1
|
Salgado J, Rayner J, Ojkic N. Advancing antibiotic discovery with bacterial cytological profiling: a high-throughput solution to antimicrobial resistance. Front Microbiol 2025; 16:1536131. [PMID: 40018674 PMCID: PMC11865948 DOI: 10.3389/fmicb.2025.1536131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 03/01/2025] Open
Abstract
Developing new antibiotics poses a significant challenge in the fight against antimicrobial resistance (AMR), a critical global health threat responsible for approximately 5 million deaths annually. Finding new classes of antibiotics that are safe, have acceptable pharmacokinetic properties, and are appropriately active against pathogens is a lengthy and expensive process. Therefore, high-throughput platforms are needed to screen large libraries of synthetic and natural compounds. In this review, we present bacterial cytological profiling (BCP) as a rapid, scalable, and cost-effective method for identifying antibiotic mechanisms of action. Notably, BCP has proven its potential in drug discovery, demonstrated by the identification of the cellular target of spirohexenolide A against methicillin-resistant Staphylococcus aureus. We present the application of BCP for different bacterial organisms and different classes of antibiotics and discuss BCP's advantages, limitations, and potential improvements. Furthermore, we highlight the studies that have utilized BCP to investigate pathogens listed in the Bacterial Priority Pathogens List 2024 and we identify the pathogens whose cytological profiles are missing. We also explore the most recent artificial intelligence and deep learning techniques that could enhance the analysis of data generated by BCP, potentially advancing our understanding of antibiotic resistance mechanisms and the discovery of novel druggable pathways.
Collapse
Affiliation(s)
| | | | - Nikola Ojkic
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Thote V, Dinesh S, Sharma S. Prediction of deleterious non-synonymous SNPs of human MDC1 gene: an in silico approach. Syst Biol Reprod Med 2024; 70:101-112. [PMID: 38630598 DOI: 10.1080/19396368.2024.2325699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 02/24/2024] [Indexed: 04/19/2024]
Abstract
MDC1 (Mediator of DNA damage Checkpoint protein 1) functions to facilitate the localization of numerous DNA damage response (DDR) components to DNA double-strand break sites. MDC1 is an integral component in preserving genomic stability and appropriate DDR regulation. There haven't been systematic investigations of MDC1 mutations that induce cancer and genomic instability. Variations in nsSNPs have the potential to modify the protein chemistry and their function. Describing functional SNPs in disease-associated genes presents a significant conundrum for investigators, it is possible to assess potential functional SNPs before conducting larger population examinations. Multiple sequences and structure-based bioinformatics strategies were implemented in the current in-silico investigation to discern potential nsSNPs of the MDC1 genes. The nsSNPs were identified with SIFT, SNAP2, Align GVGD, PolyPhen-2, and PANTHER, and their stability was determined with MUpro. The conservation, solvent accessibility, and structural effects of the mutations were identified with ConSurf, NetSurfP-2.0, and SAAFEC-SEQ respectively. Cancer-related analysis of the nsSNPs was conducted using cBioPortal and TCGA web servers. The present study appraised five nsSNPs (P1426T, P69S, P194R, P203L, and H131Y) as probably mutilating due to their existence in highly conserved regions and propensity to deplete protein stability. The nsSNPs P194R, P203L, and H131Y were concluded as deleterious and possibly damaging from the 5 prediction tools. The functional nsSNP P194R mutation is associated with skin cutaneous melanoma while no significant records were found for other nsSNPs. The present study concludes that the highly deleterious P194R mutations can potentially induce genomic instability and contribute to various cancers' pathogenesis. Developing drugs targeting these mutations can undoubtedly be advantageous in large population-based studies, particularly in the development of precision medicine.
Collapse
Affiliation(s)
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, India
| |
Collapse
|
3
|
Hendi NN, Bengoechea-Alonso MT, Ericsson J, Nemer G. Functional characterization of the SDR42E1 reveals its role in vitamin D biosynthesis. Heliyon 2024; 10:e36466. [PMID: 39263177 PMCID: PMC11387231 DOI: 10.1016/j.heliyon.2024.e36466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024] Open
Abstract
Vitamin D deficiency poses a widespread health challenge, shaped by environmental and genetic determinants. A recent discovery identified a genetic regulator, rs11542462, in the SDR42E1 gene, though its biological implications remain largely unexplored. Our bioinformatic assessments revealed pronounced SDR42E1 expression in skin keratinocytes and the analogous HaCaT human keratinocyte cell lines, prompting us to select the latter as an experimental model. Employing CRISPR/Cas9 gene-editing technology and multi-omics approach, we discovered that depleting SDR42E1 showed a 1.6-fold disruption in steroid biosynthesis pathway (P-value = 0.03), considerably affecting crucial vitamin D biosynthesis regulators. Notably, SERPINB2 (P-value = 2.17 × 10-103), EBP (P-value = 2.46 × 10-13), and DHCR7 (P-value = 8.03 × 10-09) elevated by ∼2-3 fold, while ALPP (P-value <2.2 × 10-308), SLC7A5 (P-value = 1.96 × 10-215), and CYP26A1 (P-value = 1.06 × 10-08) downregulated by ∼1.5-3 fold. These alterations resulted in accumulation of 7-dehydrocholesterol precursor and reduction of vitamin D3 production, as evidenced by the drug enrichment (P-value = 4.39 × 10-06) and total vitamin D quantification (R2 = 0.935, P-value = 0.0016) analyses. Our investigation unveils SDR42E1's significance in vitamin D homeostasis, emphasizing the potential of precision medicine in addressing vitamin D deficiency through understanding its genetic basis.
Collapse
Affiliation(s)
- Nagham Nafiz Hendi
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
- Systems Biology and Immunology Department, Sidra Medicine, Doha, P.O. Box 26999, Qatar
| | - Maria Teresa Bengoechea-Alonso
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
| | - Johan Ericsson
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
| | - Georges Nemer
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, P.O. Box 34110, Qatar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, P.O. Box 110236, Lebanon
| |
Collapse
|
4
|
Šetinc M, Celinšćak Ž, Bočkor L, Zajc Petranović M, Stojanović Marković A, Peričić Salihović M, Deelen J, Škarić-Jurić T. The role of longevity-related genetic variant interactions as predictors of survival after 85 years of age. Mech Ageing Dev 2024; 219:111926. [PMID: 38484896 PMCID: PMC11166054 DOI: 10.1016/j.mad.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Genome-wide association studies and candidate gene studies have identified several genetic variants that might play a role in achieving longevity. This study investigates interactions between pairs of those single nucleotide polymorphisms (SNPs) and their effect on survival above the age of 85 in a sample of 327 Croatian individuals. Although none of the SNPs individually showed a significant effect on survival in this sample, 14 of the 359 interactions tested (between SNPs not in LD) reached the level of nominal significance (p<0.05), showing a potential effect on late-life survival. Notably, SH2B3 rs3184504 interacted with different SNPs near TERC, TP53 rs1042522 with different SNPs located near the CDKN2B gene, and CDKN2B rs1333049 with different SNPs in FOXO3, as well as with LINC02227 rs2149954. The other interaction pairs with a possible effect on survival were FOXO3 rs2802292 and ERCC2 rs50871, IL6 rs1800795 and GHRHR rs2267723, LINC02227 rs2149954 and PARK7 rs225119, as well as PARK7 rs225119 and PTPN1 rs6067484. These interactions remained significant when tested together with a set of health-related variables that also had a significant effect on survival above 85 years. In conclusion, our results confirm the central role of genetic regulation of insulin signalling and cell cycle control in longevity.
Collapse
Affiliation(s)
- Maja Šetinc
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia.
| | | | - Luka Bočkor
- Institute for Anthropological Research, Zagreb 10000, Croatia; Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia
| | | | | | | | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.
| | | |
Collapse
|
5
|
Herman M, Lok BH, Gallinger S, Dawson L, Kim R, Cheng D, Paton T, Bucur R, Patel D, Fazelzad R, Hueniken K, Liu G. Analysis of prognostic germline polymorphisms in patients with advanced hepatocellular carcinoma. Transl Gastroenterol Hepatol 2023; 8:32. [PMID: 38021355 PMCID: PMC10643180 DOI: 10.21037/tgh-23-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background The prognosis of hepatocellular carcinoma (HCC) is influenced by both tumor and patient specific factors. Current therapies of advanced HCC target angiogenesis and immune evasion, however there are no clinically useful biomarkers to guide clinicians. Methods Our aim in this retrospective cohort study was to validate single nucleotide polymorphisms (SNPs) prognostic of outcome in advanced HCC from the literature, and to analyze exploratory SNPs chosen from evaluation of the HCC tumor immune microenvironment. Using a database of patients with HCC treated with sorafenib, blood samples were genotyped, clinical variables were retrospectively collected, and SNPs were analyzed for association with progression-free survival (PFS) and overall survival (OS). A subsequent analysis was conducted to determine if identified SNPs were prognostic in trans arterial chemoembolization (TACE) treated patients. Results Literature review identified 7 SNPs in vascular endothelial growth factor (VEGF), eNOS, angiopoietin 2 (ANGPT2) and vascular endothelial growth factor receptor 2 (VEGFR2), however none were externally validated in our dataset. Of the 35 exploratory immunomodulatory SNPs, the following were associated with PFS or OS: CCL2 C-C motif ligand 2 (CCL2) (rs1024611), interleukin-10 (IL-10) (rs1800896), cytotoxic T-lymphocyte antigen-4 (CTLA-4) (rs231775) and NFKB1 (rs28362491). Conclusions SNPs identified by literature review to be prognostic in sorafenib treated patients with advanced HCC were not validated in our dataset. Our findings suggest potentially important prognostic implications of SNPs in VEGFR2, CCL2, IL-10, CTLA-4 and NFKB1 that deserve further study.
Collapse
Affiliation(s)
- Michael Herman
- Department of Oncology, Oakville Trafalgar Memorial Hospital, Ontario, Canada
| | - Benjamin H. Lok
- Department of Oncology, University Health Network, Toronto, Canada
| | - Steven Gallinger
- Department of Oncology, University Health Network, Toronto, Canada
| | - Laura Dawson
- Department of Oncology, University Health Network, Toronto, Canada
| | - Raymond Kim
- Department of Oncology, University Health Network, Toronto, Canada
| | - Dangxiao Cheng
- Department of Oncology, University Health Network, Toronto, Canada
| | - Tara Paton
- Department of Applied Genomics, The Hospital for Sick Children, Toronto, Canada
| | - Roxana Bucur
- Department of Oncology, University Health Network, Toronto, Canada
| | - Devalben Patel
- Department of Oncology, University Health Network, Toronto, Canada
| | - Rouhi Fazelzad
- Department of Oncology, University Health Network, Toronto, Canada
| | - Katrina Hueniken
- Department of Oncology, University Health Network, Toronto, Canada
| | - Geoffrey Liu
- Department of Oncology, University Health Network, Toronto, Canada
| |
Collapse
|
6
|
Mouhoub‐Terrab R, Chibane AA, Khelil M. No association between MTHFR gene C677T/A1298C polymorphisms, serum folate, vitamin B12, homocysteine levels, and prostate cancer in an Algerian population. Mol Genet Genomic Med 2023; 11:e2194. [PMID: 37182212 PMCID: PMC10496034 DOI: 10.1002/mgg3.2194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/01/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme involved in folate and homocysteine metabolism, which are necessary for DNA methylation and nucleotide synthesis. Genetic polymorphisms that reduce MTHFR activity have been linked to several diseases, including prostate cancer. In this study, we aimed to investigate whether MTHFR polymorphisms, along with serum levels of folate, vitamin B12, and homocysteine, are associated with prostate cancer risk in the Algerian population. METHODS A total of 106 Algerian men with newly diagnosed prostate cancer and 125 healthy controls were included in this case-control study. The MTHFR C677T and A1298C polymorphisms were analyzed using PCR/RFLP and Real-Time PCR TaqMan® assays, respectively. Serum levels of folate, total homocysteine, and vitamin B12 were measured using an automatic biochemistry analyzer. RESULTS We found no significant differences in the genotype frequency of A1298C and C677T between prostate cancer patients and controls. Moreover, serum levels of folate, total homocysteine, and vitamin B12 were not significantly associated with prostate cancer risk (p > 0.05). However, age and family history were identified as significant risk factors (OR = 1.178, p = 0.00 and OR = 10.03, p = 0.007, respectively). CONCLUSION Our study suggests that MTHFR C677T and A1298C, as well as serum levels of folate, total homocysteine, and vitamin B12, are not associated with prostate cancer risk in the Algerian population. However, age and family history are significant risk factors. Further studies with a larger sample size are required to confirm these findings.
Collapse
Affiliation(s)
- Rima Mouhoub‐Terrab
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences BiologiquesUniversité des Sciences et de la Technologie Houari BoumedieneAlgerAlgeria
| | - Abdel Aziz Chibane
- Service UrologieCentre Hospitalo‐Universitaire Mustapha BachaAlgerAlgeria
| | - Malika Khelil
- Département de Biologie Cellulaire et Moléculaire, Faculté des Sciences BiologiquesUniversité des Sciences et de la Technologie Houari BoumedieneAlgerAlgeria
| |
Collapse
|
7
|
Kerry RG, Montalbo FJP, Das R, Patra S, Mahapatra GP, Maurya GK, Nayak V, Jena AB, Ukhurebor KE, Jena RC, Gouda S, Majhi S, Rout JR. An overview of remote monitoring methods in biodiversity conservation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80179-80221. [PMID: 36197618 PMCID: PMC9534007 DOI: 10.1007/s11356-022-23242-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Conservation of biodiversity is critical for the coexistence of humans and the sustenance of other living organisms within the ecosystem. Identification and prioritization of specific regions to be conserved are impossible without proper information about the sites. Advanced monitoring agencies like the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) had accredited that the sum total of species that are now threatened with extinction is higher than ever before in the past and are progressing toward extinct at an alarming rate. Besides this, the conceptualized global responses to these crises are still inadequate and entail drastic changes. Therefore, more sophisticated monitoring and conservation techniques are required which can simultaneously cover a larger surface area within a stipulated time frame and gather a large pool of data. Hence, this study is an overview of remote monitoring methods in biodiversity conservation via a survey of evidence-based reviews and related studies, wherein the description of the application of some technology for biodiversity conservation and monitoring is highlighted. Finally, the paper also describes various transformative smart technologies like artificial intelligence (AI) and/or machine learning algorithms for enhanced working efficiency of currently available techniques that will aid remote monitoring methods in biodiversity conservation.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | | | - Rajeswari Das
- Department of Soil Science and Agricultural Chemistry, School of Agriculture, GIET University, Gunupur, Rayagada, Odisha 765022 India
| | - Sushmita Patra
- Indian Council of Agricultural Research-Directorate of Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha 752050 India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005 India
| | - Vinayak Nayak
- Indian Council of Agricultural Research-Directorate of Foot and Mouth Disease-International Centre for Foot and Mouth Disease, Arugul, Bhubaneswar, Odisha 752050 India
| | - Atala Bihari Jena
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | - Ram Chandra Jena
- Department of Pharmaceutical Sciences, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | - Sushanto Gouda
- Department of Zoology, Mizoram University, Aizawl, 796009 India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004 India
| | - Jyoti Ranjan Rout
- School of Biological Sciences, AIPH University, Bhubaneswar, Odisha 752101 India
| |
Collapse
|
8
|
He Y, Liu H, Luo S, Amos CI, Lee JE, Li X, Nan H, Wei Q. Genetic variants of SDCCAG8 and MAGI2 in mitosis-related pathway genes are independent predictors of cutaneous melanoma-specific survival. Cancer Sci 2021; 112:4355-4364. [PMID: 34375487 PMCID: PMC8486203 DOI: 10.1111/cas.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/01/2022] Open
Abstract
Mitosis is a prognostic factor for cutaneous melanoma (CM), but accurate mitosis detection in CM tissues is difficult. Therefore, the 8th Edition of the American Joint Committee on Cancer staging system has removed the mitotic rate as a category criterion of the tumor T-category, based on the evidence that the mitotic rate was not an independent prognostic factor for melanoma survival. As single-nucleotide polymorphisms (SNPs) have been shown to be potential predictors for cutaneous melanoma-specific survival (CMSS), we investigated the potential prognostic value of SNPs in mitosis-related pathway genes in CMSS by analyzing their associations with outcomes of 850 CM patients from The University of Texas MD Anderson Cancer Center in a discovery dataset and validated the findings in another dataset of 409 CM patients from the Harvard University Nurses' Health Study and Health Professionals Follow-up Study. In both datasets, we identified two SNPs (SDCCAG8 rs10803138 G>A and MAGI2 rs3807694 C>T) as independent prognostic factors for CMSS, with adjusted allelic hazards ratios of 1.49 (95% confidence interval = 1.17-1.90, P = .001) and 1.45 (1.13-1.86, P = .003), respectively. Furthermore, their combined unfavorable alleles also predicted a poor survival in both discovery and validation datasets in a dose-response manner (Ptrend = .0006 and .0001, respectively). Additional functional analysis revealed that both SDCCAG8 rs10803138 A and MAGI2 rs3807694 T alleles were associated with elevated mRNA expression levels in normal tissues. Therefore, these findings suggest that SDCCAG8 rs10803138 G>A and MAGI2 rs3807694 C>T are independent prognostic biomarkers for CMSS, possibly by regulating the mRNA expression of the corresponding genes involved in mitosis.
Collapse
Affiliation(s)
- Yuanmin He
- Department of DermatologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| | - Hongliang Liu
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
| | - Sheng Luo
- Department of Biostatistics and BioinformaticsDuke University School of MedicineDurhamNCUSA
| | - Christopher I. Amos
- Institute for Clinical and Translational ResearchBaylor College of MedicineHoustonTXUSA
| | - Jeffrey E. Lee
- Department of Surgical OncologyThe University of Texas M. D. Anderson Cancer CenterHoustonTXUSA
| | - Xin Li
- Department of EpidemiologyRichard M. Fairbanks School of Public HealthIndiana UniversityIndianapolisINUSA
| | - Hongmei Nan
- Department of EpidemiologyRichard M. Fairbanks School of Public HealthIndiana UniversityIndianapolisINUSA
| | - Qingyi Wei
- Duke Cancer InstituteDuke University Medical CenterDurhamNCUSA
- Department of Population Health SciencesDuke University School of MedicineDurhamNCUSA
- Department of MedicineDuke University School of MedicineDurhamNCUSA
| |
Collapse
|
9
|
Kwon W, Choi SK, Kim D, Kim HG, Park JK, Han JE, Cho GJ, Yun S, Yu W, Han SH, Ha YS, Lee JN, Kwon TG, Cho DH, Yi JK, Kim MO, Ryoo ZY, Park S. ZNF507 affects TGF-β signaling via TGFBR1 and MAP3K8 activation in the progression of prostate cancer to an aggressive state. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:291. [PMID: 34537073 PMCID: PMC8449443 DOI: 10.1186/s13046-021-02094-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
Background The progression of prostate cancer (PC) to the highly aggressive metastatic castration-resistant prostate cancer (mCRPC) or neuroendocrine prostate cancer (NEPC) is a fatal condition and the underlying molecular mechanisms are poorly understood. Here, we identified the novel transcriptional factor ZNF507 as a key mediator in the progression of PC to an aggressive state. Methods We analyzed ZNF507 expression in the data from various human PC database and high-grade PC patient samples. By establishment of ZNF507 knockdown and overexpression human PC cell lines, we assessed in vitro PC phenotype changes including cell proliferation, survival, migration and invasion. By performing microarray with ZNF507 knockdown PC cells, we profiled the gene clusters affected by ZNF507 knockdown. Moreover, ZNF507 regulated key signal was evaluated by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Finally, we performed xenograft and in vivo metastasis assay to confirm the effect of ZNF507 knockdown in PC cells. Results We found that ZNF507 expression was increased, particularly in the highly graded PC. ZNF507 was also found to be associated with metastatic PC of a high grade. Loss- or gain-of-function–based analysis revealed that ZNF507 promotes the growth, survival, proliferation, and metastatic properties of PC (e.g., epithelial-mesenchymal transition) by upregulating TGF-β signaling. Profiling of gene clusters affected by ZNF507 knockdown revealed that ZNF507 positively regulated the transcription of TGFBR1, MAP3K8, and FURIN, which in turn promoted the progression of PC to highly metastatic and aggressive state. Conclusions Our findings suggest that ZNF507 is a novel key regulator of TGF-β signaling in the progression of malignant PC and could be a promising target for studying the development of advanced metastatic PCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02094-3.
Collapse
Affiliation(s)
- Wookbong Kwon
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea. .,Division of Biotechnology, DGIST, Daegu, Republic of Korea.
| | - Daehwan Kim
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Division of Biotechnology, DGIST, Daegu, Republic of Korea.,School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, Korea
| | - Hyeon-Gyeom Kim
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Jin-Kyu Park
- College of Veterinary Medicine, Kyungpook National University, 41566, Daegu, Korea
| | - Jee Eun Han
- College of Veterinary Medicine, Kyungpook National University, 41566, Daegu, Korea
| | - Gil-Jae Cho
- College of Veterinary Medicine, Kyungpook National University, 41566, Daegu, Korea
| | - Sungho Yun
- College of Veterinary Medicine, Kyungpook National University, 41566, Daegu, Korea
| | - Wookyung Yu
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Se-Hyeon Han
- School of Media Communication, Hanyang University, Wangsimni-ro 222, Seongdong- gu, Seoul, South Korea.,Department of News-team, SBS (Seoul Broadcasting System), Mokdongseo-ro 161, Yangcheon-gu, Seoul, South Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Dong-Hyung Cho
- School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, Korea.,Brain Science and Engineering Institute, Kyungpook National University, 41566, Daegu, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbuk-do Livestock Research institute, Yeongju, South Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, 37224, Sangju, Republic of Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 FOUR KNU Creative Bioresearch, Kyungpook National University, Daegu, Korea.
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea. .,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
10
|
He Y, Liu H, Luo S, Amos CI, Lee JE, Yang K, Qureshi AA, Han J, Wei Q. Genetic variants of EML1 and HIST1H4E in myeloid cell-related pathway genes independently predict cutaneous melanoma-specific survival. Am J Cancer Res 2021; 11:3252-3262. [PMID: 34249459 PMCID: PMC8263692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/07/2020] [Indexed: 06/13/2023] Open
Abstract
Both in vivo and in vitro evidence has supported a key role of myeloid cells in immune suppression in melanoma and in promoting melanocytic metastases. Some single-nucleotide polymorphisms (SNPs) have been shown to predict cutaneous melanoma-specific survival (CMSS), but the association between genetic variation in myeloid cell-related genes and cutaneous melanoma (CM) patient survival remains unknown. METHODS we investigated associations between SNPs in myeloid cell-related pathway genes and CMSS in a discovery dataset of 850 CM patients and replicated the findings in another dataset of 409 CM patients. RESULTS we identified two SNPs (EML1 rs10151787 A>G and HIST1H4E rs2069018 T>C) as independent prognostic factors for CMSS, with adjusted allelic hazards ratios of 1.56 (95% confidence interval =1.19-2.05, P=0.001) and 1.66 (1.22-2.26, P=0.001), respectively; so were their combined unfavorable alleles in a dose-response manner in both discovery and replication datasets (P trend<0.001 and 0.002, respectively). Additional functional analysis revealed that both EML1 rs10151787 G and HIST1H4E rs2069018 C alleles were associated with elevated mRNA expression levels in normal tissues. CONCLUSIONS Our findings suggest that EML1 rs10151787 A>G and HIST1H4E rs2069018 T>C are independent prognostic biomarkers for CMSS.
Collapse
Affiliation(s)
- Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of MedicineDurham, NC 27710, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of MedicineHouston, TX 77030, USA
| | - Jeffrey E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer CenterHouston, TX 77030, USA
| | - Keming Yang
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana UniversityIndianapolis, IN 46202, USA
| | - Abrar A Qureshi
- Department of Dermatology, Rhode Island HospitalProvidence, RI 02901, USA
- Warren Alpert Medical School at Brown UniversityProvidence, RI 02901, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana UniversityIndianapolis, IN 46202, USA
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical SchoolBoston, MA 02115, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical CenterDurham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of MedicineDurham, NC 27710, USA
- Department of Medicine, Duke University School of MedicineDurham, NC 27710, USA
| |
Collapse
|
11
|
Allemailem KS, Almatroudi A, Alrumaihi F, Makki Almansour N, Aldakheel FM, Rather RA, Afroze D, Rah B. Single nucleotide polymorphisms (SNPs) in prostate cancer: its implications in diagnostics and therapeutics. Am J Transl Res 2021; 13:3868-3889. [PMID: 34017579 PMCID: PMC8129253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Prostate cancer is one of the most frequently diagnosed malignancies in developed countries and approximately 248,530 new cases of prostate cancer are likely to be diagnosed in the United States in 2021. During the late 1990s and 2000s, the prostate cancer-related death rate has decreased by 4% per year on average because of advancements in prostate-specific antigen (PSA) testing. However, the non-specificity of PSA to distinguish between benign and malignant forms of cancer is a major concern in the management of prostate cancer. Despite other risk factors in the pathogenesis of prostate cancer, recent advancement in molecular genetics suggests that genetic heredity plays a crucial role in prostate carcinogenesis. Approximately, 60% of heritability and more than 100 well-recognized single-nucleotide-polymorphisms (SNPs) have been found to be associated with prostate cancer and constitute a major risk factor in the development of prostate cancer. Recent findings revealed that a low to moderate effect on the progression of prostate cancer of individual SNPs was observed compared to a strong progressive effect when SNPs were in combination. Here, in this review, we made an attempt to critically analyze the role of SNPs and associated genes in the development of prostate cancer and their implications in diagnostics and therapeutics. A better understanding of the role of SNPs in prostate cancer susceptibility may improve risk prediction, enhance fine-mapping, and furnish new insights into the underlying pathophysiology of prostate cancer.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim UniversityBuraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim UniversityBuraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim UniversityBuraydah, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al BatinHafr Al Batin, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Prince Sattam Chair for Epidemiology and Public Health Research, College of Medicine, King Saud UniversityRiyadh, Saudi Arabia
| | - Rafiq Ahmad Rather
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical ScienceSrinagar, Jammu and Kashmir, India
| | - Dil Afroze
- Advanced Centre for Human Genetics, Sher-i-Kashmir Institute of Medical ScienceSrinagar, Jammu and Kashmir, India
| | - Bilal Rah
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim UniversityBuraydah, Saudi Arabia
| |
Collapse
|
12
|
Sultan CS, Weitnauer M, Turinsky M, Kessler T, Brune M, Gleissner CA, Leuschner F, Wagner AH, Hecker M. Functional association of a CD40 gene single-nucleotide polymorphism with the pathogenesis of coronary heart disease. Cardiovasc Res 2021; 116:1214-1225. [PMID: 31373353 DOI: 10.1093/cvr/cvz206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Endothelial dysfunction is a major contributor to the pathogenesis of atherosclerosis. CD40-CD40 ligand interactions confer a pro-inflammatory phenotype to endothelial cells (ECs). Recently, a thymine to cytosine transition (-1T>C) in the Kozak sequence of the CD40 gene (rs1883832) has been associated with coronary heart disease (CHD) in an Asian population. As there are no reports yet regarding its role in other ethnic groups, this study determines if the -1T>C single-nucleotide polymorphism (SNP) could be a risk factor for CHD in Caucasians by performing an association study and elucidates its functional consequence in cultured ECs. METHODS AND RESULTS Molecular and biochemical techniques, cell adhesion assays were used for genotype-stratified human EC characterization. SNP distribution in Caucasians was examined in a hospital-based case-control CHD study and serum levels of soluble CD40 (sCD40) were quantified by ELISA. The SNP in the CD40 gene affected baseline CD40 protein abundance on ECs. There was a genotype-dependent difference in CD40-mediated expression of pro-inflammatory genes. Monocyte adhesion was highest on the surface of cells homozygous for the C allele. Homozygosity for the C allele was associated with significant 2.32-fold higher odds of developing CHD as compared to TT genotype carriers. sCD40 plasma levels were genotype-dependently elevated in CHD patients, indicating a possible prognostic value. CONCLUSION The C allele of the CD40 SNP provokes a pro-inflammatory EC phenotype, compensated by an enhanced CD40 shedding to neutralize excess CD40 ligand. Homozygosity for the C allele is the cause for a genetic susceptibility to atherosclerosis and its sequelae.
Collapse
Affiliation(s)
- Cheryl S Sultan
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Michael Weitnauer
- Department of Medical Microbiology and Hygiene, Heidelberg University, Heidelberg, Germany
| | - Martin Turinsky
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Thorsten Kessler
- German Heart Centre Munich, Technical University Munich, Munich, Germany
| | - Maik Brune
- Department of Internal Medicine 1 and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Christian A Gleissner
- Department of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany
| | - Florian Leuschner
- Department of Cardiology, Angiology and Pneumology, Heidelberg University, Heidelberg, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Lin HY, Wang X, Tseng TS, Kao YH, Fang Z, Molina PE, Cheng CH, Berglund AE, Eeles RA, Muir KR, Pashayan N, Haiman CA, Brenner H, Consortium TP, Park JY. Alcohol Intake and Alcohol-SNP Interactions Associated with Prostate Cancer Aggressiveness. J Clin Med 2021; 10:553. [PMID: 33540941 PMCID: PMC7867322 DOI: 10.3390/jcm10030553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Excessive alcohol intake is a well-known modifiable risk factor for many cancers. It is still unclear whether genetic variants or single nucleotide polymorphisms (SNPs) can modify alcohol intake's impact on prostate cancer (PCa) aggressiveness. The objective is to test the alcohol-SNP interactions of the 7501 SNPs in the four pathways (angiogenesis, mitochondria, miRNA, and androgen metabolism-related pathways) associated with PCa aggressiveness. We evaluated the impacts of three excessive alcohol intake behaviors in 3306 PCa patients with European ancestry from the PCa Consortium. We tested the alcohol-SNP interactions using logistic models with the discovery-validation study design. All three excessive alcohol intake behaviors were not significantly associated with PCa aggressiveness. However, the interactions of excessive alcohol intake and three SNPs (rs13107662 [CAMK2D, p = 6.2 × 10-6], rs9907521 [PRKCA, p = 7.1 × 10-5], and rs11925452 [ROBO1, p = 8.2 × 10-4]) were significantly associated with PCa aggressiveness. These alcohol-SNP interactions revealed contrasting effects of excessive alcohol intake on PCa aggressiveness according to the genotypes in the identified SNPs. We identified PCa patients with the rs13107662 (CAMK2D) AA genotype, the rs11925452 (ROBO1) AA genotype, and the rs9907521 (PRKCA) AG genotype were more vulnerable to excessive alcohol intake for developing aggressive PCa. Our findings support that the impact of excessive alcohol intake on PCa aggressiveness was varied by the selected genetic profiles.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Xinnan Wang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Tung-Sung Tseng
- Behavioral and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yu-Hsiang Kao
- Behavioral and Community Health Sciences Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Zhide Fang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patricia E Molina
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Comprehensive Alcohol Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Chia-Ho Cheng
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Rosalind A Eeles
- The Institute of Cancer Research, and The Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| | - Kenneth R Muir
- Division of Population Health, Health Services Research, and Primary Care, University of Manchester, Oxford Road, Manchester, M139PT, UK
| | - Nora Pashayan
- Department of Applied Health Research, University College London, WC1E 7HB, London, UK
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90015, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), D-69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| | - The Practical Consortium
- The Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome Consortium (PRACTICAL, http://practical.icr.ac.uk/), London SM2 5NG, UK. Additional members from The PRACTICAL Consortium were provided in the Supplement
| | - Jong Y Park
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
14
|
Mussazhanova Z, Rogounovitch TI, Saenko VA, Krykpayeva A, Espenbetova M, Azizov B, Kondo H, Matsuda K, Kalmatayeva Z, Issayeva R, Yeleubayeva Z, Madiyeva M, Mukanova A, Sandybayev M, Bolsynbekova S, Kozykenova Z, Yamashita S, Nakashima M. The Contribution of Genetic Variants to the Risk of Papillary Thyroid Carcinoma in the Kazakh Population: Study of Common Single Nucleotide Polymorphisms and Their Clinicopathological Correlations. Front Endocrinol (Lausanne) 2020; 11:543500. [PMID: 33551988 PMCID: PMC7862756 DOI: 10.3389/fendo.2020.543500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Risk for developing papillary thyroid carcinoma (PTC), the most common endocrine malignancy, is thought to be mediated by lifestyle, environmental exposures and genetic factors. Recent progress in the genome-wide association studies of thyroid cancer leads to the identification of several genetic variants conferring risk to this malignancy across different ethnicities. We set out to elucidate the impact of selected single nucleotide polymorphisms (SNPs) on PTC risk and to evaluate clinicopathological correlations of these genetic variants in the Kazakh population for the first time. METHODS Eight SNPs were genotyped in 485 patients with PTC and 1,008 healthy control Kazakh subjects. The association analysis and multivariable modeling of PTC risk by the genetic factors, supplemented with rigorous statistical validation, were performed. RESULT Five of the eight SNPs: rs965513 (FOXE1/PTCSC2, P = 1.3E-16), rs1867277 (FOXE1 5'UTR, P = 7.5E-06), rs2439302 (NRG1 intron 1, P = 4.0E-05), rs944289 (PTCSC3/NKX2-1, P = 4.5E-06) and rs10136427 (BATF upstream, P = 9.8E-03) were significantly associated with PTC. rs966423 (DIRC3, P = 0.07) showed a suggestive association. rs7267944 (DHX35) was associated with PTC risk in males (P = 0.02), rs1867277 (FOXE1) conferred the higher risk in subjects older than 55 years (P = 7.0E-05), and rs6983267 (POU5F1B/CCAT2) was associated with pT3-T4 tumors (P = 0.01). The contribution of genetic component (unidirectional independent effects of rs965513, rs944289, rs2439302 and rs10136427 adjusted for age and sex) to PTC risk in the analyzed series was estimated to be 30-40%. CONCLUSION Genetic factors analyzed in the present work display significant association signals with PTC either on the whole group analysis or in particular clinicopathological groups and account for about one-third of the risk for PTC in the Kazakh population.
Collapse
Affiliation(s)
- Zhanna Mussazhanova
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Tatiana I. Rogounovitch
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Vladimir A. Saenko
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- *Correspondence: Vladimir A. Saenko,
| | - Ainur Krykpayeva
- Department of Endocrinology, Semey Medical University, Semey, Kazakhstan
| | - Maira Espenbetova
- Department of Endocrinology, Semey Medical University, Semey, Kazakhstan
| | - Bauyrzhan Azizov
- Endovascular Laboratory of Training Hospital, Semey Medical University, Semey, Kazakhstan
| | - Hisayoshi Kondo
- Biostatics Section, Division of Scientific Data Registry, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Zhanna Kalmatayeva
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Raushan Issayeva
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Zhanar Yeleubayeva
- Faculty of Medicine and Health Care, Al-Farabi Kazakh National University, Almaty, Kazakhstan
- Center of Morphological Examination, Kazakh Institute of Oncology and Radiology, Almaty, Kazakhstan
| | - Madina Madiyeva
- Radiology and Nuclear Medicine, Semey Medical University, Semey, Kazakhstan
| | - Aray Mukanova
- Radiology and Nuclear Medicine, Semey Medical University, Semey, Kazakhstan
| | - Marat Sandybayev
- Center of Nuclear Medicine and Oncology of Semey, Semey, Kazakhstan
| | | | - Zhanna Kozykenova
- Department of Pathological Physiology, Semey Medical University, Semey, Kazakhstan
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
15
|
Van den Broeck T, Moris L, Gevaert T, Tosco L, Smeets E, Fishbane N, Liu Y, Helsen C, Margrave J, Buerki C, Davicioni E, Van Poppel H, Everaerts W, Weinmann S, Den R, Davis J, Schaeffer E, Karnes RJ, Claessens F, Joniau S. Validation of the Decipher Test for Predicting Distant Metastatic Recurrence in Men with High-risk Nonmetastatic Prostate Cancer 10 Years After Surgery. Eur Urol Oncol 2019; 2:589-596. [DOI: 10.1016/j.euo.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 01/01/2023]
|
16
|
Yazdani M, Angaji A, Abolhasani M, Fathi Z, Madjd Z, Roviello G, Roudi R, Asgari M. The relationship between KLK3 rs17632542 and PRNCR1 rs16901979 polymorphisms with susceptibility to prostate cancer. Meta Gene 2019; 21:100595. [DOI: 10.1016/j.mgene.2019.100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Choi J, Tantisira KG, Duan QL. Whole genome sequencing identifies high-impact variants in well-known pharmacogenomic genes. THE PHARMACOGENOMICS JOURNAL 2019; 19:127-135. [PMID: 30214008 PMCID: PMC6417988 DOI: 10.1038/s41397-018-0048-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/10/2018] [Accepted: 08/10/2018] [Indexed: 01/21/2023]
Abstract
More than 1100 genetic loci have been correlated with drug response outcomes but disproportionately few have been translated into clinical practice. One explanation for the low rate of clinical implementation is that the majority of associated variants may be in linkage disequilibrium (LD) with the causal variants, which are often elusive. This study aims to identify and characterize likely causal variants within well-established pharmacogenomic genes using next-generation sequencing data from the 1000 Genomes Project. We identified 69,319 genetic variations within 160 pharmacogenomic genes, of which 8207 variants are in strong LD (r2>0.8) with known pharmacogenomic variants. Of the latter, eight are coding or structural variants predicted to have high impact, with 19 additional missense variants that are predicted to have moderate impact. In conclusion, we identified putatively functional variants within known pharmacogenomics loci that could account for the association signals and represent the missing causative variants underlying drug response phenotypes.
Collapse
Affiliation(s)
- Jihoon Choi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- School of Computing, Queen's University, Kingston, ON, Canada
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qing Ling Duan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
- School of Computing, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
18
|
Kdadra M, Höckner S, Leung H, Kremer W, Schiffer E. Metabolomics Biomarkers of Prostate Cancer: A Systematic Review. Diagnostics (Basel) 2019; 9:E21. [PMID: 30791464 PMCID: PMC6468767 DOI: 10.3390/diagnostics9010021] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PCa) diagnosis with current biomarkers is difficult and often results in unnecessary invasive procedures as well as over-diagnosis and over-treatment, highlighting the need for novel biomarkers. The aim of this review is to provide a summary of available metabolomics PCa biomarkers, particularly for clinically significant disease. A systematic search was conducted on PubMed for publications from July 2008 to July 2018 in accordance with PRISMA guidelines to report biomarkers with respect to their application in PCa diagnosis, progression, aggressiveness, recurrence, and treatment response. The vast majority of studies report biomarkers with the ability to distinguish malignant from benign prostate tissue with a few studies investigating biomarkers associated with disease progression, treatment response or tumour recurrence. In general, these studies report high dimensional datasets and the number of analysed metabolites often significantly exceeded the number of available samples. Hence, observed multivariate differences between case and control samples in the datasets might potentially also be associated with pre-analytical, technical, statistical and confounding factors. Giving the technical and methodological hurdles, there are nevertheless a number of metabolites and pathways repeatedly reported across various technical approaches, cohorts and sample types that appear to play a predominant role in PCa tumour biology, progression and recurrence.
Collapse
Affiliation(s)
| | | | - Hing Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK.
- CRUK Beatson Institute, Bearsden, Glasgow G61 1BD, UK.
| | - Werner Kremer
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany.
| | - Eric Schiffer
- Numares AG, Am BioPark 9, 93053 Regensburg, Germany.
| |
Collapse
|
19
|
Amplified detection of single base mismatches with the competing-strand assay reveals complex kinetic and thermodynamic behavior of strand displacement at the electrode surface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Cao D, Gu C, Ye D, Dai B, Zhu Y. PCA3 rs544190G>A and prostate cancer risk in an eastern Chinese population. Int Braz J Urol 2018; 44:500-505. [PMID: 29412547 PMCID: PMC5996780 DOI: 10.1590/s1677-5538.ibju.2017.0146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/22/2017] [Indexed: 11/28/2022] Open
Abstract
Background: The association of prostate cancer antigen 3 (PCA3) polymorphism (SNP, rs544190G>A) with metastatic prostate cancer in European descent has been reported. Our aim of the current study was to re-validate the effect of PCA3 polymorphism on prostate cancer risk in an Eastern Chinese population and then estimate possible genetic discrepancies among population. Materials and Methods: Taqman assay was employed to determine genotype of SNP rs544190 in 1015 ethnic Han Chinese patients with prostate cancer and 1032 cancer-free controls. Simultaneously, odds ratios (OR) and 95% confidence intervals (95%CI) for risk relationship were calculated by logistic regression models. Results: The statistically significant relationship between PCA3 rs544190G>A and higher prostate cancer risk was not found. Stratification analysis revealed that there was no remarkable association of rs544190 variant AG/AA genotype with prostate cancer risk in every subgroup, except for patients with Gleason score ≤7(3+4). Conclusion: Although the results demonstrated that SNP rs544190 was not involved in prostate cancer risk in Eastern Chinese descent, unlike in European population, these might have clinical implications on prostate cancer heterogeneity around the World. To validate these findings, well-designed studies with different ethnic populations are warranted.
Collapse
Affiliation(s)
- Dalong Cao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chengyuan Gu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Al-Obaide MAI, Ibrahim BA, Al-Humaish S, Abdel-Salam ASG. Genomic and Bioinformatics Approaches for Analysis of Genes Associated With Cancer Risks Following Exposure to Tobacco Smoking. Front Public Health 2018; 6:84. [PMID: 29616208 PMCID: PMC5869936 DOI: 10.3389/fpubh.2018.00084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/05/2018] [Indexed: 01/03/2023] Open
Abstract
Cancer is a significant health problem in the Middle East and global population. It is well established that there is a direct link between tobacco smoking and cancer, which will continue to pose a significant threat to human health. The impact of long-term exposure to tobacco smoke on the risk of cancer encouraged the study of biomarkers for vulnerable individuals to tobacco smoking, especially children, who are more susceptible than adults to the action of environmental carcinogens. The carcinogens in tobacco smoke condensate induce DNA damage and play a significant role in determining the health and well-being of smokers, non-smoker, and primarily children. Cancer is a result of genomic and epigenomic malfunctions that lead to an initial premalignant condition. Although premalignancy genetic cascade is a much-delayed process, it will end with adverse health consequences. In addition to the DNA damage and mutations, tobacco smoke can cause changes in the DNA methylation and gene expression associated with cancer. The genetic events hint on the possible use of genomic–epigenomic changes in genes related to cancer, in predicting cancer risks associated with exposure to tobacco smoking. Bioinformatics provides indispensable tools to identify the cascade of expressed genes in active smokers and non-smokers and could assist the development of a framework to manage this cascade of events linked with the evolvement of disease including cancer. The aim of this mini review is to cognize the essential genomic processes and health risks associated with tobacco smoking and the implications of bioinformatics in cancer prediction, prevention, and intervention.
Collapse
Affiliation(s)
- Mohammed A I Al-Obaide
- Department of Biomedical Science, School of Pharmacy, Texas Tech University Health Science Center, Amarillo, TX, United States
| | | | | | - Abdel-Salam G Abdel-Salam
- Department of Mathematics, Statistics and Physics, College of Arts and Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Jin HJ, Jung S, DebRoy AR, Davuluri RV. Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer. Oncotarget 2018; 7:54616-54626. [PMID: 27409348 PMCID: PMC5338917 DOI: 10.18632/oncotarget.10520] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the second most common solid tumor for cancer related deaths in American men. Genome wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with the increased risk of PCa. Because most of the susceptibility SNPs are located in noncoding regions, little is known about their functional mechanisms. We hypothesize that functional SNPs reside in cell type-specific regulatory elements that mediate the binding of critical transcription factors (TFs), which in turn result in changes in target gene expression. Using PCa-specific functional genomics data, here we identify 38 regulatory candidate SNPs and their target genes in PCa. Through risk analysis by incorporating gene expression and clinical data, we identify 6 target genes (ZG16B, ANKRD5, RERE, FAM96B, NAALADL2 and GTPBP10) as significant predictors of PCa biochemical recurrence. In addition, 5 SNPs (rs2659051, rs10936845, rs9925556, rs6057110 and rs2742624) are selected for experimental validation using Chromatin immunoprecipitation (ChIP), dual-luciferase reporter assay in LNCaP cells, showing allele-specific enhancer activity. Furthermore, we delete the rs2742624-containing region using CRISPR/Cas9 genome editing and observe the drastic downregulation of its target gene UPK3A. Taken together, our results illustrate that this new methodology can be applied to identify regulatory SNPs and their target genes that likely impact PCa risk. We suggest that similar studies can be performed to characterize regulatory variants in other diseases.
Collapse
Affiliation(s)
- Hong-Jian Jin
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Segun Jung
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Auditi R DebRoy
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ramana V Davuluri
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Association between polymorphisms in sex hormones synthesis and metabolism and prostate cancer aggressiveness. PLoS One 2017; 12:e0185447. [PMID: 28981526 PMCID: PMC5628818 DOI: 10.1371/journal.pone.0185447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/12/2017] [Indexed: 12/31/2022] Open
Abstract
Novel biomarkers for prostate cancer (PCa) diagnosis and prognosis are necessary to improve the accuracy of current ones employed in clinic. We performed a retrospective study between the association of several polymorphisms in the main genes involved in the synthesis and metabolism of sex hormones and PCa risk and aggressiveness. A total of 311 Caucasian men (155 controls and 156 patients) were genotyped for 9 SNPs in AR, CYP17A1, LHCGR, ESR1 and ESR2 genes. Diagnostic PSA serum levels, Gleason score, tumor stage, D´Amico risk and data of clinical progression were obtained for patients at the moment of the diagnosis and after 54 months of follow-up. Chi-squared test were used for comparisons between clinical variables groups, logistic regression for clinical variables associations between SNPs; and Kaplan–Meier for the association between SNPs and time to biochemical progression. We found 5 variants (CYP17A1) rs743572, rs6162, rs6163; (LHCGR) rs2293275 and (ESR2) rs1256049 that were statistically significant according to clinical variables (PSA, D´Amico risk and T stage) on a case-case analysis. Moreover, the presence of A and G alleles in rs743572 and rs6162 respectively, increase the risk of higher PSA levels (>10 ng/μl). With respect to D´Amico risk rs743572 (AG-GG), rs6162 (AG-AA) and rs6163 (AC-AA) were associated with an increased risk; and last, AC and AA genotypes for rs6163 were associated with a shorter biochemical recurrence free survival (BRFS) in patients with radical prostatectomy. In multigene analysis, several variants in SNPs rs2293275, rs6152, rs1062577, rs6162, rs6163, rs1256049 and rs1004467 were described to be associated with a more aggressiveness in patients. However, none of the selected SNPs show significant values between patients and controls. In conclusion, this study identified inherited variants in genes CYP17A1, LHCGR and ESR2 related to more aggressiveness and/or a poor progression of the disease. According to this study, new promise PCa biomarkers for clinical management could be included in these previous SNPs.
Collapse
|
24
|
Clinton TN, Bagrodia A, Lotan Y, Margulis V, Raj GV, Woldu SL. Tissue-based biomarkers in prostate cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017; 2:249-260. [PMID: 29226251 PMCID: PMC5722240 DOI: 10.1080/23808993.2017.1372687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Prostate cancer is a heterogeneous disease. Existing risk stratification tools based on standard clinlicopathologic variables (prostate specific antigen [PSA], Gleason score, and tumor stage) provide a modest degree of predictive ability. Advances in high-throughput sequencing has led to the development of several novel tissue-based biomarkers that can improve prognostication in prostate cancer management. AREAS COVERED The authors review commercially-available, tissue-based biomarker assays that improve upon existing risk-stratification tools in several areas of prostate cancer management, including the appropriateness of active surveillance and aiding in decision making regarding the use of adjuvant therapy. Additionally, some of the obstacles to the widespread adoption of these biomarkers and discuss several investigational sources of new biomarkers are discussed. EXPERT COMMENTARY Work is ongoing to answer pertinent clinical questions in prostate cancer management including which patients should undergo biopsy, active surveillance, receive adjuvant therapy, and what systemic therapy is best in the first-line. Incorporation into novel biomarkers may allow for the incorporation of a 'personalized' approach to management. Further validation will be required and questions of cost must be considered before wide scale adoption of these biomarkers. Tumor heterogeneity may impose a ceiling on the prognostic ability of biomarkers using currently available techniques.
Collapse
Affiliation(s)
- Timothy N Clinton
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| | - Aditya Bagrodia
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| | - Yair Lotan
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| | - Vitaly Margulis
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| | - Ganesh V Raj
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| | - Solomon L Woldu
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| |
Collapse
|
25
|
Lin HY, Chen DT, Huang PY, Liu YH, Ochoa A, Zabaleta J, Mercante DE, Fang Z, Sellers TA, Pow-Sang JM, Cheng CH, Eeles R, Easton D, Kote-Jarai Z, Amin Al Olama A, Benlloch S, Muir K, Giles GG, Wiklund F, Gronberg H, Haiman CA, Schleutker J, Nordestgaard BG, Travis RC, Hamdy F, Pashayan N, Khaw KT, Stanford JL, Blot WJ, Thibodeau SN, Maier C, Kibel AS, Cybulski C, Cannon-Albright L, Brenner H, Kaneva R, Batra J, Teixeira MR, Pandha H, Lu YJ, Park JY. SNP interaction pattern identifier (SIPI): an intensive search for SNP-SNP interaction patterns. Bioinformatics 2017; 33:822-833. [PMID: 28039167 PMCID: PMC5860469 DOI: 10.1093/bioinformatics/btw762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/04/2016] [Accepted: 11/28/2016] [Indexed: 11/12/2022] Open
Abstract
Motivation Testing SNP-SNP interactions is considered as a key for overcoming bottlenecks of genetic association studies. However, related statistical methods for testing SNP-SNP interactions are underdeveloped. Results We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45 biologically meaningful interaction patterns for a binary outcome. SIPI takes non-hierarchical models, inheritance modes and mode coding direction into consideration. The simulation results show that SIPI has higher power than MDR (Multifactor Dimensionality Reduction), AA_Full, Geno_Full (full interaction model with additive or genotypic mode) and SNPassoc in detecting interactions. Applying SIPI to the prostate cancer PRACTICAL consortium data with approximately 21 000 patients, the four SNP pairs in EGFR-EGFR , EGFR-MMP16 and EGFR-CSF1 were found to be associated with prostate cancer aggressiveness with the exact or similar pattern in the discovery and validation sets. A similar match for external validation of SNP-SNP interaction studies is suggested. We demonstrated that SIPI not only searches for more meaningful interaction patterns but can also overcome the unstable nature of interaction patterns. Availability and Implementation The SIPI software is freely available at http://publichealth.lsuhsc.edu/LinSoftware/ . Contact hlin1@lsuhsc.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Hui-Yi Lin
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Dung-Tsa Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Po-Yu Huang
- Computational Intelligence Technology Center, Industrial Technology Research Institute, Hsinchu City, Taiwan
| | - Yung-Hsin Liu
- Department of Biometrics, INC Research, LLC, Raleigh, NC, USA
| | - Augusto Ochoa
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Jovanny Zabaleta
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Donald E Mercante
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Zhide Fang
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, USA
| | - Thomas A Sellers
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Julio M Pow-Sang
- Department of Genitourinary Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Chia-Ho Cheng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Rosalind Eeles
- The Institute of Cancer Research, London, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Doug Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | | | - Ali Amin Al Olama
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | - Sara Benlloch
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
| | | | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Johanna Schleutker
- Department of Medical Biochemistry and Genetics, Institute of Biomedicine, University of Turku, Turku, Finland
- Tyks Microbiology and Genetics, Department of Medical Genetics, Turku University Hospital, Turku, Finland
- BioMediTech, 30014 University of Tampere, Tampere, Finland
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Ruth C Travis
- Cancer Epidemiology, Nuffield Department of Population Health University of Oxford, Oxford, UK
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Medical Science, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Cambridge, UK
- Department of Applied Health Research, University College London, London, UK
| | - Kay-Tee Khaw
- Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - William J Blot
- International Epidemiology Institute, Rockville, MD, USA
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Christiane Maier
- Institute of Human Genetics University Hospital Ulm, Ulm, Germany
| | - Adam S Kibel
- Brigham and Women's Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
- Washington University, St Louis, MO, USA
| | - Cezary Cybulski
- International Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Lisa Cannon-Albright
- Division of Genetic Epidemiology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radka Kaneva
- Molecular Medicine Center and Department of Medical Chemistry and Biochemistry, Medical University - Sofia, Sofia, Bulgaria
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation and Schools of Life Science and Public Health, Queensland University of Technology, Brisbane, Australia
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal
| | | | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
| | - Jong Y Park
- Department of Cancer Epidemiology, Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
26
|
Matin F, Jeet V, Clements JA, Yousef GM, Batra J. MicroRNA Theranostics in Prostate Cancer Precision Medicine. Clin Chem 2016; 62:1318-33. [DOI: 10.1373/clinchem.2015.242800] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/10/2016] [Indexed: 01/07/2023]
Abstract
Abstract
BACKGROUND
Prostate cancer is the second most frequently diagnosed cancer in men worldwide. Theranostics, a combination of diagnostics and therapeutics, is an emerging concept in the field of precision medicine, and microRNAs (miRNAs) are predictive pioneers in this area.
CONTENT
miRNAs are small endogenous noncoding RNA molecules that regulate gene expression posttranscriptionally by targeting messenger RNAs. More than 60% of all protein coding genes are controlled by miRNAs, which makes them powerful regulators of the different cellular processes involved in the pathogenesis of various types of cancer, including prostate cancer. Growing evidence indicates the differential expression of miRNAs in tumor tissues. In addition, miRNAs in body fluids, known as circulating miRNAs, are present in remarkably stable forms and their alteration in prostate cancer has been well documented. Circulating miRNAs are known to originate from tumor tissues, thereby enabling intercellular communication via carriers to promote tumorigenesis and malignancy. In addition, fueled by recent advances, the use of miRNA-based anticancer therapies has been proposed with the onset of early phase clinical trials to assess the therapeutic efficacy of miRNAs.
SUMMARY
In this review, we summarize the theranostic utility of miRNAs and outline their diagnostic and prognostic potential in prostate cancer. In addition, we discuss the current detection methodologies and emerging innovative strategies for the detection of miRNAs in body fluids and tumor tissues in the clinical setting. We also provide insight into the current and future therapeutic potential of miRNAs in prostate cancer.
Collapse
Affiliation(s)
- Farhana Matin
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Varinder Jeet
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith A Clements
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - George M Yousef
- Molecular Diagnostics, Department of Laboratory Medicine, St. Michael's Hospital, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
27
|
Huang J, Wang Z, Kim JK, Su X, Li Z. Detecting Arbitrary DNA Mutations Using Graphene Oxide and Ethidium Bromide. Anal Chem 2015; 87:12254-61. [DOI: 10.1021/acs.analchem.5b03369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiahao Huang
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Zhenyu Wang
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jang-Kyo Kim
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xuefen Su
- School of Public
Health and Primary Care, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong,
Shatin, New Territories, Hong Kong
| | - Zhigang Li
- Department
of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
28
|
Adabi Z, Mohsen Ziaei SA, Imani M, Samzadeh M, Narouie B, Jamaldini SH, Afshari M, Safavi M, Roshandel MR, Hasanzad M. Genetic Polymorphism of MMP2 Gene and Susceptibility to Prostate Cancer. Arch Med Res 2015; 46:546-50. [PMID: 26319608 DOI: 10.1016/j.arcmed.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/19/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS The polymorphic genetic variants of matrix metalloproteinase (MMPs) can play critical roles in development and progression of cancer. The purpose of this study was to investigate if any association exists between MMP2 -1306/T and risk of prostate cancer (PCa). METHODS This case-control study comprised a total number of 241 subjects, including 102 patients with PCa and 139 controls with benign prostatic hyperplasia (BPH). MMP2 genotypes were detected by RFLP. RESULTS There is no significant difference between different genotypes of MMP2 polymorphism and risk of developing PCa (p = 0.08). Although these genotypes increased the risk of developing PCa 79% (CT vs. CC) and 54% (TT vs. CC), none had a significant effect (p = 0.09 and p = 1 respectively). There were no significant differences in genotype frequencies between patients with low and high degrees of PCa (p = 0.4). Therefore, this polymorphism cannot be considered as a protective factor for PCa metastasis. It seems that MMP2 polymorphism has no protective effect on the grading of the tumor (p = 0.8). Our results indicated that MMP2 polymorphism had no role in the vascular invasion of PCa. CONCLUSION We found no association between MMP2 polymorphism and cancer risk, overall or by grade, stage or age of diagnosis. Finally, there was no association between the different genotypes and PSA plasma levels among cases or controls. Further evaluations with larger samples from our population may illuminate the effects of polymorphisms on PCa risk and thus help early diagnosis, follow-up and prognostic determinations for PCa patients.
Collapse
Affiliation(s)
- Zahra Adabi
- Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Amir Mohsen Ziaei
- Urology and Nephrology Research Center (UNRC), Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Imani
- Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Samzadeh
- Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Urology and Nephrology Research Center (UNRC), Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Narouie
- Urology and Nephrology Research Center (UNRC), Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hamid Jamaldini
- Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Urology and Nephrology Research Center (UNRC), Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Afshari
- Department of Community Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Majid Safavi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Roshandel
- Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mandana Hasanzad
- Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
29
|
Albitar F, Diep K, Ma W, Albitar M. Synonymous Polymorphisms in HOXB13 as a Protective Factor for Prostate Cancer. J Cancer 2015; 6:409-11. [PMID: 25874003 PMCID: PMC4392048 DOI: 10.7150/jca.11413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/18/2015] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Genomic association and linkage studies, as well as epidemiological data have implicated both the HOXB13 gene and single nucleotide polymorphisms (SNPs) in the development of prostate cancer (PCa). The recent association between the G84E polymorphism in the HOXB13 gene and PCa has been shown to result in a more aggressive cancer with an earlier onset of the disease. We examined the frequency of this mutation and other recurrent HOXB13 SNPs in patients with PCa and those with benign prostatic hyperplasia (BPH) or no cancer. METHODS Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed on exons 1 and 2 of HOXB13 gene, followed by bidirectional Sanger Sequencing on peripheral blood from 232 PCa (age 46-92) and 110 BPH (age 45-84) patients. Statistical analysis was used to correlate between recurrent SNPs and PCa. RESULTS The G84E mutation was found at a low frequency in randomly selected PCa and BPH (both 0.9%). Two recurrent, synonymous SNPs, rs8556 and rs900627, were also detected. rs8556 was detected in 48 PCa (20.7%) and 26 BPH (23.6%) subjects; rs9900627was detected in 27 PCa (11.6%) and 19 BPH (17.3%) subjects. Having both rs8556 and rs9900627 or being homozygous for either one was associated with being 2.9 times less likely to develop PCa (p=0.05). CONCLUSIONS Although a larger study in order to confirm our findings, our data suggests a significant negative correlation between two SNPs, rs8556 and rs9900627, and the presence of PCa.
Collapse
Affiliation(s)
- Ferras Albitar
- NeoGenomics Laboratories, 5 Jenner Suite 100, Irvine, CA USA 92618
| | - Kevin Diep
- NeoGenomics Laboratories, 5 Jenner Suite 100, Irvine, CA USA 92618
| | - Wanlong Ma
- NeoGenomics Laboratories, 5 Jenner Suite 100, Irvine, CA USA 92618
| | - Maher Albitar
- NeoGenomics Laboratories, 5 Jenner Suite 100, Irvine, CA USA 92618
| |
Collapse
|
30
|
Liu M, Hu P, Zhang G, Zeng Y, Yang H, Fan J, Jin L, Liu H, Deng Y, Li S, Zeng X, Elingarami S, He N. Copy number variation analysis by ligation-dependent PCR based on magnetic nanoparticles and chemiluminescence. Am J Cancer Res 2015; 5:71-85. [PMID: 25553099 PMCID: PMC4265749 DOI: 10.7150/thno.10117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/21/2014] [Indexed: 12/19/2022] Open
Abstract
A novel system for copy number variation (CNV) analysis was developed in the present study using a combination of magnetic separation and chemiluminescence (CL) detection technique. The amino-modified probes were firstly immobilized onto carboxylated magnetic nanoparticles (MNPs) and then hybridized with biotin-dUTP products, followed by amplification with ligation-dependent polymerase chain reaction (PCR). After streptavidin-modified alkaline phosphatase (STV-AP) bonding and magnetic separation, the CL signals were then detected. Results showed that the quantification of PCR products could be reflected by CL signal values. Under optimum conditions, the CL system was characterized for quantitative analysis and the CL intensity exhibited a linear correlation with logarithm of the target concentration. To validate the methodology, copy numbers of six genes from the human genome were detected. To compare the detection accuracy, multiplex ligation-dependent probe amplification (MLPA) and MNPs-CL detection were performed. Overall, there were two discrepancies by MLPA analysis, while only one by MNPs-CL detection. This research demonstrated that the novel MNPs-CL system is a useful analytical tool which shows simple, sensitive, and specific characters which are suitable for CNV analysis. Moreover, this system should be improved further and its application in the genome variation detection of various diseases is currently under further investigation.
Collapse
|
31
|
Henríquez-Hernández LA, Valenciano A, Foro-Arnalot P, Álvarez-Cubero MJ, Cozar JM, Suárez-Novo JF, Castells-Esteve M, Fernández-Gonzalo P, De-Paula-Carranza B, Ferrer M, Guedea F, Sancho-Pardo G, Craven-Bartle J, Ortiz-Gordillo MJ, Cabrera-Roldán P, Herrera-Ramos E, Rodríguez-Gallego C, Rodríguez-Melcón JI, Lara PC. Single nucleotide polymorphisms in DNA repair genes as risk factors associated to prostate cancer progression. BMC MEDICAL GENETICS 2014; 15:143. [PMID: 25540025 PMCID: PMC4316399 DOI: 10.1186/s12881-014-0143-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/17/2014] [Indexed: 12/22/2022]
Abstract
Background Besides serum levels of PSA, there is a lack of prostate cancer specific biomarkers. It is need to develop new biological markers associated with the tumor behavior which would be valuable to better individualize treatment. The aim of this study was to elucidate the relationship between single nucleotide polymorphisms (SNPs) in genes involved in DNA repair and prostate cancer progression. Methods A total of 494 prostate cancer patients from a Spanish multicenter study were genotyped for 10 SNPs in XRCC1, ERCC2, ERCC1, LIG4, ATM and TP53 genes. The SNP genotyping was made in a Biotrove OpenArray® NT Cycler. Clinical tumor stage, diagnostic PSA serum levels, and Gleason score at diagnosis were obtained for all participants. Genotypic and allelic frequencies were determined using the web-based environment SNPator. Results SNPs rs11615 (ERCC1) and rs17503908 (ATM) appeared as risk factors for prostate cancer aggressiveness. Patients wild homozygous for these SNPs (AA and TT, respectively) were at higher risk for developing cT2b – cT4 (OR = 2.21 (confidence interval (CI) 95% 1.47 – 3.31), p < 0.001) and Gleason scores ≥ 7 (OR = 2.22 (CI 95% 1.38 – 3.57), p < 0.001), respectively. Moreover, those patients wild homozygous for both SNPs had the greatest risk of presenting D’Amico high-risk tumors (OR = 2.57 (CI 95% 1.28 – 5.16)). Conclusions Genetic variants at DNA repair genes are associated with prostate cancer progression, and would be taken into account when assessing the malignancy of prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12881-014-0143-0) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Polymorphisms at long non-coding RNAs and prostate cancer risk in an eastern Chinese population. Prostate Cancer Prostatic Dis 2014; 17:315-9. [DOI: 10.1038/pcan.2014.34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/26/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022]
|
33
|
Scorilas A, Mavridis K. Predictions for the future of kallikrein-related peptidases in molecular diagnostics. Expert Rev Mol Diagn 2014; 14:713-22. [PMID: 24927162 DOI: 10.1586/14737159.2014.928207] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Kallikrein-related peptidases (KLKs) form a cancer-related ensemble of serine proteases. This multigene family hosts the most widely used cancer biomarker that is PSA-KLK3, with millions of tests performed annually worldwide. The present report provides an overview of the biomarker potential of the extended KLK family (KLK1-KLK15) in various disease settings and envisages approaches that could lead to additional KLK-driven applications in future molecular diagnostics. Particular focus is given on the inclusion of KLKs into multifaceted cancer biomarker panels that provide enhanced diagnostic, prognostic and/or predictive accuracy in several human malignancies. Such panels have been described so far for prostate, ovarian, lung and colorectal cancers. The role of KLKs as biomarkers in non-malignant disease settings, such as Alzheimer's disease and multiple sclerosis, is also commented upon. Predictions are given on the challenges and future directions regarding clinically oriented KLK research.
Collapse
Affiliation(s)
- Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens 157 01, Greece
| | | |
Collapse
|