi Suleiman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Science Laboratory Technology, Akanu Ibiam Federal Polytechnic, Unwana, Afikpo, Nigeria
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mahanem Mat Noor
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Unit of Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Chinedum Ogbonnaya Eleazu
- Department of Chemistry, Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Nigeria
| | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
19
|
Nna VU, Abu Bakar AB, Zakaria Z, Othman ZA, Jalil NAC, Mohamed M. Malaysian Propolis and Metformin Synergistically Mitigate Kidney Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Molecules 2021; 26:molecules26113441. [PMID: 34198937 PMCID: PMC8201379 DOI: 10.3390/molecules26113441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic nephropathy is reported to occur as a result of the interactions between several pathophysiological disturbances, as well as renal oxidative stress and inflammation. We examined the effect of Malaysian propolis (MP), which has anti-hyperglycemic, antioxidant and anti-inflammatory properties, on diabetes-induced nephropathy. Diabetic rats were either treated with distilled water (diabetic control (DC) group), MP (300 mg/kg b.w./day), metformin (300 mg/kg b.w./day) or MP + metformin for four weeks. We found significant increases in serum creatinine, urea and uric acid levels, decreases in serum sodium and chloride levels, and increase in kidney lactate dehydrogenase activity in DC group. Furthermore, malondialdehyde level increased significantly, while kidney antioxidant enzymes activities, glutathione level and total antioxidant capacity decreased significantly in DC group. Similarly, kidney immunoexpression of nuclear factor kappa B, tumor necrosis factor-α, interleukin (IL)-1β and caspase-3 increased significantly, while IL-10 immunoexpression decreased significantly in DC group relative to normal control group. Histopathological observations for DC group corroborated the biochemical data. Intervention with MP, metformin or both significantly mitigated these effects and improved renal function, with the best outcome following the combined therapy. MP attenuates diabetic nephropathy and exhibits combined beneficial effect with metformin.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria;
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.B.A.B.); (Z.Z.); (Z.A.O.)
| | - Zaida Zakaria
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.B.A.B.); (Z.Z.); (Z.A.O.)
| | - Zaidatul Akmal Othman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (A.B.A.B.); (Z.Z.); (Z.A.O.)
- Unit of Physiology, Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia
| | - Nur Asyilla Che Jalil
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Mahaneem Mohamed
- Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115 Calabar, Cross River State, Nigeria;
- Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Correspondence:
| |
Collapse
|
20
|
Rodrigo R, González-Montero J, Sotomayor CG. Novel Combined Antioxidant Strategy against Hypertension, Acute Myocardial Infarction and Postoperative Atrial Fibrillation. Biomedicines 2021; 9:620. [PMID: 34070760 PMCID: PMC8228412 DOI: 10.3390/biomedicines9060620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/28/2022] Open
Abstract
Reactive oxygen species (ROS) play a physiological role in the modulation of several functions of the vascular wall; however, increased ROS have detrimental effects. Hence, oxidative stress has pathophysiological impacts on the control of the vascular tone and cardiac functions. Recent experimental studies reported the involvement of increased ROS in the mechanism of hypertension, as this disorder associates with increased production of pro-oxidants and decreased bioavailability of antioxidants. In addition, increased ROS exposure is found in ischemia-reperfusion, occurring in acute myocardial infarction and cardiac surgery with extracorporeal circulation, among other settings. Although these effects cause major heart damage, at present, there is no available treatment. Therefore, it should be expected that antioxidants counteract the oxidative processes, thereby being suitable against cardiovascular disease. Nevertheless, although numerous experimental studies agree with this notion, interventional trials have provided mixed results. A better knowledge of ROS modulation and their specific interaction with the molecular targets should contribute to the development of novel multitarget antioxidant effective therapeutic strategies. The complex multifactorial nature of hypertension, acute myocardial infarction, and postoperative atrial fibrillation needs a multitarget antioxidant strategy, which may give rise to additive or synergic protective effects to achieve optimal cardioprotection.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, CP 8380453 Santiago, Chile;
| | - Jaime González-Montero
- Basic and Clinical Oncology Department, Faculty of Medicine, University of Chile, CP 8380453 Santiago, Chile;
| | - Camilo G. Sotomayor
- Clinical Hospital University of Chile, University of Chile, CP 8380453 Santiago, Chile
| |
Collapse
|
21
|
Asaad GF, Hassan A, Mostafa RE. Anti-oxidant impact of Lisinopril and Enalapril against acute kidney injury induced by doxorubicin in male Wistar rats: involvement of kidney injury molecule-1. Heliyon 2021; 7:e05985. [PMID: 33506137 PMCID: PMC7814155 DOI: 10.1016/j.heliyon.2021.e05985] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) is a standard anticancer agent exerting devastating effects as nephrotoxicity, hepatotoxicity and cardiotoxicity. The purpose of this study was to increase the clinical use of DOX through decreasing its detrimental effects via combination with ACE inhibitors to ameliorate the induced acute kidney injury (AKI). AKI was induced by a single injection of DOX (7.5 mg/kg; i.p.) as Group 1; control (vehicle), Group 2; DOX (7.5 mg/kg; i.p.) single dose, Group 3 and 4; Lisinopril (Lis, 20 mg/kg) and Enalapril (Enal, 40 mg/kg) orally administration for 15 consecutive days after DOX injection, respectively. Serum samples were used to measure creatinine and BUN, tissue samples were extracted to determine myeloperoxidase (MPO), malondialdehyde (MDA), total antioxidant capacity (TAC) and kidney injury molecule (KIM-1) using ELISA technique. Heme oxygenase (HO-1) RNA expression was quantified in tissue using real time polymerase chain reaction (PCR). Parts of the kidney tissue were kept in formalin for immunohistochemical demonstration of Cleaved Caspase-3 and NF-κβ immune staining and the other part was used for pathological examination. Oral treatment with Lis (20 mg/kg) and Enal (40 mg/kg) for 15 consecutive days reversed DOX effects as they reduced the serum creatinine and BUN, kidney levels of MPO and MDA, whereas the drugs increased tissue TAC. The administration of Lis and Enal with DOX also reduced KIM-1and HO-1 RNA expression. A significant decrease in cleaved caspase-3 and NF-κβ immunostainings in conjunction with pronounced amelioration in pathologies in the rat kidney were observed. We concluded that DOX adverse effects can be controlled by Lis and Enal.
Collapse
Affiliation(s)
- Gihan F Asaad
- Pharmacology Department, Medical Research Division, National Research Centre (ID: 60014618), 33 EL Bohouth Street, P.O. 12622, Dokki, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rasha E Mostafa
- Pharmacology Department, Medical Research Division, National Research Centre (ID: 60014618), 33 EL Bohouth Street, P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
22
|
The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2082145. [PMID: 32774665 PMCID: PMC7396016 DOI: 10.1155/2020/2082145] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
Oxidative stress (OS) has the ability to damage different molecules and cellular structures, altering the correct function of organs and systems. OS accumulates in the body by endogenous and exogenous mechanisms. Increasing evidence points to the involvement of OS in the physiopathology of various chronic diseases that require prolonged periods of pharmacological treatment. Long-term treatments may contribute to changes in systemic OS. In this review, we discuss the involvement of OS in the pathological mechanisms of some chronic diseases, the pro- or antioxidant effects of their pharmacological treatments, and possible adjuvant antioxidant alternatives. Diseases such as high blood pressure, arteriosclerosis, and diabetes mellitus contribute to the increased risk of cardiovascular disease. Antihypertensive, lipid-lowering, and hypoglycemic treatments help reduce the risk with an additional antioxidant benefit. Treatment with methotrexate in autoimmune systemic inflammatory diseases, such as rheumatoid arthritis, has a dual role in stimulating the production of OS and producing mitochondrial dysfunction. However, it can also help indirectly decrease the systemic OS induced by inflammation. Medicaments used to treat neurodegenerative diseases tend to decrease the mechanisms related to the production of reactive oxygen species (ROS) and balance OS. On the other hand, immunosuppressive treatments used in cancer or human immunodeficiency virus infection increase the production of ROS, causing significant oxidative damage in different organs and systems without widely documented exogenous antioxidant administration alternatives.
Collapse
|
23
|
Suleiman JB, Nna VU, Othman ZA, Zakaria Z, Bakar ABA, Mohamed M. Orlistat attenuates obesity‐induced decline in steroidogenesis and spermatogenesis by up‐regulating steroidogenic genes. Andrology 2020; 8:1471-1485. [DOI: 10.1111/andr.12824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/26/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Joseph Bagi Suleiman
- Department of Physiology School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
- Department of Physiology
- Faculty of Basic Medical Sciences
- College of Medical Sciences Akanu Ibiam Federal Polytechnic Unwana Nigeria
| | - Victor Udo Nna
- Department of Physiology Faculty of Basic Sciences College of Medical Sciences University of Calabar Calabar Nigeria
| | - Zaidatul Akmal Othman
- Department of Physiology School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
- Unit of Physiology Faculty of Medicine Universiti Sultan Zainal Abidin Kuala Terengganu Terengganu Malaysia
| | - Zaida Zakaria
- Department of Physiology School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Mahaneem Mohamed
- Department of Physiology School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
- Unit of Integrative Medicine School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
| |
Collapse
|
24
|
Banerjee A, Singh S, Prasad SK, Kumar S, Banerjee O, Seal T, Mukherjee S, Maji BK. Protective efficacy of Tinospora sinensis against streptozotocin induced pancreatic islet cell injuries of diabetic rats and its correlation to its phytochemical profiles. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112356. [PMID: 31669668 DOI: 10.1016/j.jep.2019.112356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/17/2019] [Accepted: 10/24/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tinospora sinensis Lour. (Merr.) belongs to the family Menispermaceae and its stem extract have been used traditionally in broad aspects of therapeutic remedies including debility, dyspepsia, fever, jaundice, ulcer, bronchitis, urinary disease, skin disease, liver disease and diabetes. AIM OF THE STUDY The aim of the study was to evaluate the protective effects of methanol extract of stem of Tinospora sinensis (METS) on streptozotocin induced pancreatic islet cell injuries of diabetic rats and its correlation to its phytochemical profiles. MATERIALS AND METHODS A high-performance liquid chromatography technique (HPLC) was used to identify and quantify the major phytochemicals present in the METS. Diabetic rats were administered with METS at a dose of (100, 200 and 400 mg/kg respectively orally) and standard drug Metformin (300 mg/kg) was given orally to group serving positive control. Effect of the METS on glucose homeostasis, oxidative stress, antioxidant status, histopathology of pancreas and also on intracellular reactive oxygen species (ROS), mitochondrial membrane potential, apoptosis, cell cycle of pancreatic islet cells were studied in diabetic rats. RESULTS The major phytochemicals identified and quantified by HPLC in the extract were berberine, caffeic acid, myricetin and ferulic acid. This result showed that methanol extract exhibited good antioxidant effect. The methanol extract of the plant prevented the diabetogenic effect of STZ and significantly lowered the fasting blood glucose level, glycated haemoglobin and increased insulin and C-peptide level in treated rats. METS reduced apoptosis of STZ treated islet cells by significantly decreasing pro-inflammatory cytokines (TNFα, IL6), intracellular ROS generation, lipid peroxidation, nitric oxide (NO) production and increasing mitochondrial membrane potential and sub-G0 peak area, enzymatic and nonenzymatic antioxidants. CONCLUSION The results revealed that the methanol extract of the stem of the plant possesses protective effects against diabetes and associated complications.
Collapse
Affiliation(s)
- Anindita Banerjee
- Department of Physiology, Serampore College, Serampore, Hooghly, 712201, West Bengal, India
| | - Siddhartha Singh
- Department of Physiology, Serampore College, Serampore, Hooghly, 712201, West Bengal, India
| | - Shilpi Kumari Prasad
- Department of Physiology, Serampore College, Serampore, Hooghly, 712201, West Bengal, India
| | - Sourav Kumar
- Department of Instrumentation Science, Jadavpur University, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Oly Banerjee
- Department of Physiology, Serampore College, Serampore, Hooghly, 712201, West Bengal, India
| | - Tapan Seal
- Plant Chemistry Department, Botanical Survey of India, Howrah, Shibpur, 711103, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology, Serampore College, Serampore, Hooghly, 712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology, Serampore College, Serampore, Hooghly, 712201, West Bengal, India.
| |
Collapse
|
25
|
Deniz GY, Laloglu E, Altun S, Yiğit N, Gezer A. Antioxidant and anti-apoptotic effects of vitexilactone on cisplatin-induced nephrotoxicity in rats. Biotech Histochem 2020; 95:381-388. [PMID: 31961202 DOI: 10.1080/10520295.2019.1703220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cisplatin (CP) is an antineoplastic drug; however, owing to its nephrotoxicity, its clinical use is limited. We investigated whether vitexilactone (vitex) is a safe and effective treatment for CP induced kidney injury. We allocated Sprague-Dawley rats into six groups: control group, low dose-high dose vitex groups (40 and 80 mg/kg vitex for 6 days before administration of CP), CP group (single 6 mg/kg dose on day 6) and CP + low dose vitex-CP + high dose vitex group (40 and 80 mg/kg vitex for 6 days, and a single 6 mg/kg dose of CP on day 6. Rats were euthanized 5 days after CP treatment. After exposure to CP and/or vitex, total oxidative stress and total antioxidant status were assessed. The histology of the kidney was examined using hematoxylin and eosin, and periodic acid-Schiff. We used immunohistochemical and fluorescence staining to detect expression of caspase-3. We also measured blood urea nitrogen, uric acid and creatinine levels. Nephroprotective effects of vitex were associated with decreased serum toxicity markers and increased antioxidant activity. Vitex also reduced the expression of the apoptosis marker, caspase-3. Treatment with CP increased blood urea nitrogen, uric acid, creatinine levels and total antioxidant status, and decreased total antioxidant status compared to the control group. Use of vitex for protection from CP induced nephrotoxicity appears to be a safe and efficacious alternative for treatment of kidney injury.
Collapse
Affiliation(s)
- Gulsah Yildiz Deniz
- Vocational School of Healh Services, Ataturk University, 25240 Erzurum, Turkey
| | - Esra Laloglu
- Faculty of Medicine, Biochemistry Department, Ataturk University, 25240 Erzurum, Turkey
| | - Serdar Altun
- Faculty of Veterinary Medicine, Pathology Department, Ataturk University, 25240 Erzurum, Turkey
| | - Nimet Yiğit
- Vocational School of Healh Services, Ataturk University, 25240 Erzurum, Turkey
| | - Arzu Gezer
- Vocational School of Healh Services, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
26
|
Nkeh-Chungag B, Tata C, Sewani-Rusike C, Oyedeji O, Gwebu E. Renoprotective effects of the hydroethanolic extract of Senecio serratuloides against N w-nitro L-arginine methyl ester-induced oxidative stress in wistar rats. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_375_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Michałek M, Tabiś A, Cepiel A, Noszczyk-Nowak A. Antioxidative enzyme activity and total antioxidant capacity in serum of dogs with degenerative mitral valve disease. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2020; 84:67-73. [PMID: 31949330 PMCID: PMC6923815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/12/2019] [Indexed: 06/10/2023]
Abstract
This study was designed to evaluate the antioxidative status of serum by measuring its total antioxidant capacity, as well as the antioxidant enzyme activity (superoxide dismutase, catalase, and glutathione reductase), in dogs with various stages of degenerative mitral valve disease (DMVD) compared to healthy controls. In total, 71 client-owned dogs in different stages of DMVD, which included healthy controls, took part in the study. Following an anamnesis, clinical examination, standard transthoracic echocardiograpic examination, chest X-ray, complete blood (cell) count, and serum biochemistry, dogs were divided into 2 study groups. Blood was drawn from each dog once at the time of presentation and selected antioxidant parameters were measured using commercially available assay kits. The activity of superoxide dismutase gradually decreased in the more advanced stages of DMVD, while the activity of catalase was significantly higher in the group of dogs with asymptomatic DMVD compared to healthy controls and dogs with symptomatic DMVD. No significant changes were noted in total antioxidant capacity and the activity of glutathione reductase. Results suggested that DMVD has a significant impact on the activity of superoxide dismutase and catalase in the serum of the tested dogs. Knowledge of changes in the activity of antioxidative enzymes may warrant further studies, possibly to evaluate the potential role of compounds with antioxidative properties in the clinical outcome of dogs with DMVD.
Collapse
Affiliation(s)
- Marcin Michałek
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats (Michałek, Cepiel, Noszczyk-Nowak) and Department of Food Hygiene and Consumer Health (Tabiś), Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Aleksandra Tabiś
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats (Michałek, Cepiel, Noszczyk-Nowak) and Department of Food Hygiene and Consumer Health (Tabiś), Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Alicja Cepiel
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats (Michałek, Cepiel, Noszczyk-Nowak) and Department of Food Hygiene and Consumer Health (Tabiś), Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| | - Agnieszka Noszczyk-Nowak
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats (Michałek, Cepiel, Noszczyk-Nowak) and Department of Food Hygiene and Consumer Health (Tabiś), Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
28
|
Chronic NOS Inhibition Affects Oxidative State and Antioxidant Response Differently in the Kidneys of Young Normotensive and Hypertensive Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5349398. [PMID: 31885800 PMCID: PMC6893281 DOI: 10.1155/2019/5349398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 01/24/2023]
Abstract
Deficiency of nitric oxide (NO) and oxidative stress can be a cause, a consequence, or, more often, a potentiating factor for hypertension and hypertensive renal disease. Both NO and superoxide anions are radical molecules that interact with each other, leading to oxidative damage of such organs as the kidney. In the present study, we investigated the effect of chronic-specific (neuronal NOS inhibition) and nonspecific NOS inhibition on the oxidative state and antioxidant response and associated oxidative damage of the kidney of young normotensive and hypertensive rats. Young male normotensive Wistar rats (WRs, age 4 weeks) and spontaneously hypertensive rats (SHRs, age 4 weeks) were divided into three groups for each strain by the type of administered compounds. The first group was treated with 7-nitroindazole (WR+7-NI; SHR+7-NI), the second group was treated with N(G)-nitro-L-arginine-methyl ester (WR+L-NAME; SHR+L-NAME), and the control group was treated with pure drinking water (WR; SHR) continuously for up to 6 weeks. Systolic blood pressure increased in WR+L-NAME after the first week of administration and increased slightly in SHR+L-NAME in the third week of treatment. 7-NI had no effect on blood pressure. While total NOS activity was not affected by chronic NOS inhibition in any of the WR groups, it was attenuated in SHR+7-NI and SHR+L-NAME. Nitration of proteins (3-nitrotyrosine expression) was significantly reduced in WR+7NI but not in WR+L-NAME and increased in SHR+7-NI and SHR+L-NAME. Immunoblotting analysis of SOD isoforms showed decreased SOD2 and SOD3 expressions in both WR+7-NI and WR+L-NAME followed by increased SOD activity in WR+L-NAME. Conversely, increased expression of SOD2 and SOD3 was observed in SHR+L-NAME and SHR+7-NI, respectively. SOD1 expression and total activity of SOD did not change in the SHR groups. Our results show that the antioxidant defense system plays an important role in maintaining the oxidative state during NO deficiency. While the functioning antioxidant system seeks to balance the oxidation state in the renal cortex of normotensive WRs, the impaired antioxidant activity leads to the development of oxidative damage of proteins in the kidney induced by peroxynitrite in SHRs.
Collapse
|
29
|
Wu T, Kasper S, Wong RM, Bracken B. Identification of Differential Patterns of Oxidative Biomarkers in Prostate Cancer Progression. Clin Genitourin Cancer 2019; 18:e174-e179. [PMID: 31899150 DOI: 10.1016/j.clgc.2019.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/17/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Oxidative stress has been found to be associated with the progression of prostate cancer (PCa); however, human studies which identify differential roles of each oxidation pathway in PCa progression are lacking. We aimed to identify which oxidative stress markers, specifically lipid and global oxidation and glycation, are associated with PCa progression. PATIENTS AND METHODS We recruited 3 groups of patients from a urologic clinic at the University of Cincinnati Medical Center: men with PCa who had undergone prostatectomy, men with PCa under watchful waiting, and men with benign prostatic hyperplasia (BPH). We used the most commonly used lipid oxidation marker, F2-isoprostanes; global oxidation markers, fluorescent oxidation products (FlOPs); and the commonly used marker for advanced glycation end products, carboxymethyllysine. These biomarkers were measured in plasma samples at baseline entry. Plasma prostate-specific antigen (PSA) was measured at enrollment and follow-up visits. RESULTS Compared with men with BPH, men with PCa who had undergone prostatectomy had 26% (P = .01) higher levels of F2-isoprostanes and 20% (P = .08) higher levels of carboxymethyllysine. All the oxidation markers were similar when comparing men under watchful waiting with men with BPH. When examining the associations between baseline oxidation markers and follow-up PSAs, we found that different oxidation markers had differential patterns associated with PSA elevation. F2-isoprostanes were positively associated with PSA elevation among men with PCa; FlOP_320 was positively associated with PSA elevation among both men with PCa and men with BPH, whereas among men with PCa under watchful waiting, FlOP_360 and FlOP_400 had opposite trends of associations with PSA elevation. CONCLUSIONS Our study suggested that high levels of lipid oxidation were associated with PCa progression, whereas different global oxidation markers had different patterns associated with PCa progression. Large-scale clinical studies are needed to confirm our associations. Our study provides a comprehensive view of the relationship between biomarkers and PCa progression.
Collapse
Affiliation(s)
- Tianying Wu
- Division of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, CA; Moores Cancer Center, University of California at San Diego, San Diego, CA.
| | - Susan Kasper
- Department of Environmental Health, University of Cincinnati Medical School, Cincinnati, OH
| | - Ronnie Meiyi Wong
- Division of Epidemiology and Biostatistics, School of Public Health, San Diego State University, San Diego, CA
| | - Bruce Bracken
- Department of Surgery, University of Cincinnati Medical School, Cincinnati, OH
| |
Collapse
|
30
|
Ahmed OM, Ali TM, Abdel Gaid MA, Elberry AA. Effects of enalapril and paricalcitol treatment on diabetic nephropathy and renal expressions of TNF-α, p53, caspase-3 and Bcl-2 in STZ-induced diabetic rats. PLoS One 2019; 14:e0214349. [PMID: 31527864 PMCID: PMC6748411 DOI: 10.1371/journal.pone.0214349] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023] Open
Abstract
This study aimed to assess the renopreventive effect of enalapril and/or paricalcitol on streptozotocin (STZ) diabetes-induced nephropathy and to elucidate their mechanisms of action through investigation of the effects on renal oxidative stress, antioxidant defense system and expressions of TNF-α, p53, caspase-3, and Bcl-2. Diabetes mellitus was induced in fasting male Wistar rats by single intraperitoneal injection of STZ (45 mg /kg b.w.) dissolved in citrate buffer (pH 4.5). Ten days after STZ injection, the diabetic rats were treated with enalapril (25 mg/l of drinking water) and/or paricalcitol (8 μg/kg b.w. per os) dissolved in 5% DMSO daily for 4 weeks. The obtained data revealed that the treatment of diabetic Wistar rats with enalapril and/or paricalcitol led to significant decreases in the elevated serum urea, uric acid, creatinine, sodium and potassium levels; thereby reflecting the improvement of the impaired kidney function. The deteriorated kidney lipid peroxidation, GSH content and GST and catalase activities in diabetic rats were significantly ameliorated as a result of treatment with enalapril and/or paricalcitol. The elevated fasting and post-prandial serum glucose levels and the lowered serum insulin and C-peptide levels were also improved. The treatment with enalapril and paricalcitol in combination was the most potent in decreasing the elevated serum glucose levels. Moreover, the treatment of diabetic rats successfully prevented the diabetes-induced histopathological deleterious changes of kidney and islets of Langerhans of pancreas. In association, the immunohistochemically detected pro-inflammatory cytokine, TNF-α, and apoptotic mediators, p53 and caspase-3, were remarkably decreased in kidney of diabetic rats as a result of treatment while the expression of anti-apoptotic protein Bcl-2 was increased. Based on these findings, it can be concluded that enalapril and paricalcitol alone or in combination can prevent STZ diabetes-induced nephropathy through amelioration of the glycemic state and antioxidant defense system together with the suppression of oxidative stress, inflammation and apoptosis. However, the treatment of diabetic rats with enalapril and paricalcitol in combination has no further significant improvement effects on renal function and damage when compared with enalapril or paclitaxel treated diabetic groups.
Collapse
Affiliation(s)
- Osama M. Ahmed
- Experimental Obesity and Diabetes Research Lab, Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M. Ali
- Department of Clinical Laboratories, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A. Abdel Gaid
- Experimental Obesity and Diabetes Research Lab, Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed A. Elberry
- Clinical Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-suef, Egypt
| |
Collapse
|
31
|
Arafa MH, Amin DM, Samir GM, Atteia HH. Protective effects of tribulus terrestris extract and angiotensin blockers on testis steroidogenesis in copper overloaded rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:113-122. [PMID: 30999179 DOI: 10.1016/j.ecoenv.2019.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
The rational of the current study was to assess whether Tribulus terrestris extract (TTE) could alleviate long-term copper (Cu) overload-induced testicular dysfunction compared to enalapril and losartan. Rats were administered either vehicle (control group, n = 10) or copper sulfate pentahydrate (CuSO4·5H2O, 200 mg/kg, p.o) for 90 days (n = 40). Cu-treated rats were randomized into four equal groups. One group was left untreated (Cu group) while the remaining three groups were daily co-treated with one of the following treatments along with CuSO4: TTE (10 mg/kg, p.o); enalapril (30 mg/kg, p.o); losartan (10 mg/kg, p.o). Excess Cu intake resulted in Cu overload coupled with a significant elevation in systolic blood pressure and serum angiotensin II levels along with a reduction in serum nitric oxide level. All concomitant treatments led to an alleviation of such deleterious effects. However, only losartan failed to ameliorate angiotensin II elevation. Additionally, all treatments protected the testes against Cu-overload-elicited zinc depletion and oxidative stress. Regarding reproductive function, the relative weights of testes, serum levels of testosterone and luteinizing hormone; the expression of steroidogenic genes; the protein levels of angiotensin II type 1 receptor and angiotensin converting enzyme 1, in addition to its activity, they were significantly reduced. Amongst all treatments, only TTE and E were able to revert these reproductive changes. In conclusion TTE and E were able to protect against Cu overload-induced impairment of testicular steroidogenesis. Thus, they might be considered as prophylactic drugs of choice against hypertension and testicular dysfunction to ameliorate Cu overload risk.
Collapse
Affiliation(s)
- Manar Hamed Arafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Gov., Egypt
| | - Dalia Mohamed Amin
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Gov., Egypt
| | - Ghada Mohammed Samir
- Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Gov., Egypt
| | - Hebatallah Husseini Atteia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519, Zagazig, Sharkia Gov., Egypt.
| |
Collapse
|
32
|
Poor Glycaemic Control Is Associated with Increased Lipid Peroxidation and Glutathione Peroxidase Activity in Type 2 Diabetes Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9471697. [PMID: 31467640 PMCID: PMC6701413 DOI: 10.1155/2019/9471697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
Glycaemic control is the main focus of managing diabetes and its complications. Hyperglycaemia induces oxidative stress favouring cellular damage and subsequent diabetic complications. The present study was conducted to compare the plasma total antioxidant capacity (TAC) and individual antioxidant marker antioxidant status of type 2 diabetics (T2D) with good ((+) GC) and poor ((-) GC) glycaemic control with prediabetic (PDM) and normoglycaemic (NG) individuals. T2D (n = 147), PDM (n = 47), and NGC (n = 106) were recruited as subjects. T2D and PDM had lower plasma TAG than NG subjects. T2D and PDM had significantly higher GPx activity and plasma MDA concentrations than NG. PDM showed the highest SOD activity. T2D (-) GC showed significantly elevated GPx activity and higher MDA level and significantly lower SOD activity among all study groups. Lower plasma TAC and higher plasma MDA indicate the presence of oxidative stress in T2D and PDM. Elevated GPx activity in T2D, PDM, and particularly in T2D (-) GC suggests a compensatory response to counteract excess lipid peroxidation in the hyperglycaemic state. Decline in SOD activity advocates the presence of glycation and excess lipid peroxidation in T2D.
Collapse
|
33
|
Nna VU, Bakar ABA, Ahmad A, Mohamed M. Down-regulation of steroidogenesis-related genes and its accompanying fertility decline in streptozotocin-induced diabetic male rats: ameliorative effect of metformin. Andrology 2018; 7:110-123. [PMID: 30515996 DOI: 10.1111/andr.12567] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/19/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Metformin has long been used for glycemic control in diabetic state. Recently, other benefits of metformin beyond blood glucose regulation have emerged. OBJECTIVES To investigate the effect of metformin on the expression of testicular steroidogenesis-related genes, spermatogenesis, and fertility of male diabetic rats. MATERIALS AND METHODS Eighteen adult male Sprague Dawley rats were divided into three groups, namely normal control (NC), diabetic control (DC), and metformin-treated (300 mg/kg body weight/day) diabetic rats (D+Met). Diabetes was induced using a single intraperitoneal injection of streptozotocin (60 mg/kg b.w.), followed by oral treatment with metformin for four weeks. RESULTS Diabetes decreased serum and intratesticular testosterone levels and increased serum but not intratesticular levels of luteinizing hormone. Sperm count, motility, viability, and normal morphology were decreased, while sperm nuclear DNA fragmentation was increased in DC group, relative to NC group. Testicular mRNA levels of androgen receptor, luteinizing hormone receptor, cytochrome P450 enzyme (CYP11A1), steroidogenic acute regulatory (StAR) protein, 3β-hydroxysteroid dehydrogenase (HSD), and 17β-HSD, as well as the level of StAR protein and activities of CYP11A1, 3β-HSD, and 17β-HSD, were decreased in DC group. Similarly, decreased activities of epididymal antioxidant enzymes and increased lipid peroxidation were observed in DC group. Consequently, decreased litter size, fetal weight, mating and fertility indices, and increased pre- and post-implantation losses were recorded in DC group. Following intervention with metformin, we observed increases in serum and intratesticular testosterone levels, Leydig cell count, improved sperm parameters, and decreased sperm nuclear DNA fragmentation. Furthermore, mRNA levels and activities of steroidogenesis-related enzymes were increased, with improved fertility outcome. DISCUSSION AND CONCLUSION Diabetes mellitus is associated with dysregulation of steroidogenesis, abnormal spermatogenesis, and fertility decline. Controlling hyperglycemia is therefore crucial in preserving male reproductive function. Metformin not only regulates blood glucose level, but also preserves male fertility in diabetic state.
Collapse
Affiliation(s)
- V U Nna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - A B A Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - A Ahmad
- Basic Science and Oral Biology Unit, School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - M Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia.,Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
34
|
Rhee H, Han M, Kim SS, Kim IY, Lee HW, Bae SS, Ha HK, Jung ES, Lee MY, Seong EY, Lee DW, Lee SB, Lovett DH, Song SH. The expression of two isoforms of matrix metalloproteinase-2 in aged mouse models of diabetes mellitus and chronic kidney disease. Kidney Res Clin Pract 2018; 37:222-229. [PMID: 30254846 PMCID: PMC6147188 DOI: 10.23876/j.krcp.2018.37.3.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Background This study was undertaken to explore the effects of aging on the kidneys in mouse models of diabetes and chronic kidney disease (CKD), and to compare the expression of two isoforms of matrix metalloproteinase-2 (MMP-2)–secretory full-length MMP-2 and intracellular N-terminal truncated MMP-2 (NTT-MMP-2)–in these models. Methods Two experimental ICR mouse models were used: a streptozotocin (STZ)-induced type 1 diabetes mellitus model and a 5/6 nephrectomized (5/6Nx) CKD model. The abundance of each isoform of MMP-2 was determined by quantitative polymerase chain reaction (qPCR), and functional analyses were conducted. Moreover, the protein levels of the two MMP-2 isoforms were determined semi-quantitatively by immunohistochemical staining, and their association with tissue damage was assessed. Results Both isoforms of MMP-2 were upregulated in the kidney tissues of STZ-induced diabetic mice and 5/6Nx mice, irrespective of age. Characteristically, NTT-MMP-2 protein expression was elevated in old control mice, in line with the qPCR results. NTT-MMP-2 expression was limited to the renal cortex, and to the tubulointerstitial area rather than the glomerular area. In terms of tissue damage, tubulointerstitial fibrosis was more severe in old 5/6Nx mice than in their young counterparts, whereas glomerulosclerosis was comparable in old and young 5/6Nx mice. Conclusion The intracellular isoform of MMP-2 was induced by ageing, irrespective of the presence of diabetes or CKD, and its induction may be related to tubulointerstitial fibrosis in chronic kidney disease.
Collapse
Affiliation(s)
- Harin Rhee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Miyeun Han
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Sang Soo Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Il Young Kim
- Research Institute for Convergence of Biomedical Science and Technology and Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hye Won Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Sun Sik Bae
- Medical Research Center for Ischemic Tissue Regeneration, Medical Research Institute, Pusan National University, Yangsan, Korea.,Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hong Koo Ha
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Urology, Pusan National University Hospital, Busan, Korea
| | - Eun Soon Jung
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Min Young Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eun Young Seong
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Dong Won Lee
- Research Institute for Convergence of Biomedical Science and Technology and Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Soo Bong Lee
- Research Institute for Convergence of Biomedical Science and Technology and Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - David H Lovett
- Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Sang Heon Song
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea.,Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
35
|
Malaysian propolis, metformin and their combination, exert hepatoprotective effect in streptozotocin-induced diabetic rats. Life Sci 2018; 211:40-50. [PMID: 30205096 DOI: 10.1016/j.lfs.2018.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/18/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022]
Abstract
AIMS Hepatic oxidative stress and weak antioxidant defence system resulting in hepatic lesion, has been reported in diabetic rats. The present study investigated the possible hepatoprotective effects of Malaysian propolis (MP) in diabetic rats, on the background that MP has been reported to have anti-hyperglycemic, antioxidant and anti-inflammatory effects. MATERIALS AND METHODS Sprague-Dawley rats were randomly divided into 5 groups, namely: normal control (NC), diabetic control (DC), diabetic on 300 mg/kg b.w. MP, diabetic on 300 mg/kg b.w. metformin, and diabetic on MP and metformin combined therapy. Treatment was done orally for 4 weeks, and NC and DC groups received distilled water as vehicle. KEY FINDINGS Results showed increased fasting blood glucose and serum markers of hepatic lesion (aspartate aminotransferase, alkaline phosphatase, alanine aminotransferase and gamma-glutamyl transferase), increased hepatic lactate dehydrogenase activity, decreased hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and glutathione reductase activities, increased immunoexpressions of nuclear factor kappa B, tumor necrosis factor-α, interleukin(IL)-1β and caspase-3, and decreased immunoexpressions of IL-10 and proliferating cell nuclear antigen in the liver of DC group. Histopathology of the liver revealed numerous hepatocytes with pyknotic nuclei and inflammatory infiltration, while periodic acid-schiff staining decreased in the liver of DC group. Treatment with MP attenuated these negative effects and was comparable to metformin. Furthermore, these effects were better attenuated in the combined therapy-treated diabetic rats. SIGNIFICANCE Malaysian propolis attenuates hepatic lesion in DM and exerts a synergistic protective effect with the anti-hyperglycemic medication, metformin.
Collapse
|
36
|
Gan Z, Huang D, Jiang J, Li Y, Li H, Ke Y. Captopril alleviates hypertension-induced renal damage, inflammation, and NF-κB activation. ACTA ACUST UNITED AC 2018; 51:e7338. [PMID: 30183974 PMCID: PMC6125835 DOI: 10.1590/1414-431x20187338] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
Hypertensive renal damage generally occurs during the middle and late stages of hypertension, which is typically characterized by proteinuria and renal inflammation. Captopril, an angiotensin-converting enzyme (ACE) inhibitor, has been widely used for therapy of arterial hypertension and cardiovascular diseases. However, the protective effects of captopril on hypertension-induced organ damage remain elusive. The present study was designed to explore the renoprotective action of captopril in spontaneously hypertensive rats (SHR). The 6-week-old male SHR and age-matched Wistar-Kyoto rats were randomized into long-term captopril-treated (34 mg/kg) and vehicle-treated groups. The results showed that in SHR there was obvious renal injury characterized by the increased levels of urine albumin, total protein, serum creatinine, blood urea nitrogen, renal inflammation manifested by the increased mRNA and protein expression of inflammatory factors including tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and inducible nitric oxide synthase, and enhanced nuclear factor-κB (NF-κB) activation. Captopril treatment could lower blood pressure, improve renal injury, and suppress renal inflammation and NF-κB activation in SHR rats. In conclusion, captopril ameliorates renal injury and inflammation in SHR possibly via inactivation of NF-κB signaling.
Collapse
Affiliation(s)
- Zhongyuan Gan
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Huang
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaye Jiang
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Li
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanqing Li
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Ke
- Experimental Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
37
|
Nna VU, Abu Bakar AB, Md Lazin MRML, Mohamed M. Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin-induced diabetic rats. Food Chem Toxicol 2018; 120:305-320. [PMID: 30026088 DOI: 10.1016/j.fct.2018.07.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/23/2018] [Accepted: 07/15/2018] [Indexed: 01/21/2023]
Abstract
Diabetes mellitus is characterized by hyperglycemia which causes oxidative stress. Propolis has been reported to have antihyperglycemic and antioxidant potentials. The present study therefore examined the anti-hyperglycemic, antioxidant and anti-inflammatory activities of Malaysian propolis (MP) using streptozotocin-induced diabetic rats. Ethanol extract of MP showed in vitro antioxidant (DPPH, FRAP and H2O2 radical scavenging) and α-glucosidase inhibition activities. Male Sprague Dawley rats were either treated with distilled water (normal control and diabetic control), MP (300 mg/kg b. w.), metformin (Met) (300 mg/kg b. w.) or both. After four weeks, fasting blood glucose decreased, while body weight change and serum insulin level increased significantly in MP, Met and MP + Met treated diabetic groups compared to diabetic control (DC) group. Furthermore, pancreatic antioxidant enzymes, total antioxidant capacity, interleukin (IL)-10 and proliferating cell nuclear antigen increased, while malondialdehyde, nuclear factor-kappa B (p65), tumor necrosis factor alpha, IL-1β and cleaved caspase-3 decreased significantly in the treated diabetic groups compared to DC group. Histopathology of the pancreas showed increased islet area and number of beta cells in the treated groups, compared to DC group, with D + MP + Met group comparable to normal control. We conclude that MP has anti-hyperglycemic, antioxidant, anti-inflammatory and antiapoptotic potentials, and exhibits synergistic effect with metformin.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia; Department of Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, University of Calabar, P.M.B. 1115, Calabar, Cross River State, Nigeria
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia
| | | | - Mahaneem Mohamed
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia; Unit of Integrative Medicine, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kelantan, Malaysia.
| |
Collapse
|
38
|
Sorriento D, De Luca N, Trimarco B, Iaccarino G. The Antioxidant Therapy: New Insights in the Treatment of Hypertension. Front Physiol 2018; 9:258. [PMID: 29618986 PMCID: PMC5871811 DOI: 10.3389/fphys.2018.00258] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a key role in the regulation of the physiological and pathological signaling within the vasculature. In physiological conditions, a delicate balance between oxidants and antioxidants protects cells from the detrimental effects of ROS/RNS. Indeed, the imbalance between ROS/RNS production and antioxidant defense mechanisms leads to oxidative and nitrosative stress within the cell. These processes promote the vascular damage observed in chronic conditions, such as hypertension. The strong implication of ROS/RNS in the etiology of hypertension suggest that antioxidants could be effective in the treatment of this pathology. Indeed, in animal models of hypertension, the overexpression of antioxidants and the genetic modulation of oxidant systems have provided an encouraging proof of concept. Nevertheless, the translation of these strategies to human disease did not reach the expected success. This could be due to the complexity of this condition, whose etiology depends on multiple factors (smoking, diet, life styles, genetics, family history, comorbidities). Indeed, 95% of reported high blood pressure cases are deemed "essential hypertension," and at the molecular level, oxidative stress seems to be a common feature of hypertensive states. In this scenario, new therapies are emerging that could be useful to reduce oxidative stress in hypertension. It is now ascertained the role of Vitamin D deficiency in the development of essential hypertension and it has been shown that an appropriate high dose of Vitamin D significantly reduces blood pressure in hypertensive cohorts with vitamin D deficiency. Moreover, new drugs are emerging which have both antihypertensive action and antioxidant properties, such as celiprolol, carvedilol, nebivolol. Indeed, besides adrenergic desensitization, these kind of drugs are able to interfere with ROS/RNS generation and/or signaling, and are therefore considered promising therapeutics in the management of hypertension. In the present review we have dealt with the effectiveness of the antioxidant therapy in the management of hypertension. In particular, we discuss about Vitamin D and anti-hypertensive drugs with antioxidant properties.
Collapse
Affiliation(s)
- Daniela Sorriento
- Dipartimento di Scienze Biomediche Avanzate, Università Federico II, Napoli, Italy
| | - Nicola De Luca
- Dipartimento di Scienze Biomediche Avanzate, Università Federico II, Napoli, Italy
| | - Bruno Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università Federico II, Napoli, Italy
| | - Guido Iaccarino
- Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Salerno, Baronissi, Italy
| |
Collapse
|
39
|
Liu X, Tan H, Liu X, Wu Q. Correlation between the expression of Drp1 in vascular endothelial cells and inflammatory factors in hypertension rats. Exp Ther Med 2018; 15:3892-3898. [PMID: 29563985 PMCID: PMC5858055 DOI: 10.3892/etm.2018.5899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023] Open
Abstract
The objective of this study was to investigate the expression level of dynamin-related protein 1 (Drp1) in vascular endothelium of hypertension rats and its correlation with expression of inflammatory factors. Twenty spontaneous hypertension rats (SHR) were randomly divided into SHR group (n=10) and inhibition group (MD group, n=10), and the Sprague Dawley rats were enrolled as the control group (C group, n=10). For rats in the MD group, Mdivi-1, a mitochondrial division inhibitor, was given in dosage of 25 mg/kg. After 4 weeks of administration, blood pressure was measured via tail-artery blood pressure measurement. The blood samples collected from the abdominal aorta of rats were used to assay the C-reaction protein (CRP) concentration in serum through radioimmunoassay. Hematoxylin and eosin (H&E) staining was performed for sections of thoracic aorta for morphological observation and measurement of medial thickness. Enzyme-linked immunosorbant assay (ELISA), semi-quantitative real-time polymerase chain reaction (RT-PCR) and western blotting was carried out for detecting the expression levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Drp1 and monocyte chemotactic protein 1 (MCP-1). After 4 weeks of drug administration, the blood pressure in the MD group was significantly higher (P<0.01). The medial thickness of the thoracic aorta in the MD group was significantly decreased in comparison with the SHR group (P<0.01). The results of ELISA showed that compared with the SHR group, the expression levels of IL-6 and TNF-α in the MD group were remarkably decreased (P<0.01). Semi-quantitative RT-PCR results indicated that the mRNA expression levels of Drp1 and MCP-1 in the MD group were significantly lower than those in the SHR group (P<0.05). In the SHR rats, after administration of Mdivi-1, the expression of Drp1 is decreased, which contributes to the alleviation in inflammatory reactions and protects the vessels in SHR rats.
Collapse
Affiliation(s)
- Xinghui Liu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Hongwen Tan
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xiaoqiao Liu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
40
|
Bami E, Ozakpınar OB, Ozdemir-Kumral ZN, Köroglu K, Ercan F, Cirakli Z, Sekerler T, Izzettin FV, Sancar M, Okuyan B. Protective effect of ferulic acid on cisplatin induced nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:105-111. [PMID: 28704751 DOI: 10.1016/j.etap.2017.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 02/05/2023]
Abstract
This study aims to determine the potential protective effects of ferulic acid against cisplatin-induced nephrotoxicity and to compare its effect with curcumin, a well-known protective agent against cisplatin- induced toxicity in rats. Administration of cisplatin resulted in high BUN (Blood Urea Nitrogen), creatinine, MDA (Malondialdehyde), MPO (Myeloperoxidase), TOS (Total Oxidative Status), PtNT (Protein Nitrotyrosine) levels (p<0.05). Histological observations showed abnormal morphology of kidney; in addition with appearance of TUNEL positive cells indicating apoptosis in cisplatin administered group. HO-1 (Heme Oxygenase-1) levels measured by RT-PCR (Real Time Polymerase Chain Reaction), and TAS (Total Antioxidative Status) revealed antioxidant depletion due to cisplatin toxicity in animals (p<0.05). All parameters showed improvement in groups treated with ferulic acid (p<0.05). Ferulic acid treatment was found significant in preventing oxidative stress, increasing antioxidative status and regaining histological parameters to normal, indicating nephroprotective and antioxidant effects of this phenolic compound.
Collapse
Affiliation(s)
- Erliasa Bami
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | | | | | - Kutay Köroglu
- Department of Histology and Embryology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Zeynep Cirakli
- Biochemistry Department, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Turgut Sekerler
- Department of Biochemistry, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Fikret Vehbi Izzettin
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Mesut Sancar
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Betul Okuyan
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey.
| |
Collapse
|
41
|
Pinzón-Díaz CE, Calderón-Salinas JV, Rosas-Flores MM, Hernández G, López-Betancourt A, Quintanar-Escorza MA. Eryptosis and oxidative damage in hypertensive and dyslipidemic patients. Mol Cell Biochem 2017; 440:105-113. [DOI: 10.1007/s11010-017-3159-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
|
42
|
Wang H, Jiang H, Liu H, Zhang X, Ran G, He H, Liu X. Modeling Disease Progression: Angiotensin II Indirectly Inhibits Nitric Oxide Production via ADMA Accumulation in Spontaneously Hypertensive Rats. Front Physiol 2016; 7:555. [PMID: 27909412 PMCID: PMC5112235 DOI: 10.3389/fphys.2016.00555] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/03/2016] [Indexed: 01/07/2023] Open
Abstract
Nitric oxide (NO) production impairment is involved in the onset and development of hypertension. Although NO production impairment in spontaneously hypertensive rat (SHR) has been reported in a variety of researches, the time course of this progressive procedure, as well as its relationship with asymmetric dimethylarginine (ADMA) and angiotensin II (Ang II), has not been quantified. The aim of this research is to establish a mechanism-based disease progression model to assess Ang II and ADMA's inhibition of NO production in SHR's disease progression with/without ramipril's intervention. SHR were randomly divided into three groups: one disease group (n = 8) and two treatment groups (n = 8 for each group): standard treatment group (receiving ramipril 2 mg/kg*day) and intensive treatment group (receiving ramipril 10 mg/kg*day). ADMA, Ang II, NO, and SBP were determined weekly. Intensive treatment with ramipril was found to have no further attenuation of plasma NO and ADMA than standard treatment beyond its significantly stronger antihypertensive effects. Four linked turnover models were developed to characterize the profiles of ADMA, Ang II, NO, and SBP during hypertensive disease progression with/without ramipril intervention. Our model described Ang II and ADMA's contribution to NO production impairment and their responses to ramipril treatment throughout the disease progression in SHR. Model simulations suggested that Ang II affected NO production mainly through inhibiting ADMA elimination rather than affecting nitric oxide synthase (NOS) directly.
Collapse
Affiliation(s)
- Haidong Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Hao Jiang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Haochen Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Xue Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Guimei Ran
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| | - Xiaoquan Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, China
| |
Collapse
|
43
|
Rani N, Bharti S, Tomar A, Dinda AK, Arya DS, Bhatia J. Inhibition of PARP activation by enalapril is crucial for its renoprotective effect in cisplatin-induced nephrotoxicity in rats. Free Radic Res 2016; 50:1226-1236. [PMID: 27571604 DOI: 10.1080/10715762.2016.1228923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Oxidative stress-induced PARP activation has been recognized to be a main factor in the pathogenesis of cisplatin-induced nephrotoxicity. Accumulating literature has revealed that ACE inhibitors may exert beneficial effect in several disease models via preventing PARP activation. Based on this hypothesis, we have evaluated the renoprotective effect of enalapril, an ACE inhibitor, and its underlying mechanism(s) in cisplatin-induced renal injury in rats. Male Albino Wistar rats were orally administered normal saline or enalapril (10, 20 and 40 mg/kg) for 10 days. Nephrotoxicity was induced by a single dose of cisplatin (8 mg/kg; i.p.) on the 7th day. The animals were thereafter sacrificed on the 11th day and both the kidneys were excised and processed for biochemical, histopathological, molecular, and immunohistochemical studies. Enalapril (40 mg/kg) significantly prevented cisplatin-induced renal dysfunction. In comparison to cisplatin-treated group, the elevation of BUN and creatinine levels was significantly less in this group. This improvement in kidney injury markers was well substantiated with reduced PARP expression along with phosphorylation of MAPKs including JNK/ERK/p38. Enalapril, in a dose-dependent fashion, attenuated cisplatin-induced oxidative stress as evidenced by augmented GSH, SOD and catalase activities, reduced TBARS and oxidative DNA damage (8-OHDG), and Nox-4 protein expression. Moreover, enalapril dose dependently inhibited cisplatin-induced inflammation (NF-κB/IKK-β/IL-6/Cox-2/TNF-α expressions), apoptosis (increased Bcl-2 and reduced p53, cytochrome c, Bax and caspase-3 expressions, and TUNEL/DAPI positivity) and preserved the structural integrity of the kidney. Thus, enalapril attenuated cisplatin-induced renal injury via inhibiting PARP activation and subsequent MAPKs/TNF-α/NF-κB mediated inflammatory and apoptotic response.
Collapse
Affiliation(s)
- Neha Rani
- a Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| | - Saurabh Bharti
- a Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| | - Ameesha Tomar
- a Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| | - Amit Kumar Dinda
- b Department of Pathology , All India Institute of Medical Sciences , New Delhi , India
| | - D S Arya
- a Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| | - Jagriti Bhatia
- a Department of Pharmacology , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
44
|
Luo WM, Kong J, Gong Y, Liu XQ, Yang RX, Zhao YX. Tongxinluo Protects against Hypertensive Kidney Injury in Spontaneously-Hypertensive Rats by Inhibiting Oxidative Stress and Activating Forkhead Box O1 Signaling. PLoS One 2015; 10:e0145130. [PMID: 26673167 PMCID: PMC4686063 DOI: 10.1371/journal.pone.0145130] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/27/2015] [Indexed: 12/18/2022] Open
Abstract
Hypertension is an independent risk factor for the progression of chronic renal failure, and oxidative stress plays a critical role in hypertensive renal damage. Forkbox O1(FoxO1) signaling protects cells against oxidative stress and may be a useful target for treating oxidative stress-induced hypertension. Tongxinluo is a traditional Chinese medicine with cardioprotective and renoprotective functions. Therefore, this study aimed to determine the effects of Tongxinluo in hypertensive renal damage in spontaneously hypertensive rats(SHRs)and elucidate the possible involvement of oxidative stress and FoxO1 signaling in its molecular mechanisms. SHRs treated with Tongxinluo for 12 weeks showed a reduction in systolic blood pressure. In addition to increasing creatinine clearance, Tongxinluo decreased urinary albumin excretion, oxidative stress injury markers including malondialdehyde and protein carbonyls, and expression of nicotinamide adenine dinucleotide phosphate oxidase subunits and its activity in SHR kidneys. While decreasing phosphorylation of FoxO1, Tongxinluo also inhibited the phosphorylation of extracellular signal-regulated kinase1/2 and p38 and enhanced manganese superoxide dismutase and catalase activities in SHR kidneys. Furthermore, histology revealed attenuation of glomerulosclerosis and renal podocyte injury, while Tongxinluo decreased the expression of α-smooth muscle actin, extracellular matrixprotein, transforming growth factor β1 and small mothers against decapentaplegic homolog 3,and improved tubulointerstitial fibrosis in SHR kidneys. Finally, Tongxinluo inhibited inflammatory cell infiltration as well as expression of tumor necrosis factor-α and interleukin-6. In conclusion, Tongxinluo protected SHRs against hypertension-induced renal injury by exerting antioxidant, antifibrotic, and anti-inflammatory activities. Moreover, the underlying mechanisms of these effects may involve inhibition of oxidative stress and functional activation of FoxO1 signaling.
Collapse
Affiliation(s)
- Wei-min Luo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jing Kong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yan Gong
- Department of Magnetic Resonance Imaging, Jinan hospital of infectious diseases, Jinan, Shandong, China
| | - Xiao-qiong Liu
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Rui-xue Yang
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yu-xia Zhao
- Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
45
|
Protective Effect of Enalapril against Methionine-Enriched Diet-Induced Hypertension: Role of Endoplasmic Reticulum and Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2015; 2015:724876. [PMID: 26640794 PMCID: PMC4660008 DOI: 10.1155/2015/724876] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 12/21/2022]
Abstract
In the present study, we investigated the effect of methionine-enriched diet (MED) on blood pressure in rats and examined the protective effect of enalapril, a widely used angiotensin converting enzyme inhibitors (ACEi) class antihypertensive drug. The results showed that MED induced significant increase of SBP and Ang II-induced contractile response in aortae of rats. MED significantly increased plasma levels of homocysteine (Hcy) and ACE. In addition, MED increased the phosphorylation of protein kinase R-like endoplasmic reticulum kinase (PERK) and eukaryotic initiation factor 2 (eIF2α) and expression of activating transcription factor 3 (ATF3) and ATF6 in aortae of rats, indicating the occurrence of endoplasmic reticulum (ER) stress. Moreover, MED resulted in oxidative stress as evidenced by significant increase of TBARS level and decrease of superoxide dismutase and catalase activities. Administration of enalapril could effectively inhibit these pathological changes induced by MED in rats. These results demonstrated that ACE-mediated ER stress and oxidative stress played an important role in high Hcy-induced hypertension and MED may exert a positive loop between the activation of ACE and accumulation of Hcy, aggravating the pathological condition of hypertension. The data provide novel insights into the mechanism of high Hcy-associated hypertension and the therapeutic efficiency of enalapril.
Collapse
|
46
|
Myoglobin microplate assay to evaluate prevention of protein peroxidation. J Pharm Biomed Anal 2015; 114:305-11. [DOI: 10.1016/j.jpba.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 11/21/2022]
|
47
|
Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur J Pharmacol 2015; 765:307-15. [PMID: 26302059 DOI: 10.1016/j.ejphar.2015.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 01/11/2023]
Abstract
Rheumatoid arthritis (RA) is a challenging autoimmune disorder, whose treatments usually cause severe gastrointestinal, renal and other complications. We aimed to evaluate the beneficial anti-arthritic effects of an angiotensin converting enzyme (ACE) inhibitor, ramipril and a dopamine receptor blocker, haloperidol, on Complete Freund's Adjuvant-induced RA in adult female albino rats. Rats were allocated into a normal control group, an arthritis control group, two reference treatment groups receiving dexamethasone (1.5 mg/kg/day) and methotrexate (1 mg/kg/day), and two treatment groups receiving ramipril (0.9 mg/kg/day) and haloperidol (1 mg/kg/day). Serum rheumatoid factor, matrix metalloprotinease-3 (MMP-3) and cartilage oligomeric matrix protein as specific rheumatoid biomarkers, serum immunoglobulin G and antinuclear antibody as immunological biomarkers, serum tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) as immunomodulatory cytokines, serum myeloperoxidase and C-reactive protein as inflammatory biomarkers, as well as malondialdehyde and glutathione reduced (GSH) as oxidative stress biomarkers were assessed. A histopathological study on joints and spleens was performed to support the results of biochemical estimations. Ramipril administration significantly corrected all the measured biomarkers, being restored back to normal levels except for MMP-3, TNF-α and IL-10. Haloperidol administration restored all the measured biomarkers back to normal levels except for TNF-α, IL-10 and GSH. In conclusion, ACE inhibitors represented by ramipril and dopamine receptor blockers represented by haloperidol may represent new promising protective strategies against RA, at least owing to their immunomodulatory, anti-inflammatory and antioxidant potentials.
Collapse
|
48
|
Campeiro JD, Neshich IP, Sant’Anna OA, Lopes R, Ianzer D, Assakura MT, Neshich G, Hayashi MA. Identification of snake bradykinin-potentiating peptides (BPPs)-simile sequences in rat brain – Potential BPP-like precursor protein? Biochem Pharmacol 2015; 96:202-15. [DOI: 10.1016/j.bcp.2015.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
49
|
Thiab NR, King N, Jones GL. Effect of ageing and oxidative stress on antioxidant enzyme activity in different regions of the rat kidney. Mol Cell Biochem 2015; 408:253-60. [PMID: 26169983 DOI: 10.1007/s11010-015-2503-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/04/2015] [Indexed: 11/24/2022]
Abstract
Oxidative stress has been implicated in ageing and the pathogenesis of chronic kidney disease. We examined levels of antioxidant enzymes glutathione peroxidase, glutathione reductase, glutathione S-transferase, catalase and superoxide dismutase as modulated by age and oxidative stress in different regions of the kidney. Antioxidant enzymes were examined in different regions of the kidney in male Wistar rats. Kidneys from rats of different ages (5, 12, 36 and 60 weeks) were dissected into cortex, outer medulla and inner medulla. Tissues were incubated for 30 min with or without 0.2 mM H2O2 to induce oxidative stress. Antioxidant enzyme activities progressively decreased with age under both control and stress conditions (P < 0.05) after peaking at 12 weeks. Antioxidant enzyme activities were greater in the cortex (P < 0.05) by comparison with the outer and inner medulla, respectively.
Collapse
Affiliation(s)
- Noor Riyadh Thiab
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - Nicola King
- School of Biomedical and Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, PL4 8AA, UK
| | - Graham L Jones
- Centre for Bioactive Discovery in Health and Ageing, School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia.
| |
Collapse
|
50
|
Dai P, Wang J, Lin L, Zhang Y, Wang Z. Renoprotective effects of berberine as adjuvant therapy for hypertensive patients with type 2 diabetes mellitus: Evaluation via biochemical markers and color Doppler ultrasonography. Exp Ther Med 2015; 10:869-876. [PMID: 26622407 DOI: 10.3892/etm.2015.2585] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 05/13/2015] [Indexed: 01/26/2023] Open
Abstract
Diabetes and hypertension are complex and serious diseases that may ultimately lead to renal complications. Adequate control of blood glucose and blood pressure contributes to decreased renal risks, but may not be sufficient for certain patients. The current study was undertaken to investigate the renoprotective effects of berberine as an adjuvant therapy to standard hypotensive and hypoglycemic treatment in hypertensive patients with type 2 diabetes mellitus (T2DM). In this 2-year clinical study, 69 hypertensive patients with T2DM, whose blood pressure and fasting plasma glucose (FPG) were adequately controlled by hypotensive and oral hypoglycemic agents prior to the study, were enrolled and randomly assigned into control (33 cases) and add-on (36 cases) groups. Berberine was orally administrated to the patients in the add-on group concomitantly with standard hypotensive and hypoglycemic treatment. Baseline characteristics, including the levels of FPG, glycated hemoglobin, systolic blood pressure, diastolic blood pressure, serum creatinine, urinary albumin-to-creatine ratio (UACR), urinary osteopontin and kidney injury molecule-1 (KIM-1) were determined. Furthermore, the oxidative stress markers malondialdehyde, urinary 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, glutathione peroxidase and total-antioxidant capacity, and the inflammatory parameters vascular adhesion molecule-1, C-reactive protein and high molecular weight-adiponectin were evaluated. In addition, ultrasonographic parameters, including peak systolic velocity, end diastolic velocity and renal arterial resistance index were determined. After treatment, it was observed that the control and add-on treatments were able to adequately control blood pressure and blood glucose. Patients in the add-on group exhibited significant reductions in renal damage biochemical markers (UACR, urinary osteopontin and KIM-1) and improved renal hemodynamics, in addition to reduced inflammation and oxidative stress. The present results suggest that berberine is beneficial for hypertensive patients with T2DM as add-on therapy to standard hypotensive and hypoglycemic agents.
Collapse
Affiliation(s)
- Peifeng Dai
- Department of Ultrasound, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Junhua Wang
- Department of Ultrasound, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Lin Lin
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yanyan Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Zhengping Wang
- Department of Ultrasound, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|