1
|
Roy S, Pattanaik PP, K M N, Moitra P, Dandela R. Rational design and syntheses of naphthalimide-based fluorescent probes for targeted detection of diabetes biomarkers. Bioorg Chem 2025; 154:108013. [PMID: 39652983 DOI: 10.1016/j.bioorg.2024.108013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 01/15/2025]
Abstract
Diabetes poses serious health risks, leading to complications such as liver damage, renal issues, and heart inflammation. Diagnosis typically relies on blood sugar level testing, but qualitative markers like obesity and fatigue often manifest only after prolonged illness. To address the delay in diagnosis, the development of fluorescent probes has drawn the key attention. This review examines the recent advancements especially on Naphthalimide (NM) based fluorescent construct for detecting biomolecular changes related to diabetes and its complications. For the first time this review discusses the synthetic methods and design principles for these probes, providing valuable insights for researchers focused on diabetes treatment and probe development, and laying the groundwork for future clinical applications of these probes in early diabetes diagnosis and intervention.
Collapse
Affiliation(s)
- Sanjukta Roy
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Piyusa Priyadarsan Pattanaik
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India
| | - Neethu K M
- Department of Chemical Sciences, Indian Institute of Science and Education Research Berhampur, Odisha 760003, India
| | - Parikshit Moitra
- Department of Chemical Sciences, Indian Institute of Science and Education Research Berhampur, Odisha 760003, India.
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Pei X, Huang D, Li Z. Genetic insights and emerging therapeutics in diabetic retinopathy: from molecular pathways to personalized medicine. Front Genet 2024; 15:1416924. [PMID: 39246572 PMCID: PMC11378321 DOI: 10.3389/fgene.2024.1416924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes worldwide, significantly causing vision loss and blindness in working-age adults, and imposing a substantial socioeconomic burden globally. This review examines the crucial role of genetic factors in the development of DR and highlights the shift toward personalized treatment approaches. Advances in genetic research have identified specific genes and variations involved in angiogenesis, inflammation, and oxidative stress that increase DR susceptibility. Understanding these genetic markers enables early identification of at-risk individuals and the creation of personalized treatment plans. Incorporating these genetic insights, healthcare providers can develop early intervention strategies and tailored treatment plans to improve patient outcomes and minimize side effects. This review emphasizes the transformative potential of integrating genetic information into clinical practice, marking a paradigm shift in DR management and advancing toward a more personalized and effective healthcare model.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Duliurui Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Sun W, Su M, Zhuang L, Ding Y, Zhang Q, Lyu D. Clinical serum lipidomic profiling revealed potential lipid biomarkers for early diabetic retinopathy. Sci Rep 2024; 14:15148. [PMID: 38956223 PMCID: PMC11219800 DOI: 10.1038/s41598-024-66157-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes featuring abnormal lipid metabolism. However, the specific lipid molecules associated with onset and progression remain unclear. We used a broad-targeted lipidomics approach to assess the lipid changes that occur before the proliferative retinopathy stage and to identify novel lipid biomarkers to distinguish between patients without DR (NDR) and with non-proliferative DR (NPDR). Targeted lipomics analysis was carried out on serum samples from patients with type I diabetes, including 20 NDRs and 20 NPDRs. The results showed that compared with the NDR group, 102 lipids in the NPDR group showed specific expressions. Four lipid metabolites including TAG58:2-FA18:1 were obtained using the Least Absolute Shrink And Selection Operator (LASSO) and Support Vector Machine Recursive Feature Elimination (SVM-RFE) methods. The four-lipid combination diagnostic models showed good predictive ability in both the discovery and validation sets, and were able to distinguish between NDR patients and NPDR patients. The identified lipid markers significantly improved diagnostic accuracy within the NPDR group. Our findings help to better understand the complexity and individual differences of DR lipid metabolism.
Collapse
Affiliation(s)
- Wen Sun
- Ophthalmology, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, 571100, China
- Ophthalmology, Hainan Medical College Affiliated Chinese Medicine Hospital, Haikou, 571100, China
| | - Miaomiao Su
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Lvyun Zhuang
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Yujun Ding
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Qianhui Zhang
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China
| | - Daizhu Lyu
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571100, China.
| |
Collapse
|
4
|
Hossein A, Firouzeh G, Zeinab K, Gholamreza D. Quercetin prevents kidney against diabetes mellitus (type 1) in rats by inhibiting TGF-β/apelin gene expression. Mol Biol Rep 2024; 51:677. [PMID: 38796641 DOI: 10.1007/s11033-024-09617-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND One of the main causes of diabetic nephropathy is oxidative stress induced by hyperglycemia. Apelin inhibits insulin secretion. Besides, renal expression of TGF-β is increased in diabetes mellitus (DM). The preventive effect of quercetin (Q) against renal functional disorders and tissue damage developed by DM in rats was assessed. METHODS Forty male Wistar rats were grouped into normal control (NC), normal + quercetin (NQ: quercetin, 50 mg/kg/day by gavage), diabetic control (DC: streptozotocin, 65 mg/kg, i.p.), diabetic + quercetin pretreatment (D + Qpre), and diabetic + quercetin post-treatment (D + Qpost). All samples (24-hour urine, plasma, pancreatic, and renal tissues) were obtained at the terminal of the experiment. RESULTS Compared to NC and NQ groups, DM ended in elevated plasma and glucose levels, decreased plasma insulin level, kidney dysfunction, augmented levels of malondialdehyde, decreased level of reduced glutathione, reduced enzymatic activities of superoxide dismutase and catalase, elevated gene expression levels of apelin and TGF-β, also renal and pancreatic histological damages. Quercetin administration diminished entire the changes. However, the measure of improvement in the D + Qpre group was higher than that of the D + Qpost group. CONCLUSION Quercetin prevents renal dysfunction induced by DM, which might be related to the diminution of lipid peroxidation, strengthening of antioxidant systems, and prevention of the apelin/ TGF-β signaling pathway.
Collapse
Affiliation(s)
- Ashraf Hossein
- Department of Biology, School of Science, Shiraz University, Shiraz, Iran
| | | | - Karimi Zeinab
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Daryabor Gholamreza
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Wang R, Rao S, Zhong Z, Xiao K, Chen X, Sun X. Emerging role of ferroptosis in diabetic retinopathy: a review. J Drug Target 2024; 32:393-403. [PMID: 38385350 DOI: 10.1080/1061186x.2024.2316775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a significant complication of diabetes and the primary cause of blindness among working age adults globally. The development of DR is accompanied by oxidative stress, characterised by an overproduction of reactive oxygen species (ROS) and a compromised antioxidant system. Clinical interventions aimed at mitigating oxidative stress through ROS scavenging or elimination are currently available. Nevertheless, these treatments merely provide limited management over the advanced stage of the illness. Ferroptosis is a distinctive form of cell death induced by oxidative stress, which is characterised by irondependent phospholipid peroxidation. PURPOSE This review aims to synthesise recent experimental evidence to examine the involvement of ferroptosis in the pathological processes of DR, as well as to explicate the regulatory pathways governing oxidative stress and ferroptosis in retina. METHODS We systematically reviewed literature available up to 2023. RESULTS This review included 12 studies investigating the involvement of ferroptosis in DR.
Collapse
Affiliation(s)
- Ruohong Wang
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Suyun Rao
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zheng Zhong
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Ke Xiao
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xuhui Chen
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xufang Sun
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
6
|
Gao J, Tao L, Jiang Z. Alleviate oxidative stress in diabetic retinopathy: antioxidant therapeutic strategies. Redox Rep 2023; 28:2272386. [PMID: 38041593 PMCID: PMC11001280 DOI: 10.1080/13510002.2023.2272386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES This review outlines the function of oxidative stress in DR and discusses therapeutic strategies to treat DR with antioxidants. METHODS Published papers on oxidative stress in DR and therapeutic strategies to treat DR with antioxidants were collected and reviewed via database searching on PubMed. RESULTS The abnormal development of DR is a complicated process. The pathogenesis of DR has been reported to involve oxidative stress, despite the fact that the mechanisms underlying this are still not fully understood. Excessive reactive oxygen species (ROS) accumulation can damage retina, eventually leading to DR. Increasing evidence have demonstrated that antioxidant therapy can alleviate the degeneration of retinal capillaries in DR. CONCLUSION Oxidative stress can play an important contributor in the pathogenesis of DR. Furthermore, animal experiments have shown that antioxidants are a beneficial therapy for treating DR, but more clinical trial data is needed.
Collapse
Affiliation(s)
- Jie Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
7
|
Suciu CI, Suciu VI, Nicoară SD. Optical Coherence Tomography Measurements in Type 1 Diabetic Subjects with Low and Moderate Daily Physical Activity. Rom J Ophthalmol 2023; 67:337-344. [PMID: 38239425 PMCID: PMC10793371 DOI: 10.22336/rjo.2023.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Physical activity is nowadays recognized as a protective factor against cardiovascular conditions, being cost-effective and easy to implement. Through its positive effects on hemodynamic and oxidative stress, different intensities in daily physical activity could influence diabetic macular edema (DME) in type 1 Diabetes Mellitus (DM). Methods: With the help of a spectral domain optical coherence tomography (OCT) device, we studied the macular thickness and ETDRS map parameters in type 1 DM patients who were classified into two groups: low and moderate intensity routine physical activity status, using the international physical activity questionnaire (IPAQ). All subjects received comparable anti-VEGF treatment. Results: Having a long disease evolution, patients with type 1 DM (T1DM) with moderate physical activity displayed better OCT measurements in specific retinal sectors than their counterparts with low physical activity. Variables such as age and body mass index (BMI) can influence the level of physical activity in T1DM patients. Conclusions: This study showed a lower prevalence of DME in T1DM subjects with moderate physical activity levels, revealing lower values for ETDRS OCT parameters in specific retinal sectors. The macular volumes (mm3) were significantly lower in the right eye for this group of subjects. Abbreviations: BMI = body mass index, CMT = central macular thickness, DM = diabetes mellitus, DME = diabetic macular edema, DR = diabetic retinopathy, FT = foveal thickness, II = inferior inner thickness, IO = inferior outer thickness, IPAQ = international physical activity questionnaire, LE = left eye, OCT = optical coherence tomography, MMT = maximal macular thickness, mMT = minimal macular thickness, MV = macular volume, NI = nasal inner thickness, NO = nasal outer thickness, QoL = quality of life, RE = right eye, SI = superior inner thickness, SO = superior outer thickness, T1DM = type 1 diabetes mellitus, T2DM = type 2 diabetes mellitus, TI = temporal inner thickness, TO = temporal outer thickness.
Collapse
Affiliation(s)
- Corina-Iuliana Suciu
- Department of Ophthalmology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vlad-Ioan Suciu
- Department of Neuroscience, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simona Delia Nicoară
- Department of Ophthalmology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Ophthalmology, Emergency County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Honisch C, Rodella U, Gatto C, Ruzza P, Tóthová JD. Oxidative Stress and Antioxidant-Based Interventional Medicine in Ophthalmology. Pharmaceuticals (Basel) 2023; 16:1146. [PMID: 37631061 PMCID: PMC10458870 DOI: 10.3390/ph16081146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The different anatomical compartments of the eye are highly subjected to reactive oxygen species (ROS) generation due to internal factors, such as metabolic high oxygen consumption, as well as environmental factors, including UV light. An antioxidant defense system is endowed in the eye tissues to regulate ROS quantity and activity. When this homeostatic system is overwhelmed, oxidative stress occurs, causing cellular damage, chronic inflammation, and tissue degeneration. It also plays a significant role in the development and progression of various ocular diseases. Understanding the mechanisms underlying oxidative stress in ocular conditions is thus crucial for the development of effective prevention and treatment strategies. To track marketed products based on antioxidant substances as active ingredients, the databases of the European Medicines Agency and the U.S. Food and Drug Administration were consulted. Only a limited number of items were identified, which were either used as therapeutic treatment or during ocular surgery, including antioxidants, synthetical derivatives, or pro-drugs designed to enhance tissue permeation and activity. This review aims to provide an overview of the primary ocular pathologies associated with oxidative stress and of the available pharmacological interventions centered around antioxidant molecules. Such insights are essential for advancing the development of effective prevention and novel treatment approaches.
Collapse
Affiliation(s)
- Claudia Honisch
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy;
| | - Umberto Rodella
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria, 14, 35020 Ponte San Nicolờ, Italy; (U.R.); (C.G.)
- Fondazione Banca degli Occhi del Veneto (FBOV), Via Paccagnella, 11, 30174 Zelarino, Italy
| | - Claudio Gatto
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria, 14, 35020 Ponte San Nicolờ, Italy; (U.R.); (C.G.)
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy;
| | - Jana D’Amato Tóthová
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria, 14, 35020 Ponte San Nicolờ, Italy; (U.R.); (C.G.)
| |
Collapse
|
9
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
10
|
Alghamdi AH, Ahmed AA, Bashir M, Abdalgadir H, Khalid A, Gul S. The use of medicinal plants in common ophthalmic disorders: A systematic review with meta-analysis. Heliyon 2023; 9:e15340. [PMID: 37151714 PMCID: PMC10161615 DOI: 10.1016/j.heliyon.2023.e15340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/19/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose This study aimed to assess and compile the available research articles about medicinal plants used for ocular diseases. Principal results A total of 2949 articles were retrieved, 35 full-text articles were assessed for eligibility, and seven studies (4 observational and three experimental) with low to moderate quality were eligible and involved in the systematic review, with a total of 600 plants from 4 countries. Among the 600 plants, only 24 (4%) were used to assess the status. Both the fixed and random models of the studies showed that the included studies tended to predict the results for the observational studies (OR = 0.062, CI = 0.043-0.090 OR = 0.039, CI = 0.012-0.122) for different plants used for ocular diseases. High heterogeneity (estimated as I2 = 87.078, Tau2 = 1.161 and Q-value = 23.217 with a p-value of 0.000), while for experimental studies (I2 = 94.928, Tau2 = 23.211 and Q-value = 39.434 with a p-value of 0.000) and publication bias were reported. Conclusion Few articles representing approximately 600 plants of low to moderate quality reported using medicinal plants for ocular diseases. The meta-analysis confirmed the systematic review findings regarding the plants' traditional use with high heterogeneity and publication bias. A considerable gap was proven in the use of medicinal plants in ocular diseases requiring intensive research.
Collapse
Affiliation(s)
- Ali Hendi Alghamdi
- Surgery Department, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Aimun A.E. Ahmed
- Pharmacology Department, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
- Pharmacology Department, Faculty of Pharmacy, Omdurman Islamic University, Khartoum, Sudan
| | - Mahadi Bashir
- Surgery Department, Faculty of Medicine, Al Baha University, Al Baha, Saudi Arabia
| | - Haidar Abdalgadir
- Biology Department, Faculty of Science, Al Baha University, Al Baha, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P. O. Box: 114, Jazan, Saudi Arabia
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Schnackenburgallee 114, D-22525 Hamburg, Germany
| |
Collapse
|
11
|
Rusmayani E, Artini W, Sasongko MB. Ischemia Modified Albumin (IMA) as a New Biomarker in the Ophthalmology Field: A Brief Literature Review. Open Ophthalmol J 2022. [DOI: 10.2174/18743641-v16-e2208010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose:
This study aimed to review the potential role of ischemia-modified albumin as a biomarker for diagnostic modalities in the ophthalmology field.
Methods:
Articles were reviewed without a specific date. A manual search was also performed by reviewing reference lists of meta-analyses and systematic reviews. All articles were reviewed, and a total of 18 articles were selected by the authors.
Results:
Oxidative stress increases structural and functional damage to proteins in many ocular diseases. The human serum albumin is a major circulating protein with antioxidative and anti-inflammatory properties. Oxidative stress has been shown to be an important part of etiology and pathogenesis in ocular diseases related to ischemia. Biomarkers that are specific to oxidative stress and ischemia-related ocular pathogenesis are needed to provide an extensive understanding regarding diagnosis, monitoring progression, and new potential target treatment. Ischemia-modified albumin (IMA) as a new promising biomarker might be useful in the early detection and treatment of ocular diseases with ischemic pathogenesis.
Conclusion:
IMA plays an important role in the progression of ophthalmology diseases, such as diabetic retinopathy, hypertensive retinopathy, cataract progression, seasonal allergies, and glaucoma. Further studies are needed to elaborate these results as a consideration in new testing modalities in clinical practice as well as a new target therapy research.
Collapse
|
12
|
Beyoğlu A, Kurutaş EB, Karaküçük Y, Çömez A, Meşen A. Comparing the effects of serum GPER-1 and oxidant/antioxidant levels on retinopathy in patients with diabetes and healthy individuals: a pilot study. Arq Bras Oftalmol 2022; 87:0311. [PMID: 35857982 PMCID: PMC11587498 DOI: 10.5935/0004-2749.2021-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/14/2022] [Indexed: 12/18/2023] Open
Abstract
PURPOSE This study aimed to determine the effect of serum G receptor-mediated protein-1 levels on the development of retinopathy in patients with diabetes in comparison with healthy individuals. METHODS The study enrolled patients with diabetic retinopathy (Group 1), patients without diabetic retinopathy (Group 2), and healthy individuals (Group 3). Levels of serum progesterone, serum G receptor-mediated protein-1, estradiol, oxidant/antioxidants, and thyroid-releasing hormones were analyzed and compared among the groups. Post-hoc analysis was performed to compare the subgroups in which significant differences were found. RESULTS Groups 1, 2, and 3 each included 40 patients. A significant difference was found among all groups in terms of serum G receptor-mediated protein-1, oxidant/antioxidant, and estradiol levels (p<0.01), but no significant difference was found in terms of thyroid-releasing hormone or progesterone (p=0.496, p=0.220, respectively). In the post-hoc analysis of the groups with significant differences, another significant difference was found among all groups for serum G receptor-mediated protein-1 and oxidant/antioxidant levels (p<0.05). Serum G receptor-mediated protein-1 and oxidant levels were positively correlated, whereas serum G receptor-mediated protein-1 and antioxidant levels were negatively correlated (r=0.622/p<0.01, r=0.453/p<0.01, r=0.460/p<0.01, respectively). The multiple regression analysis showed that increased levels of serum G receptor-mediated protein-1 may help prevent diabetic retinopathy. CONCLUSIONS Serum G receptor-mediated protein-1 levels, which were the highest in the diabetic retinopathy Group, increased as the oxidant/antioxidant balance changed in favor of oxidative stress. This appears to be a defense mechanism for preventing neuronal damage.
Collapse
Affiliation(s)
- Abdullah Beyoğlu
- Department of Ophthalmology, Faculty of Medicine, Sutcu Imam
Universty, Kahramanmaras, Turkey
| | - Ergül Belge Kurutaş
- Department of Biochemistry, Faculty of Medicine, Sutcu Imam
Universty, Kahramanmaras, Turkey
| | - Yalçın Karaküçük
- Department of Ophthalmology, Faculty of Medicine, Selcuk Universty,
Konya, Turkey
| | - Ayşegül Çömez
- Department of Ophthalmology, Faculty of Medicine, Sutcu Imam
Universty, Kahramanmaras, Turkey
| | - Ali Meşen
- Department of Ophthalmology, Faculty of Medicine, Sutcu Imam
Universty, Kahramanmaras, Turkey
| |
Collapse
|
13
|
Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity? Int J Mol Sci 2022; 23:ijms23137247. [PMID: 35806251 PMCID: PMC9266766 DOI: 10.3390/ijms23137247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
People with diabetes are more likely to have severe COVID-19 compared to the general population. Moreover, diabetes and COVID-19 demonstrate a certain parallelism in the mechanisms and organ damage. In this work, we applied bioinformatics analysis of associative molecular networks to identify key molecules and pathophysiological processes that determine SARS-CoV-2-induced disorders in patients with diabetes. Using text-mining-based approaches and ANDSystem as a bioinformatics tool, we reconstructed and matched networks related to hyperglycemia, diabetic complications, insulin resistance, and beta cell dysfunction with networks of SARS-CoV-2-targeted proteins. The latter included SARS-CoV-2 entry receptors (ACE2 and DPP4), SARS-CoV-2 entry associated proteases (TMPRSS2, CTSB, and CTSL), and 332 human intracellular proteins interacting with SARS-CoV-2. A number of genes/proteins targeted by SARS-CoV-2 (ACE2, BRD2, COMT, CTSB, CTSL, DNMT1, DPP4, ERP44, F2RL1, GDF15, GPX1, HDAC2, HMOX1, HYOU1, IDE, LOX, NUTF2, PCNT, PLAT, RAB10, RHOA, SCARB1, and SELENOS) were found in the networks of vascular diabetic complications and insulin resistance. According to the Gene Ontology enrichment analysis, the defined molecules are involved in the response to hypoxia, reactive oxygen species metabolism, immune and inflammatory response, regulation of angiogenesis, platelet degranulation, and other processes. The results expand the understanding of the molecular basis of diabetes and COVID-19 comorbidity.
Collapse
|
14
|
Gut microbiota: A potential therapeutic target for management of diabetic retinopathy? Life Sci 2021; 286:120060. [PMID: 34666038 DOI: 10.1016/j.lfs.2021.120060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is one of the main complications of Diabetes Mellitus (DM), drastically impacting individuals of working age over the years, being one of the main causes of blindness in the world. The existing therapies for its treatment consist of measures that aim only to alleviate the existing clinical signs, associated with the microvasculature. These treatments are limited only to the advanced stages and not to the preclinical ones. In response to a treatment with little resolution and limited for many patients with DM, investigations of alternative therapies that make possible the improvement of the glycemic parameters and the quality of life of subjects with DR, become extremely necessary. Recent evidence has shown that deregulation of the microbiota (dysbiosis) can lead to low-grade, local and systemic inflammation, directly impacting the development of DM and its microvascular complications, including DR, in an axis called the intestine-retina. In this regard, the present review seeks to comprehensively describe the biochemical pathways involved in DR as well as the association of the modulation of these mechanisms by the intestinal microbiota, since direct changes in the microbiota can have a drastic impact on various physiological processes. Finally, emphasize the strong potential for modulation of the gut-retina axis, as therapeutic and prophylactic target for the treatment of DR.
Collapse
|
15
|
He M, Long P, Chen T, Li K, Wei D, Zhang Y, Wang W, Hu Y, Ding Y, Wen A. ALDH2/SIRT1 Contributes to Type 1 and Type 2 Diabetes-Induced Retinopathy through Depressing Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1641717. [PMID: 34725563 PMCID: PMC8557042 DOI: 10.1155/2021/1641717] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022]
Abstract
Clinical observations found vision-threatening diabetic retinopathy (DR) occurs in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) patients, but T1DM may perform more progressive retinal abnormalities at the same diabetic duration with or without clinical retinopathy. In the present study, T1DM and T2DM patients without manifestations of DR were included in our preliminary clinical retrospective observation study to investigate the differentiated retinal function at the preclinical stage. Then, T1DM and T2DM rat models with 12-week diabetic duration were constructed to explore the potential mechanism of the discrepancy in retinal disorders. Our data demonstrated T1DM patients presented a poor retinal function, a higher allele frequency for ALDH2GA/AA, and a depressed aldehyde dehydrogenase 2 (ALDH2) activity and silent information regulator 1 (SIRT1) level, compared to T2DM individuals. In line with this, higher amplitudes of neurovascular function-related waves of electroretinograms were found in T2DM rats. Furthermore, the retinal outer nuclear layers were reduced in T1DM rats. The levels of retinal oxidative stress biomarkers including total reactive oxygen species, NADPH oxidase 4 and mitochondrial DNA damage, and inflammatory indicators covering inducible/endothelial nitric acid synthase ratio, interleukin-1, and interleukin-6 were obviously elevated. Notably, the level of retinal ALDH2 and SIRT1 in T1DM rats was significantly diminished, while the expression of neovascularization factors was dramatically enhanced compared to T2DM. Together, our data indicated that the ALDH2/SIRT1 deficiency resulted in prominent oxidative stress and was in association with DR progression. Moreover, a differentiating ALDH2/SIRT1 expression may be responsible for the dissimilar severity of DR pathological processes in chronic inflammatory-related T1DM and T2DM.
Collapse
MESH Headings
- Adult
- Aldehyde Dehydrogenase, Mitochondrial/genetics
- Aldehyde Dehydrogenase, Mitochondrial/metabolism
- Animals
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetic Retinopathy/enzymology
- Diabetic Retinopathy/etiology
- Diabetic Retinopathy/genetics
- Disease Models, Animal
- Disease Progression
- Female
- Humans
- Male
- Middle Aged
- Oxidative Stress
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Retina/enzymology
- Retina/pathology
- Retrospective Studies
- Sirtuin 1/metabolism
- Rats
Collapse
Affiliation(s)
- Mengshan He
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Pan Long
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, 610083 Sichuan, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Kaifeng Li
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Dongyu Wei
- Center of Clinical Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Yufei Zhang
- The Air Force Hospital from Northern Theater PLA, Shenyang, 110092 Liaoning, China
| | - Wenjun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Yonghe Hu
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu, 610081 Sichuan, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032 Shaanxi, China
| |
Collapse
|
16
|
Peng L, Ma W, Xie Q, Chen B. Identification and validation of hub genes for diabetic retinopathy. PeerJ 2021; 9:e12126. [PMID: 34603851 PMCID: PMC8445088 DOI: 10.7717/peerj.12126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Background Diabetic retinopathy (DR) is characterized by a gradually progressive alteration in the retinal microvasculature that leads to middle-aged adult acquired persistent blindness. Limited research has been conducted on DR pathogenesis at the gene level. Thus, we aimed to reveal novel key genes that might be associated with DR formation via a bioinformatics analysis. Methods The GSE53257 dataset from the Gene Expression Omnibus was downloaded for gene co-expression analysis. We identified significant gene modules via the Weighted Gene Co-expression Network Analysis, which was conducted by the Protein-Protein Interaction (PPI) Network via Cytoscape and from this we screened for key genes and gene sets for particular functional and pathway-specific enrichments. The hub gene expression was verified by real-time PCR in DR rats modeling and an external database. Results Two significant gene modules were identified. Significant key genes were predominantly associated with mitochondrial function, fatty acid oxidation and oxidative stress. Among all key genes analyzed, six up-regulated genes (i.e., SLC25A33, NDUFS1, MRPS23, CYB5R1, MECR, and MRPL15) were highly and significantly relevant in the context of DR formation. The PCR results showed that SLC25A33 and NDUFS1 expression were increased in DR rats modeling group. Conclusion Gene co-expression network analysis highlights the importance of mitochondria and oxidative stress in the pathophysiology of DR. DR co-expressing gene module was constructed and key genes were identified, and both SLC25A33 and NDUFS1 may serve as potential biomarker and therapeutic target for DR.
Collapse
Affiliation(s)
- Li Peng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Wei Ma
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Xie
- Department of Ophthalmology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, Hainan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Yousefi H, Komaki A, Shahidi S, Habibi P, Sadeghian R, Ahmadiasl N, Daghigh F. Diabetic neovascularization defects in the retina are improved by genistein supplementation in the ovariectomized rat. Inflammopharmacology 2021; 29:1579-1586. [PMID: 34581950 DOI: 10.1007/s10787-021-00852-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/18/2021] [Indexed: 11/28/2022]
Abstract
Genistein seems to have a protective and therapeutic effect on conditions associated with neovascular growth in the retina. This study investigated the angiogenesis, antioxidant, and anti-inflammatory effect of genistein on the retinas in ovariectomized diabetic rats. In this study, 40 female albino Wistar rats were divided into four groups (n = 8 per group): sham, ovariectomized group (OVX), OVX + diabetes (OVX.D), and OVX.D + genistein (OVX.D.G). OVX induced by removal of bilateral ovaries and then high-fat diet (HFD) and a low dose of streptozotocin (STZ) (1 mg/kg; intraperitoneal (IP) injection) was used for diabetes induction (OVX.D) with 8 weeks of genistein treatment (OVX.D.G). At the end of 8 weeks, the retina was removed under anesthesia. The samples were used to measure extracellular signal-regulated kinase (ERK), matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGF), and nuclear factor NF-kappa-B (NF-κB) by western blotting and inflammatory factors ELISA and oxidative stress. Measurements of glutathione (GSH) and malondialdehyde (MDA) showed that OVX and especially OVX.D significantly decreased GSH and increased MDA level in the retina, but genistein reversed these effects in OVX.D.G groups. Also, OVX and OVX.D significantly increased VEGF, MMP-2, p-ERK, NF-κB, interleukin-1beta (IL-1β), and tumor necrosis factor alpha (TNFα) expression in the retina of OVX and OVX.D groups in comparison to the sham group (p < 0.05). However, a significant reduction of these proteins was observed in the genistein-treated group (p < 0.05). In conclusion, bilateral ovariectomy and subsequently estrogen deficiency caused the development of inflammation, neovascularization, and then retinopathy in STZ-induced diabetic ovariectomized rats. On the basis of the results, genistein administration may be a practical approach for improving symptoms and complications of ovariectomized diabetic retinopathy.
Collapse
Affiliation(s)
- Hadi Yousefi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Habibi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nasser Ahmadiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
18
|
Rodríguez ML, Millán I, Ortega ÁL. Cellular targets in diabetic retinopathy therapy. World J Diabetes 2021; 12:1442-1462. [PMID: 34630899 PMCID: PMC8472497 DOI: 10.4239/wjd.v12.i9.1442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023] Open
Abstract
Despite the existence of treatment for diabetes, inadequate metabolic control triggers the appearance of chronic complications such as diabetic retinopathy. Diabetic retinopathy is considered a multifactorial disease of complex etiology in which oxidative stress and low chronic inflammation play essential roles. Chronic exposure to hyperglycemia triggers a loss of redox balance that is critical for the appearance of neuronal and vascular damage during the development and progression of the disease. Current therapies for the treatment of diabetic retinopathy are used in advanced stages of the disease and are unable to reverse the retinal damage induced by hyperglycemia. The lack of effective therapies without side effects means there is an urgent need to identify an early action capable of preventing the development of the disease and its pathophysiological consequences in order to avoid loss of vision associated with diabetic retinopathy. Therefore, in this review we propose different therapeutic targets related to the modulation of the redox and inflammatory status that, potentially, can prevent the development and progression of the disease.
Collapse
Affiliation(s)
- María Lucía Rodríguez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| | - Iván Millán
- Neonatal Research Group, Health Research Institute La Fe, Valencia 46026, Valencia, Spain
| | - Ángel Luis Ortega
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot 46100, Valencia, Spain
| |
Collapse
|
19
|
Franzone F, Nebbioso M, Pergolizzi T, Attanasio G, Musacchio A, Greco A, Limoli PG, Artico M, Spandidos DA, Taurone S, Agostinelli E. Anti-inflammatory role of curcumin in retinal disorders (Review). Exp Ther Med 2021; 22:790. [PMID: 34055089 PMCID: PMC8145690 DOI: 10.3892/etm.2021.10222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione], the main component of turmeric (Curcuma longa, a flowering plant of the ginger family, Zingiberaceae), is known to possess different pharmacological activities, particularly anti-inflammatory and antioxidant properties. Since an underlying inflammatory process exists in several ocular conditions, such as anterior uveitis, glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR), the aim of the present review was to summarize the pleiotropic effects exerted by this molecule, focusing in particular on its beneficial role in retinal diseases. The anti-inflammatory activity of curcumin has also been described in numerous systemic inflammatory pathologies and tumors. Specifically, the biological, pharmaceutical and nutraceutical properties of curcumin are associated with its ability to downregulate the expression of the following genes: IκBα, cyclooxygenase 2, prostaglandin E2, interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor-α. According to this finding, curcumin may be useful in the treatment of some retinal disorders. In DR, proliferative vitreoretinopathy and AMD, beneficial effects have been observed following treatment with curcumin, including slowing down of the inflammatory process. Despite the aforementioned evidence, the main disadvantage of this substance is that it possesses a low solubility, as well as poor oral bioavailability due to its reduced absorption, rapid metabolism and rapid elimination. Therefore, several curcumin analogues have been synthesized and tested over the years, in order to improve the possible obtainable therapeutic effects. The purpose of the present review was to identify new aspects that could guide future research on this important traditional medicine, which is a well-tolerated natural product, and is widely considered safe and economical.
Collapse
Affiliation(s)
- Federica Franzone
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Marcella Nebbioso
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Tiziano Pergolizzi
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Giuseppe Attanasio
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Angela Musacchio
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | | | - Marco Artico
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | | | - Enzo Agostinelli
- Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, I-00161 Rome, Italy.,International Polyamines Foundation ETS-ONLUS, I-00159 Rome, Italy
| |
Collapse
|
20
|
Sousa A, Ribeiro D, Fernandes E, Freitas M. The Effect of Chalcones on the Main Sources of Reactive Species Production: Possible Therapeutic Implications in Diabetes Mellitus. Curr Med Chem 2021; 28:1625-1669. [PMID: 32448100 DOI: 10.2174/0929867327666200525010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is characterized by hyperglycaemia, resulting from defects in insulin secretion, insulin action or both. There are several factors such as hyperlipidemia and oxidative stress (OS), namely the production of reactive oxygen/nitrogen species (ROS/RNS), that actively contribute to the development and worsening of DM. Chalcones, also termed as benzalacetophenone or benzylidene acetophenone, present a 1,3-diaryl-2-propen-1-one scaffold that has been shown to be highly promising in the development of new antioxidant compounds. Considering the potential interest of antioxidant therapy, the present review scrutinizes the role of the main sources of ROS/RNS production during DM. The modulatory effect of chalcones against nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, xanthine oxidase, mitochondrial respiratory chain and nitric oxide synthase, is also thoroughly discussed, establishing, whenever possible, a structure-activity relationship (SAR). From the SAR analysis, it can be stated that the presence of catechol groups, hydroxyl and methoxyl substituents in the chalcones scaffold improves their modulatory activity against the main sources of ROS/RNS production in DM.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
21
|
Nguelefack-Mbuyo EP, Peyembouo FP, Fofié CK, Nguelefack TB. Dose-dependent and time-dependent metabolic, hemodynamic, and redox disturbances in dexamethasone-treated Wistar rats. J Basic Clin Physiol Pharmacol 2021; 33:457-469. [PMID: 34704690 DOI: 10.1515/jbcpp-2020-0365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Dexamethasone is used experimentally to induce insulin resistance and type 2 diabetes. However, data concerning the dose, the duration of treatment, and the associated comorbidities are inconsistent. The aim of this study was to compare the effects of different doses of dexamethasone and the duration of treatment necessary for the development of a model of insulin resistance that mimics the clinical condition with the associated comorbidities. METHODS Dexamethasone was administered intramuscularly to male Wistar rats, at doses of 500 and 1,000 µg/kg/day for the subchronic treatment (eight consecutive days) and at doses of 5, 25, 50, and 100 µg/kg/day in chronic treatment (28 consecutive days). Effects on body weight, metabolism, hemodynamics, renal function, and redox status were evaluated. RESULTS Both treatments induced a progressive body weight loss that was drastic in subchronic treatment, improved glucose tolerance without affecting fasting glycemia. Doses of 1,000 and 100 µg/kg were associated with hypertriglyceridemia, hypertension, and increased heart rate, cardiac and renal hypertrophy. Increased creatinemia associated with reduced creatinuria were observed in sub-chronic treatment while increased proteinuria and reduced creatinuria were noticed in chronic treatment. 1,000 µg/kg dexamethasone caused an increase in hepatic, and renal malondialdehyde (MDA) and glutathione (GSH) coupled with a reduction in catalase activity. The dose of 100 µg/kg induced a rise in GSH and catalase activity but reduced MDA levels in the kidney. CONCLUSIONS Doses of 1,000 µg/kg for subchronic and 100 µg/kg for chronic treatment exhibited similar effects and are the best doses to respective time frames to induce the model.
Collapse
Affiliation(s)
- Elvine P Nguelefack-Mbuyo
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Fernande P Peyembouo
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Christian K Fofié
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Télesphore B Nguelefack
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
22
|
Du C, Lv T, Liu Q, Cheng Y, Liu C, Han M, Zhang W, Qian H. Carotenoids in Sporidiobolus pararoseus ameliorate diabetic nephropathy in mice through attenuating oxidative stress. Biol Chem 2021; 402:785-794. [PMID: 33713590 DOI: 10.1515/hsz-2021-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 11/15/2022]
Abstract
Diabetic nephropathy (DN) is the major life-threatening complication of diabetes, and oxidative stress takes part in its initiation and development. This study was performed to evaluate the effects of carotenoids from Sporidiobolus pararoseus (CSP) on the renal function and oxidative stress status of mice with streptozotocin (STZ)-induced DN. The results indicated that CSP significantly attenuated symptoms of STZ-induced DN shown by decreased fasting blood glucose, reduced urine volume, urine albumin, serum creatinine and serum urea nitrogen, and improved kidney histological morphology. Furthermore, biochemical analysis of serum and kidney revealed a marked increase in oxidative stress of DN mice as evidenced by reduced total antioxidant capacity (T-AOC), decreased activity of antioxidant enzyme -superoxide dismutase (SOD) and increased level of malondialdehyde (MDA). However, treatment with CSP improved oxidative stress status in DN mice as compared with the mice in model group. Exploration of the potential mechanism validated that CSP ameliorated the oxidative stress status in DN mice by activating the expressions of Nrf2, NQO-1, HO-1, GST and CAT in kidney. These data revealed that CSP may retard the progression of DN by ameliorating renal function, improving the oxidative stress status and activating the Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Chao Du
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai264025, Shandong Province, P. R. China.,BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai264025, Shandong Province, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Tianqi Lv
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Quanwen Liu
- School of Food Engineering, Ludong University, 186 Middle Hongqi Road, Yantai264025, Shandong Province, P. R. China.,BioNanotechnology Institute, Ludong University, 186 Middle Hongqi Road, Yantai264025, Shandong Province, P. R. China
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Chang Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Mei Han
- School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Weiguo Zhang
- School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, 1800 Lihu Avenue, Wuxi214122, Jiangsu Province, P. R. China
| |
Collapse
|
23
|
Miller WP, Sunilkumar S, Dennis MD. The stress response protein REDD1 as a causal factor for oxidative stress in diabetic retinopathy. Free Radic Biol Med 2021; 165:127-136. [PMID: 33524531 PMCID: PMC7956244 DOI: 10.1016/j.freeradbiomed.2021.01.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
Diabetic Retinopathy (DR) is a major cause of visual dysfunction, yet much remains unknown regarding the specific molecular events that contribute to diabetes-induced retinal pathophysiology. Herein, we review the impact of oxidative stress on DR, and explore evidence that supports a key role for the stress response protein regulated in development and DNA damage (REDD1) in the development of diabetes-induced oxidative stress and functional defects in vision. It is well established that REDD1 mediates the cellular response to a number of diverse stressors through repression of the central metabolic regulator known as mechanistic target of rapamycin complex 1 (mTORC1). A growing body of evidence also supports that REDD1 acts independent of mTORC1 to promote oxidative stress by both enhancing the production of reactive oxygen species and suppressing the antioxidant response. Collectively, there is strong preclinical data to support a key role for REDD1 in the development and progression of retinal complications caused by diabetes. Furthermore, early proof-of-concept clinical trials have found a degree of success in combating ischemic retinal disease through intravitreal delivery of an siRNA targeting the REDD1 mRNA. Overall, REDD1-associated signaling represents an intriguing target for novel clinical therapies that go beyond addressing the symptoms of diabetes by targeting the underlying molecular mechanisms that contribute to DR.
Collapse
Affiliation(s)
- William P Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA, 17033, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
24
|
Kanwugu ON, Glukhareva TV, Danilova IG, Kovaleva EG. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Crit Rev Food Sci Nutr 2021; 62:5005-5028. [PMID: 33591215 DOI: 10.1080/10408398.2021.1881434] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetes remains a major health emergency in our entire world, affecting hundreds of millions of people worldwide. In conjunction with its much-dreaded complications (e.g., nephropathy, neuropathy, retinopathy, cardiovascular diseases, etc.) it substantially reduces the quality of life, increases mortality as well as economic burden among patients. Over the years, oxidative stress and inflammation have been highlighted as key players in the development and progression of diabetes and its associated complications. Much research has been devoted, as such, to the role of antioxidants in diabetes. Astaxanthin is a powerful antioxidant found mostly in marine organisms. Over the past years, several studies have demonstrated that astaxanthin could be useful in the treatment and management of diabetes. It has been shown to protect β-cells, neurons as well as several organs including the eyes, kidney, liver, etc. against oxidative injuries experienced during diabetes. Furthermore, it improves glucose and lipid metabolism along with cardiovascular health. Its beneficial effects are exerted through multiple actions on cellular functions. Considering these and the fact that foods and natural products with biological and pharmacological activities are of much interest in the 21st-century food and drug industry, astaxanthin has a bright prospect in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Osman N Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia
| | - Tatiana V Glukhareva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia.,Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Irina G Danilova
- Institute of Immunology and Physiology, Ural Branch of the Russia Academy of Science, Yekaterinburg, Russia
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
25
|
Protective Effects of Fucoxanthin on High Glucose- and 4-Hydroxynonenal (4-HNE)-Induced Injury in Human Retinal Pigment Epithelial Cells. Antioxidants (Basel) 2020; 9:antiox9121176. [PMID: 33255669 PMCID: PMC7760030 DOI: 10.3390/antiox9121176] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of diabetes mellitus is increasing due to the eating and living habits of modern people. As the disease progresses, the long-term effects of diabetes can cause microvascular disease, causing dysfunction in different parts of the body, which, in turn, leads to different complications, such as diabetic neuropathy, diabetic nephropathy, and diabetic retinopathy (DR). DR is the main cause of vision loss and blindness in diabetic patients. Persistent hyperglycemia may cause damage to the retina, induce the accumulation of inflammatory factors, and destroy the blood–retinal barrier function. Fucoxanthin (Fx) is a marine carotenoid extracted from seaweed. It accounts for more than 10% of the total carotenoids in nature. Fx is mainly found in brown algae and has strong antioxidant properties, due to its unique biologically active structure. This carotenoid also has the effects of reducing lipid peroxidation, reducing DNA damage, and preventing cardiovascular diseases as well as anti-inflammatory and anti-tumor effects. However, there is no relevant research on the protective effect of Fx in DR. Therefore, in this study, we explore the protective effect of Fx on the retina. Human retinal epithelial cells (ARPE-19) are used to investigate the protective effect of Fx on high glucose stress- (glucose 75 mM) and high lipid peroxidation stress (4-hydroxynonenal, 4-HNE (30 μM))-induced DR. The cell viability test shows that Fx recovered the cell damage, and Western blotting shows that Fx reduced the inflammation response and maintained the integrity of the blood–retinal barrier by reducing its apoptosis and cell adhesion factor protein expression. Using an antioxidant enzyme assay kit, we find that the protective effect of Fx may be related to the strong antioxidant properties of Fx, which increases catalase and reduces oxidative stress to produce a protective effect on the retina.
Collapse
|
26
|
Wang Y, Li C, Ali I, Li L, Wang G. N-acetylcysteine modulates non-esterified fatty acid-induced pyroptosis and inflammation in granulosa cells. Mol Immunol 2020; 127:157-163. [PMID: 32987256 DOI: 10.1016/j.molimm.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
In the perinatal period of dairy cows, negative energy balance (NEB) is likely to occur, which increases the level of non-esterified fatty acids (NEFA) in the follicular fluid, hinders the proliferation of granulosa cells (GCs), and thus endangers the development of oocytes and the fecundity of dairy cows. We found that there were oxidative stress and inflammatory response in the serum of cows with perinatal ketosis. Whether the oxidative stress induced by NEFA is involved in the pyroptosis and inflammation of GCs remains unclear. After NEFA treatment, the expression of NLRP3 and caspase-1 and the release of inflammatory cytokines IL-1β were increased in a dose-dependent manner, indicating that NEFA may contribute to pyroptosis. Besides, NEFA stimulation induced oxidative stress, resulting in the phosphorylation of NF-κB, and increased the production of interleukin (IL)-6 and nitric oxide (NO), indicating that NEFA may induce inflammation in GCs. However, the NEFA-mediated effects were observably reversed when the GCs were pre-treated with antioxidant and radical scavenger, N-acetylcysteine (NAC). Taken together, our results reveal that NEFA can induce pyroptosis and inflammation through NLRP3 inflammasome and TLR4/NF-κB pathway, respectively, and NAC can alleviate these conditions.
Collapse
Affiliation(s)
- Yiru Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Jiang B, Geng Q, Li T, Mohammad Firdous S, Zhou X. Morin attenuates STZ-induced diabetic retinopathy in experimental animals. Saudi J Biol Sci 2020; 27:2139-2142. [PMID: 32714041 PMCID: PMC7376113 DOI: 10.1016/j.sjbs.2020.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023] Open
Abstract
Diabetic retinopathy (DR) occurs in untreated diabetic patients due to the strong influence of oxidative stress. Bioflavonoids are well known for their antioxidant property. Morin, a bioflavonoid, has been demonstrated for its antioxidant as well as antidiabetic activity. Thus, this research work intended to determine the ameliorative impact of morin in DR rats using STZ-induced type 1 diabetic model. To induce type 1 diabetic in rats STZ (60 mg/kg) was administered intraperitoneally. Grouping of animals was done as described below (n = 6), where, group I - normal control, group II - diabetic control, group III - morin (25 mg/kg), group IV - morin (50 mg/kg), and group V - metformin (350 mg/kg) were used. All the animals underwent treatment for 60 days as given above. It was observed that supplementation of morin (25 and 50 mg/kg) showed a noteworthy decline in elevated serum glucose level. Moreover, decrease in the level of LPO and improved activity of endogenous antioxidants (GPx, CAT, and SOD) was observed in morin treated groups. It also notably drops the concentration of TNF-α, IL-1β, and VEGF in the tissue homogenate of the retina. Furthermore, it increased the retinal thickness and cell count in the ganglion cell layer of the retina in diabetic animals. Hence, we can conclude that morin encumbers the progression of DR in diabetic animals, which may be via antioxidant property and suppression of TNF-α, IL-1β, and VEGF.
Collapse
Key Words
- AGEs, Advanced glycated end products
- Antioxidants
- BGL, Blood glucose level
- BRB, Blood retinal barrier
- CAT, Catalase
- DAG, Diacylglycerol
- Diabetic retinopathy
- GPx, Glutathione peroxidase
- IL-1β and VEGF
- IL-1β, Interleukin 1 beta
- LPO, Lipid peroxidase
- Morin
- PKC, Protein kinase C
- ROS, Reactive oxygen species
- SOD, Superoxide dismutase
- STZ, Streptozotocin
- TNF-α
- TNF-α, Tumor necrosis factor alpha
- VEGF, Vascular endothelial growth factor
Collapse
Affiliation(s)
- Bo Jiang
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai 201508, China
| | - Qingsen Geng
- Department of Eye Fundus,Liaocheng Guangming Ophthalmological Hospital, Liaocheng, Shandong 252000, China
| | - Tao Li
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai 201508, China
| | - Sayeed Mohammad Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah 711316, West Bengal, India
| | - Xiaodong Zhou
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Jinshan District, Shanghai 201508, China
| |
Collapse
|
28
|
Battaglia Parodi M, Brunoro A, Tomasso L, Scuderi G. Benefits of micronutrient supplementation for reducing the risk of wet age-related macular disease and diabetic retinopathy. Eur J Ophthalmol 2020; 30:780-794. [DOI: 10.1177/1120672120920537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular disease and diabetic retinopathy are chronic degenerative diseases characterised by progressive visual impairment. In Europe, age-related macular disease accounts for over 15% of blindness in adults over 50 years of age, and although the burden of diabetic retinopathy in terms of vision impairment is lower, vision loss associated with diabetic retinopathy is increasing with the rising prevalence of diabetes mellitus and the ageing of the population. Late-stage age-related macular disease can be subdivided into dry (non-neovascular) or wet (neovascular or exudative) forms. The large Age-Related Eye Disease Study 2 showed that supplementation with antioxidant nutrients reduces choroids neovascularisation and reduces the risk of progression of neovascular age-related macular disease. Antioxidant micronutrient supplements have also shown promising results in preventing the pathogenesis of retinopathy in animal models of diabetes. Age-related macular disease and diabetic retinopathy are understood to share some common pathophysiological characteristics, suggesting that micronutrients have an important role in ocular health in both conditions. This article will review the current evidence for the utility of micronutrients in preventing the development and progression of neovascular age-related macular disease and diabetic retinopathy.
Collapse
Affiliation(s)
| | | | | | - Gianluca Scuderi
- Ophthalmology Unit, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), St. Andrea Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
The role of semaphorins in small vessels of the eye and brain. Pharmacol Res 2020; 160:105044. [PMID: 32590102 DOI: 10.1016/j.phrs.2020.105044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
Small vessel diseases, such as ischemic retinopathy and cerebral small vessel disease (CSVD), are increasingly recognized in patients with diabetes, dementia and cerebrovascular disease. The mechanisms of small vessel diseases are poorly understood, but the latest studies suggest a role for semaphorins. Initially identified as axon guidance cues, semaphorins are mainly studied in neuronal morphogenesis, neural circuit assembly, and synapse assembly and refinement. In recent years, semaphorins have been found to play important roles in regulating vascular growth and development and in many pathophysiological processes, including atherosclerosis, angiogenesis after stroke and retinopathy. Growing evidence indicates that semaphorins affect the occurrence, perfusion and regression of both the macrovasculature and microvasculature by regulating the proliferation, apoptosis, migration, barrier function and inflammatory response of endothelial cells, vascular smooth muscle cells (VSMCs) and pericytes. In this review, we concentrate on the regulatory effects of semaphorins on the cell components of the vessel wall and their potential roles in microvascular diseases, especially in the retina and cerebral small vessel. Finally, we discuss potential molecular approaches in targeting semaphorins as therapies for microvascular disorders in the eye and brain.
Collapse
|
30
|
Zhang DI, Li C, Shi R, Zhao F, Yang Z. Lactobacillus fermentum JX306 Restrain D-galactose-induced Oxidative Stress of Mice through its Antioxidant Activity. Pol J Microbiol 2020; 69:205-215. [PMID: 32548989 PMCID: PMC7324864 DOI: 10.33073/pjm-2020-024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress-induced series of related degenerative diseases have received widespread attention. To screen new lactic acid bacteria (LAB) strains to resist oxidative stress, traditional Chinese fermented vegetables were used as a resource library to screen of LAB. The Lactobacillus fermentum JX306 strain, which showed high scavenging activity of DPPH free radical and hydrogen radical, and a strong lipid peroxidation inhibition rate in vitro was selected. L. fermentum JX306 was also examined for its antioxidant capacity in D-galactose-induced aging mice. The results showed that L. fermentum JX306 could significantly decrease malondialdehyde (MDA) levels and improve the activity of glutathione peroxidase (GSH-Px), and total antioxygenic capacity (TOC) in the serum, kidney, and liver. Meanwhile, the strain could remarkably upregulate the transcriptional level of the antioxidant-related enzyme genes, such as peroxiredoxin1 (Prdx1), glutathione reductase (Gsr), glutathione peroxidase (Gpx1), and thioredoxin reductase (TR3) encoding genes in the liver. Besides, histopathological observation proves that this probiotic strain could effectively inhibit oxidative damage to the liver and kidney in aging mice. Therefore, this unique antioxidant strain may have a high application value in the functional food industry and medicine industry.
Collapse
Affiliation(s)
- D I Zhang
- Department of Microbiology , College of Life Science , Key Laboratory for Agriculture Microbiology , Shandong Agricultural University , Taian , China
| | - Chuang Li
- Department of Microbiology , College of Life Science , Key Laboratory for Agriculture Microbiology , Shandong Agricultural University , Taian , China
| | - Ruirui Shi
- Department of Microbiology , College of Life Science , Key Laboratory for Agriculture Microbiology , Shandong Agricultural University , Taian , China
| | - Fengchun Zhao
- Department of Microbiology , College of Life Science , Key Laboratory for Agriculture Microbiology , Shandong Agricultural University , Taian , China
| | - Zhengyou Yang
- Department of Microbiology , College of Life Science , Key Laboratory for Agriculture Microbiology , Shandong Agricultural University , Taian , China
| |
Collapse
|
31
|
Nguelefack TB, Fofie CK, Nguelefack-Mbuyo EP, Wuyt AK. Multimodal α-Glucosidase and α-Amylase Inhibition and Antioxidant Effect of the Aqueous and Methanol Extracts from the Trunk Bark of Ceiba pentandra. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3063674. [PMID: 32382543 PMCID: PMC7191384 DOI: 10.1155/2020/3063674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Postprandial hyperglycemia and oxidative stress are important factors that worsen the health condition of patients with type 2 diabetes. We recently showed that extracts from Ceiba pentandra mitigate hyperglycemia in dexamethasone- and high diet/streptozotocin-induced diabetes. Herein, we evaluated the postprandial regulatory properties and the antioxidant effects of the aqueous (AE) and methanol (ME) extracts from the stem bark of Ceiba pentandra. The phytochemical analysis of AE and ME was performed using the LC-MS technique and the total phenolic and flavonoid assays. Both extracts were tested for their ability to inhibit superoxide anion (O2 •ـ), hydrogen peroxide (H2O2), protein oxidation, alpha-amylase, and alpha-glucosidase activities. The mode of enzyme inhibition was also determined in a kinetic study. AE and ME were both rich in phenolic and flavonoid compounds. ME was 2.13 and 1.91 times more concentrated than AE in phenolic and flavonoid compounds, respectively. LC-MS allowed the identification of 5 compounds in both extracts. ME and AE inhibited O2 •ـ with IC50 of 51.81 and 34.26 μg/ml, respectively. On H2O2, they exhibited IC50 of 44.84 and 1.78 μg/ml, respectively. Finally, they exhibited IC50 of 120.60 and 140.40 μg/ml, respectively, in the inhibition of protein oxidation induced by H2O2, while showing IC50 of 39.26 and 97.95 μg/ml on the protein oxidation induced by AAPH. ME and AE inhibited alpha-amylase with IC50 of 6.15 and 54.52 μg/ml, respectively. These extracts also inhibited alpha-glucosidase, demonstrating IC50 of 76.61 and 86.49 μg/ml. AE exhibited a mixed noncompetitive inhibition on both enzymes, whereas ME exhibited a competitive inhibition on α-amylase and a pure noncompetitive inhibition on α-glucosidase. These results demonstrate that ME and AE scavenge reactive oxygen species and prevent their effects on biomolecules. Besides, ME and AE inhibit carbohydrate digestive enzymes. These properties may contribute to reduce postprandial hyperglycemia and regulate glycemia in diabetic patients.
Collapse
Affiliation(s)
- Telesphore Benoit Nguelefack
- Laboratory of Animal Physiology and Phytopharmacology, Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Christian Kuete Fofie
- Laboratory of Animal Physiology and Phytopharmacology, Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Elvine Pami Nguelefack-Mbuyo
- Laboratory of Animal Physiology and Phytopharmacology, Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Adeline Kaptue Wuyt
- Laboratory of Animal Physiology and Phytopharmacology, Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|
32
|
Qi X, Mitter SK, Yan Y, Busik JV, Grant MB, Boulton ME. Diurnal Rhythmicity of Autophagy Is Impaired in the Diabetic Retina. Cells 2020; 9:cells9040905. [PMID: 32272782 PMCID: PMC7226792 DOI: 10.3390/cells9040905] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 12/28/2022] Open
Abstract
Retinal homeostasis is under both diurnal and circadian regulation. We sought to investigate the diurnal expression of autophagy proteins in normal rodent retina and to determine if this is impaired in diabetic retinopathy. C57BL/6J mice and Bio-Breeding Zucker (BBZ) rats were maintained under a 12h/12h light/dark cycle and eyes, enucleated over a 24 h period. Eyes were also collected from diabetic mice with two or nine-months duration of type 1 diabetes (T1D) and Bio-Breeding Zucker diabetic rat (BBZDR/wor rats with 4-months duration of type 2 diabetes (T2D). Immunohistochemistry was performed for the autophagy proteins Atg7, Atg9, LC3 and Beclin1. These autophagy proteins (Atgs) were abundantly expressed in neural retina and endothelial cells in both mice and rats. A differential staining pattern was observed across the retinas which demonstrated a distinctive diurnal rhythmicity. All Atgs showed localization to retinal blood vessels with Atg7 being the most highly expressed. Analysis of the immunostaining demonstrated distinctive diurnal rhythmicity, of which Atg9 and LC3 shared a biphasic expression cycle with the highest level at 8:15 am and 8:15 pm. In contrast, Beclin1 revealed a 24-h cycle with the highest level observed at midnight. Atg7 was also on a 24-h cycle with peak expression at 8:15 am, coinciding with the first peak expression of Atg9 and LC3. In diabetic animals, there was a dramatic reduction in all four Atgs and the distinctive diurnal rhythmicity of these autophagy proteins was significantly impaired and phase shifted in both T1D and T2D animals. Restoration of diurnal rhythmicity and facilitation of autophagy protein expression may provide new treatment strategies for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiaoping Qi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL 35294, USA; (X.Q.); (S.K.M.); (M.B.G.)
| | - Sayak K. Mitter
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL 35294, USA; (X.Q.); (S.K.M.); (M.B.G.)
| | - Yuanqing Yan
- Department of Neurosurgery, The University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL 35294, USA; (X.Q.); (S.K.M.); (M.B.G.)
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, AL 35294, USA; (X.Q.); (S.K.M.); (M.B.G.)
- Correspondence:
| |
Collapse
|
33
|
Ren X, Sun L, Wei L, Liu J, Zhu J, Yu Q, Kong H, Kong L. Liraglutide Up-regulation Thioredoxin Attenuated Müller Cells Apoptosis in High Glucose by Regulating Oxidative Stress and Endoplasmic Reticulum Stress. Curr Eye Res 2020; 45:1283-1291. [PMID: 32180468 DOI: 10.1080/02713683.2020.1737137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose: Diabetic retinopathy (DR) has become one of the most important complications of diabetes which is the leading cause of vision impairment and blindness all over the world. Increasing evidence shows that reactive gliosis are basic pathological features of early DR. The study was aimed to explore the protective effect and mechanism of Liraglutide (LIRA) which has similar properties to Glucagon-like peptide-1 (GLP-1) on Müller cell damage induced by diabetes. Materials and methods: In vitro, the Müller cell was cultured in high glucose (HG) to establish the model of diabetic retinopathy. The apoptosis was detected using flow cytometry. Western blot and immunofluorescence were used to detect the expression of related proteins. DCFH-DA probe was used to detect the ROS generation. Results: The data showed that the apoptosis and the expression of GFAP were increased significantly with HG treatment. However, the apoptosis percentage and the expression of GFAP were decreased after LIRA treatment. Moreover, the expression of p-Erk/Nrf2/Trx-signaling pathway proteins was also up-regulated and the generation of ROS was decreased after LIRA treatment which was inhibited after treatment with U0126 (Erk inhibitor). Besides, endoplasmic reticulum stress (ER stress) related proteins were up-regulated after Trx down-regulation by transfection with sh-RNA. Conclusions: LIRA could protect Müller cells from HG-induced damage via activating p-Erk pathway through increasing Trx expression which attenuated oxidative stress and ER stress. Trx could play a key role in the process.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| | - Lingmin Sun
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China.,Department of Anatomy, Jiangsu College of Nursing , Huai'an, Jiangsu Province, China
| | - Limin Wei
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| | - Junli Liu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| | - Jiaxu Zhu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| | - Quanquan Yu
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| | - Hui Kong
- Department of Otorhinolaryngology, The Second Hospital of Dalian Medical University , Dalian, Liaoning Province, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medicine, Dalian Medical University , Dalian, China
| |
Collapse
|
34
|
Millán I, Desco MDC, Torres-Cuevas I, Pérez S, Pulido I, Mena-Mollá S, Mataix J, Asensi M, Ortega ÁL. Pterostilbene Prevents Early Diabetic Retinopathy Alterations in a Rabbit Experimental Model. Nutrients 2019; 12:nu12010082. [PMID: 31892189 PMCID: PMC7019414 DOI: 10.3390/nu12010082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress generated by diabetes plays a key role in the development of diabetic retinopathy (DR), a common diabetic complication. DR remains asymptomatic until it reaches advanced stages, which complicate its treatment. Although it is known that good metabolic control is essential for preventing DR, knowledge of the disease is incomplete and an effective treatment with no side effects is lacking. Pterostilbene (Pter), a natural stilbene with good antioxidant activity, has proved to beneficially affect different pathologies, including diabetes. Therefore, our study aimed to analyse the protective and/or therapeutic capacity of Pter against oxidant damage by characterising early retinal alterations induced by hyperglycaemia, and its possible mechanism of action in a rabbit model of type 1 diabetes mellitus. Pter reduced lipid and protein oxidative damage, and recovered redox status and the main activities of antioxidant enzymes. Moreover, the redox regulation by Pter was associated with activation of the PI3K/AKT/GSK3β/NRF2 pathway. Our results show that Pter is a powerful protective agent that may delay early DR development.
Collapse
Affiliation(s)
- Iván Millán
- Health Research Institute La Fe, Neonatal Research Group, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.M.); (I.T.-C.)
| | - María del Carmen Desco
- FISABIO Oftalmología Médica, Vitreo-retina unit, Bif. Pío Baroja General Avilés s/n, 46015 Valencia, Spain; (M.d.C.D.); (J.M.)
| | - Isabel Torres-Cuevas
- Health Research Institute La Fe, Neonatal Research Group, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain; (I.M.); (I.T.-C.)
| | - Salvador Pérez
- Faculty of Pharmacy, Department of Physiology, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (S.P.); (I.P.); (S.M.-M.); (M.A.)
| | - Inés Pulido
- Faculty of Pharmacy, Department of Physiology, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (S.P.); (I.P.); (S.M.-M.); (M.A.)
| | - Salvador Mena-Mollá
- Faculty of Pharmacy, Department of Physiology, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (S.P.); (I.P.); (S.M.-M.); (M.A.)
| | - Jorge Mataix
- FISABIO Oftalmología Médica, Vitreo-retina unit, Bif. Pío Baroja General Avilés s/n, 46015 Valencia, Spain; (M.d.C.D.); (J.M.)
| | - Miguel Asensi
- Faculty of Pharmacy, Department of Physiology, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (S.P.); (I.P.); (S.M.-M.); (M.A.)
| | - Ángel Luis Ortega
- Faculty of Pharmacy, Department of Physiology, University of Valencia, Vicente Andrés Estellés Av. s/n, 46100 Burjassot, Spain; (S.P.); (I.P.); (S.M.-M.); (M.A.)
- Correspondence: ; Tel.: +34-9-6354-3817
| |
Collapse
|
35
|
Zavorins A, Silova A, Voicehovska J, Kisis J. Rubeosis faciei diabeticorum is not associated with oxidative stress and skin autofluorescence. An Bras Dermatol 2019; 94:561-566. [PMID: 31777357 PMCID: PMC6857565 DOI: 10.1016/j.abd.2019.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Background Rubeosis faciei diabeticorum is a persistent facial erythema in patients with diabetes mellitus. The actual pathogenesis has not been studied. However, it is speculated to be a cutaneous diabetic microangiopathy. Objective Examine the correlation between the severity of facial erythema and the possible causes of microvascular diabetic complications, namely oxidative stress, hyperglycemia, and cutaneous accumulation of advanced glycation end-products . Methods Patients diagnosed with Type 2 diabetes mellitus (n = 32) were enrolled in the study. The facial erythema index was measured using the Mexameter MX18; cutaneous accumulation of advanced glycation end-products was estimated by measuring skin auto fluorescence with the AGE Reader (DiagnOptics Technologies B.V. – Groningen, Netherlands). Glycated haemoglobin, total antioxidant status, and malondialdehyde were measured in blood by TBARS assay. The correlation between the selected variables was assessed by Spearman's rank test; p ≤ 0.05 was considered statistically significant. Results There was a statistically significant correlation between total antioxidant status and the facial erythema index (ρ = 0.398, p = 0.024). Malondialdehyde, skin autofluorescence, glycated haemoglobin, body mass index, duration of diabetes, and age did not demonstrate statistically significant correlation with the facial erythema index. Study limitations This is an observational study. Elevation of total antioxidant status could have been caused by several factors that might have also influenced the development of rubeosis faciei, including hyperbilirubinemia and hyperuricemia. Conclusions The results contradicted expectations. Total antioxidant status correlated positively with facial erythema index; however, there was no correlation with oxidative stress and skin autofluorescence. Further investigations should be conducted to reveal the cause of total antioxidant status elevation in patients with rubeosis faciei.
Collapse
Affiliation(s)
- Aleksejs Zavorins
- Department of Infectology and Dermatology, Riga Stradins University, Riga, Latvia.
| | - Alise Silova
- Scientific Laboratory of Biochemistry, Riga Stradins University, Riga, Latvia
| | | | - Janis Kisis
- Department of Infectology and Dermatology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
36
|
Shi Q, Dong X, Zhang M, Cheng Y, Pei C. Knockdown of ALK7 inhibits high glucose-induced oxidative stress and apoptosis in retinal pigment epithelial cells. Clin Exp Pharmacol Physiol 2019; 47:313-321. [PMID: 31608496 DOI: 10.1111/1440-1681.13189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is one of the diabetic complications associated with hyperglycaemia-mediated oxidative stress. Activin receptor-like kinase 7 (ALK7) has been proven to be a potential therapeutic approach for diabetic cardiomyopathy, which is another diabetic complication. However, the role of ALK7 in DR remains unclear. In the current study, ALK7 was found to be up-regulated in clinical samples from DR patients and high glucose (HG)-induced human retinal pigment epithelial cells (ARPE-19). In vitro studies demonstrated that knockdown of ALK7 in ARPE-19 cells through transfection with siRNA-ALK7 (si-ALK7) improved cell viability in HG-induced ARPE-19 cells. Knockdown of ALK7 suppressed HG-induced reactive oxygen species (ROS) production, as well elevating the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) in ARPE-19 cells. The number of apoptotic cells was significantly decreased after transfection with si-ALK7. ALK7 knockdown also caused a significant decrease in bax expression and an increase in bcl-2 expression in HG-induced ARPE-19 cells. In addition, ALK7 knockdown resulted in remarkable increase in the expressions of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) in ARPE-19 cells in response to HG induction. Taken together, knockdown of ALK7 protected ARPE-19 cells from HG-induced oxidative injury, which might be mediated by the activation of the Nrf2/HO-1 signalling pathway.
Collapse
Affiliation(s)
- Qiang Shi
- Ophthalmology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaomin Dong
- Ophthalmology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ming Zhang
- Ophthalmology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Cheng
- Ophthalmology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Ophthalmology Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
37
|
Cantó A, Olivar T, Romero FJ, Miranda M. Nitrosative Stress in Retinal Pathologies: Review. Antioxidants (Basel) 2019; 8:antiox8110543. [PMID: 31717957 PMCID: PMC6912788 DOI: 10.3390/antiox8110543] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
Nitric oxide (NO) is a gas molecule with diverse physiological and cellular functions. In the eye, NO is used to maintain normal visual function as it is involved in photoreceptor light transduction. In addition, NO acts as a rapid vascular endothelial relaxant, is involved in the control of retinal blood flow under basal conditions and mediates the vasodilator responses of different substances such as acetylcholine, bradykinin, histamine, substance P or insulin. However, the retina is rich in polyunsaturated lipid membranes and is sensitive to the action of reactive oxygen and nitrogen species. Products generated from NO (i.e., dinitrogen trioxide (N2O3) and peroxynitrite) have great oxidative damaging effects. Oxygen and nitrogen species can react with biomolecules (lipids, proteins and DNA), potentially leading to cell death, and this is particularly important in the retina. This review focuses on the role of NO in several ocular diseases, including diabetic retinopathy, retinitis pigmentosa, glaucoma or age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Antolin Cantó
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 64315 Valencia, Spain; (A.C.); (T.O.)
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 64315 Valencia, Spain; (A.C.); (T.O.)
| | - Francisco Javier Romero
- Departamento de Ciencias Biomédicas, Universidad Europea de Valencia, 46010 Valencia, Spain;
| | - María Miranda
- Departamento Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Cardenal Herrera-CEU, CEU Universities, 64315 Valencia, Spain; (A.C.); (T.O.)
- Correspondence: ; Tel.: +34-961369000
| |
Collapse
|
38
|
Zeng J, Zhao H, Chen B. DJ-1/PARK7 inhibits high glucose-induced oxidative stress to prevent retinal pericyte apoptosis via the PI3K/AKT/mTOR signaling pathway. Exp Eye Res 2019; 189:107830. [PMID: 31593688 DOI: 10.1016/j.exer.2019.107830] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) act through multiple pathways to induce apoptosis of retinal capillary pericytes, which is an early marker and the primary cause of the progression of diabetic retinopathy. However, the specific molecular mechanisms behind ROS-induced retinal capillary pericyte loss in diabetic retinopathy remains elusive. In this study, we investigated the molecular regulation and effects of DJ-1/PARK7 on oxidative stress and injury of rat retinal pericytes (RRPs). To perform the research, RRPs were isolated from rat retina and cultured in medium with for 2 days: control group (5.6 mM glucose), high glucose group (30 mM glucose), hypertonic group (5.6 mM glucose + 24.4 mM mannitol). We found decreased expression of DJ-1 and increased apoptosis of RRPs in high glucose group. To further study the role of DJ-1, four groups were divided as follows: normal control group (5.6 mM glucose), high glucose (30 mM glucose), empty vector control group (pcDNA3.1,30 mM glucose), DJ-1 overexpression group (pcDNA3.1-myc-DJ-1,30 mM glucose). DJ-1, P53, p-P53, cleaved caspase-3, manganese superoxide dismutase (MnSOD), catalase (CAT) and PI3K/Akt/mTOR signaling pathway in each group was detected by Western Blot. RRPs apoptosis was detected by Terminal-deoxynucleoitidyl Transferase mediated Nick End Labeling (TUNEL) and 4'6- diamidino-2-phenylindole (DAPI). Mitochondrial function was detected by jc-1 and fluorescent probes DCFH-DA was used to determine reactive oxygen species (ROS). We found that high glucose (30 mM) lasting two days can induce significant apoptosis of RRPs, increase ROS production and expressions of p-p53 and active caspase-3, impair mitochondrial function, decrease the activities of MnSOD and CAT, and decrease expression of DJ-1, p-AKT and p-mTOR. In contrast, DJ-1/PARK7 overexpression significantly increases expression of DJ-1, p-AKT and p-mTOR, increases expression and activities of MnSOD and CAT, improves mitochondrial function, decreases expression of apoptotic gene protein p-p53 and active caspase-3, reduces ROS production and reduces the apoptotic rate of RRPs induced by high glucose. These results suggest that DJ-1 may play a role in protecting RRPs from high glucose induced-oxidative injury. DJ-1 might improve mitochondrial function, inhibit ROS production and enhance antioxidant capacity to reduce apoptosis of retinal pericytes through the PI3K/AKT/mTOR signaling pathway which may be related to early pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Jun Zeng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China; The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
39
|
Narayanan SP, Shosha E, D Palani C. Spermine oxidase: A promising therapeutic target for neurodegeneration in diabetic retinopathy. Pharmacol Res 2019; 147:104299. [PMID: 31207342 PMCID: PMC7011157 DOI: 10.1016/j.phrs.2019.104299] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/23/2019] [Accepted: 06/05/2019] [Indexed: 12/20/2022]
Abstract
Diabetic Retinopathy (DR), is a significant public health issue and the leading cause of blindness in working-aged adults worldwide. The vision loss associated with DR affects patients' quality of life and has negative social and psychological effects. In the past, diabetic retinopathy was considered as a vascular disease; however, it is now recognized to be a neuro-vascular disease of the retina. Current therapies for DR, such as laser photocoagulation and anti-VEGF therapy, treat advanced stages of the disease, particularly the vasculopathy and have adverse side effects. Unavailability of effective treatments to prevent the incidence or progression of DR is a major clinical problem. There is a great need for therapeutic interventions capable of preventing retinal damage in DR patients. A growing body of evidence shows that neurodegeneration is an early event in DR pathogenesis. Therefore, studies of the underlying mechanisms that lead to neurodegeneration are essential for identifying new therapeutic targets in the early stages of DR. Deregulation of the polyamine metabolism is implicated in various neurodegenerative diseases, cancer, renal failure, and diabetes. Spermine Oxidase (SMOX) is a highly inducible enzyme, and its dysregulation can alter polyamine homeostasis. The oxidative products of polyamine metabolism are capable of inducing cell damage and death. The current review provides insight into the SMOX-regulated molecular mechanisms of cellular damage and dysfunction, and its potential as a therapeutic target for diabetic retinopathy. Structural and functional changes in the diabetic retina and the mechanisms leading to neuronal damage (excitotoxicity, loss of neurotrophic factors, oxidative stress, mitochondrial dysfunction etc.) are also summarized in this review. Furthermore, existing therapies and new approaches to neuroprotection are discussed.
Collapse
Affiliation(s)
- S Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; VA Medical Center, Augusta, GA, United States.
| | - Esraa Shosha
- Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States; Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Chithra D Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States; Augusta University Culver Vision Discovery Institute, Augusta, GA, United States; Vascular Biology Center, Augusta University, Augusta, GA, United States
| |
Collapse
|
40
|
Thounaojam MC, Jadeja RN, Warren M, Powell FL, Raju R, Gutsaeva D, Khurana S, Martin PM, Bartoli M. MicroRNA-34a (miR-34a) Mediates Retinal Endothelial Cell Premature Senescence through Mitochondrial Dysfunction and Loss of Antioxidant Activities. Antioxidants (Basel) 2019; 8:E328. [PMID: 31443378 PMCID: PMC6769710 DOI: 10.3390/antiox8090328] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
Stress-associated premature senescence (SAPS) is involved in retinal microvascular injury and diabetic retinopathy. We have investigated the role and mode of action of miR-34a in retinal endothelial cells senescence in response to glucidic stress. Human retinal microvascular endothelial cells (HuREC) were exposed to glucidic stress (high glucose (HG) = 25 mM d-glucose) and compared to cells exposed to normal glucose (NG = 5 mM) or the osmotic control l-glucose (LG = 25 mM). HG stimulation of HuREC increased the expression of miR-34a and induced cellular senescence. HG also increased the expression of p16ink4a and p21waf1, while decreasing the histone deacetylase SIRT1. These effects were associated with diminished mitochondrial function and loss of mitochondrial biogenesis factors (i.e., PGC-1α, NRF1, and TFAM). Transfection of the cells with miR-34a inhibitor (IB) halted HG-induced mitochondrial dysfunction and up-regulation of senescence-associated markers, whereas miR-34a mimic promoted cellular senescence and mitochondrial dysfunction. Moreover, HG lowered levels of the mitochondrial antioxidants TrxR2 and SOD2, an effect blunted by miR-34a IB, and promoted by miR-34a mimic. 3'-UTR (3'-untranslated region) reporter assay of both genes validated TrxR2 as a direct target of miR-34a, but not SOD2. Our results show that miR-34a is a key player of HG-induced SAPS in retinal endothelial cells via multiple pathways involved in mitochondrial function and biogenesis.
Collapse
Affiliation(s)
- Menaka C Thounaojam
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ravirajsinh N Jadeja
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Marie Warren
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Folami L Powell
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raghavan Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Diana Gutsaeva
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sandeep Khurana
- Division of Gastroenterology, Hepatology and Nutrition and Weight Management, Geisinger Medical Center, Danville, PA 17822, USA
| | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
41
|
Ren C, Liu W, Li J, Cao Y, Xu J, Lu P. Physical activity and risk of diabetic retinopathy: a systematic review and meta-analysis. Acta Diabetol 2019; 56:823-837. [PMID: 30900027 DOI: 10.1007/s00592-019-01319-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/05/2019] [Indexed: 01/28/2023]
Abstract
AIMS Diabetic retinopathy (DR) is an important microvascular complication of diabetes mellitus (DM) and a leading cause of visual impairment and blindness among people of working age. Physical activity (PA) or exercise is critical and beneficial for DM patients, whereas studies evaluating the relationship between PA and DR have yielded inconsistent and inconclusive results. The American Diabetes Association's "Standards of Medical Care in Diabetes" has also pointed out the indeterminate roles of PA in DR prevention. The purpose of this systematic review and meta-analysis was to explore the association between PA and DR risk. METHODS Medline (accessed by PubMed), EmBase, and Cochrane Library were systematically searched for studies up to June 2018, and the reference lists of the published articles were searched manually. The association between PA and DR risk was assessed using random-effect meta-analysis. RESULTS Twenty-two studies were included in this meta-analysis. PA was found to have a protective association with DR [risk ratio (RR) = 0.94, 95% confidence interval (95% CI) 0.90-0.98, p = 0.005] in diabetic patients, and the impact was more pronounced on vision-threatening DR (RR = 0.89, 95% CI 0.80-0.98, p = 0.02). Sedentary behavior could increase the risk of DR (RR = 1.18, 95% CI 1.01-1.37, p = 0.04). Moderate-intensity PA was likely to have a slight protective effect (RR = 0.76, 95% CI 0.58-1.00, p = 0.05). CONCLUSION PA is associated with lower DR risk, and more studies should focus on the causality between them.
Collapse
Affiliation(s)
- Chi Ren
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Jianqing Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Yihong Cao
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Jiayi Xu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
42
|
Radomska-Leśniewska DM, Osiecka-Iwan A, Hyc A, Góźdź A, Dąbrowska AM, Skopiński P. Therapeutic potential of curcumin in eye diseases. Cent Eur J Immunol 2019; 44:181-189. [PMID: 31530988 PMCID: PMC6745545 DOI: 10.5114/ceji.2019.87070] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
Curcumin (diferuloylmethane) derived from the rhizome of Curcuma longa L. has been used for thousands of years in traditional Chinese medicine and Ayurvedic medicine in Asian countries to treat liver diseases, rheumatoid diseases, diabetes, atherosclerosis, infectious diseases and cancer. It exhibits a wide range of pharmacological properties, which include antioxidant, anti-inflammatory, antimutagenic, antimicrobial and anticancer activity. Herein the mechanisms of curcumin impact on oxidative stress, angiogenesis and inflammatory processes are described indicating that curcumin use may inhibit those pathological conditions and restore body homeostasis. Its effectiveness was also proved for major eye diseases. In this review, the influence of curcumin on eye diseases, such as glaucoma, cataract, age-related macular degeneration, diabetic retinopathy, corneal neovascularization, corneal wound healing, dry eye disease, conjunctivitis, pterygium, anterior uveitis are reported. The analysis of a number of clinical and preclinical investigations indicates that curcumin may be used as a therapeutic agent in the treatment of various eye disorders.
Collapse
Affiliation(s)
| | - Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Agata Góźdź
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Anna M. Dąbrowska
- Department of Ophthalmology, Second Faculty of Medicine, Medical University of Warsaw, Poland
| | - Piotr Skopiński
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| |
Collapse
|
43
|
Wang Y, Tao J, Jiang M, Yao Y. Apocynin ameliorates diabetic retinopathy in rats: Involvement of TLR4/NF-κB signaling pathway. Int Immunopharmacol 2019; 73:49-56. [PMID: 31078925 DOI: 10.1016/j.intimp.2019.04.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023]
Abstract
Diabetic retinopathy is a diabetes complication. During diabetic retinopathy development, the TLR4/NF-κB pathway is up-regulated. Apocynin is a nicotinamide adenine dinucleotide phosphate oxidase blocker which can reduce the superoxide radicals. It is demonstrated that apocynin can inhibit TLR4/NF-κB pathway in rats. We aim to figure out whether apocynin treatment is benefit for the diabetic retinopathy in rat model. The diabetes in rats was induced by streptozotocin. The treatment of apocynin (16 mg/kg/day) or vehicle in diabetic rat model was maintained for 12 weeks. The expression levels of relative genes in this research were shown through Western blot and qRT-PCR. Morphology of the retinas was shown by Hematoxylin-Eosin staining. The treatment of apocynin ameliorated biochemical indexes in diabetic rats and rescued the morphology of the retinas. After a 12 weeks apocynin treatment, the cell apoptosis, oxidative stress, and inflammatory in retina was reduced in diabetic rats. TLR4/NF-κB signaling pathway activity in diabetic rat retina was inhibited by apocynin. Based on our study, the treatment of apocynin ameliorates diabetic retinopathy in rats. The TLR4/NF-κB signaling pathway inhibition by apocynin is involved in this process. This result indicated a great therapeutic potential of apocynin in diabetic retinopathy treatment.
Collapse
Affiliation(s)
- Yixin Wang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Jianxin Tao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Minfeng Jiang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, China
| | - Yong Yao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi 214023, Jiangsu, China.
| |
Collapse
|
44
|
Chen P, Miao Y, Yan P, Wang XJ, Jiang C, Lei Y. MiR-455-5p ameliorates HG-induced apoptosis, oxidative stress and inflammatory via targeting SOCS3 in retinal pigment epithelial cells. J Cell Physiol 2019; 234:21915-21924. [PMID: 31041827 DOI: 10.1002/jcp.28755] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/29/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness in adults with diabetes mellitus. Numerous microRNAs (miRNAs) have been identified to modulate the pathogenesis of DR. The main purpose of this study was to evaluate the potential roles of miR-455-5p in high glucose (HG)-treated retinal pigment epithelial (RPE) cells and underlying mechanisms. Our present investigation discovered that the expression of miR-455-5p was apparently downregulated in ARPE-19 cells stimulated with HG. In addition, forced expression of miR-455-5p markedly enhanced cell viability and restrained HG-induced apoptosis accompanied by decreased BCL2-associated X protein (Bax)/B-cell leukemia/lymphoma 2 (Bcl-2) ratio and expression of apoptotic marker cleaved caspase-3 during HG challenged. Subsequently, augmentation of miR-455-5p remarkably alleviated HG-triggered oxidative stress injury as reflected by decreased the production of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) content as well as NADPH oxidase 4 expression, concomitant with enhanced the activities of superoxide dismutase, catalase, and GPX stimulated with HG. Furthermore, enforced expression of miR-455-5p effectively ameliorated HG-stimulated inflammatory response as exemplified by repressing the secretion of inflammatory cytokines interleukin 1β (IL-1β), IL-6, and tumour necrosis factor-α in ARPE-19 cells challenged by HG. Most importantly, we successfully identified suppressor of cytokine signaling 3 (SOCS3) as a direct target gene of miR-455-5p, and miR-455-5p negatively regulated the expression of SOCS3. Mechanistically, restoration of SOCS3 abrogated the beneficial effects of miR-455-5p on apoptosis, accumulation of ROS, and inflammatory factors production in response to HG. Taken together, these findings demonstrated that miR-455-5p relieved HG-induced damage through repressing apoptosis, oxidant stress, and inflammatory response by targeting SOCS3. The study gives evidence that miR-455-5p may serve as a new potential therapeutic agent for DR treatment.
Collapse
Affiliation(s)
- Pan Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ying Miao
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - PuJun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xiao Jie Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - ChunXia Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yi Lei
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
45
|
Hydrogen Sulfide Attenuates High Glucose-Induced Human Retinal Pigment Epithelial Cell Inflammation by Inhibiting ROS Formation and NLRP3 Inflammasome Activation. Mediators Inflamm 2019; 2019:8908960. [PMID: 31178664 PMCID: PMC6507269 DOI: 10.1155/2019/8908960] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/24/2019] [Accepted: 03/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide (H2S) has been shown to protect against oxidative stress injury and inflammation in various high glucose-induced insult models. However, it remains unknown whether H2S protects human retinal pigment epithelial cells (RPE cells) from high glucose-induced damage. In the current study, cell viability, proinflammatory cytokines, ROS, and inflammasome markers were compared in a low glucose- and high glucose-induced cell culture system. The antioxidant N-acetylcysteine (NAC), NLRP3 siRNA, and NaHS were used to test RPE cell responses. The results demonstrate that compared with the low-glucose culture, high glucose triggered higher cell death and increased IL-18 and IL-1β mRNA expression and protein production. Furthermore, high glucose increased the mRNA expression levels of NLRP3, ACS, and caspase-1. Notably, NAC, a ROS scavenger, could attenuate high glucose-induced ROS formation and IL-18 and IL-1β mRNA and protein expression and block inflammasome activation. Silencing the NLRP3 gene expression also abolished IL-18 and IL-1β mRNA and protein expression. Intrudingly, H2S could ameliorate high glucose-induced ROS formation, IL-18 and IL-1β expression, and inflammasome activation. Taken together, the findings of the present study have demonstrated that H2S protects cultured RPE cells from high glucose-induced damage through inhibiting ROS formation and NLRP3 inflammasome activation. It might suggest that H2S represents a potential therapeutic target for the treatment of diabetic retinopathy.
Collapse
|
46
|
Perturbed Biochemical Pathways and Associated Oxidative Stress Lead to Vascular Dysfunctions in Diabetic Retinopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8458472. [PMID: 30962865 PMCID: PMC6431380 DOI: 10.1155/2019/8458472] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/26/2018] [Accepted: 01/27/2019] [Indexed: 02/08/2023]
Abstract
Diabetic retinopathy (DR) is a vascular insult that accompanies the hyperglycemic state. Retinal vasculature holds a pivotal role in maintaining the integrity of the retina, and any alteration to retinal vasculature affects retinal functions. The blood retinal barrier, a prerequisite to vision acuity, is most susceptible to damage during the progression of DR. This is a consequence of impaired biochemical pathways such as the polyol, advanced end glycation products (AGE), hexosamine, protein kinase C (PKC), and tissue renin-angiotensin system (RAS) pathways. Moreover, the role of histone modification and altered miRNA expression is also emerging as a major contributor. Epigenetic changes create a link between altered protein function and redox status of retinal cells, creating a state of metabolic memory. Although various biochemical pathways underlie the etiology of DR, the major insult to the retina is due to oxidative stress, a unifying factor of altered biochemical pathways. This review primarily focuses on the critical biochemical pathways altered in DR leading to vascular dysfunctions and discusses antioxidants as plausible treatment strategies.
Collapse
|
47
|
Effects of selenium supplementation on paraoxonase-1 and myeloperoxidase activity in subjects with cardiovascular disease: the Selenegene study, a double-blind randomized controlled trial. ACTA ACUST UNITED AC 2019; 3:e112-e118. [PMID: 30775600 PMCID: PMC6374566 DOI: 10.5114/amsad.2018.77820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023]
Abstract
Introduction We previously highlighted the potential link between supplementation with selenium, as an antioxidant trace element, and changes in the levels of paraoxonase (POX1) and myeloperoxidase (MPO), as an antioxidant enzyme, in patients with documented cardiovascular disease (CVD). The aim of this study was to determine the effects of selenium supplementation on POX1 and MPO activity in patients with cardiovascular diseases (CVDs). Material and methods A total of 160 eligible patients were enrolled in the study. After performing some laboratory tests, including the measurement of blood selenium, triglyceride, cholesterol, and low- and high-density lipoprotein levels, the patients received 200 mg tablets of either selenium yeast or placebo. The medicines were taken orally, once daily after a meal for 60 days. Four weeks after the initial visit, the patients were invited for a follow-up visit, and interviews and non-laboratory evaluations, similar to those performed at baseline, were repeated. Compliance of patients for using selenium and placebo was measured by telephone. Medication compliance rates were monitored by telephone. The final assessments were conducted eight weeks after the beginning of the study. Results There was no significant difference in cholesterol levels between intervention and control groups (p = 0.87). No significant changes in selenium levels were observed in either the selenium or the placebo group after the intervention (p = 0.44 and p = 0.48, respectively). The two groups had a significant difference in terms of POX1 level (p = 0.039). No such difference was present in the case of MPO levels. Moreover, comparison of the values before and after the intervention showed no significant differences in the mean levels of any of the measured parameters. Conclusions According to the obtained results, the increased POX1 levels after selenium supplementation could be attributed to the positive effect of selenium on inhibiting lipid peroxidation as part of the complicated pathophysiology of CVD.
Collapse
|
48
|
Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR. Protective effect of myricetin derivatives from Syzygium malaccense against hydrogen peroxide-induced stress in ARPE-19 cells. Mol Vis 2019; 25:47-59. [PMID: 30820141 PMCID: PMC6379087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/05/2019] [Indexed: 12/03/2022] Open
Abstract
PURPOSE Oxidative stress is implicated in the etiology of diabetes and its debilitating complications, such as diabetic retinopathy (DR). Various flavonoids have been reported to be useful in reducing DR progression. Myricetin derivatives (F2) isolated from leaf extract of Syzygium malaccense have the potential to serve as functional food as reported previously. The present study was performed with the aim of determining the antioxidant potential and protective effect of myricetin derivatives (F2) isolated from leaf extract of S. malaccense against glucose oxidase (GO)-induced hydrogen peroxide (H2O2) production that causes oxidative stress in ARPE-19 (RPE) cells. METHODS Antioxidant properties were assessed through various radical (DPPH, ABTS, and nitric oxide) scavenging assays and determination of total phenolic content and ferric reducing antioxidant power level. ARPE-19 cells were preincubated with samples before the addition of GO (to generate H2O2). Cell viability, change in intracellular reactive oxygen species (ROS), H2O2 levels in cell culture supernatant, and gene expression were assessed. RESULTS F2 showed higher antioxidant levels than the extract when assessed for radical scavenging activities and ferric reducing antioxidant power. F2 protected the ARPE-19 cells against GO-H2O2-induced oxidative stress by reducing the production of H2O2 and intracellular reactive oxygen species. This was achieved by the activation of nuclear factor erythroid 2-related factor 2 (Nrf2/NFE2L2) and superoxide dismutase (SOD2), as well as downregulation of nitric oxide producer (NOS2) at the transcriptional level. CONCLUSIONS The results showed that myricetin derivatives from S. malaccense have the capacity to exert considerable exogenous antioxidant activities and stimulate endogenous antioxidant activities. Therefore, these derivatives have excellent potential to be developed as therapeutic agents for managing DR.
Collapse
Affiliation(s)
- Bavani Arumugam
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Tea consumption and oxidative stress: a cross-sectional analysis of 889 premenopausal women from the Sister Study. Br J Nutr 2019; 121:582-590. [PMID: 30567620 DOI: 10.1017/s0007114518003732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In experimental and clinical studies, green or black tea consumption has been shown to reduce oxidative stress. However, these studies involved high levels of tea consumption and may not reflect patterns in the general population. Here, we examined the association between black or green tea consumption and oxidative stress in a cross-sectional study of 889 premenopausal US women aged 35-54 years. Tea consumption was measured using the Block-98 FFQ. Urinary 8-iso-PGF2α (F2-IsoP) and 2,3-dinor-5,6-dihydro-15-F2t-isoprostane (15-F2t-IsoP-M) were used as biomarkers of oxidative stress. These compounds were measured by MS and normalised to creatinine. Linear regression was used to calculate the geometric mean differences (GMD) and 95% CI for log-transformed urinary F2-IsoP or 15-F2t-IsoP-M in relation to black or green tea consumption. We further examined whether adjusting for caffeine impacted associations between tea and oxidative stress. Geometric means of urinary F2-IsoP and 15-F2t-IsoP-M were 1·44 (95% CI 1·39, 1·49) and 0·71 (95% CI 0·69, 0·73) ng/mg creatinine, respectively. Overall, green tea consumption was not associated with urinary F2-IsoP or 15-F2t-IsoP-M. High-level black tea consumption (≥5 cups/week compared with 0) was associated with higher 15-F2t-IsoP-M concentrations (adjusted GMD=0·10, 95 % CI 0·02-0.19) but not F2-IsoP. Adjusting for caffeine nullified the association between black tea and 15-F2t-IsoP-M. Our findings do not support the hypothesis that dietary tea consumption is inversely associated with oxidative stress.
Collapse
|
50
|
An in vitro protocol to study the effect of hyperglycemia on intracellular redox signaling in human retinal pigment epithelial (ARPE-19) cells. Mol Biol Rep 2019; 46:1263-1274. [DOI: 10.1007/s11033-019-04597-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/04/2019] [Indexed: 01/12/2023]
|