1
|
Jung S, Heitmann J, Pflügler M, Jung G, Rausch S, Salih H. [Bispecific antibodies in prostate cancer therapy]. UROLOGIE (HEIDELBERG, GERMANY) 2025:10.1007/s00120-025-02574-w. [PMID: 40172632 DOI: 10.1007/s00120-025-02574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/04/2025]
Abstract
Prostate cancer (PC) is the second most common cancer in men. As soon as androgen deprivation therapy fails, treatment options are limited. Despite intense efforts, hardly any of the T cell-based immunotherapeutic strategies that have revolutionized oncological treatment in other cancer entities are yet established for the treatment of PC. This includes immune checkpoint inhibition, which generally reinforces T cell-immunity but failed to achieve broad activity in PC, as well as chimeric antigen receptor T (CART) cells and bispecific antibodies (bsAbs), which specifically mobilize T cells against tumor cells. Compared to CART cells, bsAbs have the advantage of being readily available "off-the-shelf" reagents. Currently several bispecific constructs are in development for PC. While development of some was discontinued due to substantial side effects or development of anti-drug antibodies, others have yielded promising results. These include in particular bsAbs directed against six-transmembrane epithelial antigen of the prostate 1 (STEAP1) and prostate-specific membrane antigen (PSMA), which are currently being evaluated in both patients with metastasized disease and biochemical relapse. The concepts underlying the different constructs, the current status of clinical development, and future perspectives are discussed.
Collapse
Affiliation(s)
- Susanne Jung
- KKE Translationale Immunologie, Universitätsklinikum Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Deutschland
| | - Jonas Heitmann
- KKE Translationale Immunologie, Universitätsklinikum Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Deutschland
| | - Martin Pflügler
- KKE Translationale Immunologie, Universitätsklinikum Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Deutschland
| | - Gundram Jung
- KKE Translationale Immunologie, Universitätsklinikum Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Deutschland
| | - Steffen Rausch
- KKE Translationale Immunologie, Universitätsklinikum Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Deutschland
| | - Helmut Salih
- KKE Translationale Immunologie, Universitätsklinikum Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Deutschland.
| |
Collapse
|
2
|
Bhagyalalitha M, Handattu Shankaranarayana A, Arun Kumar S, Singh M, Pujar KG, Bidye D, Veeranna Pujar G. Advances in HER2-Targeted Therapies: From monoclonal antibodies to dual inhibitors developments in cancer treatment. Bioorg Chem 2024; 151:107695. [PMID: 39137598 DOI: 10.1016/j.bioorg.2024.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
HER2 receptors, overexpressed in certain human cancers, have drawn significant attention in cancer research due to their correlation with poor survival rates. Researchers have developed monoclonal antibodies like Trastuzumab and Pertuzumab against HER2 receptors, which have proven highly beneficial in cancer therapy. Bispecific antibodies like Zanidatamab and antibody-drug conjugates like T-DM1 have been developed to overcome the resistance associated with monotherapy. Small molecules such as Lapatinib, Neratinib, and Pyrotinib were initially developed for treating breast cancer. However, ongoing research is investigating their potential use in other types of cancer, often in combination with other medications. EGFR/HER2 dual-targeted drugs have overcome drug resistance associated with HER2-targeted monotherapy. This comprehensive review covers the structural characteristics of HER2, the HER family signaling pathway mechanism, recent findings regarding HER2 receptor involvement in various cancers, and diverse HER2-targeted therapies. This information provides a comprehensive understanding of HER2-targeted strategies in the evolving field of cancer treatment.
Collapse
Affiliation(s)
- Meduri Bhagyalalitha
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Akshatha Handattu Shankaranarayana
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Sethu Arun Kumar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Manisha Singh
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Karthik G Pujar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Durgesh Bidye
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India
| | - Gurubasavaraj Veeranna Pujar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Sri Shivarathreeshwara Nagara, Mysuru 570015 India.
| |
Collapse
|
3
|
Persaud NV, Park JA, Cheung NKV. High-Risk Neuroblastoma Challenges and Opportunities for Antibody-Based Cellular Immunotherapy. J Clin Med 2024; 13:4765. [PMID: 39200906 PMCID: PMC11355836 DOI: 10.3390/jcm13164765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/02/2024] Open
Abstract
Immunotherapy has emerged as an attractive option for patients with relapsed or refractory high-risk neuroblastoma (HRNB). Neuroblastoma (NB), a sympathetic nervous system cancer arising from an embryonic neural crest cell, is heterogeneous clinically, with outcomes ranging from an isolated abdominal mass that spontaneously regresses to a widely metastatic disease with cure rates of about 50% despite intensive multimodal treatment. Risk group stratification and stage-adapted therapy to achieve cure with minimal toxicities have accomplished major milestones. Targeted immunotherapeutic approaches including monoclonal antibodies, vaccines, adoptive cellular therapies, their combinations, and their integration into standard of care are attractive therapeutic options, although curative challenges and toxicity concerns remain. In this review, we provide an overview of immune approaches to NB and the tumor microenvironment (TME) within the clinical translational framework. We propose a novel T cell-based therapeutic approach that leverages the unique properties of tumor surface antigens such as ganglioside GD2, incorporating specific monoclonal antibodies and recent advancements in adoptive cell therapy.
Collapse
Affiliation(s)
- Natasha V. Persaud
- Department of Pediatrics Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Jeong A. Park
- Pediatrics Inha University Hospital, Icheon 22332, Republic of Korea;
| | - Nai Kong V. Cheung
- Department of Pediatrics Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
4
|
Suwanchiwasiri K, Phanthaphol N, Somboonpatarakun C, Yuti P, Sujjitjoon J, Luangwattananun P, Maher J, Yenchitsomanus PT, Junking M. Bispecific T cell engager-armed T cells targeting integrin ανβ6 exhibit enhanced T cell redirection and antitumor activity in cholangiocarcinoma. Biomed Pharmacother 2024; 175:116718. [PMID: 38744221 DOI: 10.1016/j.biopha.2024.116718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Advanced cholangiocarcinoma (CCA) presents a clinical challenge due to limited treatment options, necessitating exploration of innovative therapeutic approaches. Bispecific T cell engager (BTE)-armed T cell therapy shows promise in hematological and solid malignancies, offering potential advantages in safety over continuous BTE infusion. In this context, we developed a novel BTE, targeting CD3 on T cells and integrin αvβ6, an antigen elevated in various epithelial malignancies, on cancer cells. The novel BTE was generated by fusing an integrin αvβ6-binding peptide (A20) to an anti-CD3 (OKT3) single-chain variable fragment (scFv) through a G4S peptide linker (A20/αCD3 BTE). T cells were then armed with A20/αCD3 BTE (A20/αCD3-armed T cells) and assessed for antitumor activity. Our results highlight the specific binding of A20/αCD3 BTE to CD3 on T cells and integrin αvβ6 on target cells, effectively redirecting T cells towards these targets. After co-culture, A20/αCD3-armed T cells exhibited significantly heightened cytotoxicity against integrin αvβ6-expressing target cells compared to unarmed T cells in both KKU-213A cells and A375.β6 cells. Moreover, in a five-day co-culture, A20/αCD3-armed T cells demonstrated superior cytotoxicity against KKU-213A spheroids compared to unarmed T cells. Importantly, A20/αCD3-armed T cells exhibited an increased proportion of the effector memory T cell (Tem) subset, upregulation of T cell activation markers, enhanced T cell proliferation, and increased cytolytic molecule/cytokine production, when compared to unarmed T cells in an integrin αvβ6-dependent manner. These findings support the potential of A20/αCD3-armed T cells as a novel therapeutic approach for integrin αvβ6-expressing cancers.
Collapse
Affiliation(s)
- Kwanpirom Suwanchiwasiri
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nattaporn Phanthaphol
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; School of Cardiovascular and Medical Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, UK.
| | - Chalermchai Somboonpatarakun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pornpimon Yuti
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jatuporn Sujjitjoon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, CAR Mechanics Lab, Guy's Cancer Centre, Great Maze Pond, London, United Kingdom
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
5
|
Yankelevich M, Thakur A, Modak S, Chu R, Taub J, Martin A, Schalk D, Schienshang A, Whitaker S, Rea K, Lee DW, Liu Q, Shields AF, Cheung NKV, Lum LG. Targeting refractory/recurrent neuroblastoma and osteosarcoma with anti-CD3×anti-GD2 bispecific antibody armed T cells. J Immunother Cancer 2024; 12:e008744. [PMID: 38519053 PMCID: PMC10961524 DOI: 10.1136/jitc-2023-008744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/24/2024] Open
Abstract
BACKGROUND The survival benefit observed in children with neuroblastoma (NB) and minimal residual disease who received treatment with anti-GD2 monoclonal antibodies prompted our investigation into the safety and potential clinical benefits of anti-CD3×anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs). Preclinical studies demonstrated the high cytotoxicity of GD2BATs against GD2+cell lines, leading to the initiation of a phase I/II study in recurrent/refractory patients. METHODS The 3+3 dose escalation phase I study (NCT02173093) encompassed nine evaluable patients with NB (n=5), osteosarcoma (n=3), and desmoplastic small round cell tumors (n=1). Patients received twice-weekly infusions of GD2BATs at 40, 80, or 160×106 GD2BATs/kg/infusion complemented by daily interleukin-2 (300,000 IU/m2) and twice-weekly granulocyte macrophage colony-stimulating factor (250 µg/m2). The phase II segment focused on patients with NB at the dose 3 level of 160×106 GD2BATs/kg/infusion. RESULTS Of the 12 patients enrolled, 9 completed therapy in phase I with no dose-limiting toxicities. Mild and manageable cytokine release syndrome occurred in all patients, presenting as grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody-associated pain was minimal. Median overall survival (OS) for phase I and the limited phase II was 18.0 and 31.2 months, respectively, with a combined OS of 21.1 months. A phase I NB patient had a complete bone marrow response with overall stable disease. In phase II, 10 of 12 patients were evaluable: 1 achieved partial response, and 3 showed clinical benefit with prolonged stable disease. Over 50% of evaluable patients exhibited augmented immune responses to GD2+targets post-GD2BATs, as indicated by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. CONCLUSIONS This study demonstrated the safety of GD2BATs up to 160×106 cells/kg/infusion. Coupled with evidence of post-treatment endogenous immune responses, our findings support further investigation of GD2BATs in larger phase II clinical trials.
Collapse
Affiliation(s)
- Maxim Yankelevich
- St. Christopher's Hospital for Children, Philadelphia, Pennsylvania, USA
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Archana Thakur
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Shakeel Modak
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Roland Chu
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Jeffrey Taub
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Alissa Martin
- Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Dana Schalk
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Amy Schienshang
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Sarah Whitaker
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Katie Rea
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Daniel W Lee
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| | - Qin Liu
- Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lawrence G Lum
- University of Virginia Cancer Center, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Bagley EM, Wages NA. Dose-finding based on feasibility and late-onset toxicity in adoptive cell therapy trials. J Biopharm Stat 2024; 34:151-163. [PMID: 36879525 PMCID: PMC10480342 DOI: 10.1080/10543406.2023.2183507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Cell therapies comprise one of the most important advances in oncology. One of the biggest challenges in the early development of cell therapies is to recommend safe and feasible doses to carry forward to middle development. The treatment involves extracting cells from a patient, expanding the cells and infusing the cells back into the patient. Each dose level being studied is defined by the number of cells infused into the trial participant. The manufacturing process may not generate enough cells for a given patient to receive their assigned dose level, making it infeasible to administer their intended dose. The primary design challenge is to efficiently use accumulated data from participants treated away from their assigned dose to efficiently allocate future trial participants and recommend a feasible maximum tolerated dose (FMTD) at the study conclusion. Currently, there are few available options for designing and implementing Phase I trials of cell therapies that can incorporate a dose feasibility endpoint. Moreover, the application of these designs is limited to a traditional dose-finding framework, where the dose-limiting toxicity (DLT) endpoint is observed in early cycles of therapy. This paper presents a novel phase I trial design for adoptive cell therapy that simultaneously accounts for dose feasibility and late-onset toxicities. We apply our design to a phase I dose-escalation trial of Rituximab-based bispecific activated T-cells combined with a fixed dose of Nivolumab. Our simulation results demonstrate that our proposed method can reduce trial duration without significantly hindering trial accuracy.
Collapse
Affiliation(s)
- Evan M Bagley
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Nolan A Wages
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
7
|
Logghe T, van Zwol E, Immordino B, Van den Cruys K, Peeters M, Giovannetti E, Bogers J. Hyperthermia in Combination with Emerging Targeted and Immunotherapies as a New Approach in Cancer Treatment. Cancers (Basel) 2024; 16:505. [PMID: 38339258 PMCID: PMC10854776 DOI: 10.3390/cancers16030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in the development of novel therapies, cancer continues to stand as a prominent global cause of death. In many cases, the cornerstone of standard-of-care therapy consists of chemotherapy (CT), radiotherapy (RT), or a combination of both. Notably, hyperthermia (HT), which has been in clinical use in the last four decades, has proven to enhance the effectiveness of CT and RT, owing to its recognized potency as a sensitizer. Furthermore, HT exerts effects on all steps of the cancer-immunity cycle and exerts a significant impact on key oncogenic pathways. Most recently, there has been a noticeable expansion of cancer research related to treatment options involving immunotherapy (IT) and targeted therapy (TT), a trend also visible in the research and development pipelines of pharmaceutical companies. However, the potential results arising from the combination of these innovative therapeutic approaches with HT remain largely unexplored. Therefore, this review aims to explore the oncology pipelines of major pharmaceutical companies, with the primary objective of identifying the principal targets of forthcoming therapies that have the potential to be advantageous for patients by specifically targeting molecular pathways involved in HT. The ultimate goal of this review is to pave the way for future research initiatives and clinical trials that harness the synergy between emerging IT and TT medications when used in conjunction with HT.
Collapse
Affiliation(s)
- Tine Logghe
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Eke van Zwol
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Benoît Immordino
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | | | - Marc Peeters
- Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johannes Bogers
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
8
|
Fadul CE, Thakur A, Kim J, Kassay-McAllister J, Schalk D, Lopes MB, Donahue J, Purow B, Dillon P, Le T, Schiff D, Liu Q, Lum LG. Phase I study targeting newly diagnosed grade 4 astrocytoma with bispecific antibody armed T cells (EGFR BATs) in combination with radiation and temozolomide. J Neurooncol 2024; 166:321-330. [PMID: 38263486 PMCID: PMC10834565 DOI: 10.1007/s11060-024-04564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
PURPOSE The purpose of this study was to determine the safety, feasibility, and immunologic responses of treating grade 4 astrocytomas with multiple infusions of anti-CD3 x anti-EGFR bispecific antibody (EGFRBi) armed T cells (EGFR BATs) in combination with radiation and chemotherapy. METHODS This phase I study used a 3 + 3 dose escalation design to test the safety and feasibility of intravenously infused EGFR BATs in combination with radiation and temozolomide (TMZ) in patients with newly diagnosed grade 4 astrocytomas (AG4). After finding the feasible dose, an expansion cohort with unmethylated O6-methylguanine-DNA methyltransferase (MGMT) tumors received weekly EGFR BATs without TMZ. RESULTS The highest feasible dose was 80 × 109 EGFR BATs without dose-limiting toxicities (DLTs) in seven patients. We could not escalate the dose because of the limited T-cell expansion. There were no DLTs in the additional cohort of three patients with unmethylated MGMT tumors who received eight weekly infusions of EGFR BATs without TMZ. EGFR BATs infusions induced increases in glioma specific anti-tumor cytotoxicity by peripheral blood mononuclear cells (p < 0.03) and NK cell activity (p < 0.002) ex vivo, and increased serum concentrations of IFN-γ (p < 0.03), IL-2 (p < 0.007), and GM-CSF (p < 0.009). CONCLUSION Targeting AG4 with EGFR BATs at the maximum feasible dose of 80 × 109, with or without TMZ was safe and induced significant anti-tumor-specific immune responses. These results support further clinical trials to examine the efficacy of this adoptive cell therapy in patients with MGMT-unmethylated GBM. CLINICALTRIALS gov Identifier: NCT03344250.
Collapse
Affiliation(s)
- Camilo E Fadul
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800394, Charlottesville, VA, 22908, USA.
| | - Archana Thakur
- Bone Marrow Transplant Program, Division Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Jungeun Kim
- Office of Clinical Research, School of Medicine, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Jessica Kassay-McAllister
- Bone Marrow Transplant Program, Division Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Dana Schalk
- Bone Marrow Transplant Program, Division Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - M Beatriz Lopes
- Department of Pathology, Divisions of Neuropathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Joseph Donahue
- Department of Radiology and Medical Imaging, Division of Neuroradiology, University of Virginia Health System, Charlottesville, VA, USA
| | - Benjamin Purow
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800394, Charlottesville, VA, 22908, USA
| | - Patrick Dillon
- Division Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Tri Le
- Division Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, USA
| | - David Schiff
- Department of Neurology, Division of Neuro-Oncology, University of Virginia Health System, P.O. Box 800394, Charlottesville, VA, 22908, USA
| | - Qin Liu
- Biostatistics Unit, Molecular & Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Lawrence G Lum
- Bone Marrow Transplant Program, Division Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
9
|
Awuah D, Li L, Williams L, Urak R, Kujawski M, Forman SJ, Shively JE, Wang X. Ex-vivo CS1-OKT3 dual specific bivalent antibody-armed effector T cells mediate cellular immunity against multiple myeloma. Sci Rep 2023; 13:20853. [PMID: 38012196 PMCID: PMC10682018 DOI: 10.1038/s41598-023-47115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Bispecific T cell engaging antibodies (bsAbs) have emerged as novel and powerful therapeutic agents for redirecting T cells towards antigen-specific tumor killing. The cell surface glycoprotein and SLAM family member, CS1, exhibits stable and high-level expression on malignant plasma cells including multiple myeloma, which is indicative of an ideal target for bsAb therapy. Here, we developed a CS1 bsAb (CS1-dbBiTE) using Click chemistry to conjugate intact anti-CS1 antibody (Elotuzumab) and anti-huOKT3 antibody at their respective hinge regions. Using a cellular therapy approach, human T cells were armed ex-vivo with CS1-dbBiTE prior to examining effector activity. Our data indicates that arming T cells with CS1-dbBiTE induced T cell activation and expansion and subsequent cytotoxic activity against CS1-bearing MM tumors, demonstrated by significant CD107a expression as well as inflammatory cytokine secretion. As expected, CS1-dbBiTE armed T cells showed significantly reduced effector activity in the absence of CS1 expression. Similarly, in MM mouse xenograft studies, armed T cells exhibited effective anti-tumor efficacy highlighted by reduced tumor burden in MM.1S tumor-bearing mice compared to controls. On the basis of these findings, the rationale for CS1 targeting by human T cells armed with CS1-dbBiTE presents a potentially effective therapeutic approach for targeting MM.
Collapse
Affiliation(s)
- Dennis Awuah
- T Cell Therapeutics Research Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Lin Li
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Lindsay Williams
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Ryan Urak
- T Cell Therapeutics Research Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - Maciej Kujawski
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Stephen J Forman
- T Cell Therapeutics Research Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA
| | - John E Shively
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Xiuli Wang
- T Cell Therapeutics Research Laboratory, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, 91010, USA.
- T Cell Therapeutics Research Laboratory, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
10
|
Yankelevich M, Thakur A, Modak S, Chu R, Taub J, Martin A, Schalk DL, Schienshang A, Whitaker S, Rea K, Lee DW, Liu Q, Shields A, Cheung NK, Lum LG. Targeting GD2-positive Refractory/Resistant Neuroblastoma and Osteosarcoma with Anti- CD3 x Anti-GD2 Bispecific Antibody Armed T cells. RESEARCH SQUARE 2023:rs.3.rs-3570311. [PMID: 37986911 PMCID: PMC10659559 DOI: 10.21203/rs.3.rs-3570311/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Background Since treatment of neuroblastoma (NB) with anti-GD2 monoclonal antibodies provides a survival benefit in children with minimal residual disease and our preclinical study shows that anti-CD3 x anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs) were highly cytotoxic to GD2+ cell lines, we conducted a phase I/II study in recurrent/refractory patients to establish safety and explore the clinical benefit of GD2BATs. Methods The 3+3 dose escalation study (NCT02173093) phase I involved 9 evaluable patients with NB (n=5), osteosarcoma (OST) (n=3), and desmoplastic small round cell tumors (DSRCT) (n=1) with twice weekly infusions of GD2BATs at 40, 80, or 160 x 106 GD2BATs/kg/infusion with daily interleukin 2 (300,000 IU/m2) and twice weekly granulocyte-macrophage colony stimulating factor (250 μg/m2). Phase II portion of the trial was conducted in patients with NB at the dose 3 level of 160 x 106 GD2BATs/kg/infusion but failed to enroll the planned number of patients. Results Nine of 12 patients in the phase I completed therapy. There were no dose limiting toxicities (DLTs). All patients developed mild and manageable cytokine release syndrome (CRS) with grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody associated pain was not significant in this study. The median OS for patients in the Phase I and limited Phase II was 18.0 and 31.2 months, respectively, whereas the combined OS was 21.1 months. There was a complete bone marrow response with overall stable disease in one of the phase I patients with NB. Ten of 12 phase II patients were evaluable for response: 1 had partial response. Three additional patients were deemed to have clinical benefit with prolonged stable disease. More than 50% of evaluable patients showed augmented immune responses to GD2+ targets after GD2BATs as measured by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. Conclusions Our study demonstrated safety of up to 160 x 106 cells/kg/infusion of GD2BATs. Combined with evidence for the development of post treatment endogenous immune responses, this data supports further investigation of GD2 BATs in larger Phase II clinical trials.
Collapse
Affiliation(s)
| | | | | | - Roland Chu
- Children's Hospital of Michigan (CHM), Wayne State University
| | - Jeffrey Taub
- Children's Hospital of Michigan (CHM), Wayne State University
| | - Alissa Martin
- Children's Hospital of Michigan (CHM), Wayne State University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Luangwattananun P, Sangsuwannukul T, Supimon K, Thuwajit C, Chieochansin T, Sa-Nguanraksa D, Samarnthai N, O-Charoenrat P, Junking M, Yenchitsomanus PT. Anti-PD-L1 × anti-CD3 bispecific T-cell engager-armed T cells can overcome immunosuppression and redirect T cells to kill breast cancer cells expressing PD-L1. Int Immunopharmacol 2023; 124:111012. [PMID: 37804657 DOI: 10.1016/j.intimp.2023.111012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
T cell-based immunotherapy has transformed cancer treatment. Nonetheless, T cell antitumor activity can be inhibited by an immune checkpoint molecule expressed on cancer cells, program death ligand 1 (PD-L1), which interacts with the PD-1 on T cells. We generated αPD-L1 × αCD3 bispecific T-cell engager-armed T cells (BATs) to prevent PD-L1/PD-1 interaction and hence to redirect T cells to kill cancer cells. αPD-L1 × αCD3 bispecific T-cell engagers (BTEs) were produced from Chinese hamster ovary (CHO) cells to arm human primary T cells. Flow cytometry was used to investigate BTE binding to BATs. The cytotoxicity of BATs against PD-L1-expressing breast cancer (BC) cell lines was assessed in 2-dimensional (2D) and 3-dimensional (3D) culture models. The binding stability of BTE on BATs and their efficacy after cryopreservation were also examined. The CHO cell BTE expression yield was 3.34 mg/ml. The binding ability on T cells reached 91.02 ± 4.2 %. BATs specifically lysed PD-L1-expressing BC cells, with 56.4 ± 15.3 % HCC70 cells and 70.67 ± 15.6 % MDA-MB-231 cells lysed at a 10:1 effector-to-target ratio. BATs showed slight, nonsignificant lysis of PD-L1-negative BC cells, MCF-7, and T47D. Moreover, BATs significantly disrupted MDA-MB-231 3D spheroids expressing PD-L1 after 48 and 72 h of coculture. Cryopreserved BATs maintained BTE binding stability, cell viability, and anticancer activity, comparable to fresh BATs. αPD-L1 × αCD3 BATs induced the cytolysis of PD-L1-expressing BC cells in 2D and 3D coculture assays. BATs can be prepared and preserved, facilitating their use and transportation. This study demonstrates the potential of αPD-L1 × αCD3 BATs in treating cancers with positive PD-L1 expression.
Collapse
Affiliation(s)
- Piriya Luangwattananun
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanich Sangsuwannukul
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kamonlapat Supimon
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thaweesak Chieochansin
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-Nguanraksa
- Division of Head Neck and Breast Surgery, Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Norasate Samarnthai
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Mutita Junking
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
12
|
Faber ML, Oldham RAA, Thakur A, Rademacher MJ, Kubicka E, Dlugi TA, Gifford SA, McKillop WM, Schloemer NJ, Lum LG, Medin JA. Novel anti-CD30/CD3 bispecific antibodies activate human T cells and mediate potent anti-tumor activity. Front Immunol 2023; 14:1225610. [PMID: 37646042 PMCID: PMC10461807 DOI: 10.3389/fimmu.2023.1225610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023] Open
Abstract
CD30 is expressed on Hodgkin lymphomas (HL), many non-Hodgkin lymphomas (NHLs), and non-lymphoid malignancies in children and adults. Tumor expression, combined with restricted expression in healthy tissues, identifies CD30 as a promising immunotherapy target. An anti-CD30 antibody-drug conjugate (ADC) has been approved by the FDA for HL. While anti-CD30 ADCs and chimeric antigen receptors (CARs) have shown promise, their shortcomings and toxicities suggest that alternative treatments are needed. We developed novel anti-CD30 x anti-CD3 bispecific antibodies (biAbs) to coat activated patient T cells (ATCs) ex vivo prior to autologous re-infusions. Our goal is to harness the dual specificity of the biAb, the power of cellular therapy, and the safety of non-genetically modified autologous T cell infusions. We present a comprehensive characterization of the CD30 binding and tumor cell killing properties of these biAbs. Five unique murine monoclonal antibodies (mAbs) were generated against the extracellular domain of human CD30. Resultant anti-CD30 mAbs were purified and screened for binding specificity, affinity, and epitope recognition. Two lead mAb candidates with unique sequences and CD30 binding clusters that differ from the ADC in clinical use were identified. These mAbs were chemically conjugated with OKT3 (an anti-CD3 mAb). ATCs were armed and evaluated in vitro for binding, cytokine production, and cytotoxicity against tumor lines and then in vivo for tumor cell killing. Our lead mAb was subcloned to make a Master Cell Bank (MCB) and screened for binding against a library of human cell surface proteins. Only huCD30 was bound. These studies support a clinical trial in development employing ex vivo-loading of autologous T cells with this novel biAb.
Collapse
Affiliation(s)
- Mary L. Faber
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - Robyn A. A. Oldham
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Archana Thakur
- Department of Medicine, Division of Hematology/Oncology, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Mary Jo Rademacher
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - Ewa Kubicka
- Department of Medicine, Division of Hematology/Oncology, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Theresa A. Dlugi
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - Steven A. Gifford
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - William M. McKillop
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - Nathan J. Schloemer
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - Lawrence G. Lum
- Department of Medicine, Division of Hematology/Oncology, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, MCW, Milwaukee, WI, United States
| |
Collapse
|
13
|
Park JA, Cheung NKV. Promise and Challenges of T Cell Immunotherapy for Osteosarcoma. Int J Mol Sci 2023; 24:12520. [PMID: 37569894 PMCID: PMC10419531 DOI: 10.3390/ijms241512520] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The cure rate for metastatic or relapsed osteosarcoma has not substantially improved over the past decades despite the exploitation of multimodal treatment approaches, allowing long-term survival in less than 30% of cases. Patients with osteosarcoma often develop resistance to chemotherapeutic agents, where personalized targeted therapies should offer new hope. T cell immunotherapy as a complementary or alternative treatment modality is advancing rapidly in general, but its potential against osteosarcoma remains largely unexplored. Strategies incorporating immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR) modified T cells, and T cell engaging bispecific antibodies (BsAbs) are being explored to tackle relapsed or refractory osteosarcoma. However, osteosarcoma is an inherently heterogeneous tumor, both at the intra- and inter-tumor level, with no identical driver mutations. It has a pro-tumoral microenvironment, where bone cells, stromal cells, neovasculature, suppressive immune cells, and a mineralized extracellular matrix (ECM) combine to derail T cell infiltration and its anti-tumor function. To realize the potential of T cell immunotherapy in osteosarcoma, an integrated approach targeting this complex ecosystem needs smart planning and execution. Herein, we review the current status of T cell immunotherapies for osteosarcoma, summarize the challenges encountered, and explore combination strategies to overcome these hurdles, with the ultimate goal of curing osteosarcoma with less acute and long-term side effects.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Nai-Kong V. Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
14
|
Castrignano C, Di Scipio F, Franco F, Mognetti B, Berta GN. Reviving a Classic Antigen with a Cutting-Edge Approach: Nanobodies for HER2+ Breast Cancer. Pharmaceuticals (Basel) 2023; 16:794. [PMID: 37375741 PMCID: PMC10302560 DOI: 10.3390/ph16060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The serendipitous discovery of nanobodies (NBs) around two decades ago opened the door to new possibilities for innovative strategies, particularly in cancer treatment. These antigen-binding fragments are derived from heavy-chain-only antibodies naturally found in the serum of camelids and sharks. NBs are an appealing agent for the progress of innovative therapeutic strategies because they combine the advantageous assets of smaller molecules and conventional monoclonal antibodies (mAbs). Moreover, the possibility to produce NBs using bacterial systems reduces manufacturing expenses and speeds up the production process, making them a feasible option for the development of new bio-drugs. Several NBs have been developed over the past 10 years and are currently being tested in clinical trials for various human targets. Here, we provide an overview of the notable structural and biochemical characteristics of NBs, particularly in their application against HER2, an extracellular receptor that often gets aberrantly activated during breast cancer tumorigenesis. The focus is on the recent advancements in diagnostic and therapeutic research up to the present date.
Collapse
Affiliation(s)
- Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| | - Federica Di Scipio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| | - Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| |
Collapse
|
15
|
Huang MTF, Sharma V, Mendelsohn A, Wei Q, Li J, Yu B, Larrick JW, Lum LG. Broad reactivity and enhanced potency of recombinant anti-EGFR × anti-CD3 bispecific antibody-armed activated T cells against solid tumours. Ann Med 2022; 54:1047-1057. [PMID: 36799362 PMCID: PMC9045764 DOI: 10.1080/07853890.2022.2059101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Bispecific antibody (BiAb)-armed activated T cells (BATs) comprise an adoptive T cell therapy platform for treating cancer. Arming activated T cells (ATC) with anti-CD3 x anti-tumour associated antigen (TAA) BiAbs converts ATC into non-major histocompatibility complex (MHC)-restricted anti-tumour cytotoxic T lymphocytes (CTLs). Binding of target antigens via the BiAb bridge enables specific anti-tumour cytotoxicity, Th1 cytokines release, and T cell proliferation. Clinical trials in breast, prostate, and pancreatic cancer using BATs armed with chemically heteroconjugated BiAbs demonstrated safety, feasibility, induction of anti-tumour immune responses and potential increases in overall survival (OS).Objectives: The primary objective of this study was to develop a recombinant BiAb that confers enhanced anti-tumour activity of BATs against a broad range of solid tumours.Methods: A recombinant anti-epidermal growth factor receptor (EGFR) x anti-CD3 (OKT3) BiAb (rEGFRBi) was designed and expressed in CHO cells, used to arm ATC (rEGFR-BATs), and tested for specific cytotoxicity against breast, pancreatic and prostate cancers and glioblastoma.Results: rEGFR-BATs exhibit remarkably enhanced specific cytotoxicity and T1 cytokine secretion against a wide range of solid tumour cell lines vs. their respective chemically-heteroconjugated BATs.Conclusion: rEGFR-BATs may provide a "universal" T cell therapy for treating a wide range of solid tumours. KEY MESSAGEA (Gly4Ser)6 linker between the variable light and heavy chains of an scFv fused to the N-terminus of a heavy chain antibody confers unexpected stability to the heavy chain fusion protein and supports the efficient expression of the bispecific antibody.Arming of activated T cells with the rEGFRBi greatly enhances the relative cytotoxicity and Th1 cytokine secretion of theT cells relative to a chemically heteroconjugated BiAbs.rEGFR-BATs are promising candidates for the treatment of a broad range of solid tumours.
Collapse
Affiliation(s)
- Manley T. F. Huang
- Department of Medicine, Division of Hematology and Oncology, University of Virginia Cancer Center, Charlottesville, VA, USA
- TransTarget, Inc., Sunnyvale, CA, USA
| | | | | | | | - Jinjing Li
- Panorama Research, Inc., Sunnyvale, CA, USA
| | - Bo Yu
- Panorama Research, Inc., Sunnyvale, CA, USA
| | | | - Lawrence G. Lum
- Department of Medicine, Division of Hematology and Oncology, University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
16
|
Kubicka E, Lum LG, Huang M, Thakur A. Bispecific antibody-targeted T-cell therapy for acute myeloid leukemia. Front Immunol 2022; 13:899468. [PMID: 36389764 PMCID: PMC9663847 DOI: 10.3389/fimmu.2022.899468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
The management of relapsed or refractory acute myeloid leukemia (AML) continues to be therapeutically challenging. Non-toxic immunotherapy approaches are needed to provide long-term anti-leukemic effects. The goal of this study was to determine whether activated T cells (ATCs) armed with bispecific antibodies (BiAbs) could target and lyse leukemic and leukemic stem cells (LSCs). Anti-CD3 × anti-CD123 BiAb (CD123Bi) and anti-CD3 × anti-CD33GO (gemtuzumab ozogamicin [GO]) BiAb (CD33GOBi) were used to arm ATCs to produce bispecific antibody armed activated T cells (designated CD123 BATs or CD33GO BATs) to target AML cell lines, peripheral blood mononuclear cells from AML patients, and in vivo treatment of AML in xenogeneic NSG mice engrafted with leukemic cells. BATs exhibited high levels of specific cytotoxicity directed at AML cell lines at low 1:1 or 1:2 effector-to-target (E:T) ratios and secrete Th1 cytokines upon target engagement. In vivo study in AML-engrafted NSG mice showed significantly prolonged survival in mice treated with CD33GO BATs (p < 0.0001) or CD123 BATs (p < 0.0089) compared to ATC-treated control mice. Patient samples containing leukemic blasts and LSCs when treated with CD33GO BATs or CD123 BATs for 18 h showed a significant reduction (50%-100%; p < 0.005) in blasts and 75%-100% reduction in LSCs (p < 0.005) in most cases compared to unarmed ATCs. This approach may provide a potent and non-toxic strategy to target AML blasts and LSCs and enhance chemo-responsiveness in older patients who are likely to develop recurrent diseases.
Collapse
Affiliation(s)
| | | | | | - Archana Thakur
- Cellular Immunotherapy and Bone Marrow Transplant Program, Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
17
|
Immune Cell Metabolic Fitness for Life. Antibodies (Basel) 2022; 11:antib11020032. [PMID: 35645205 PMCID: PMC9149842 DOI: 10.3390/antib11020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/10/2022] Open
Abstract
Adoptive cell therapy holds great promise for treating a myriad of diseases, especially cancer. Within the last decade, immunotherapy has provided a significant leap in the successful treatment of leukemia. The research conducted throughout this period to understand the interrelationships between cancer cells and infiltrating immune cells winds up having one very common feature, bioenergetics. Cancer cells and immune cells both need ATP to perform their individual functions and cancer cells have adopted means to limit immune cell activity via changes in immune cell bioenergetics that redirect immune cell behavior to encourage tumor growth. Current leading strategies for cancer treatment super-charge an individual’s own immune cells against cancer. Successful Chimeric Antigen Receptor T Cells (CAR T) target pathways that ultimately influence bioenergetics. In the last decade, scientists identified that mitochondria play a crucial role in T cell physiology. When modifying T cells to create chimeras, a unique mitochondrial fitness emerges that establishes stemness and persistence. This review highlights many of the key findings leading to this generation’s CAR T treatments and the work currently being done to advance immunotherapy, to empower not just T cells but other immune cells as well against a variety of cancers.
Collapse
|
18
|
Tarrar TA, Anwar MY, Ali MA, Saeed M, Rehman S, Bajwa SF, Ayub T, Javid H, Ali R, Irshad A, Aiman W. Current Status of Monoclonal Antibodies-Based Therapies in Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis of Clinical Trials. Cureus 2022; 14:e22942. [PMID: 35411277 PMCID: PMC8989703 DOI: 10.7759/cureus.22942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 02/05/2023] Open
Abstract
Background Multiple patients with prostate cancer become resistant to castration therapies, which is termed castration-resistant prostate cancer (CRPC). Purpose The purpose of this review is to assess the status of efficacy (≥50% decline in prostate-specific antigen (PSA), progression-free survival (PFS), and overall survival (OS)) and safety (grade 3-4 adverse effects) of monoclonal antibodies in CRPC. Data source We searched databases including PubMed, Embase, Cochrane, Web of Science, and ClinicalTrials.gov. Results Hazard ratios of PFS and OS were 0.77 (95% CI = 0.69-0.87, I2 = 53%) and 0.98 (95% CI = 0.86-1.11, I2 = 40%), respectively, in the favor of monoclonal antibodies as compared to placebo. Risk ratio (RR) of >50% decline in PSA was 1.99 (95% CI = 0.97-4.08, I2 = 53%) in favor of monoclonal antibodies. Pooled incidence of >50% decline in PSA levels was 15% (95% CI = 0.1-0.23, I2 = 83%), 29% (95% CI = 0.14-0.51, I2 = 93%), 63% (95% CI = 0.49-0.76, I2 = 77%), and 88% (95% CI = 0.81-0.93, I2 = 0%) in single, two, three, and four-drug regimens, respectively. Conclusion Monoclonal antibodies are well tolerated and showed better PFS as compared to placebo. However, OS was only improved with ipilimumab. Denosumab delayed skeletal-related adverse events as compared to zoledronic acid. More multicenter double-blind clinical trials may be needed to confirm these results.
Collapse
Affiliation(s)
- Talha Azam Tarrar
- Internal Medicine, Nottingham University Hospitals NHS Trust, Nottingham, GBR
| | | | - Muhammad Ashar Ali
- Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | | | - Sana Rehman
- Internal Medicine, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, PAK
| | | | - Tooba Ayub
- Internal Medicine, MacNeal Hospital, Berwyn, USA
| | - Haleema Javid
- Internal Medicine, Rawalpindi Medical University and Allied Hospitals, Rawalpindi, PAK
| | - Rimsha Ali
- Internal Medicine, Rawalpindi Medical University, Rawalpindi, PAK
| | - Alaa Irshad
- Internal Medicine, Allama Iqbal Medical College, Lahore, PAK
| | - Wajeeha Aiman
- Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
19
|
Park JA, Cheung NKV. Overcoming tumor heterogeneity by ex vivo arming of T cells using multiple bispecific antibodies. J Immunother Cancer 2022; 10:jitc-2021-003771. [PMID: 35086947 PMCID: PMC8796264 DOI: 10.1136/jitc-2021-003771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tumorous heterogeneity is a hallmark of tumor evolution and cancer progression, being a longstanding challenge to targeted immunotherapy. Ex vivo armed T cells (EATs) using IgG-(L)-scFv bispecific antibodies (BsAbs) are potent tumor-specific cytotoxic effectors. To improve the anti-tumor efficacy of EATs against heterogeneous solid tumors, we explored multi-antigen targeting approaches. METHODS Ex vivo expanded T cells were armed with BsAbs built on the IgG-(L)-scFv platform, where an anti-CD3 (huOKT3) scFv was attached to the carboxyl end of both light chains of a tumor specific IgG. Multispecificity was created by combining monospecific EATs, combining BsAbs on the same T cell, or combining specificities on the same antibody. Three multi-antigens targeting EAT strategies were tested: (1) pooled-EATs (EATs each with unique specificity administered simultaneously) or alternate-EATs (EATs each with unique specificity administered in an alternating schedule), (2) dual-EATs or multi-EATs (T cells simultaneously armed with ≥2 BsAbs), and (3) TriAb-EATs (T cells armed with BsAb specific for two targets besides CD3 (TriAb)). The properties and efficiencies of these three strategies were evaluated by flow cytometry, in vitro cytotoxicity, cytokine release assays, and in vivo studies performed in BALB-Rag2 -/-IL-2R-γc-KO (BRG) mice xenografted with cancer cell line (CDX) or patient-derived tumor (PDX). RESULTS Multi-EATs retained target antigen specificity and anti-tumor potency. Cytokine release with multi-EATs in the presence of tumor cells was substantially less than when multiple BsAbs were mixed with unarmed T cells. When tested against CDXs or PDXs, dual-EATs or multi-EATs effectively suppressed tumor growth without clinical toxicities. Most importantly, dual-EATs or multi-EATs were highly efficient in preventing clonal escape while mono-EATs or TriAb- EATs were not as effective. CONCLUSIONS Multi-EATs have the potential to increase potency, reduce toxicity, and overcome tumor heterogeneity without excessive cytokine release. Arming T cells with multiple BsAbs deserves further exploration to prevent or to treat cancer resistance.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.,Department of Pediatrics, Inha University Hospital, Incheon, Republic of Korea
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
20
|
Thakur A, Scholler J, Kubicka E, Bliemeister ET, Schalk DL, June CH, Lum LG. Bispecific Antibody Armed Metabolically Enhanced Headless CAR T Cells. Front Immunol 2021; 12:690437. [PMID: 34290709 PMCID: PMC8288104 DOI: 10.3389/fimmu.2021.690437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 01/22/2023] Open
Abstract
Adoptive T cell therapies for solid tumors is challenging. We generated metabolically enhanced co-activated-T cells by transducing intracellular co-stimulatory (41BB, ICOS or ICOS-27) and CD3ζ T cell receptor signaling domains followed by arming with bispecific antibodies (BiAbs) to produce armed "Headless CAR T cells" (hCART). Various hCART armed with BiAb directed at CD3ϵ and various tumor associated antigens were tested for: 1) specific cytotoxicity against solid tumors targets; 2) repeated and dual sequential cytotoxicity; 3) survival and cytotoxicity under in vitro hypoxic condition; and 4) cytokine secretion. The 41BBζ transduced hCART (hCART41BBζ) armed with HER2 BiAb (HER2 hCART41BBζ) or armed with EGFR BiAb (EGFR hCART41BBζ) killed multiple tumor lines significantly better than control T cells and secreted Th1 cytokines/chemokines upon tumor engagement at effector to target ratio (E:T) of 2:1 or 1:1. HER2 hCART serially killed tumor targets up to 14 days. Sequential targeting of EGFR or HER2 positive tumors with HER2 hCART41BBζ followed by EGFR hCART41BBζ showed significantly increased cytotoxicity compared single antigen targeting and continue to kill under in vitro hypoxic conditions. In summary, metabolically enhanced headless CAR T cells are effective serial killers of tumor targets, secrete cytokines and chemokines, and continue to kill under in vitro hypoxic condition.
Collapse
MESH Headings
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/immunology
- Breast Neoplasms/metabolism
- Breast Neoplasms/therapy
- Coculture Techniques
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/immunology
- Female
- Humans
- Immunotherapy, Adoptive
- MCF-7 Cells
- Phenotype
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Tumor Hypoxia
- Tumor Microenvironment
Collapse
Affiliation(s)
- Archana Thakur
- Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, United States
| | - John Scholler
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States
| | - Ewa Kubicka
- Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, United States
| | - Edwin T. Bliemeister
- Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, United States
| | - Dana L. Schalk
- Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, United States
| | - Carl H. June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, United States
| | - Lawrence G. Lum
- Department of Medicine, Division of Hematology/Oncology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
21
|
Park JA, Santich BH, Xu H, Lum LG, Cheung NKV. Potent ex vivo armed T cells using recombinant bispecific antibodies for adoptive immunotherapy with reduced cytokine release. J Immunother Cancer 2021; 9:e002222. [PMID: 33986124 PMCID: PMC8126293 DOI: 10.1136/jitc-2020-002222] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND T cell-based immunotherapies using chimeric antigen receptors (CAR) or bispecific antibodies (BsAb) have produced impressive responses in hematological malignancies. However, major hurdles remained, including cytokine release syndrome, neurotoxicity, on-target off-tumor effects, reliance on autologous T cells, and failure in most solid tumors. BsAb armed T cells offer a safe alternative. METHODS We generated ex vivo armed T cells (EATs) using IgG-[L]-scFv-platformed BsAb, where the anti-CD3 (huOKT3) scFv was attached to the light chain of a tumor-binding IgG. BsAb density on EAT, in vitro cytotoxicity, cytokine release, in vivo trafficking into tumors, and their antitumor activities were evaluated in multiple cancer cell lines and patient-derived xenograft mouse models. The efficacy of EATs after cryopreservation was studied, and gamma delta (γδ) T cells were investigated as unrelated alternative effector T cells. RESULTS The antitumor potency of BsAb armed T cells was substantially improved using the IgG-[L]-scFv BsAb platform. When compared with separate BsAb and T cell injection, EATs released less TNF-α, and infiltrated tumors faster, while achieving robust antitumor responses. The in vivo potency of EAT therapy depended on BsAb dose for arming, EAT cell number per injection, total number of EAT doses, and treatment schedule intensity. The antitumor efficacy of EATs was preserved following cryopreservation, and EATs using γδ T cells were safe and as effective as αβ T cell-EATs. CONCLUSIONS EATs exerted potent antitumor activities against a broad spectrum of human cancer targets with remarkable safety. The antitumor potency of EATs depended on BsAb dose, cell number and total dose, and schedule. EATs were equally effective after cryopreservation, and the feasibility of third-party γδ-EATs offered an alternative for autologous T cell sources.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/metabolism
- Cell Line, Tumor
- Cell Movement
- Coculture Techniques
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Humans
- Immunotherapy, Adoptive
- Intraepithelial Lymphocytes/immunology
- Intraepithelial Lymphocytes/metabolism
- Intraepithelial Lymphocytes/transplantation
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/transplantation
- Male
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/therapy
- Phenotype
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Jeong A Park
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brian H Santich
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hong Xu
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Lawrence G Lum
- Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Nai-Kong V Cheung
- Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
22
|
Singh A, Dees S, Grewal IS. Overcoming the challenges associated with CD3+ T-cell redirection in cancer. Br J Cancer 2021; 124:1037-1048. [PMID: 33469153 PMCID: PMC7960983 DOI: 10.1038/s41416-020-01225-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/30/2023] Open
Abstract
The development of bispecific antibodies that redirect the cytotoxic activity of CD3+ T cells to tumours is a promising immunotherapeutic strategy for the treatment of haematological malignancies and solid cancers. Since the landmark FDA approval at the end of 2014 of the anti-CD3 × anti-CD19 bispecific antibody blinatumomab (Blincyto®) for the treatment of relapsed/refractory B-cell acute lymphoblastic leukaemia, ~100 clinical trials investigating the safety and efficacy of CD3+ bispecific T-cell redirectors for cancer have been initiated. However, despite early success, numerous challenges pertaining to CD3+ T-cell redirection in the context of cancer exist, including the recruitment of counterproductive CD3+ T-cell subsets, the release of systemic cytokines, the expansion of immune checkpoint molecules, the presence of an immunosuppressive tumour microenvironment, tumour antigen loss/escape, on-target off-tumour toxicity and suboptimal potency. The aim of the present review is to discuss novel approaches to overcome the key challenges associated with CD3+ bispecific T-cell redirection in order to achieve an optimal balance of anti-tumour activity and safety.
Collapse
Affiliation(s)
- Ajit Singh
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sundee Dees
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA.
| |
Collapse
|
23
|
Thakur A, Kondadasula SV, Ji K, Schalk DL, Bliemeister E, Ung J, Aboukameel A, Casarez E, Sloane BF, Lum LG. Anti-tumor and immune modulating activity of T cell induced tumor-targeting effectors (TITE). Cancer Immunol Immunother 2021; 70:633-656. [PMID: 32865605 PMCID: PMC7914128 DOI: 10.1007/s00262-020-02692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Adoptive transfer of Bispecific antibody Armed activated T cells (BATs) showed promising anti-tumor activity in clinical trials in solid tumors. The cytotoxic activity of BATs occurs upon engagement with tumor cells via the bispecific antibody (BiAb) bridge, which stimulates BATs to release cytotoxic molecules, cytokines, chemokines, and other signaling molecules extracellularly. We hypothesized that the release of BATs Induced Tumor-Targeting Effectors (TITE) by this complex interaction of T cells, bispecific antibody, and tumor cells may serve as a potent anti-tumor and immune-activating immunotherapeutic approach. In a 3D tumorsphere model, TITE showed potent cytotoxic activity against multiple breast cancer cell lines compared to control conditioned media (CM): Tumor-CM (T-CM), BATs-CM (B-CM), BiAb Armed PBMC-CM (BAP-CM) or PBMC-CM (P-CM). Multiplex cytokine analysis showed high levels of Th1 cytokines and chemokines; phospho-protein signaling array data suggest that the prominent JAK1/STAT1 pathway may be responsible for the induction and release of Th1 cytokines/chemokines in TITE. In xenograft breast cancer models, IV injections of 10× concentrated TITE (3×/week for 3 weeks; 150 μl TITE/injection) was able to inhibit tumor growth significantly (ICR/scid, p < 0.003; NSG p < 0.008) compared to the control mice. We tested the key components of the TITE for immune activating and anti-tumor activity individually and in combinations, the combination of IFN-γ, TNF-α and MIP-1β recapitulates the key activities of the TITE. In summary, master mix of active components of BATs-Tumor complex-derived TITE can provide a clinically controllable cell-free platform to target various tumor types regardless of the heterogeneous nature of the tumor cells and mutational tumor.
Collapse
Affiliation(s)
- Archana Thakur
- Bone Marrow Transplant Program, Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, 1335 Lee Street, West Complex 7191, Charlottesville, VA, 22908, USA.
| | - Sri Vidya Kondadasula
- Departments of Oncology and Medicine, Wayne State University and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Dana L Schalk
- Bone Marrow Transplant Program, Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, 1335 Lee Street, West Complex 7191, Charlottesville, VA, 22908, USA
| | - Edwin Bliemeister
- Bone Marrow Transplant Program, Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, 1335 Lee Street, West Complex 7191, Charlottesville, VA, 22908, USA
| | - Johnson Ung
- Bone Marrow Transplant Program, Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, 1335 Lee Street, West Complex 7191, Charlottesville, VA, 22908, USA
| | - Amro Aboukameel
- Departments of Oncology and Medicine, Wayne State University and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Eli Casarez
- Bone Marrow Transplant Program, Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, 1335 Lee Street, West Complex 7191, Charlottesville, VA, 22908, USA
| | - Bonnie F Sloane
- Department of Pharmacology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, 48201, USA
| | - Lawrence G Lum
- Bone Marrow Transplant Program, Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, 1335 Lee Street, West Complex 7191, Charlottesville, VA, 22908, USA
| |
Collapse
|
24
|
Mohammadi M, Jeddi-Tehrani M, Golsaz-Shirazi F, Arjmand M, Bahadori T, Judaki MA, Shiravi F, Zare HA, Haghighat FN, Mobini M, Amiri MM, Shokri F. A Novel Anti-HER2 Bispecific Antibody With Potent Tumor Inhibitory Effects In Vitro and In Vivo. Front Immunol 2021; 11:600883. [PMID: 33679691 PMCID: PMC7927792 DOI: 10.3389/fimmu.2020.600883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/23/2020] [Indexed: 01/14/2023] Open
Abstract
Overexpression of HER2 has been reported in many types of cancer, making it a perfect candidate for targeted immunotherapy. The combination of two FDA approved monoclonal antibodies (mAbs), trastuzumab and pertuzumab, has more robust anti-tumor activity in patients with HER2-overexpressing breast cancer. We recently produced a new humanized anti-HER2 mAb, hersintuzumab, which recognizes a different epitope than trastuzumab and pertuzumab on HER2. This mAb, in combination with trastuzumab, exhibits more potent anti-tumor activity than each parental mAb alone. Here we have developed a novel bispecific anti-HER2 antibody (BsAb) designated as trasintuzumab, composed of trastuzumab and hersintuzumab, using dual variable domain immunoglobulin (DVD-Ig) technology. Both variable domains of trasintuzumab are fully functional and have similar affinities to the parental mAbs and are also able to bind to natural HER2 on the surface of several HER2-expressing cell lines. Trasintuzumab was found to inhibit the growth of different types of tumor cell lines through suppression of the AKT and ERK signaling pathways as efficiently as the combination of the parental mAbs. It also induced tumor regression as potently as the combination of the two mAbs in nude mice bearing ovarian and gastric cancer xenografts. Our data suggest that trasintuzumab may be a promising BsAb therapeutic candidate for the treatment of HER2-overexpressing cancers.
Collapse
Affiliation(s)
- Mehdi Mohammadi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arjmand
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Tannaz Bahadori
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Judaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Shiravi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Ahmadi Zare
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Farzaneh Notash Haghighat
- Monoclonal Antibody Research Center, Avicenna Research Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Maryam Mobini
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Heitmann JS, Pfluegler M, Jung G, Salih HR. Bispecific Antibodies in Prostate Cancer Therapy: Current Status and Perspectives. Cancers (Basel) 2021; 13:549. [PMID: 33535627 PMCID: PMC7867165 DOI: 10.3390/cancers13030549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/29/2022] Open
Abstract
Prostate carcinoma (PC) is the second most common cancer in men. When the disease becomes unresponsive to androgen deprivation therapy, the remaining treatment options are of limited benefit. Despite intense efforts, none of the T cell-based immunotherapeutic strategies that meanwhile have become a cornerstone for treatment of other malignancies is established in PC. This refers to immune checkpoint inhibition (CI), which generally reinforces T cell immunity as well as chimeric antigen receptor T (CAR-T) cells and bispecific antibodies (bsAbs) that stimulate the T cell receptor/CD3-complex and mobilize T cells in a targeted manner. In general, compared to CAR-T cells, bsAb would have the advantage of being an "off the shelf" reagent associated with less preparative effort, but at present, despite enormous efforts, neither CAR-T cells nor bsAbs are successful in solid tumors. Here, we focus on the various bispecific constructs that are presently in development for treatment of PC, and discuss underlying concepts and the state of clinical evaluation as well as future perspectives.
Collapse
Affiliation(s)
- Jonas S. Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (J.S.H.); (M.P.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy” (IFIT), University of Tübingen, 72076 Tübingen, Germany;
| | - Martin Pfluegler
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (J.S.H.); (M.P.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy” (IFIT), University of Tübingen, 72076 Tübingen, Germany;
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Gundram Jung
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy” (IFIT), University of Tübingen, 72076 Tübingen, Germany;
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
- German Cancer Consortium (DKTK), DKFZ Partner Site Tübingen, 72076 Tübingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (J.S.H.); (M.P.)
- DFG Cluster of Excellence 2180 “Image-Guided and Functional Instructed Tumor Therapy” (IFIT), University of Tübingen, 72076 Tübingen, Germany;
| |
Collapse
|
26
|
Park JA, Cheung NKV. GD2 or HER2 targeting T cell engaging bispecific antibodies to treat osteosarcoma. J Hematol Oncol 2020; 13:172. [PMID: 33303017 PMCID: PMC7731630 DOI: 10.1186/s13045-020-01012-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cure rate for metastatic osteosarcoma has not substantially improved over the past decades. Clinical trials of anti-HER2 trastuzumab or anti-GD2 dinutuximab for metastatic or refractory osteosarcoma were not successful, and neither was immune checkpoint inhibitors (ICIs). METHODS We tested various target antigen expressions on osteosarcoma cell lines using flow cytometry and analyzed in vitro T cell engaging BsAb (T-BsAb)-dependent T cell-mediated cytotoxicity using 4-h 51Cr release assay. We tested in vivo anti-tumor activities of T-BsAb targeting GD2 or HER2 in established osteosarcoma cell line or patient-derived xenograft (PDX) mouse models carried out in BALB-Rag2-/-IL-2R-γc-KO (BRG) mice. We also generated ex vivo BsAb-armed T cells (EATs) and studied their tumor-suppressive effect against osteosarcoma xenografts. In order to improve the anti-tumor response, ICIs, anti-human PD-1 (pembrolizumab) or anti-human PD-L1 (atezolizumab) antibodies were tested their synergy with GD2- or HER2-BsAb against osteosarcoma. RESULTS GD2 and HER2 were chosen from a panel of surface markers on osteosarcoma cell lines and PDXs. Anti-GD2 BsAb or anti-HER2 BsAb exerted potent anti-tumor effect against osteosarcoma tumors in vitro and in vivo. T cells armed with anti-GD2-BsAb (GD2-EATs) or anti-HER2-BsAb (HER2-EATs) showed significant anti-tumor activities as well. Anti-PD-L1 combination treatment enhanced BsAb-armed T cell function in vivo and improved tumor control and survival of the mice, when given sequentially and continuously. CONCLUSION Anti-GD2 and anti-HER2 BsAbs were effective in controlling osteosarcoma. These data support the clinical investigation of GD2 and HER2 targeted T-BsAb treatment in combination with immune checkpoint inhibitors, particularly anti-PD-L1, in patients with osteosarcoma to improve their treatment outcome.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 170, New York, NY, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 170, New York, NY, USA.
| |
Collapse
|
27
|
Handa S, Hans B, Goel S, Bashorun HO, Dovey Z, Tewari A. Immunotherapy in prostate cancer: current state and future perspectives. Ther Adv Urol 2020; 12:1756287220951404. [PMID: 32952615 PMCID: PMC7476347 DOI: 10.1177/1756287220951404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023] Open
Abstract
Metastatic castrate resistant prostate cancer (PCa) remains an incurable entity. In the era of immunotherapy, the complex PCa microenvironment poses a unique challenge to the successful application of this class of agents. However, in the last decade, a tremendous effort has been made to explore this field of therapeutics. In this review, the physiology of the cancer immunity cycle is highlighted in the context of the prostate tumor microenvironment, and the current evidence for use of various classes of immunotherapy agents including vaccines (dendritic cell based, viral vector based and DNA/mRNA based), immune checkpoint inhibitors, Chimeric antigen receptor T cell therapy, antibody-mediated radioimmunotherapy, antibody drug conjugates, and bispecific antibodies, is consolidated. Finally, the future directions for combinatorial approaches to combat PCa are discussed.
Collapse
Affiliation(s)
- Shivani Handa
- Department of Internal Medicine, Icahn School of Medicine, Mount Sinai Morningside and West Hospital, New York, NY, 10019, USA
| | - Bandhul Hans
- Department of Internal Medicine, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Shokhi Goel
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Hafis O Bashorun
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Zach Dovey
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Ashutosh Tewari
- Department of Urology, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
28
|
Thakur A, Scholler J, Schalk DL, June CH, Lum LG. Enhanced cytotoxicity against solid tumors by bispecific antibody-armed CD19 CAR T cells: a proof-of-concept study. J Cancer Res Clin Oncol 2020; 146:2007-2016. [PMID: 32449004 PMCID: PMC7375514 DOI: 10.1007/s00432-020-03260-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Although adoptive cell therapy with chimeric antigen receptor (CAR)-engineered T cells has shown durable clinical efficacy in patients with CD19+ B cell malignancies, the application of this approach to solid tumors is challenging. The goal of this proof-of-concept study was to investigate whether loading of CD19-CAR T cells (CART19) with anti-HER2 or anti-EGFR bispecific antibodies (BiAb) will target HER2+/EGFR+ CD19- targets and signal the intracellular domain of CAR without engaging antigen-specific CD19 ScFv of CAR T cells. METHODS We used CART19 armed with anti-CD3 (OKT3) × anti-HER2 BiAb (HER2Bi) or anti-CD3 (OKT3) × anti-EGFR BiAb (EGFRBi) to evaluate the cytotoxicity directed at HER2 or EGFR expressing cancer cell lines compared with unarmed CART19 measured by short-term 51Cr release assay and long-term real-time cell analysis using xCelligence. We also determined the differences in exhaustion or effector phenotypes and cytokine profiles during the short- and long-term cytotoxicity assays. RESULTS Specific cytotoxicity was exhibited by CART19 armed with HER2Bi or EGFRBi against multiple tumor cell lines. Armed CART19 and armed activated T cells (ATC) showed comparable specific cytotoxicity that ranged between 10 and 90% against breast, pancreatic, ovarian, prostate, and lung cancer cell lines at 10:1 E/T ratio. Serial killing (repeated killing) by HER2Bi-armed CART19 ranged between 80 and 100% at 10:1 E/T ratio against MCF-7 cells up to 19 days (up to 4th round of repeated killing) measured by a real-time cell analysis without CART19 becoming exhausted. CONCLUSIONS HER2Bi- or EGFRBi-armed CART19 exhibited specific cytotoxicity against multiple HER2+/EGFR+/CD19- tumor targets in overnight and long-term serial killing assays. CART19 showed improved survival and were resistant to exhaustion after prolonged repeated exposure to tumor cells.
Collapse
Affiliation(s)
- Archana Thakur
- Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, 1335 Lee Street, West Complex 7191, Charlottesville, VA, 22908, USA.
| | - John Scholler
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Dana L Schalk
- Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, 1335 Lee Street, West Complex 7191, Charlottesville, VA, 22908, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Lawrence G Lum
- Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, 1335 Lee Street, West Complex 7191, Charlottesville, VA, 22908, USA.
| |
Collapse
|
29
|
Lum LG, Thakur A, Elhakiem A, Alameer L, Dinning E, Huang M. Anti-CS1 × Anti-CD3 Bispecific Antibody (BiAb)-Armed Anti-CD3 Activated T Cells (CS1-BATs) Kill CS1 + Myeloma Cells and Release Type-1 Cytokines. Front Oncol 2020; 10:544. [PMID: 32432032 PMCID: PMC7214537 DOI: 10.3389/fonc.2020.00544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Multiple myeloma (MM) remains incurable despite significant advances in chemotherapy, targeted therapies, and immunotherapy. Bispecific antibody (BiAb)-armed activated T cells (BATs) have been developed for targeting and treatment of solid and hematologic malignancies. BATs are serial killers of tumor cells, secrete Th1 cytokines, and induce adaptive cellular and humoral immune responses in patients (pts). This study provides preclinical data using bispecific anti-CS1 (elotuzumab) × anti-CD3 (OKT3) antibody (CS1Bi)-armed activated T cells (CS1- BATs) that provide a strong rationale for applying CS1-BATs to pts with MM. Methods: CS1-BATs and unarmed activated T cells (ATC) were incubated with MM cell targets at various effector to target ratios (E:T) in a quantitative flow cytometry-based assay to determine the degree of cell loss relative to target cells incubated without ATC. ATC from up to 8 normal donors were armed with various concentrations of CS1 BiAb and tested against 5 myeloma cells lines for CS1-BATs-mediated killing and release of Th1 cytokines, chemokines and granzyme B. Results: CS1-BATs from normal donors killed each of 5 MM cell lines proportional to E:T ratios ranging between 1:1 and 10:1 and arming concentrations of 12.5 to 50 ng/million ATC, which was accompanied by release of Th1 cytokines, chemokines and granzyme B. CS1-BATs prepared from MM pts' peripheral blood mononuclear cells (PBMC) showed increasing cytotoxicity and T cell expansion over time against ARH77 MM cells. The optimal arming dose of CS1Bi is 50 ng/106 ATC. Conclusions: These data demonstrate the therapeutic potential of CS1-BATs-mediated cytotoxicity and Th1 cytokines release at low E:T and support advancing their clinical development in pts with MM.
Collapse
Affiliation(s)
- Lawrence G Lum
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Archana Thakur
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Abdalla Elhakiem
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Lena Alameer
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Emily Dinning
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Manley Huang
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| |
Collapse
|
30
|
Cha HR, Lee JH, Ponnazhagan S. Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Res 2020; 80:1615-1623. [PMID: 32066566 DOI: 10.1158/0008-5472.can-19-2948] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/30/2019] [Accepted: 02/12/2020] [Indexed: 12/31/2022]
Abstract
Therapeutic interventions to harness the immune system against tumor cells have provided mixed results in the past for several solid tumors and hematologic malignancies. However, immunotherapy has advanced considerably over the last decade and is becoming an integral combination for treating patients with advanced solid tumors. In particular, prostate cancer immunotherapy has shown modest efficacy for patients in the past. With several key discoveries on immune mechanisms and advanced molecular diagnostic platforms recently, immunotherapy is re-emerging as a viable option for prostate cancer, especially castration-resistant prostate cancer (CRPC), to stimulate antitumor immunity. Combination of patient-tailored immunotherapy and immune checkpoint blockers with conventional cytotoxic agents and androgen receptor-targeted therapies should move the field forward. With a recent adaptation that the application of immune checkpoint inhibitors has been successful in the treatment of more than a dozen solid tumors, including melanoma, lymphoma, liver, cervical, gastrointestinal, and breast cancers, it is a timely endeavor to harness immunotherapy for prostate cancer. Here, we provide an account on the progression of immunotherapy with new discoveries and precision approaches for tumors, in particular CRPC, from mechanistic standpoint to emerging limitations and future directions.
Collapse
Affiliation(s)
- Ha-Ram Cha
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.,McWhorter School of Pharmacy, Samford University, Birmingham, Alabama
| | - Joo Hyoung Lee
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama.,PharmAbcine Inc., Yuseong-gu Daejeon, Republic of Korea
| | | |
Collapse
|
31
|
Khalili N, Keshavarz-Fathi M, Shahkarami S, Hirbod-Mobarakeh A, Rezaei N. Passive-specific immunotherapy with monoclonal antibodies for prostate cancer: A systematic review. J Oncol Pharm Pract 2019; 25:903-917. [PMID: 30348069 DOI: 10.1177/1078155218808080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Treatment of metastatic castration-resistant prostate cancer with conventional therapies is still not successful. Therefore, application of novel biological approaches such as immunotherapy, which appears to be more effective and less toxic, is necessary. Monoclonal antibodies against cancer specific antigens are a kind of immunotherapy that have been approved for specific types of cancer and are being investigated for prostate cancer as well. The aim of this review was to assess the effectiveness and safety of monoclonal antibodies for treatment of advanced prostate cancer. METHOD According to the search strategy stated in our systematic review protocol, Scopus, Medline, TRIP, CENTRAL, ProQuest, DART and OpenGrey databases were searched. Data collection and quality assessment were done independently by two authors and any disagreements between the collected data were resolved by a third author. A meta-analysis was not feasible as there was a considerable statistical heterogeneity among the trials. Hence, this review was limited to a narrative analysis of the included studies. RESULTS We found 9756 references by applying search strategy in 4 databases of journal articles and 3 databases of grey literature. We then discarded 3957 duplicate citations using Endnote software and 5143 articles due to obvious irrelevancy of their topics in primary screening. In secondary screening of 656 fulltexts, we excluded 538 articles, and finally included 12 trials in this systematic review, updated on 23 June 2017. The overall quality of the studies was fair. In general, results of this systematic review show promising advances in the treatment of prostate cancer patients with monoclonal antibodies against prostate-specific antigens with regard to PSA/disease response. Some of the studies reported pain relief after treatment as well. CONCLUSION Currently, the role of immunotherapy in the treatment of advanced prostate cancer still remains debated. Although passive specific immunotherapy could be offered as a novel therapeutic option in the coming years, patients should be informed about the risks and benefits of this therapy. One of the obstacles in this review was the lack of adequate assessment of survival-related endpoints reported in the included studies. Our study provides support for further research in this field.
Collapse
Affiliation(s)
- Neda Khalili
- 1 Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- 2 School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- 2 School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- 3 Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- 4 Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Shahkarami
- 5 Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- 6 Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Armin Hirbod-Mobarakeh
- 1 Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- 4 Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- 4 Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- 7 Department of Immunology, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- 8 Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Sheffield, UK
| |
Collapse
|
32
|
Foster LH, Lum LG. Treatment of hematological malignancies with T cell redirected bispecific antibodies: current status and future needs. Expert Opin Biol Ther 2019; 19:707-720. [PMID: 31081696 DOI: 10.1080/14712598.2019.1604672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Enthusiasm for developing therapeutic bispecific antibodies (BsAbs) for cancer applications has become intense in the past decade facilitated by advances in molecular biology, hybridoma technology, and protein engineering. The central strategy in BsAb engineering is to combine the specificities directed at effector cells, and at a tumor target associated antigen (TAA) into a single construct. AREAS COVERED This article highlights the clinical use of BsAbs to target effector cells to multiple myeloma (MM), non-Hodgkin lymphoma (NHL), acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL). We discuss the successes, challenges, and future strategies. Secondary literature search was performed using Pubmed, clinicaltrials.gov and non-proprietary internet search engines. EXPERT OPINION The use of BsAb constructs to target hematologic malignancies has achieved limited success to date. There continues to be a high level of enthusiasm for developing and applying new constructs to overcome the challenges in engineering and clinical application for hematologic malignancies.
Collapse
Affiliation(s)
- Laahn H Foster
- a Division of Hematology/Oncology , University of Virginia , Charlottesville , VA , USA
| | - Lawrence G Lum
- a Division of Hematology/Oncology , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
33
|
Bispecific anti-CD3 x anti-B7-H3 antibody mediates T cell cytotoxic ability to human melanoma in vitro and in vivo. Invest New Drugs 2019; 37:1036-1043. [PMID: 30706335 DOI: 10.1007/s10637-018-00719-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/25/2018] [Indexed: 01/27/2023]
Abstract
Inhibition of the B7-H3 immune checkpoint is reported to limit the tumor growth of B7-H3+ tumors. In this study, we demonstrated B7-H3 expression in human melanoma cells, including a primary culture and several cell lines. Furthermore, we investigated whether B7-H3 could serve as a target for T cell-mediated immunotherapy against melanoma. The cytotoxic capacity of activated T cells (ATCs) armed with an anti-CD3 x anti-B7-H3 bispecific antibody (B7-H3Bi-Ab) to melanoma cells was measured using a bioluminescent signal through a luciferase reporter on tumor cells. In contrast to unarmed ATCs, B7-H3Bi-Ab-armed ATCs exhibited increased cytotoxicity against melanoma cells at effector/target ratios from 1:1 to 20:1. Moreover, B7-H3Bi-Ab-armed ATCs secreted more interferin-gamma (IFN-γ), accompanied by higher levels of activating marker CD69 and CD25 expression. Infusion of B7-H3Bi-Ab-armed ATCs suppressed melanoma growth in a xenograft mouse model. Taken together, our results indicate that B7-H3Bi-Ab-armed ATCs may be a promising approach to immunotherapy for melanoma patients.
Collapse
|
34
|
Runcie K, Budman DR, John V, Seetharamu N. Bi-specific and tri-specific antibodies- the next big thing in solid tumor therapeutics. Mol Med 2018; 24:50. [PMID: 30249178 PMCID: PMC6154901 DOI: 10.1186/s10020-018-0051-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/10/2018] [Indexed: 12/31/2022] Open
Abstract
Antibody-based therapy has revitalized the world of cancer therapeutics since rituximab was first approved for the treatment of Non-Hodgkin's Lymphoma. Monoclonal antibodies against cancer antigens have been successful strategies for only a handful of cancer types due to many reasons including lack of antibody specificity and complex nature of tumor milieu which interfere with antibody efficacy. Polyspecific antibodies are promising class of anti-cancer agents which can be directed at multiple tumor antigens to eradicate tumor cells more precisely and effectively. They may overcome some of these limitations and have already changed treatment landscape for some malignancies such as B cell acute lymphoblastic leukemia. Pre-clinical studies and early phase clinical trials have demonstrated that this approach may be an effective strategy even for solid tumors. This review focuses on the development of bispecific and trispecific antibody therapy for the treatment of solid tumor malignancies and highlights the potential they hold for future therapies to come.
Collapse
Affiliation(s)
- Karie Runcie
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
| | - Daniel R. Budman
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
- Division of Hematology and Medical Oncology, Hofstra-Northwell School of Medicine, Hempstead, USA
| | - Veena John
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
- Division of Hematology and Medical Oncology, Hofstra-Northwell School of Medicine, Hempstead, USA
| | - Nagashree Seetharamu
- Department of Medicine, Hofstra-Northwell School of Medicine, Hempstead, USA
- Division of Hematology and Medical Oncology, Hofstra-Northwell School of Medicine, Hempstead, USA
| |
Collapse
|
35
|
Fucic A, Aghajanyan A, Culig Z, Le Novere N. Systems Oncology: Bridging Pancreatic and Castrate Resistant Prostate Cancer. Pathol Oncol Res 2018; 25:1269-1277. [PMID: 30220022 DOI: 10.1007/s12253-018-0467-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/03/2018] [Indexed: 12/31/2022]
Abstract
Large investments by pharmaceutical companies in the development of new antineoplastic drugs have not been resulting in adequate advances of new therapies. Despite the introduction of new methods, technologies, translational medicine and bioinformatics, the usage of collected knowledge is unsatisfactory. In this paper, using examples of pancreatic ductal adenocarcinoma (PaC) and castrate-resistant prostate cancer (CRPC), we proposed a concept showing that, in order to improve applicability of current knowledge in oncology, the re-clustering of clinical and scientific data is crucial. Such an approach, based on systems oncology, would include bridging of data on biomarkers and pathways between different cancer types. Proposed concept would introduce a new matrix, which enables combining of already approved therapies between cancer types. Paper provides a (a) detailed analysis of similarities in mechanisms of etiology and progression between PaC and CRPC, (b) diabetes as common hallmark of both cancer types and (c) knowledge gaps and directions of future investigations. Proposed horizontal and vertical matrix in cancer profiling has potency to improve current antineoplastic therapy efficacy. Systems biology map using Systems Biology Graphical Notation Language is used for summarizing complex interactions and similarities of mechanisms in biology of PaC and CRPC.
Collapse
Affiliation(s)
- A Fucic
- Institute for Medical Research and Occupational Health, Ksaverska c 2, 10000, Zagreb, Croatia.
| | - A Aghajanyan
- Institute of Medicine, Peoples' Friendship University of Russia, Moscow, Russian Federation
| | - Z Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
36
|
Lin L, Li L, Zhou C, Li J, Liu J, Shu R, Dong B, Li Q, Wang Z. A HER2 bispecific antibody can be efficiently expressed in Escherichia coli with potent cytotoxicity. Oncol Lett 2018; 16:1259-1266. [PMID: 29963199 DOI: 10.3892/ol.2018.8698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/07/2018] [Indexed: 12/26/2022] Open
Abstract
Bispecific antibodies have been actively studied for cancer therapy due to their potent cytotoxicity against tumor cells. A number of bispecific antibody formats have exhibited strong tumor cytotoxicity in vitro and in vivo. However, effective production of bispecific antibodies remains challenging for the majority of bispecific antibody formats. In the present study, a bispecific antibody was designed that links a conventional antigen-binding fragment (Fab) against cluster of differentiation 3 antigen (CD3) to a camel single domain antibody (VHH) against human epidermal growth factor receptor 2 (HER2). This bispecific antibody may be secreted and purified efficiently from Escherichia coli culture medium. The purified bispecific antibody is able to trigger T cell-mediated HER2-specific cytotoxicity in vitro and in vivo. The data gathered in the present study suggest that this bispecific format may be applied to other tumor antigens to produce bispecific antibodies more efficiently.
Collapse
Affiliation(s)
- Limin Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Li Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Changhua Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Jiayu Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Rui Shu
- Ying Rui, Inc., Guangzhou, Guangdong 510009, P.R. China
| | - Bin Dong
- School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510009, P.R. China
| | - Qing Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| | - Zhong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China.,Center for Cellular and Structural Biology, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
37
|
Moradi-Kalbolandi S, Hosseinzade A, Salehi M, Merikhian P, Farahmand L. Monoclonal antibody-based therapeutics, targeting the epidermal growth factor receptor family: from herceptin to Pan HER. J Pharm Pharmacol 2018; 70:841-854. [DOI: 10.1111/jphp.12911] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/25/2018] [Indexed: 12/30/2022]
Abstract
Abstract
Objectives
Monoclonal antibody-based of cancer therapy has been considered as one of the most successful therapeutic strategies for both haematologic malignancies and solid tumours in the last two decades. Epidermal growth factor receptor (EGFR) family signalling pathways play a key role in the regulation of cell proliferation, survival and differentiation. Hence, anti-EGFR family mAbs is one of the most promising approaches in cancer therapy.
Key findings
Here, recent advances in anti-EGFR mAb including approved or successfully tested in preclinical and clinical studies have been reviewed. Although we focus on monoclonal antibodies against the EGF receptor, but the mechanisms underlying the effects of EGFR-specific mAb in cancer therapy, to some extend the resistance to existing anti-EGFR therapies and some therapeutic strategies to overcome resistance such as combination of mAbs on different pathways are briefly discussed as well.
Summary
The EGFR family receptors, is considered as an attractive target for mAb development to inhibit their consecutive activities in tumour growth and resistance. However, due to resistance mechanisms, the combination therapies may become a good candidate for targeting EGFR family receptors.
Collapse
Affiliation(s)
- Shima Moradi-Kalbolandi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Aysooda Hosseinzade
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Malihe Salehi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Parnaz Merikhian
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Farahmand
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
38
|
Segal BH. Specific Adoptive T-Cell Therapy for Viral and Fungal Infections. MANAGEMENT OF INFECTIONS IN THE IMMUNOCOMPROMISED HOST 2018. [PMCID: PMC7121368 DOI: 10.1007/978-3-319-77674-3_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite advances in anti-infective agents, viral and fungal infections after hematopoietic stem cell transplantation (HSCT) continue to cause life-threatening complications that limit the success of HSCT. Early adoptive T-cell immunotherapy studies showed that administration of allogeneic virus-specific cytotoxic T lymphocytes (vCTL) can prevent and control viral infections and reconstitute antiviral immunity to cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Advances in immunobiology, in vitro culture technology, and current good manufacturing practice (cGMP) have provided opportunities for advancing adoptive cell therapy for viral infections: (1) T cells have been expanded targeting multiple pathogens; (2) vCTL production no longer requires viral infection or viral vector transduction of antigen-presenting cells (APCs); (3) the source of lymphocytes is no longer restricted to donors who are immune to the pathogens; (4) naive T cells have been redirected with chimeric antigen receptor T cells (CARTs) or armed with bispecific antibody-armed T cells (BATs) to mediate vCTL activity; (5) these technologies could be combined to targeted multiple viral or fungal pathogens; and (6) pathogen-specific T-cell products manufactured from third parties and banked for “off-the-shelf” use post-HSCT may soon become a reality.
Collapse
Affiliation(s)
- Brahm H. Segal
- Departments of Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York USA
| |
Collapse
|
39
|
B7-H3 as a promising target for cytotoxicity T cell in human cancer therapy. Oncotarget 2017; 7:29480-91. [PMID: 27121051 PMCID: PMC5045411 DOI: 10.18632/oncotarget.8784] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/28/2016] [Indexed: 12/19/2022] Open
Abstract
Targeting B7-H3 over-expressed tumor cells with anti-B7-H3 monoclonal antibodies inhibits tumor growth. Here we demonstrated the expression of B7 family homologue 3 (B7-H3) in a wide range of human tumor cells and further investigated whether B7-H3 could be served as a target for T-cell mediated immunotherapy against human cancers. The specific cytotoxic activity of activated T cell (ATC) armed with a novel anti-CD3 x anti-B7-H3 bispecific antibody (B7-H3Bi-Ab) against tumor cell was evaluated in vitro and in vivo. In contrast with unarmed ATC, an increase in cytotoxic activity of B7-H3Bi-armed ATC against tumor cells was observed at effector/target (E/T) ratios of 5:1, 10:1, and 20:1. Moreover, B7-H3Bi-armed ATC secreted more IFN-γ, TNF-α and IL-2 than unarmed ATC. Infusion of B7-H3Bi-armed ATC inhibited tumor growth in severe combined immunodeficiency (SCID) xenograft models, along with a significant survival benefit. Therefore, treatment with novel B7-H3Bi-armed ATC will be a promising strategy for current cancer immunotherapy.
Collapse
|
40
|
Yu S, Liu Q, Han X, Qin S, Zhao W, Li A, Wu K. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment. Exp Hematol Oncol 2017; 6:31. [PMID: 29209558 PMCID: PMC5704598 DOI: 10.1186/s40164-017-0091-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
HER2-targeted immunotherapy consists of monoclonal antibodies (e.g. trastuzumab, pertuzumab), bispecific antibodies (e.g. MM-111, ertumaxomab) and activated T cells armed with anti-HER2 bispecific antibody (HER2Bi-aATC). Trastuzumab is a classic drug for the treatment of HER2 positive metastatic breast cancer. The combined application of pertuzumab, trastuzumab and paclitaxel has been suggested as a standard therapy for HER2 positive advanced breast cancer. The resistance to anti-HER2 antibody has resulted in disease progression. HER2-directed bispecific antibody may be a promising therapeutic approach for these patients. Ertumaxomab enhanced the interaction of immune effector cells and tumor cells. MM-111 simultaneously binds to HER2 and HER3 and blocks downstream signaling. Besides, HER2Bi-aATC is also an alternative therapeutic approach for HER2 positive cancers. In this review, we summarized the recent advancement of HER2-targeted monoclonal antibodies (trastuzumab, pertuzumab and T-DM1) and bispecific antibodies (MM-111, ertumaxomab and HER2Bi-aATC), especially focus on clinical trial results.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Xinwei Han
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Anping Li
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
41
|
Yu S, Li A, Liu Q, Yuan X, Xu H, Jiao D, Pestell RG, Han X, Wu K. Recent advances of bispecific antibodies in solid tumors. J Hematol Oncol 2017; 10:155. [PMID: 28931402 PMCID: PMC5607507 DOI: 10.1186/s13045-017-0522-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
Cancer immunotherapy is the most exciting advancement in cancer therapy. Similar to immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T), bispecific antibody (BsAb) is attracting more and more attention as a novel strategy of antitumor immunotherapy. BsAb not only offers an effective linkage between therapeutics (e.g., immune effector cells, radionuclides) and targets (e.g., tumor cells) but also simultaneously blocks two different oncogenic mediators. In recent decades, a variety of BsAb formats have been generated. According to the structure of Fc domain, BsAb can be classified into two types: IgG-like format and Fc-free format. Among these formats, bispecific T cell engagers (BiTEs) and triomabs are commonly investigated. BsAb has achieved an exciting breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. In this review, we focus on the preclinical experiments and clinical studies of epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor (HER) family, carcinoembryonic antigen (CEA), and prostate-specific membrane antigen (PSMA) related BsAbs in solid tumors, as well as discuss the challenges and corresponding approaches in clinical application.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Anping Li
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Richard G Pestell
- Pennsylvania Center for Cancer and Regenerative Medicine, Wynnewood, PA, 19096, USA
| | - Xinwei Han
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
42
|
Schissler AG, Li Q, Chen JL, Kenost C, Achour I, Billheimer DD, Li H, Piegorsch WW, Lussier YA. Analysis of aggregated cell-cell statistical distances within pathways unveils therapeutic-resistance mechanisms in circulating tumor cells. Bioinformatics 2017; 32:i80-i89. [PMID: 27307648 PMCID: PMC4908332 DOI: 10.1093/bioinformatics/btw248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION As 'omics' biotechnologies accelerate the capability to contrast a myriad of molecular measurements from a single cell, they also exacerbate current analytical limitations for detecting meaningful single-cell dysregulations. Moreover, mRNA expression alone lacks functional interpretation, limiting opportunities for translation of single-cell transcriptomic insights to precision medicine. Lastly, most single-cell RNA-sequencing analytic approaches are not designed to investigate small populations of cells such as circulating tumor cells shed from solid tumors and isolated from patient blood samples. RESULTS In response to these characteristics and limitations in current single-cell RNA-sequencing methodology, we introduce an analytic framework that models transcriptome dynamics through the analysis of aggregated cell-cell statistical distances within biomolecular pathways. Cell-cell statistical distances are calculated from pathway mRNA fold changes between two cells. Within an elaborate case study of circulating tumor cells derived from prostate cancer patients, we develop analytic methods of aggregated distances to identify five differentially expressed pathways associated to therapeutic resistance. Our aggregation analyses perform comparably with Gene Set Enrichment Analysis and better than differentially expressed genes followed by gene set enrichment. However, these methods were not designed to inform on differential pathway expression for a single cell. As such, our framework culminates with the novel aggregation method, cell-centric statistics (CCS). CCS quantifies the effect size and significance of differentially expressed pathways for a single cell of interest. Improved rose plots of differentially expressed pathways in each cell highlight the utility of CCS for therapeutic decision-making. AVAILABILITY AND IMPLEMENTATION http://www.lussierlab.org/publications/CCS/ CONTACT: yves@email.arizona.edu or piegorsch@math.arizona.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- A Grant Schissler
- Center for Biomedical Informatics and Biostatistics (CB2) Graduate Interdisciplinary Program in Statistics Department of Medicine BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Qike Li
- Center for Biomedical Informatics and Biostatistics (CB2) Graduate Interdisciplinary Program in Statistics Department of Medicine BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - James L Chen
- Division of Bioinformatics, Departments of Biomedical Informatics Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Colleen Kenost
- Center for Biomedical Informatics and Biostatistics (CB2) Department of Medicine BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Ikbel Achour
- Center for Biomedical Informatics and Biostatistics (CB2) Department of Medicine BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - D Dean Billheimer
- Center for Biomedical Informatics and Biostatistics (CB2) Graduate Interdisciplinary Program in Statistics BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Haiquan Li
- Center for Biomedical Informatics and Biostatistics (CB2) Department of Medicine BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Walter W Piegorsch
- Graduate Interdisciplinary Program in Statistics BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Yves A Lussier
- Center for Biomedical Informatics and Biostatistics (CB2) Graduate Interdisciplinary Program in Statistics Department of Medicine BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA The University of Arizona Cancer Center, Tucson, AZ 85719, USA Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
43
|
Changing face of metastatic prostate cancer: the law of diminishing returns holds true. Curr Opin Oncol 2017; 29:196-200. [DOI: 10.1097/cco.0000000000000370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Li A, Xing J, Li L, Zhou C, Dong B, He P, Li Q, Wang Z. A single-domain antibody-linked Fab bispecific antibody Her2-S-Fab has potent cytotoxicity against Her2-expressing tumor cells. AMB Express 2016; 6:32. [PMID: 27112931 PMCID: PMC4844577 DOI: 10.1186/s13568-016-0201-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/06/2016] [Indexed: 02/08/2023] Open
Abstract
Her2, which is frequently overexpressed in breast cancer, is one of the most studied tumor-associated antigens for cancer therapy. Anti-HER2 monoclonal antibody, trastuzumab, has achieved significant clinical benefits in metastatic breast cancer. In this study, we describe a novel bispecific antibody Her2-S-Fab targeting Her2 by linking a single domain anti-CD16 VHH to the trastuzumab Fab. The Her2-S-Fab antibody can be efficiently expressed and purified from Escherichia coli, and drive potent cancer cell killing in HER2-overexpressing cancer cells. In xenograft model, the Her2-S-Fab suppresses tumor growth in the presence of human immune cells. Our results suggest that the bispecific Her2-S-Fab may provide a valid alternative to Her2 positive cancer therapy.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW In recent clinical trials, immunotherapeutic agents have demonstrated promising results for the treatment of prostate cancer. This review discusses emerging immunotherapies for prostate cancer and their evolving role in sequencing and combination therapy. RECENT FINDINGS Therapeutic vaccines including PROSTVAC and DCVAC/PCa have completed promising phase 2 trials for the treatment of prostate cancer and phase 3 trials are underway. Recent evidence supports a synergistic relationship between immunotherapy agents themselves, antiandrogens and with cytotoxic chemotherapy. Prostate cancer patients with good prognostic factors, such as minimal disease burden, appear to achieve the optimal benefit from immunotherapy. SUMMARY Therapeutic cancer vaccines and immunomodulating agents have demonstrated activity in the treatment of prostate cancer. Immunotherapies may alter the prostate tumor microenvironment and ongoing studies aim to provide guidance on effective sequencing and combination strategies.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Adoptive T-cell therapy has become one of the most exciting fields of cancer therapy in the past few years. In this article, we describe a method which combines adoptive T-cell therapy with antibody therapy by arming T cells from cord blood, normal patients, and cancer patients with bispecific antibodies capable of binding to tumor-associated antigens on one side of the bispecific antibody construct and T cells on another side of the construct. This approach redirects T cells against tumor cells in a non-MHC-restricted manner. RECENT FINDINGS Various methods for manipulating the immune system including check-point inhibitors, chimeric antigen receptor T cells, and bispecific antibodies have shown promising activity in treating both hematological malignancies and solid tumors with excellent success. In recent studies, activated T cells armed with bispecific antibodies have shown good preclinical activity, safety, and promising efficacy in the clinical trials. SUMMARY Activated T cells armed with bispecific antibodies represent a promising treatment for cancer immunotherapy.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW A number of molecular and genomic biomarkers that possess the ability to guide treatment or 'actionable targets' are being reported in metastatic prostate cancer. In addition, pathways of resistance to existing therapies and novel agents to overcome them are currently under active investigation. The next wave of investigations is focused on personalized therapy of prostate cancer. The focus of this review article is to provide an update on clinical development in advanced prostate cancer and to highlight the ongoing investigations of biomarker discovery, and ways of overcoming therapeutic resistance. The next generation of clinical trials developing novel targets and compounds promises to be in populations enriched with specific marker expression. RECENT FINDINGS The breakthrough report, of the ability of the androgen receptor variant 7 mutation, detected in circulating tumor cells, to predict the lack of response to abiraterone or enzalutamide, and the remarkable responses of poly adenosine diphosphate ribose polymerase inhibitors in prostate cancer with DNA repair mutations have elevated hopes of a bright future in the biomarker-driven therapeutic arena. Novel targets such as bromodomain extra terminal-1 and phosphatidylinositol 3-kinase hold promise for the possibility of overcoming resistance. Novel hormone agents are also under active study. SUMMARY As the clinical application of the multifaceted therapies narrows down to enriched patient populations selected by genomic testing, the therapeutic efficiency will escalate considerably. Novel targets, resistance mechanisms and relevant agents are being avidly tested, and the dream of personalized medicine is emerging into reality.
Collapse
Affiliation(s)
- Manish K Thakur
- Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
48
|
Lum LG, Thakur A, Kondadasula SV, Al-Kadhimi Z, Deol A, Tomaszewski EN, Yano H, Schalk DL, Ayash L, Zonder JA, Uberti JP, Abidi MH, Ratanatharathorn V. Targeting CD138-/CD20+ Clonogenic Myeloma Precursor Cells Decreases These Cells and Induces Transferable Antimyeloma Immunity. Biol Blood Marrow Transplant 2016; 22:869-78. [PMID: 26827660 PMCID: PMC6820521 DOI: 10.1016/j.bbmt.2015.12.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/31/2015] [Indexed: 12/22/2022]
Abstract
This phase Ib clinical trial evaluated whether pretargeting of CD20(+) clonogenic myeloma precursor cells (CMPCs) with anti-CD3 × anti-CD20 bispecific antibody-armed T cells (BATs) before autologous stem cell transplantation (SCT) in patients with standard-risk and high-risk multiple myeloma would induce antimyeloma immunity that could be detected and boosted after SCT. All 12 patients enrolled in this study received 2 BATs infusions before SCT, and 4 patients received a booster infusion of BATs after SCT. Pretargeting CD138(-)/CD20(+) CMPCs with BATs before SCT was safe and reduced levels of CMPCs by up to 58% in the postinfusion bone marrow in patients who remained in remission. Four of 5 patients who remained in remission had a >5-fold increase in IFN-γ enzyme-linked immunospot responses. SOX2 antibody increased after BATs infusions and persisted after SCT. The median anti-SOX2 level at 3 months after SCT was 28.1 ng/mL (range, 4.6 to 256 ng/mL) in patients who relapsed and 46 ng/mL (range, 28.3 to 73.3 ng/mL) in patients who remained in remission. The immune correlates suggest that infusions of targeted T cells given before SCT were able to reduce CMPC levels and induced cellular and humoral antimyeloma immunity that could be transferred and boosted after SCT.
Collapse
Affiliation(s)
- Lawrence G Lum
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan; Department of Immunology and Microbiology, Wayne State University, Detroit, Michigan.
| | - Archana Thakur
- Department of Oncology, Wayne State University, Detroit, Michigan.
| | | | - Zaid Al-Kadhimi
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan
| | - Abhinav Deol
- Department of Oncology, Wayne State University, Detroit, Michigan
| | | | - Hiroshi Yano
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Dana L Schalk
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Lois Ayash
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan
| | - Jeffrey A Zonder
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Joseph P Uberti
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan
| | - Muneer H Abidi
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan
| | - Voravit Ratanatharathorn
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
49
|
Abstract
INTRODUCTION Bispecific antibodies (BsAb) are emerging as a novel approach for dual targeting strategies. Two bispecific antibodies are approved for therapy and >30 are in clinical development. The first generation of BsAb were produced by chemical cross-linking or hybridoma technology; with the recent advent of genetic and protein engineering technologies numerous formats of bispecific antibodies have emerged using either the fragments of IgG or whole IgG molecules. Further areas of development include dual blockade of different disease pathways, diagnosis and imaging. AREAS COVERED Biologics, including bi- or multi-specific antibodies and T cell-based approaches are rapidly changing the landscape of cancer therapeutics. New engineering platforms for bi- or multi-specific antibodies and scaffolds offer improved efficacy and reduced toxicities over IgG-based monoclonal antibodies. Preclinical and clinical studies using different formats of BsAbs are described in this review using PubMed as a literature search tool. EXPERT OPINION A comprehensive presentation of preclinical data and clinical trials evaluating the various formats of BsAbs indicate their safety and efficacy. However, a vast opportunity to fine tune physical properties and functional activity of biologics to improve the stability, engagement of cytotoxic CD8 T cells and multi-antigen targeting strategy through protein engineering holds a greater therapeutic potential.
Collapse
Affiliation(s)
- Archana Thakur
- a Department of Oncology , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
| | - Lawrence G Lum
- a Department of Oncology , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
- b Department of Medicine , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
- c Department of Pediatrics , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
- d Department of Immunology and Microbiology , Wayne State University and Karmanos Cancer Institute , Detroit , MI , USA
| |
Collapse
|
50
|
Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. Curr Opin Immunol 2016; 40:24-35. [PMID: 26963133 DOI: 10.1016/j.coi.2016.02.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/31/2022]
Abstract
To realize the full potential of cancer immunotherapy, the latest generation immunotherapeutics are designed to harness the potent tumor-killing capacity of T cells. Thus, to mobilize T cells, new optimized bispecific antibody (BsAb) designs, enabling efficient polyclonal redirection of cytotoxic activity through binding to CD3 and a Tumor Associated Antigen (TAA) and refined genetically modified T cells have recently expanded the arsenal of available options for cancer treatment. This review presents the current understanding of the parameters crucial to the design of optimal T cell redirecting BsAb and chimeric antigen receptor (CAR)-modified T cells. However, there are additional questions that require thorough elucidation. Both modalities will benefit from design changes that may increase the therapeutic window. One such approach could employ the discrimination afforded by multiple TAA to significantly increase selectivity.
Collapse
|