1
|
Nowak JK, Rosik J, Szadziński K, Valentin MT, Kosiorowska KE, Białowiec A, Stegenta-Dąbrowska S, Świechowski K. The Effects of Chemically Modified Biochar on Biomethane Production from Glucose and Sugar Beet Pulp. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1608. [PMID: 40271879 PMCID: PMC11990899 DOI: 10.3390/ma18071608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025]
Abstract
The research aimed to study the effects of straw-derived biochar and two types of chemically modified biochar on biomethane production from glucose as a model substrate and sugar beet pulp as a real substrate. The biochar chemical modification with H3PO4 acid and KOH base resulted in a change in biochar surface area properties and its functional group's abundance and a decrease in biochar mass yield production. The anaerobic digestion process was performed in batch reactors kept at 37 °C for 20 days. The substrate-to-inoculum ratio by volatile solids was 0.5, while the mass of added biochar corresponded to 16 g·L-1. The results showed that neither the addition of biochar nor the chemically modified biochar had any positive effects on biomethane production or its kinetics in the case of both substrates. The highest methane production was found in reactors without biochar added, respectively, 385 and 324 mL·gVS-1 for glucose and sugar beet pulp. It is hypothesized that the anaerobic digestion process was performed under optimal conditions, and therefore, biochar could not enhance methane production. Additionally, biochar may have adsorbed some volatile fatty acids, making them less available to anaerobic microorganisms.
Collapse
Affiliation(s)
- Julia K. Nowak
- Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, 38c Chełmońskiego St., 50-375 Wrocław, Poland;
| | - Joanna Rosik
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Sq. 24, 50-363 Wrocław, Poland
| | - Kacper Szadziński
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.S.); or (M.T.V.); (K.E.K.); (A.B.); (S.S.-D.); (K.Ś.)
| | - Marvin T. Valentin
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.S.); or (M.T.V.); (K.E.K.); (A.B.); (S.S.-D.); (K.Ś.)
- Department of Agricultural and Biosystems Engineering, Benguet State University, Km. 5, La Trinidad, Benguet 2601, Philippines
| | - Katarzyna E. Kosiorowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.S.); or (M.T.V.); (K.E.K.); (A.B.); (S.S.-D.); (K.Ś.)
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.S.); or (M.T.V.); (K.E.K.); (A.B.); (S.S.-D.); (K.Ś.)
| | - Sylwia Stegenta-Dąbrowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.S.); or (M.T.V.); (K.E.K.); (A.B.); (S.S.-D.); (K.Ś.)
| | - Kacper Świechowski
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.S.); or (M.T.V.); (K.E.K.); (A.B.); (S.S.-D.); (K.Ś.)
| |
Collapse
|
2
|
García-Fuentevilla LL, Martín-Sampedro R, Darder M, Ibarra D, Eugenio ME. Bioactive nanocellulose films by incorporation of enzymatically polymerized lignin nanoparticles. Int J Biol Macromol 2025; 299:140051. [PMID: 39837441 DOI: 10.1016/j.ijbiomac.2025.140051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
In the search of new bioactive and biobased films, the use of lignin nanoparticles (LNP) and cellulose nanofibers (CNF) has gained potential relevance in the last years. In this context, an enzymatic and environmentally friendly pretreatment with laccases has been proposed in this work to modify the properties of the developed cellulose-lignin nanocomposite films. Thus, the laccase treatment successfully polymerized kraft lignin as indicated by the increase in weight average molecular weight (from 3621 to 5681 Da) and the reduction in phenolic content (from 552 to 324 mg GAE/g lignin). Moreover, this polymerization also caused a significant reduction in the size of the resulting LNP (6.8 ± 2.4 nm) compared to those obtained from untreated lignin (62 ± 22 nm). The incorporation of both untreated and treated LNP conferred antioxidant, antibacterial and UV-shielding capabilities to the final LNP-CNF films, observing higher antioxidant and UV-shielding values with polymerized LNP probably due to its tiny size and conjugated functional groups, respectively. Furthermore, films with 5 % LNP also showed better thermal stability, elongation at break, water vapor permeability and transparency, compared to CNF control films.
Collapse
Affiliation(s)
| | - Raquel Martín-Sampedro
- Institute of Forest Science (ICIFOR-INIA), CSIC, Ctra. de la Coruña, km 7,5, Madrid, 28040, Spain.
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz 3, Cantoblanco, Madrid 28049, Spain
| | - David Ibarra
- Institute of Forest Science (ICIFOR-INIA), CSIC, Ctra. de la Coruña, km 7,5, Madrid, 28040, Spain
| | - María E Eugenio
- Institute of Forest Science (ICIFOR-INIA), CSIC, Ctra. de la Coruña, km 7,5, Madrid, 28040, Spain
| |
Collapse
|
3
|
Rubio-Valle JF, Martín-Alfonso JE, Eugenio ME, Ibarra D, Oliva JM, Manzanares P, Valencia C. Bioethanol lignin-rich residue from olive stones for electrospun nanostructures development and castor oil structuring. Int J Biol Macromol 2024; 255:128042. [PMID: 37977476 DOI: 10.1016/j.ijbiomac.2023.128042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/14/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
This work describes the chemical and structural characterization of a lignin-rich residue from the bioethanol production of olive stones and its use for nanostructures development by electrospinning and castor oil structuring. The olive stones were treated by sequential acid/steam explosion pretreatment, further pre-saccharification using a hydrolytic enzyme, and simultaneous saccharification and fermentation (PSSF). The chemical composition of olive stone lignin-rich residue (OSL) was evaluated by standard analytical methods, showing a high lignin content (81.3 %). Moreover, the structural properties were determined by Fourier-transform infrared spectroscopy, nuclear magnetic resonance, and size exclusion chromatography. OSL showed a predominance of β-β' resinol, followed by β-O-4' alkyl aryl ethers and β-5' phenylcoumaran substructures, high molecular weight, and low S/G ratio. Subsequently, electrospun nanostructures were obtained from solutions containing 20 wt% OSL and cellulose triacetate with variable weight ratios in N, N-Dimethylformamide/Acetone blends and characterized by scanning electron microscopy. Their morphologies were highly dependent on the rheological properties of polymeric solutions. Gel-like dispersions can be obtained by dispersing the electrospun OSL/CT bead nanofibers and uniform nanofiber mats in castor oil. The rheological properties were influenced by the membrane concentration and the OSL:CT weight ratio, as well as the morphology of the electrospun nanostructures.
Collapse
Affiliation(s)
- José F Rubio-Valle
- Pro(2)TecS - Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, Universidad de Huelva, ETSI, Campus de "El Carmen", Huelva 21071, Spain
| | - José E Martín-Alfonso
- Pro(2)TecS - Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, Universidad de Huelva, ETSI, Campus de "El Carmen", Huelva 21071, Spain
| | - María E Eugenio
- Instituto de Ciencias Forestales (ICIFOR-INIA, CSIC), Ctra de la Coruña Km 7.5, Madrid 28040, Spain
| | - David Ibarra
- Instituto de Ciencias Forestales (ICIFOR-INIA, CSIC), Ctra de la Coruña Km 7.5, Madrid 28040, Spain
| | - José M Oliva
- Biofuels Unit, Renewable Energies Division, CIEMAT, Avda. Complutense 40, Madrid 28040, Spain
| | - Paloma Manzanares
- Biofuels Unit, Renewable Energies Division, CIEMAT, Avda. Complutense 40, Madrid 28040, Spain
| | - Concepción Valencia
- Pro(2)TecS - Chemical Product and Process Technology Research Center, Department of Chemical Engineering and Materials Science, Universidad de Huelva, ETSI, Campus de "El Carmen", Huelva 21071, Spain.
| |
Collapse
|
4
|
Huang B, Liao Q, Fu H, Ye Z, Mao Y, Luo J, Wang Y, Yuan H, Xin J. Effect of potassium intake on cadmium transporters and root cell wall biosynthesis in sweet potato. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114501. [PMID: 36603483 DOI: 10.1016/j.ecoenv.2023.114501] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Large areas of farmland soil in southern China are deficient in potassium (K) and are contaminated with cadmium (Cd). Previously, we suggested that the K supplementation could reduce Cd accumulation in sweet potatoes (Ipomoea batatas (L.) Lam). In the present study, we investigated the underlying physiological and molecular mechanisms. A hydroponic experiment with different K and Cd treatments was performed to compare the transcriptome profile and the cell wall structure in the roots of sweet potato using RNA sequencing, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that K supply inhibits the expressions of IRT1 and YSL3, which are responsible for root Cd uptake under Cd exposure. Furthermore, the expressions of COPT5 and Nramp3 were downregulated by K, which increased Cd retention in the root vacuoles. The upregulation of POD, CAD, INT1 and SUS by K contributed to lignin and cellulose biosynthesis and thickening of root xylem cell wall, which further reduced Cd translocation to the shoot. In addition, K affected the expressions of LHT, ACS, TPS and TPP associated with the production of ethylene and trehalose, which involved in plant resistance to Cd toxicity. In general, K application could decrease the uptake and translocation of Cd in sweet potatoes by regulating the expression of genes associated with Cd transporters and root cell wall components.
Collapse
Affiliation(s)
- Baifei Huang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Qiong Liao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Huiling Fu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ziyi Ye
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yixiao Mao
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jiemei Luo
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yating Wang
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Haiwei Yuan
- Hunan Huanbaoqiao Ecology and Environment Engineering Co., Ltd., Changsha 410221, China
| | - Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| |
Collapse
|
5
|
Sun Y, Zhang H, Li Q, Vardhanabhuti B, Wan C. High lignin-containing nanocelluloses prepared via TEMPO-mediated oxidation and polyethylenimine functionalization for antioxidant and antibacterial applications. RSC Adv 2022; 12:30030-30040. [PMID: 36329928 PMCID: PMC9585889 DOI: 10.1039/d2ra04152a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Lignin-containing nanocelluloses (LNCs) have attracted tremendous research interest in recent years due to less complex extraction processes and more abundant functionality compared to lignin-free nanocelluloses. On the other hand, traditional defibrillation primarily based on bleached pulp would not be readily applied to lignin-containing pulps due to their complex compositions. This study was focused on LNC extraction from lignin-containing pulp via 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation. Three types of switchgrass pulp with varying composition were prepared using different acid-catalyzed pretreatments. The pulps contained as high as 45.76% lignin but minor/no hemicellulose, corresponding to up to 23.72% lignin removal and 63.75-100% hemicellulose removal. TEMPO-mediated oxidation yielded 52.9-81.9% LNCs from respective pulps. The as-produced LNCs possessed aspect ratios as high as 416.5, and carboxyl contents of 0.442-0.743 mmol g-1 along with ζ-potential of -50.4 to -38.3 mV. The TEMPO-oxidized LNCs were further modified by polyethylenimine (PEI), which endowed the LNCs with positive charges plus antioxidant and antibacterial activities. Specifically, the PEI-modified LNCs almost fully scavenged 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radicals at 50 mg L-1 and suppressed the growth of Gram-positive Staphylococcus aureus at 250 μg mL-1.
Collapse
Affiliation(s)
- Yisheng Sun
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia Missouri 65211 USA +1 573 884 7882
| | - Hanwen Zhang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia Missouri 65211 USA +1 573 884 7882
| | - Qianwei Li
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia Missouri 65211 USA +1 573 884 7882
| | - Bongkosh Vardhanabhuti
- Division of Food, Nutrition & Exercise Sciences, University of Missouri Columbia Missouri 65211 USA
| | - Caixia Wan
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri Columbia Missouri 65211 USA +1 573 884 7882
| |
Collapse
|
6
|
Ma Y, Ge H, Yi S, Yang M, Feng D, Ren Y, Gao J, Qin Y. Understanding the intrinsic synergistic mechanism between Pt—O—Ti interface sites and TiO2 surface sites of Pt/TiO2 catalysts in Fenton-like reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Abbas A, Wang Z, Zhang Y, Peng P, She D. Lignin-based controlled release fertilizers: A review. Int J Biol Macromol 2022; 222:1801-1817. [DOI: 10.1016/j.ijbiomac.2022.09.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
8
|
Emulsion Stabilization by Cationic Lignin Surfactants Derived from Bioethanol Production and Kraft Pulping Processes. Polymers (Basel) 2022; 14:polym14142879. [PMID: 35890655 PMCID: PMC9317533 DOI: 10.3390/polym14142879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Oil-in-water bitumen emulsions stabilized by biobased surfactants such as lignin are in line with the current sustainable approaches of the asphalt industry involving bitumen emulsions for reduced temperature asphalt technologies. With this aim, three lignins, derived from the kraft pulping and bioethanol industries, were chemically modified via the Mannich reaction to be used as cationic emulsifiers. A comprehensive chemical characterization was conducted on raw lignin-rich products, showing that the kraft sample presents a higher lignin concentration and lower molecular weight. Instead, bioethanol-derived samples, with characteristics of non-woody lignins, present a high concentration of carbohydrate residues and ashes. Lignin amination was performed at pH = 10 and 13, using tetraethylene pentamine and formaldehyde as reagents at three different stoichiometric molar ratios. The emulsification ability of such cationic surfactants was firstly studied on prototype silicone oil-in-water emulsions, attending to their droplet size distribution and viscous behavior. Among the synthetized surfactants, cationic kraft lignin has shown the best emulsification performance, being used for the development of bitumen emulsions. In this regard, cationic kraft lignin has successfully stabilized oil-in-water emulsions containing 60% bitumen using small surfactant concentrations, between 0.25 and 0.75%, which was obtained at pH = 13 and reagent molar ratios between 1/7/7 and 1/28/28 (lignin/tetraethylene pentamine/formaldehyde).
Collapse
|
9
|
García-Fuentevilla L, Rubio-Valle JF, Martín-Sampedro R, Valencia C, Eugenio ME, Ibarra D. Different Kraft lignin sources for electrospun nanostructures production: Influence of chemical structure and composition. Int J Biol Macromol 2022; 214:554-567. [PMID: 35752340 DOI: 10.1016/j.ijbiomac.2022.06.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/05/2022]
Abstract
This work focuses on the structural features and physicochemical properties of different Kraft lignins and how they can influence the electrospinning process to obtain nanostructures. Structural features of Kraft lignins were characterized by Nuclear Magnetic Resonance, Size Exclusion Chromatography, Fourier-transform Infrared Spectroscopy, and thermal analysis, whereas chemical composition was analyzed by standard method. The addition of cellulose acetate (CA) improves the electrospinning process of Kraft lignins (KL). Thus, solutions of KL/CA at 30 wt% with a KL:CA weight ratio of 70:30 were prepared and then physicochemical and rheologically characterized. The morphology of electrospun nanostructures depends on the intrinsic properties of the solutions and the chemical structure and composition of Kraft lignins. Then, surface tension, electrical conductivity and viscosity of eucalypt/CA and poplar/CA solutions were suitable to obtain electrospun nanostructures based on uniform cross-linked nanofibers with a few beaded fibers. It could be related with the higher purity and higher linear structure, phenolic content and S/G ratios of lignin samples. However, the higher values of electrical conductivity and viscosity of OTP/CA solutions resulted in electrospun nanostructure with micro-sized particles connected by thin fibers, due to a lower purity, S/G ratio and phenolic content and higher branched structure in OTP lignin.
Collapse
Affiliation(s)
| | - José F Rubio-Valle
- Pro2TecS-Chemical Process and Product Technology Research Centre, Departamento de Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain
| | | | - Concepción Valencia
- Pro2TecS-Chemical Process and Product Technology Research Centre, Departamento de Ingeniería Química, ETSI, Campus de "El Carmen", Universidad de Huelva, 21071 Huelva, Spain
| | - María E Eugenio
- Forest Research Center, INIA-CSIC, Ctra. de la Coruña, km 7.5., 28040 Madrid, Spain.
| | - David Ibarra
- Forest Research Center, INIA-CSIC, Ctra. de la Coruña, km 7.5., 28040 Madrid, Spain
| |
Collapse
|
10
|
Smit AT, van Zomeren A, Dussan K, Riddell LA, Huijgen WJJ, Dijkstra JW, Bruijnincx PCA. Biomass Pre-Extraction as a Versatile Strategy to Improve Biorefinery Feedstock Flexibility, Sugar Yields, and Lignin Purity. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:6012-6022. [PMID: 35571525 PMCID: PMC9092456 DOI: 10.1021/acssuschemeng.2c00838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/11/2022] [Indexed: 05/07/2023]
Abstract
Feedstock flexibility is highly advantageous for the viability of (solvent-based) biorefineries but comes with the considerable challenge of having to cope with the varying nature and typically high abundance of nonlignocellulose compounds in the most readily available residual biomass streams. Here, we demonstrate that mild aqueous acetone organosolv fractionation of various complex lignocellulosic raw materials (roadside grass, wheat straw, birch branches, almond shells, and a mixed stream thereof) is indeed negatively affected by these compounds and present a versatile strategy to mitigate this bottleneck in biorefining. A biomass pre-extraction approach has been developed to remove the detrimental extractives with (aqueous) acetone prior to fractionation. Pre-extraction removed organic extractives as well as minerals, primarily reducing acid dose requirements for fractionation and loss of hemicellulose sugars by degradation and improved the purity of the isolated lignin. We show how pre-extraction affects the effectiveness of the biorefinery process, including detailed mass balances for pretreatment, downstream processing, and product characteristics, and how it affects solvent and energy use with a first conceptual process design. The integrated biorefining approach allows for the improved compatibility of biorefineries with sustainable feedstock supply chains, enhanced biomass valorization (i.e., isolation of bioactive compounds from the extract), and more effective biomass processing with limited variation in product quality.
Collapse
Affiliation(s)
- Arjan T. Smit
- Unit
Energy Transition, Biobased & Circular Technologies Group, The Netherlands Organisation for Applied Scientific
Research (TNO), P.O. Box 1, 1755 ZG Petten, The Netherlands
- Organic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - André van Zomeren
- Unit
Energy Transition, Biobased & Circular Technologies Group, The Netherlands Organisation for Applied Scientific
Research (TNO), P.O. Box 1, 1755 ZG Petten, The Netherlands
| | - Karla Dussan
- Unit
Energy Transition, Biobased & Circular Technologies Group, The Netherlands Organisation for Applied Scientific
Research (TNO), P.O. Box 1, 1755 ZG Petten, The Netherlands
| | - Luke A. Riddell
- Organic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Wouter J. J. Huijgen
- Unit
Energy Transition, Biobased & Circular Technologies Group, The Netherlands Organisation for Applied Scientific
Research (TNO), P.O. Box 1, 1755 ZG Petten, The Netherlands
| | - Jan Wilco Dijkstra
- Unit
Energy Transition, Biobased & Circular Technologies Group, The Netherlands Organisation for Applied Scientific
Research (TNO), P.O. Box 1, 1755 ZG Petten, The Netherlands
| | - Pieter C. A. Bruijnincx
- Organic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
11
|
Borrero-López AM, Valencia C, Franco JM. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers (Basel) 2022; 14:881. [PMID: 35267704 PMCID: PMC8912558 DOI: 10.3390/polym14050881] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
The present review is devoted to the description of the state-of-the-art techniques and procedures concerning treatments and modifications of lignocellulosic materials in order to use them as precursors for biomaterials, biochemicals and biofuels, with particular focus on lignin and lignin-based products. Four different main pretreatment types are outlined, i.e., thermal, mechanical, chemical and biological, with special emphasis on the biological action of fungi and bacteria. Therefore, by selecting a determined type of fungi or bacteria, some of the fractions may remain unaltered, while others may be decomposed. In this sense, the possibilities to obtain different final products are massive, depending on the type of microorganism and the biomass selected. Biofuels, biochemicals and biomaterials derived from lignocellulose are extensively described, covering those obtained from the lignocellulose as a whole, but also from the main biopolymers that comprise its structure, i.e., cellulose, hemicellulose and lignin. In addition, special attention has been paid to the formulation of bio-polyurethanes from lignocellulosic materials, focusing more specifically on their applications in the lubricant, adhesive and cushioning material fields. High-performance alternatives to petroleum-derived products have been reported, such as adhesives that substantially exceed the adhesion performance of those commercially available in different surfaces, lubricating greases with tribological behaviour superior to those in lithium and calcium soap and elastomers with excellent static and dynamic performance.
Collapse
Affiliation(s)
- Antonio M. Borrero-López
- Pro2TecS—Chemical Process and Product Technology Research Center, Departamento de Ingeniería Química, Escuela Técnica Superior de Ingeniería, Campus de “El Carmen”, Universidad de Huelva, 21071 Huelva, Spain; (C.V.); (J.M.F.)
| | | | | |
Collapse
|
12
|
Lignin-enriched residues from bioethanol production: Chemical characterization, isocyanate functionalization and oil structuring properties. Int J Biol Macromol 2022; 195:412-423. [PMID: 34871659 DOI: 10.1016/j.ijbiomac.2021.11.185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 11/21/2022]
Abstract
Lignin-enriched waste products from bioethanol production of agriculture residues were tested as structuring agents in castor oil once functionalized with hexamethylene diisocyanate. Cane bagasse, barley and wheat straw were processed through steam explosion, pre-saccharification and simultaneous saccharification and fermentation (PSSF). Alternatively, cane bagasse was submitted to steam explosion and enzymatic hydrolysis (EH). Several Nuclear Magnetic Resonance techniques were used to characterize both residues and NCO-functionalized counterparts. The β-O-4'/resinol/phenylcoumaran content and hydroxyphenyl/guaiacyl/syringyl distribution depend on biomass source, pretreatment, and enzymatic hydrolysis. Total hydroxyl content (from 1.23 for cane bagasse to 1.85 for wheat straw residues), aromatic/aliphatic hydroxyl ratio (0.78 for cane bagasse and 0.61 and 0.49 for barley and wheat straw residues, respectively) and S/G ratio (ranging from 0.25 to 0.86) influence the NCO-functionalization and oleogel rheological response. Oleogels obtained with barley straw residues exhibited the highest values of the storage modulus; around 2 × 105 Pa and 104 Pa for 25% and 20% contents, respectively. PSSF process showed weaker modification, leading to softer viscoelastic response compared to EH. These oleogels exhibited rheological properties similar to lubricating greases of different NLGI grades. Therefore, we herein show an integrative protocol for the valorization of lignin-enriched residues from bioethanol production as potential thickeners of lubricating greases.
Collapse
|
13
|
Janeeshma E, Puthur JT, Wróbel J, Kalaji HM. Metabolic alterations elicited by Cd and Zn toxicity in Zea mays with the association of Claroideoglomus claroideum. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:92-113. [PMID: 34714461 DOI: 10.1007/s10646-021-02492-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of cadmium (Cd) and zinc (Zn) in arable lands exceed the maximum permissible levels due to the excessive use of phosphorus fertilizers and fungicides by farmers. The increasing issues related to the application of agrochemicals have lead to the demand for the implementation of sustainable agricultural approaches. Association of arbuscular mycorrhizae with crop plants is an appropriate strategy due to the potential of these microorganisms to augment the metals tolerance of plants through the immobilization of Cd and Zn in an eco-friendly manner. In the present study, 45 d old Zea mays (var. CoHM6) plants inoculated with AM fungi (Claroideoglomus claroideum) were exposed to 1.95 g Zn Kg-1 soil and 0.45 g Cd Kg-1 soil. The major objective of this study was to determine the metabolic alterations in the leaves and roots of mycorrhizal and non-mycorrhizal plants exposed to CdCl2 and ZnSO4. Both non AM and AM plants exhibited alterations in the quantity of primary and secondary metabolites on exposure to Zn and Cd toxicity. Moreover, Zn and Cd-induced accumulation of γ-sitosterol reduced the quantity of neophytadiene (a well-known terpenoid) and aided the production of 3-β-acetoxystigmasta-4,6,22-triene in maize leaves. Mycorrhization and heavy metal toxicity induced significant metabolic changes in the roots by producing 4,22-stigmastadiene-3-one, eicosane, 9,19-cyclolanost-24-en-3-ol, pentacosane, oxalic acid, heptadecyl hexyl ester, l-norvaline, and n-(2-methoxyethoxycarbonyl). In addition, the metal-induced variations in leaf and root lignin composition were characterized with the aid of the FTIR technique. Mycorrhization improved the tolerance of maize plants to Cd and Zn toxicity by stabilizing these metal ions in the soil and/or limiting their uptake into the plants, thus ensuring normal metabolic functions of their roots and shoots.
Collapse
Affiliation(s)
- Edappayil Janeeshma
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala, 673635, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala, 673635, India.
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Street, 71-434, Szczecin, Poland
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
- Institute of Technology and Life Sciences (ITP), Falenty, Al. Hrabska 3, 05-090, Raszyn, Poland
| |
Collapse
|
14
|
Álvarez C, González A, Ballesteros I, Negro MJ. Production of xylooligosaccharides, bioethanol, and lignin from structural components of barley straw pretreated with a steam explosion. BIORESOURCE TECHNOLOGY 2021; 342:125953. [PMID: 34555750 DOI: 10.1016/j.biortech.2021.125953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Barley straw (BS) is a potential source to obtain bioethanol and value-added products such as xylooligosaccharides (XOS) and lignin for application in diverse industries. In this study, BS was submitted to steam explosion pretreatment to valorize the main components of this lignocellulose biomass. For hemicellulose fraction valorization, different combinations of endo-β-(1,4)-D-xylanase enzyme with accessory enzymes (α-L-arabinofuranosidase, feruloy -esterase and acetylxylan-esterase) have been studied to produce XOS with a low degree of polymerization. The application of accessory enzymes combined with endo-β-(1,4)-D-xylanase enzymes turned out to be the most effective strategy for the formation of XOS. The solid fraction obtained after the pretreatment was submitted to presacharification and simultaneous saccharification and fermentation process for bioethanol production. The resulting lignin-rich residue was characterized. In this integrated process, 13.0 g XOS (DP2-DP6), 12.6 g ethanol and 16.6 g lignin were obtained from 100 g of BS, achieving the goal of valorizing this agricultural residue.
Collapse
Affiliation(s)
- Cristina Álvarez
- Advanced Biofuels and Bioproducts Unit, Renewable Energies Department, CIEMAT, Madrid 28040, Spain.
| | - Alberto González
- Advanced Biofuels and Bioproducts Unit, Renewable Energies Department, CIEMAT, Madrid 28040, Spain.
| | - Ignacio Ballesteros
- Advanced Biofuels and Bioproducts Unit, Renewable Energies Department, CIEMAT, Madrid 28040, Spain.
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, Renewable Energies Department, CIEMAT, Madrid 28040, Spain.
| |
Collapse
|
15
|
Eugenio ME, Martín-Sampedro R, Santos JI, Wicklein B, Ibarra D. Chemical, Thermal and Antioxidant Properties of Lignins Solubilized during Soda/AQ Pulping of Orange and Olive Tree Pruning Residues. Molecules 2021; 26:3819. [PMID: 34201524 PMCID: PMC8270295 DOI: 10.3390/molecules26133819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 11/20/2022] Open
Abstract
Some agroforestry residues such as orange and olive tree pruning have been extensively evaluated for their valorization due to its high carbohydrates content. However, lignin-enriched residues generated during carbohydrates valorization are normally incinerated to produce energy. In order to find alternative high added-value applications for these lignins, a depth characterization of them is required. In this study, lignins isolated from the black liquors produced during soda/anthraquinone (soda/AQ) pulping of orange and olive tree pruning residues were analyzed by analytical standard methods and Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (solid state 13C NMR and 2D NMR) and size exclusion chromatography (SEC). Thermal analysis (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)) and antioxidant capacity (Trolox equivalent antioxidant capacity) were also evaluated. Both lignins showed a high OH phenolic content as consequence of a wide breakdown of β-aryl ether linkages. This extensive degradation yielded lignins with low molecular weights and polydispersity values. Moreover, both lignins exhibited an enrichment of syringyl units together with different native as well as soda/AQ lignin derived units. Based on these chemical properties, orange and olive lignins showed relatively high thermal stability and good antioxidant activities. These results make them potential additives to enhance the thermo-oxidation stability of synthetic polymers.
Collapse
Affiliation(s)
- María E. Eugenio
- Forest Research Center (INIA, CSIC), Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.E.E.); (R.M.-S.)
| | - Raquel Martín-Sampedro
- Forest Research Center (INIA, CSIC), Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.E.E.); (R.M.-S.)
| | - José I. Santos
- NMR of Facility of Research (SGIker), University of the Basque Country (UPV/EHU), Avenida Tolosa 72, 20018 Donostia-San Sebastián, Spain;
| | - Bernd Wicklein
- Materials Science Institute of Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain;
| | - David Ibarra
- Forest Research Center (INIA, CSIC), Ctra. de la Coruña Km 7.5, 28040 Madrid, Spain; (M.E.E.); (R.M.-S.)
| |
Collapse
|
16
|
Romero CWDS, Berni MD, Figueiredo GKDA, Franco TT, Lamparelli RAC. Assessment of agricultural biomass residues to replace fossil fuel and hydroelectric power energy: A spatial approach. ENERGY SCIENCE & ENGINEERING 2019; 7:2287-2305. [PMID: 32355563 PMCID: PMC7185309 DOI: 10.1002/ese3.462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 08/13/2019] [Indexed: 06/11/2023]
Abstract
Despite the recent discoveries of considerable fossil fuel reserves, Brazil is one of the only great economic and industrial powers with very high amounts of renewable energy in its electricity matrix. Approximately 79.3% of the electric energy supply comes from renewable resources, of which hydroelectric power represents 70.6%. The two primary concerns regarding hydroelectricity are the damage caused to the environment by the construction of dams and the uncertainty of the supply in cases of long drought seasons. This article presents an analysis on the availability and energy exploitation of sugarcane straw and forest residues derived from eucalyptus for decentralized generation using a Geographic Information System-based model. The potential bioelectricity and bioethanol production from sugarcane and eucalyptus biomass in the Administrative Region of Campinas (ARC) is higher than the demand in this region. The results provide guidelines for designing alternatives to the intended Nationally Determined Contributions in Brazil within the scope of the ARC, and they can be used to provide energy empowerment, electric matrix diversification, and new policies that address the residue availability and demand.
Collapse
Affiliation(s)
| | - Mauro Donizeti Berni
- Interdisciplinary Center on Energy PlanningNIPEUniversity of CampinasUNICAMPSao PauloBrazil
| | | | - Telma Teixeira Franco
- Interdisciplinary Center on Energy PlanningNIPEUniversity of CampinasUNICAMPSao PauloBrazil
- Department of Process Engineering (DEPRO)School of Chemical EngineeringUniversity of Campinas, UNICAMPSao PauloBrazil
| | | |
Collapse
|
17
|
Yang W, Li X, Du X, Deng Y, Dai H. Effective low-temperature hydrogenolysis of lignin using carbon-supported ruthenium and formic acid as reducing agent. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
18
|
Comparative study of Fourier transform infrared spectroscopy (FTIR) analysis of natural fibres treated with chemical, physical and biological methods. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02824-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Wang J, Yan C, Zhu L, Gu D, Zhang D, Wang H, Wang B. Solar binary chemical depolymerization of lignin for efficient production of small molecules and hydrogen. BIORESOURCE TECHNOLOGY 2019; 272:249-258. [PMID: 30352367 DOI: 10.1016/j.biortech.2018.10.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
In this paper, solar binary chemical depolymerization, that is Solar Thermal Electrochemical Process (STEP), was implemented for an effective breaking of lignin into small molecules and hydrogen. Compared with the conventional unitary chemical thermolysis, solar binary chemical depolymerization of lignin has high efficiencies of the liquefaction and gasification with the low coke, and accompanied by the abundant production of hydrogen. And the reaction temperature of the STEP process was greatly lowered by an intervention of the electrolysis. The results showed that the total conversion and liquefaction of the lignin yielded 87.22% and 57.72% under a constant current of 0.4 A at 340 °C. Further characterizations show that lignin has been successfully decomposed into small molecules with high added-value and hydrogen by a combination of the thermolysis and electrolysis. And the particle size of aggregates and the color degree in the lignin aqueous solution was obviously decreased after the STEP process.
Collapse
Affiliation(s)
- Jiaqi Wang
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Chao Yan
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Lingyue Zhu
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Di Gu
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Dan Zhang
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Hongming Wang
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Baohui Wang
- Institute of New Energy Chemistry and Environmental Science, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| |
Collapse
|
20
|
Gao S, Zhao J, Wang X, Guo Y, Han Y, Zhou J. Lignin Structure and Solvent Effects on the Selective Removal of Condensed Units and Enrichment of S-Type Lignin. Polymers (Basel) 2018; 10:E967. [PMID: 30960892 PMCID: PMC6403703 DOI: 10.3390/polym10090967] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/16/2022] Open
Abstract
This study focused on the structural differences of lignin after pyridine⁻acetic acid⁻water (PAW) and dioxane⁻acidic water (DAW) purification processes. These structural differences included the S/G ratio, condensed structure, weight-average (MW) molecular weights, β-O-4 linkages and sugar content. The chemical structure of the isolated crude lignin (CL), PAW purified lignin (PPL) and DAW purified lignin (DPL) was elucidated using quantitative 13C NMR, 2D-HSQC NMR spectra, thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR). The results showed that the PPL fractions contain fewer condensed structures, higher S/G ratios, more β-O-4 linkages, higher average MW and lower thermal degradation properties compared to the CL and DPL fractions. Furthermore, the PAW process was more selective in removing condensed units and enriching S-type lignin from CL compared to the DAW process. These results provide valuable information for understanding which purification process is more suitable to be applied for lignin.
Collapse
Affiliation(s)
- Si Gao
- Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Ji Zhao
- Jining Ming Sheng New Material Co., Ltd., Jinan 272100, China.
| | - Xing Wang
- Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian 116034, China.
- State Key Laboratory of Pulp and Papermaking Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yanzhu Guo
- Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Ying Han
- Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jinghui Zhou
- Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
21
|
Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes (Basel) 2018. [DOI: 10.3390/pr6080098] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A complete bibliometric analysis of the Scopus database was performed to identify the research trends related to lignin valorization from 2000 to 2016. The results from this analysis revealed an exponentially increasing number of publications and a high relevance of interdisciplinary collaboration. The simultaneous valorization of the three main components of lignocellulosic biomass (cellulose, hemicellulose, and lignin) has been revealed as a key aspect and optimal pretreatment is required for the subsequent lignin valorization. Research covers the determination of the lignin structure, isolation, and characterization; depolymerization by thermal and thermochemical methods; chemical, biochemical and biological conversion of depolymerized lignin; and lignin applications. Most methods for lignin depolymerization are focused on the selective cleavage of the β-O-4 linkage. Although many depolymerization methods have been developed, depolymerization with sodium hydroxide is the dominant process at industrial scale. Oxidative conversion of lignin is the most used method for the chemical lignin upgrading. Lignin uses can be classified according to its structure into lignin-derived aromatic compounds, lignin-derived carbon materials and lignin-derived polymeric materials. There are many advances in all approaches, but lignin-derived polymeric materials appear as a promising option.
Collapse
|
22
|
Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 2018; 47:852-908. [PMID: 29318245 DOI: 10.1039/c7cs00566k] [Citation(s) in RCA: 910] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.
Collapse
Affiliation(s)
- W Schutyser
- Center for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | | | | | | | | | |
Collapse
|
23
|
Djajadi DT, Jensen MM, Oliveira M, Jensen A, Thygesen LG, Pinelo M, Glasius M, Jørgensen H, Meyer AS. Lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier rather than by inducing nonproductive adsorption of enzymes. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:85. [PMID: 29619081 PMCID: PMC5880018 DOI: 10.1186/s13068-018-1085-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/17/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Lignin is known to hinder efficient enzymatic conversion of lignocellulose in biorefining processes. In particular, nonproductive adsorption of cellulases onto lignin is considered a key mechanism to explain how lignin retards enzymatic cellulose conversion in extended reactions. RESULTS Lignin-rich residues (LRRs) were prepared via extensive enzymatic cellulose degradation of corn stover (Zea mays subsp. mays L.), Miscanthus × giganteus stalks (MS) and wheat straw (Triticum aestivum L.) (WS) samples that each had been hydrothermally pretreated at three severity factors (log R0) of 3.65, 3.83 and 3.97. The LRRs had different residual carbohydrate levels-the highest in MS; the lowest in WS. The residual carbohydrate was not traceable at the surface of the LRRs particles by ATR-FTIR analysis. The chemical properties of the lignin in the LRRs varied across the three types of biomass, but monolignols composition was not affected by the severity factor. When pure cellulose was added to a mixture of LRRs and a commercial cellulolytic enzyme preparation, the rate and extent of glucose release were unaffected by the presence of LRRs regardless of biomass type and severity factor, despite adsorption of the enzymes to the LRRs. Since the surface of the LRRs particles were covered by lignin, the data suggest that the retardation of enzymatic cellulose degradation during extended reaction on lignocellulosic substrates is due to physical blockage of the access of enzymes to the cellulose caused by the gradual accumulation of lignin at the surface of the biomass particles rather than by nonproductive enzyme adsorption. CONCLUSIONS The study suggests that lignin from hydrothermally pretreated grass biomass retards enzymatic cellulose degradation by acting as a physical barrier blocking the access of enzymes to cellulose rather than by inducing retardation through nonproductive adsorption of enzymes.
Collapse
Affiliation(s)
- Demi T. Djajadi
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kongens Lyngby, Denmark
| | - Mads M. Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Marlene Oliveira
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kongens Lyngby, Denmark
| | - Anders Jensen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Lisbeth G. Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Manuel Pinelo
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kongens Lyngby, Denmark
| | - Marianne Glasius
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henning Jørgensen
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kongens Lyngby, Denmark
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anne S. Meyer
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads Building 229, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
24
|
Lu Y, Li GS, Lu YC, Fan X, Wei XY. Analytical Strategies Involved in the Detailed Componential Characterization of Biooil Produced from Lignocellulosic Biomass. Int J Anal Chem 2017; 2017:9298523. [PMID: 29387086 PMCID: PMC5745679 DOI: 10.1155/2017/9298523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/16/2017] [Indexed: 01/27/2023] Open
Abstract
Elucidation of chemical composition of biooil is essentially important to evaluate the process of lignocellulosic biomass (LCBM) conversion and its upgrading and suggest proper value-added utilization like producing fuel and feedstock for fine chemicals. Although the main components of LCBM are cellulose, hemicelluloses, and lignin, the chemicals derived from LCBM differ significantly due to the various feedstock and methods used for the decomposition. Biooil, produced from pyrolysis of LCBM, contains hundreds of organic chemicals with various classes. This review covers the methodologies used for the componential analysis of biooil, including pretreatments and instrumental analysis techniques. The use of chromatographic and spectrometric methods was highlighted, covering the conventional techniques such as gas chromatography, high performance liquid chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance, and mass spectrometry. The combination of preseparation methods and instrumental technologies is a robust pathway for the detailed componential characterization of biooil. The organic species in biooils can be classified into alkanes, alkenes, alkynes, benzene-ring containing hydrocarbons, ethers, alcohols, phenols, aldehydes, ketones, esters, carboxylic acids, and other heteroatomic organic compounds. The recent development of high resolution mass spectrometry and multidimensional hyphenated chromatographic and spectrometric techniques has considerably elucidated the composition of biooils.
Collapse
Affiliation(s)
- Yao Lu
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, China
- Advanced Analysis & Computation Center, China University of Mining & Technology, Xuzhou 221116, China
- School of Chemical and Engineering Technology, China University of Mining & Technology, Xuzhou 221116, China
| | - Guo-Sheng Li
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, China
- School of Chemical and Engineering Technology, China University of Mining & Technology, Xuzhou 221116, China
| | - Yong-Chao Lu
- School of Basic Education Sciences, Xuzhou Medical University, Xuzhou 221004, China
| | - Xing Fan
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, China
- School of Chemical and Engineering Technology, China University of Mining & Technology, Xuzhou 221116, China
| | - Xian-Yong Wei
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining & Technology, Xuzhou 221116, China
- School of Chemical and Engineering Technology, China University of Mining & Technology, Xuzhou 221116, China
| |
Collapse
|
25
|
Laccases as a Potential Tool for the Efficient Conversion of Lignocellulosic Biomass: A Review. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3020017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Du X, Liu W, Zhang Z, Mulyadi A, Brittain A, Gong J, Deng Y. Low-Energy Catalytic Electrolysis for Simultaneous Hydrogen Evolution and Lignin Depolymerization. CHEMSUSCHEM 2017; 10:847-854. [PMID: 28102938 DOI: 10.1002/cssc.201601685] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Here, a new proton-exchange-membrane electrolysis is presented, in which lignin was used as the hydrogen source at the anode for hydrogen production. Either polyoxometalate (POM) or FeCl3 was used as the catalyst and charge-transfer agent at the anode. Over 90 % Faraday efficiency was achieved. In a thermal-insulation reactor, the heat energy could be maintained at a very low level for continuous operation. Compared to the best alkaline-water electrolysis reported in literature, the electrical-energy consumption could be 40 % lower with lignin electrolysis. At the anode, the Kraft lignin (KL) was oxidized to aromatic chemicals by POM or FeCl3 , and reduced POM or Fe ions were regenerated during the electrolysis. Structure analysis of the residual KL indicated a reduction of the amount of hydroxyl groups and the cleavage of ether bonds. The results suggest that POM- or FeCl3 -mediated electrolysis can significantly reduce the electrolysis energy consumption in hydrogen production and, simultaneously, depolymerize lignin to low-molecular-weight value-added aromatic chemicals.
Collapse
Affiliation(s)
- Xu Du
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA, 30332-0620, USA
| | - Wei Liu
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA, 30332-0620, USA
| | - Zhe Zhang
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA, 30332-0620, USA
| | - Arie Mulyadi
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA, 30332-0620, USA
| | - Alex Brittain
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA, 30332-0620, USA
| | - Jian Gong
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA, 30332-0620, USA
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA, 30332-0620, USA
| |
Collapse
|
27
|
Sequential lignin depolymerization by combination of biocatalytic and formic acid/formate treatment steps. Appl Microbiol Biotechnol 2016; 101:2575-2588. [DOI: 10.1007/s00253-016-8015-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/26/2016] [Accepted: 11/12/2016] [Indexed: 10/20/2022]
|
28
|
Biomass pretreatments capable of enabling lignin valorization in a biorefinery process. Curr Opin Biotechnol 2016; 38:39-46. [PMID: 26780496 DOI: 10.1016/j.copbio.2015.12.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/28/2015] [Accepted: 12/30/2015] [Indexed: 11/24/2022]
Abstract
Recent techno-economic studies of proposed lignocellulosic biorefineries have concluded that creating value from lignin will assist realization of biomass utilization into valuable fuels, chemicals, and materials due to co-valorization and the new revenues beyond carbohydrates. The pretreatment step within a biorefinery process is essential for recovering carbohydrates, but different techniques and intensities have a variety of effects on lignin. Acidic and alkaline pretreatments have been shown to produce diverse lignins based on delignification chemistry. The valorization potential of pretreated lignin is affected by its chemical structure, which is known to degrade, including inter-lignin condensation under high-severity pretreatment. Co-valorization of lignin and carbohydrates will require dampening of pretreatment intensities to avoid such effects, in spite of tradeoffs in carbohydrate production.
Collapse
|