1
|
Adell T, Cebrià F, Abril JF, Araújo SJ, Corominas M, Morey M, Serras F, González-Estévez C. Cell death in regeneration and cell turnover: Lessons from planarians and Drosophila. Semin Cell Dev Biol 2025; 169:103605. [PMID: 40139139 DOI: 10.1016/j.semcdb.2025.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
Programmed cell death plays a crucial role during tissue turnover in all animal species, and it is also essential during regeneration, serving as a key signalling mechanism to promote tissue repair and regrowth. In freshwater planarians, remarkable regenerative abilities are supported by neoblasts, a population of adult stem cells, which enable high somatic cell turnover. Cell death in planarians occurs continuously during regeneration and adult homeostasis, underscoring its critical role in tissue remodeling and repair. However, the exact mechanisms regulating cell death in these organisms remain elusive. In contrast, Drosophila melanogaster serves as a powerful model for studying programmed cell death in development, metamorphosis, and adult tissue maintenance, leveraging advanced genetic tools and visualization techniques. In Drosophila, cell death sculpts tissues, eliminates larval structures during metamorphosis, and supports homeostasis in adulthood. Despite limited regenerative capacity compared to planarians, Drosophila provides unique insights into cell death's regulatory mechanisms. Comparative analysis of these two systems highlights both conserved and divergent roles of programmed cell death in tissue renewal and regeneration. This review synthesizes the latest knowledge of programmed cell death in planarians and Drosophila, aiming to illuminate shared principles and system-specific adaptations, with relevance to tissue repair across biological systems.
Collapse
Affiliation(s)
- Teresa Adell
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain.
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Josep F Abril
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Marta Morey
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain
| | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Av. Diagonal 643, Edifici Prevosti 1st floor, Barcelona 08028, Spain.
| |
Collapse
|
2
|
Moreno-Blas D, Adell T, González-Estévez C. Autophagy in Tissue Repair and Regeneration. Cells 2025; 14:282. [PMID: 39996754 PMCID: PMC11853389 DOI: 10.3390/cells14040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Autophagy is a cellular recycling system that, through the sequestration and degradation of intracellular components regulates multiple cellular functions to maintain cellular homeostasis and survival. Dysregulation of autophagy is closely associated with the development of physiological alterations and human diseases, including the loss of regenerative capacity. Tissue regeneration is a highly complex process that relies on the coordinated interplay of several cellular processes, such as injury sensing, defense responses, cell proliferation, differentiation, migration, and cellular senescence. These processes act synergistically to repair or replace damaged tissues and restore their morphology and function. In this review, we examine the evidence supporting the involvement of the autophagy pathway in the different cellular mechanisms comprising the processes of regeneration and repair across different regenerative contexts. Additionally, we explore how modulating autophagy can enhance or accelerate regeneration and repair, highlighting autophagy as a promising therapeutic target in regenerative medicine for the development of autophagy-based treatments for human diseases.
Collapse
Affiliation(s)
| | | | - Cristina González-Estévez
- Department of Genetics, Microbiology and Statistics, School of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain; (D.M.-B.); (T.A.)
| |
Collapse
|
3
|
Bijnens K, Thijs S, Alfano R, McAmmond B, Van Hamme J, Artois T, Plusquin M, Vangronsveld J, Smeets K. Impact of host physiology and external stressors on the bacterial community of Schmidtea mediterranea. Sci Rep 2025; 15:4398. [PMID: 39910204 PMCID: PMC11799148 DOI: 10.1038/s41598-025-86920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
To fully comprehend host-microorganism interactions, it is crucial to understand the composition and diversity of the microbiome, as well as the factors that shape these characteristics. We investigated microbiome variation using the freshwater planarian Schmidtea mediterranea, an invertebrate model in regeneration biology and (eco-)toxicology, by exposing the organisms to various controlled conditions. The microbiome composition exhibited high variability, with most of the bacteria belonging to the Betaproteobacteria. Among the diverse microbial communities, a few genera, such as Curvibacter, were consistently present, but exhibited significant alterations in response to changing conditions. The relative abundance of Curvibacter fluctuated during the regeneration process, initially increasing before returning to a composition similar to the beginning situation. After applying external stress, the relative abundance of Curvibacter and other genera decreased. Variation over time, between different origin laboratories and between individuals, showed that additional, yet to-be-identified, factors of variation are present. Taking all results together, our study provides a solid basis for future research focusing on bacterial functionality in planarians and other invertebrates.
Collapse
Affiliation(s)
- Karolien Bijnens
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
| | - Rossella Alfano
- Centre for Environmental Sciences, Epidemiology, Hasselt University, Diepenbeek, Belgium
| | - Breanne McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Jonathan Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Tom Artois
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Diepenbeek, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Epidemiology, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Diepenbeek, Belgium
- Department of Plant Physiology and Biophysics, Institute of Biology and Biotechnology, Maria Skłodowska-Curie University, Lublin, Poland
| | - Karen Smeets
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
4
|
Beinart FR, Gillen K. Regeneration of Lumbriculus variegatus requires post-amputation production of reactive oxygen species. Dev Growth Differ 2025; 67:104-112. [PMID: 39837571 PMCID: PMC11842891 DOI: 10.1111/dgd.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/23/2025]
Abstract
Animals vary in their ability to replace body parts lost to injury, a phenomenon known as restorative regeneration. Uncovering conserved signaling steps required for regeneration may aid regenerative medicine. Reactive oxygen species (ROS) are necessary for proper regeneration in species across a wide range of taxa, but it is unknown whether ROS are essential for annelid regeneration. As annelids are a widely used and excellent model for regeneration, we sought to determine whether ROS play a role in the regeneration of the highly regenerative annelid, Lumbriculus variegatus. Using a ROS-sensitive fluorescent probe we observed ROS accumulation at the wound site within 15 min after amputation; this ROS burst lessened by 6 h post-amputation. Chemical inhibition of this ROS burst delayed regeneration, an impairment that was partially rescued with exogenous ROS. Our results suggest that similar to other animals, annelid regeneration depends upon ROS signaling, implying a phylogenetically ancient requirement for ROS in regeneration.
Collapse
Affiliation(s)
- Freya R. Beinart
- Kenyon CollegeMolecular BiologyGambierOhioUSA
- Present address:
Washington UniversitySt. LouisMissouriUSA
| | - Kathy Gillen
- Kenyon CollegeMolecular BiologyGambierOhioUSA
- Kenyon CollegeBiologyGambierOhioUSA
| |
Collapse
|
5
|
Chen X. Stem cells (neoblasts) and positional information jointly dominate regeneration in planarians. Heliyon 2025; 11:e41833. [PMID: 39877626 PMCID: PMC11773080 DOI: 10.1016/j.heliyon.2025.e41833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Regeneration is the ability to accurately regrow missing body parts. The unparalleled regenerative capacity and incredible tissue plasticity of planarians, both resulting from the presence of abundant adult stem cells referred to as neoblasts, offer a unique opportunity to investigate the cellular and molecular principles underlying regeneration. Neoblasts are capable of self-renewal and differentiation into the desired cell types for correct replacement of lost parts after tissue damage. Positional information in muscle cells governs the polarity and patterning of the body plan during homeostasis and regeneration. For planarians, removal of neoblasts disables the regenerative feats and disruption of positional information results in the regeneration of inappropriate missing body regions, only the combination of neoblasts and positional information enables regeneration. Here, I summarize the current state of the field in neoblast lineage potential, subclasses and specification, and in the roles of positional information for proper tissue turnover and regeneration in planarians.
Collapse
Affiliation(s)
- Xuhui Chen
- Affiliated Infectious Diseases Hospital of Zhengzhou University (Henan Infectious Diseases Hospital, The Sixth People's Hospital of Zhengzhou), Center for Translational Medicine, Zhengzhou, 45000, China
| |
Collapse
|
6
|
Zeng C, Guo M, Xiao K, Li C. Autophagy mediated by ROS-AKT-FoxO pathway is required for intestinal regeneration in echinoderms. Cell Commun Signal 2025; 23:8. [PMID: 39762855 PMCID: PMC11705696 DOI: 10.1186/s12964-024-01993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Autophagy is essential for maintaining material balance and energy circulation and plays a critical role as a regulatory mechanism in tissue regeneration. However, current studies primarily describe this phenotype, with limited exploration of its molecular mechanisms. In this study, we provided the first evidence that autophagy is required for intestinal regeneration in Apostichopus japonicus and identified a previously unrecognized regulatory mechanism involved in this process. We observed that autophagy activation was significantly associated with enhanced regeneration, and its upregulation was shown to be regulated by reactive oxygen species (ROS) bursts. Mechanistically, ROS induced the dephosphorylation of Forkhead box protein O (FoxO) through AjAKT dephosphorylation. The dephosphorylated AjFoxO translocated to the nucleus, where it bound to the promoters of AjLC3 and AjATG4, inducing their transcription. This study highlights the ROS-AjAKT-AjFoxO-AjATG4/AjLC3 pathway as a novel regulatory mechanism underlying autophagy-mediated intestinal regeneration in echinoderms, providing a reference for studying regenerative processes and cytological mechanisms in economically important echinoderms.
Collapse
Affiliation(s)
- Chuili Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Ming Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Ke Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
- Ningbo University, Zhejiang Province, Ningbo, 315211, P. R. China.
| |
Collapse
|
7
|
Vullien A, Amiel AR, Baduel L, Diken D, Renaud C, Krasovec G, Vervoort M, Röttinger E, Gazave E. The Rich Evolutionary History of the Reactive Oxygen Species Metabolic Arsenal Shapes Its Mechanistic Plasticity at the Onset of Metazoan Regeneration. Mol Biol Evol 2025; 42:msae254. [PMID: 39673176 PMCID: PMC11721785 DOI: 10.1093/molbev/msae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/14/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024] Open
Abstract
Regeneration, the ability to restore body parts after injury, is widespread in metazoans; however, the underlying molecular and cellular mechanisms involved in this process remain largely unknown, and its evolutionary history is consequently unresolved. Recently, reactive oxygen species (ROS) have been shown in several metazoan models to be triggers of apoptosis and cell proliferation that drive regenerative success. However, it is not known whether the contribution of ROS to regeneration relies on conserved mechanisms. Here we performed a comparative genomic analysis of ROS metabolism actors across metazoans, and carried out a comparative study of the deployment and roles of ROS during regeneration in two different metazoan models: the annelid Platynereis dumerilii and the cnidarian Nematostella vectensis. We established that the vast majority of metazoans encode a core redox kit allowing for the production and detoxification of ROS, and overall regulation of ROS levels. However, the precise composition of the redox arsenal can vary significantly from species to species, suggesting that evolutionary constraints apply to ROS metabolism functions rather than precise actors. We found that while ROS are necessary for regeneration in both Platynereis and Nematostella, the two species deploy different enzymatic activities controlling ROS dynamics, and display distinct effects of ROS signaling on injury-induced apoptosis and cell proliferation. We conclude that, while ROS are a common feature of metazoan regeneration, their production and contribution to this phenomenon may depend on different molecular mechanisms highlighting the overall plasticity of the machinery.
Collapse
Affiliation(s)
- Aurore Vullien
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Aldine R Amiel
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Loeiza Baduel
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Dilara Diken
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Cécile Renaud
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Gabriel Krasovec
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Michel Vervoort
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Eric Röttinger
- Université Côte d’Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Eve Gazave
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
8
|
Pereira MAB, Pereira AKDS, Carlos TD, Dornelas ASP, Sarmento RA, Cavallini GS, Soares AMVM. Ecotoxicological evaluation of effluent from bovine slaughterhouses disinfected by peracetic acid (PAA) using the bioindicator Girardia tigrina. ENVIRONMENTAL RESEARCH 2024; 252:118756. [PMID: 38552830 DOI: 10.1016/j.envres.2024.118756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 04/08/2024]
Abstract
The evaluation of the ecotoxicological effects of the effluent after treatment with peracetic acid is relevant to help establish reference concentrations for the disinfection process and waste recovery. Therefore, the objective of this work was to evaluate the ecotoxicity of effluent from a bovine slaughterhouse treated with peracetic acid on Girardia tigrina. The toxicity bioassays for planaria were the acute test (LC50) and chronic assays: locomotion, regeneration, reproduction and fertility. The results showed that the effluent treated with peracetic acid showed less toxicity than the effluent without application of peracetic acid. The effluent after peracetic acid application showed a chronic toxic effect in the reduction of locomotor speed in all studied disinfectant concentrations (0.8, 1.6, 3.3 and 6.6 μg L-1 of peracetic acid) and a delay in the formation of G. tigrina photoreceptors at the concentration of 6.6 μg L-1 of peracetic acid. Peracetic acid concentrations of 0.8, 1.6 and 3.3 μg L-1 were not toxic for blastema regeneration, photoreceptor and auricle formation, fecundity and fertility. In addition, this study assists in defining doses of peracetic acid to be recommended in order to ensure the wastewater disinfection process without causing harm to aquatic organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
9
|
Leynen N, Tytgat JS, Bijnens K, Jaenen V, Verleysen E, Artois T, Van Belleghem F, Saenen ND, Smeets K. Assessing the in vivo toxicity of titanium dioxide nanoparticles in Schmidtea mediterranea: uptake pathways and (neuro)developmental outcomes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106895. [PMID: 38554681 DOI: 10.1016/j.aquatox.2024.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) in aquatic environments, originating from urban run-off, product use and post-consumer degradation, interact with aquatic organisms through water and sediments. Thorough toxicity assessment requires comprehensive data across all ecosystem compartments especially the benthic zone, which is currently lacking. Moreover, a proper physicochemical characterization of the particles is needed before and during toxicity assessment. In the present work, we used the planarian Schmidtea mediterranea to investigate the effects of TiO2-NPs (5 mg/L and 50 mg/L). Planarians are benthic organisms that play an important role in the food chain as predators. Our study integrated particle characterization with toxicokinetic and toxicodynamic parameters and showed that the uptake of TiO2-NPs of 21 nm occurred through the epidermis and intestine. Epidermal irritation and mucus production occurred immediately after exposure, and TiO2-NPs induced stronger effects in regenerating organisms. More specifically, TiO2-NPs interfered with neuroregeneration, inducing behavioral effects. A delay in the formation of the anterior commissure between the two brain lobes after seven and nine days of exposure to 50 mg/L was observed, probably as a result of a decrease in stem cell proliferation. Our findings underscore the need to incorporate multiple exposure routes in toxicity screenings. Additionally, we highlight the vulnerability of developing organisms and recommend their inclusion in future risk assessment strategies.
Collapse
Affiliation(s)
- N Leynen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - J S Tytgat
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - K Bijnens
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - V Jaenen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - E Verleysen
- Trace Elements and Nanomaterials, Sciensano, Groeselenbergstraat 99, 1180 Uccle, Belgium
| | - T Artois
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - F Van Belleghem
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium; Department of Environmental Sciences, Faculty of Science, Open Universiteit, Heerlen, the Netherlands
| | - N D Saenen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - K Smeets
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
10
|
André-Lévigne D, Pignel R, Boet S, Jaquet V, Kalbermatten DF, Madduri S. Role of Oxygen and Its Radicals in Peripheral Nerve Regeneration: From Hypoxia to Physoxia to Hyperoxia. Int J Mol Sci 2024; 25:2030. [PMID: 38396709 PMCID: PMC10888612 DOI: 10.3390/ijms25042030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Oxygen is compulsory for mitochondrial function and energy supply, but it has numerous more nuanced roles. The different roles of oxygen in peripheral nerve regeneration range from energy supply, inflammation, phagocytosis, and oxidative cell destruction in the context of reperfusion injury to crucial redox signaling cascades that are necessary for effective axonal outgrowth. A fine balance between reactive oxygen species production and antioxidant activity draws the line between physiological and pathological nerve regeneration. There is compelling evidence that redox signaling mediated by the Nox family of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases plays an important role in peripheral nerve regeneration. Further research is needed to better characterize the role of Nox in physiological and pathological circumstances, but the available data suggest that the modulation of Nox activity fosters great therapeutic potential. One of the promising approaches to enhance nerve regeneration by modulating the redox environment is hyperbaric oxygen therapy. In this review, we highlight the influence of various oxygenation states, i.e., hypoxia, physoxia, and hyperoxia, on peripheral nerve repair and regeneration. We summarize the currently available data and knowledge on the effectiveness of using hyperbaric oxygen therapy to treat nerve injuries and discuss future directions.
Collapse
Affiliation(s)
- Dominik André-Lévigne
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Rodrigue Pignel
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sylvain Boet
- Subaquatic and Hyperbaric Medicine Unit, Division of Emergency Medicine, Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Ottawa Hospital Research Institute, Clinical Epidemiology Program, Department of Innovation in Medical Education, University of Ottawa, Ottawa, ON K1H 8L6, Canada
- Institut du Savoir Montfort, Ottawa, ON K1K 0T2, Canada
| | - Vincent Jaquet
- Department of Cell Physiology and Metabolism, University of Geneva, 1205 Geneva, Switzerland
- READS Unit, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Daniel F. Kalbermatten
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| | - Srinivas Madduri
- Division of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
11
|
Zhulyn O, Rosenblatt HD, Shokat L, Dai S, Kuzuoglu-Öztürk D, Zhang Z, Ruggero D, Shokat KM, Barna M. Evolutionarily divergent mTOR remodels translatome for tissue regeneration. Nature 2023; 620:163-171. [PMID: 37495694 PMCID: PMC11181899 DOI: 10.1038/s41586-023-06365-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in a highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.
Collapse
Affiliation(s)
- Olena Zhulyn
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Developmental and Stem Cell Biology Program, SickKids Research Institute, Toronto, Ontario, Canada
| | - Hannah D Rosenblatt
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Leila Shokat
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shizhong Dai
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Duygu Kuzuoglu-Öztürk
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Zijian Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Davide Ruggero
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Zhao Y, Gao C, Pan X, Lei K. Emerging roles of mitochondria in animal regeneration. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:14. [PMID: 37142814 PMCID: PMC10160293 DOI: 10.1186/s13619-023-00158-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/19/2023] [Indexed: 05/06/2023]
Abstract
The regeneration capacity after an injury is critical to the survival of living organisms. In animals, regeneration ability can be classified into five primary types: cellular, tissue, organ, structure, and whole-body regeneration. Multiple organelles and signaling pathways are involved in the processes of initiation, progression, and completion of regeneration. Mitochondria, as intracellular signaling platforms of pleiotropic functions in animals, have recently gained attention in animal regeneration. However, most studies to date have focused on cellular and tissue regeneration. A mechanistic understanding of the mitochondrial role in large-scale regeneration is unclear. Here, we reviewed findings related to mitochondrial involvement in animal regeneration. We outlined the evidence of mitochondrial dynamics across different animal models. Moreover, we emphasized the impact of defects and perturbation in mitochondria resulting in regeneration failure. Ultimately, we discussed the regulation of aging by mitochondria in animal regeneration and recommended this for future study. We hope this review will serve as a means to advocate for more mechanistic studies of mitochondria related to animal regeneration on different scales.
Collapse
Affiliation(s)
- Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Fudan University, Shanghai, China
| | - Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xue Pan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
13
|
Hulett RE, Kimura JO, Bolaños DM, Luo YJ, Rivera-López C, Ricci L, Srivastava M. Acoel single-cell atlas reveals expression dynamics and heterogeneity of adult pluripotent stem cells. Nat Commun 2023; 14:2612. [PMID: 37147314 PMCID: PMC10163032 DOI: 10.1038/s41467-023-38016-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/11/2023] [Indexed: 05/07/2023] Open
Abstract
Adult pluripotent stem cell (aPSC) populations underlie whole-body regeneration in many distantly-related animal lineages, but how the underlying cellular and molecular mechanisms compare across species is unknown. Here, we apply single-cell RNA sequencing to profile transcriptional cell states of the acoel worm Hofstenia miamia during postembryonic development and regeneration. We identify cell types shared across stages and their associated gene expression dynamics during regeneration. Functional studies confirm that the aPSCs, also known as neoblasts, are the source of differentiated cells and reveal transcription factors needed for differentiation. Subclustering of neoblasts recovers transcriptionally distinct subpopulations, the majority of which are likely specialized to differentiated lineages. One neoblast subset, showing enriched expression of the histone variant H3.3, appears to lack specialization. Altogether, the cell states identified in this study facilitate comparisons to other species and enable future studies of stem cell fate potentials.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Julian O Kimura
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - D Marcela Bolaños
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Yi-Jyun Luo
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Carlos Rivera-López
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
- Department of Molecular and Cell Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
14
|
Tsarkova E, Filippova K, Afanasyeva V, Ermakova O, Kolotova A, Blagodatski A, Ermakov A. A Study on the Planarian Model Confirms the Antioxidant Properties of Tameron against X-ray- and Menadione-Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12040953. [PMID: 37107327 PMCID: PMC10136237 DOI: 10.3390/antiox12040953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ionizing radiation and radiation-related oxidative stress are two important factors responsible for the death of actively proliferating cells, thus drastically reducing the regeneration capacity of living organisms. Planarian flatworms are freshwater invertebrates that are rich in stem cells called neoblasts and, therefore, present a well-established model for studies on regeneration and the testing of novel antioxidant and radioprotective substances. In this work, we tested an antiviral and antioxidant drug Tameron (Monosodium α-Luminol or 5-amino-2,3-dihydro-1,4-phthalazinedione sodium salt) for its ability to reduce the harm of X-ray- and chemically induced oxidative stress on a planarian model. Our study has revealed the ability of Tameron to effectively protect planarians from oxidative stress while enhancing their regenerative capacity by modulating the expression of neoblast marker genes and NRF-2-controlled oxidative stress response genes.
Collapse
Affiliation(s)
- Elena Tsarkova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- ANO Engineering Physics Institute, Bolshoi Udarny Pereulok, 142210 Serpukhov, Moscow Region, Russia
| | - Kristina Filippova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- ANO Engineering Physics Institute, Bolshoi Udarny Pereulok, 142210 Serpukhov, Moscow Region, Russia
| | - Vera Afanasyeva
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- ANO Engineering Physics Institute, Bolshoi Udarny Pereulok, 142210 Serpukhov, Moscow Region, Russia
| | - Olga Ermakova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- ANO Engineering Physics Institute, Bolshoi Udarny Pereulok, 142210 Serpukhov, Moscow Region, Russia
| | - Anastasia Kolotova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Artem Blagodatski
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Artem Ermakov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- ANO Engineering Physics Institute, Bolshoi Udarny Pereulok, 142210 Serpukhov, Moscow Region, Russia
| |
Collapse
|
15
|
Chopra K, Folkmanaitė M, Stockdale L, Shathish V, Ishibashi S, Bergin R, Amich J, Amaya E. Duox is the primary NADPH oxidase responsible for ROS production during adult caudal fin regeneration in zebrafish. iScience 2023; 26:106147. [PMID: 36843843 PMCID: PMC9950526 DOI: 10.1016/j.isci.2023.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/28/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Sustained elevated levels of reactive oxygen species (ROS) have been shown to be essential for regeneration in many organisms. This has been shown primarily via the use of pharmacological inhibitors targeting the family of NADPH oxidases (NOXes). To identify the specific NOXes involved in ROS production during adult caudal fin regeneration in zebrafish, we generated nox mutants for duox, nox5 and cyba (a key subunit of NOXes 1-4) and crossed these lines with a transgenic line ubiquitously expressing HyPer, which permits the measurement of ROS levels. Homozygous duox mutants had the greatest effect on ROS levels and rate of fin regeneration among the single mutants. However, duox:cyba double mutants showed a greater effect on fin regeneration than the single duox mutants, suggesting that Nox1-4 also play a role during regeneration. This work also serendipitously found that ROS levels in amputated adult zebrafish fins oscillate with a circadian rhythm.
Collapse
Affiliation(s)
- Kunal Chopra
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Milda Folkmanaitė
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Liam Stockdale
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Vishali Shathish
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Shoko Ishibashi
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Rachel Bergin
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.,Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda 28220 Madrid, Spain
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
16
|
Jaenen V, Bijnens K, Heleven M, Artois T, Smeets K. Live Imaging in Planarians: Immobilization and Real-Time Visualization of Reactive Oxygen Species. Methods Mol Biol 2023; 2680:209-229. [PMID: 37428380 DOI: 10.1007/978-1-0716-3275-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Imaging of living animals allows the study of metabolic processes in relation to cellular structures or larger functional entities. To enable in vivo imaging during long-term time-lapses in planarians, we combined and optimized existing protocols, resulting in an easily reproducible and inexpensive procedure. Immobilization with low-melting-point agarose eliminates the use of anesthetics, avoids interfering with the animal during imaging-functionally or physically-and allows recovering the organisms after the imaging procedure. As an example, we used the immobilization workflow to image the highly dynamic and fast-changing reactive oxygen species (ROS) in living animals. These reactive signaling molecules can only be studied in vivo and mapping their location and dynamics during different physiological conditions is crucial to understand their role in developmental processes and regeneration. In the current protocol, we describe both the immobilization and ROS detection procedure. We used the intensity of the signals together with pharmacological inhibitors to validate the signal specificity and to distinguish it from the autofluorescent nature of the planarian.
Collapse
Affiliation(s)
- Vincent Jaenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karolien Bijnens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Martijn Heleven
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Tom Artois
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
17
|
Xie C, Li X, Guo Z, Dong Y, Zhang S, Li A, Ma S, Xu J, Pang Q, Peijnenburg WJGM, Lynch I, Zhang P. Graphene oxide disruption of homeostasis and regeneration processes in freshwater planarian Dugesia japonica via intracellular redox deviation and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114431. [PMID: 36521269 DOI: 10.1016/j.ecoenv.2022.114431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The aquatic system is a major sink for engineered nanomaterials released into the environment. Here, we assessed the toxicity of graphene oxide (GO) using the freshwater planarian Dugesia japonica, an invertebrate model that has been widely used for studying the effects of toxins on tissue regeneration and neuronal development. GO not only impaired the growth of normal (homeostatic) worms, but also inhibited the regeneration processes of regenerating (amputated) worms, with LC10 values of 9.86 mg/L and 9.32 mg/L for the 48-h acute toxicity test, respectively. High concentration (200 mg/L) of GO killed all the worms after 3 (regenerating) or 4 (homeostasis) days of exposure. Whole-mount in situ hybridization (WISH) and immunofluorescence analyses suggest GO impaired stem cell proliferation and differentiation, and subsequently caused cell apoptosis and oxidative DNA damage during planarian regeneration. Mechanistic analysis suggests that GO disturbed the antioxidative system (enzymatic and non-enzymatic) and energy metabolism in the planarian at both molecular and genetic levels, thus causing reactive oxygen species (ROS) over accumulation and oxidative damage, including oxidative DNA damage, loss of mitochondrial membrane integrity, lack of energy supply for cell differentiation and proliferation leading to retardance of neuron regeneration. The intrinsic oxidative potential of GO contributes to the GO-induced toxicity in planarians. These data suggest that GO in aquatic systems can cause oxidative stress and neurotoxicity in planarians. Overall, regenerated tissues are more sensitive to GO toxicity than homeostatic ones, suggesting that careful handling and appropriate decisions are needed in the application of GO to achieve healing and tissue regeneration.
Collapse
Affiliation(s)
- Changjian Xie
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Xiaowei Li
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Yuling Dong
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shujing Zhang
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Ao Li
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Shan Ma
- Zibo Environment Monitoring Center, Zibo 25500, Shandong, China
| | - Jianing Xu
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Qiuxiang Pang
- School of life Sciences and medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Einsteinweg 2, 2333 CC Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
18
|
Patel JH, Wills AE. Gradient expectations: Revisiting Charles Manning Child's theory of metabolic regionalisation in developmental patterning and regeneration. Wound Repair Regen 2022; 30:617-622. [PMID: 35142418 PMCID: PMC9363521 DOI: 10.1111/wrr.12998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022]
Abstract
Charles Manning Child introduced one of several early models to explain how an organism can both establish and re-establish positional identity during embryogenesis and regeneration. In his gradient theory model, tissues along an axis exhibit graded levels of metabolic activity demonstrated through their differential susceptibility to metabolic inhibitors. While Child's work was difficult to place in a mechanistic framework in his own time, technological advances and recent discoveries in both embryos and regenerating organisms make his early work on redox signalling as a positional cue newly pertinent.
Collapse
Affiliation(s)
- Jeet H. Patel
- Department of Biochemistry, University of Washington School of Medicine, Seattle
- Program in Molecular and Cell Biology, University of Washington, Seattle
| | - Andrea E. Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle
| |
Collapse
|
19
|
Patel JH, Ong DJ, Williams CR, Callies LK, Wills AE. Elevated pentose phosphate pathway flux supports appendage regeneration. Cell Rep 2022; 41:111552. [PMID: 36288713 PMCID: PMC10569227 DOI: 10.1016/j.celrep.2022.111552] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/01/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
A fundamental step in regeneration is rapid growth to replace lost tissue. Cells must generate sufficient lipids, nucleotides, and proteins to fuel rapid cell division. To define metabolic pathways underlying regenerative growth, we undertake a multimodal investigation of metabolic reprogramming in Xenopus tropicalis appendage regeneration. Regenerating tissues have increased glucose uptake; however, inhibition of glycolysis does not decrease regeneration. Instead, glucose is funneled to the pentose phosphate pathway (PPP), which is essential for full tail regeneration. Liquid chromatography-mass spectrometry (LC-MS) metabolite profiling reveals increased nucleotide and nicotinamide intermediates required for cell division. Using single-cell RNA sequencing (scRNA-seq), we find that highly proliferative cells have increased transcription of PPP enzymes and not glycolytic enzymes. Further, PPP inhibition results in decreased cell division specifically in regenerating tissue. Our results inform a model wherein regenerating tissues direct glucose toward the PPP, yielding nucleotide precursors to drive regenerative cell proliferation.
Collapse
Affiliation(s)
- Jeet H Patel
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Daniel J Ong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Claire R Williams
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - LuLu K Callies
- Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Carbonell-M B, Zapata Cardona J, Delgado JP. Post-amputation reactive oxygen species production is necessary for axolotls limb regeneration. Front Cell Dev Biol 2022; 10:921520. [PMID: 36092695 PMCID: PMC9458980 DOI: 10.3389/fcell.2022.921520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction: Reactive oxygen species (ROS) represent molecules of great interest in the field of regenerative biology since several animal models require their production to promote and favor tissue, organ, and appendage regeneration. Recently, it has been shown that the production of ROS such as hydrogen peroxide (H2O2) is required for tail regeneration in Ambystoma mexicanum. However, to date, it is unknown whether ROS production is necessary for limb regeneration in this animal model. Methods: forelimbs of juvenile animals were amputated proximally and the dynamics of ROS production was determined using 2′7- dichlorofluorescein diacetate (DCFDA) during the regeneration process. Inhibition of ROS production was performed using the NADPH oxidase inhibitor apocynin. Subsequently, a rescue assay was performed using exogenous hydrogen peroxide (H2O2). The effect of these treatments on the size and skeletal structures of the regenerated limb was evaluated by staining with alcian blue and alizarin red, as well as the effect on blastema formation, cell proliferation, immune cell recruitment, and expression of genes related to proximal-distal identity. Results: our results show that inhibition of post-amputation limb ROS production in the A. mexicanum salamander model results in the regeneration of a miniature limb with a significant reduction in the size of skeletal elements such as the ulna, radius, and overall autopod. Additionally, other effects such as decrease in the number of carpals, defective joint morphology, and failure of integrity between the regenerated structure and the remaining tissue were identified. In addition, this treatment affected blastema formation and induced a reduction in the levels of cell proliferation in this structure, as well as a reduction in the number of CD45+ and CD11b + immune system cells. On the other hand, blocking ROS production affected the expression of proximo-distal identity genes such as Aldha1a1, Rarβ, Prod1, Meis1, Hoxa13, and other genes such as Agr2 and Yap1 in early/mid blastema. Of great interest, the failure in blastema formation, skeletal alterations, as well as the expression of the genes evaluated were rescued by the application of exogenous H2O2, suggesting that ROS/H2O2 production is necessary from the early stages for proper regeneration and patterning of the limb.
Collapse
Affiliation(s)
- Belfran Carbonell-M
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín, Colombia
- *Correspondence: Belfran Carbonell-M, ; Jean Paul Delgado,
| | - Juliana Zapata Cardona
- Grupo de Investigación en Patobiología Quiron, Escuela de MedicinaVeterinaria, Universidad de Antioquia, Medellín, Colombia
| | - Jean Paul Delgado
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
- *Correspondence: Belfran Carbonell-M, ; Jean Paul Delgado,
| |
Collapse
|
21
|
Ge XY, Han X, Zhao YL, Cui GS, Yang YG. An insight into planarian regeneration. Cell Prolif 2022; 55:e13276. [PMID: 35811385 PMCID: PMC9436907 DOI: 10.1111/cpr.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Background Planarian has attracted increasing attentions in the regeneration field for its usefulness as an important biological model organism attributing to its strong regeneration ability. Both the complexity of multiple regulatory networks and their coordinate functions contribute to the maintenance of normal cellular homeostasis and the process of regeneration in planarian. The polarity, size, location and number of regeneration tissues are regulated by diverse mechanisms. In this review we summarize the recent advances about the importance genetic and molecular mechanisms for regeneration control on various tissues in planarian. Methods A comprehensive literature search of original articles published in recent years was performed in regards to the molecular mechanism of each cell types during the planarian regeneration, including neoblast, nerve system, eye spot, excretory system and epidermal. Results Available molecular mechanisms gave us an overview of regeneration process in every tissue. The sense of injuries and initiation of regeneration is regulated by diverse genes like follistatin and ERK signaling. The Neoblasts differentiate into tissue progenitors under the regulation of genes such as egfr‐3. The regeneration polarity is controlled by Wnt pathway, BMP pathway and bioelectric signals. The neoblast within the blastema differentiate into desired cell types and regenerate the missing tissues. Those tissue specific genes regulate the tissue progenitor cells to differentiate into desired cell types to complete the regeneration process. Conclusion All tissue types in planarian participate in the regeneration process regulated by distinct molecular factors and cellular signaling pathways. The neoblasts play vital roles in tissue regeneration and morphology maintenance. These studies provide new insights into the molecular mechanisms for regulating planarian regeneration.
Collapse
Affiliation(s)
- Xin-Yang Ge
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Xiao Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Guan-Shen Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| |
Collapse
|
22
|
Sunny S, Jyothidasan A, David CL, Parsawar K, Veerappan A, Jones DP, Pogwizd S, Rajasekaran NS. Tandem Mass Tagging Based Identification of Proteome Signatures for Reductive Stress Cardiomyopathy. Front Cardiovasc Med 2022; 9:848045. [PMID: 35770227 PMCID: PMC9234166 DOI: 10.3389/fcvm.2022.848045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 12/15/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2), a redox sensor, is vital for cellular redox homeostasis. We reported that transgenic mice expressing constitutively active Nrf2 (CaNrf2-TG) exhibit reductive stress (RS). In this study, we identified novel protein signature for RS-induced cardiomyopathy using Tandem Mass Tag (TMT) proteomic analysis in heart tissues of TG (CaNrf2-TG) mice at 6–7 months of age. A total of 1,105 proteins were extracted from 22,544 spectra. About 560 proteins were differentially expressed in TG vs. NTg hearts, indicating a global impact of RS on the myocardial proteome. Over 32 proteins were significantly altered in response to RS -20 were upregulated and 12 were downregulated in the hearts of TG vs. NTg mice, suggesting that these proteins could be putative signatures of RS. Scaffold analysis revealed a clear distinction between TG vs. NTg hearts. The majority of the differentially expressed proteins (DEPs) that were significantly altered in RS mice were found to be involved in stress related pathways such as antioxidants, NADPH, protein quality control, etc. Interestingly, proteins that were involved in mitochondrial respiration, lipophagy and cardiac rhythm were dramatically decreased in TG hearts. Of note, we identified the glutathione family of proteins as the significantly changed subset of the proteome in TG heart. Surprisingly, our comparative analysis of NGS based transcriptome and TMT-proteome indicated that ~50% of the altered proteins in TG myocardium was found to be negatively correlated with their transcript levels. In association with the altered proteome the TG mice displayed pathological cardiac remodeling.
Collapse
Affiliation(s)
- Sini Sunny
- Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Arun Jyothidasan
- Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Cynthia L David
- Analytical and Biological Mass Spectrometry Core Facility, The University of Arizona, Tuscon, AZ, United States
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core Facility, The University of Arizona, Tuscon, AZ, United States
| | - Arul Veerappan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, United States.,Department of Environmental Medicine, New York University School of Medicine, New York, NY, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, United States
| | - Steven Pogwizd
- Comprehensive Cardiovascular Center, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Namakkal S Rajasekaran
- Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Division of Cardiovascular Medicine, Department of Medicine, The University of Utah, Salt Lake City, UT, United States.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Djhsp60 Is Required for Planarian Regeneration and Homeostasis. Biomolecules 2022; 12:biom12060808. [PMID: 35740934 PMCID: PMC9221281 DOI: 10.3390/biom12060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
HSP60, a well-known mitochondrial chaperone, is essential for mitochondrial homeostasis. HSP60 deficiency causes dysfunction of the mitochondria and is lethal to animal survival. Here, we used freshwater planarian as a model system to investigate and uncover the roles of HSP60 in tissue regeneration and homeostasis. HSP60 protein is present in all types of cells in planarians, but it is relatively rich in stem cells and head neural cells. Knockdown of HSP60 by RNAi causes head regression and the loss of regenerating abilities, which is related to decrease in mitotic cells and inhibition of stem cell-related genes. RNAi-HSP60 disrupts the structure of the mitochondria and inhibits the mitochondrial-related genes, which mainly occur in intestinal tissues. RNAi-HSP60 also damages the integrity of intestinal tissues and downregulates intestine-expressed genes. More interestingly, RNAi-HSP60 upregulates the expression of the cathepsin L-like gene, which may be the reason for head regression and necrotic-like cell death. Taking these points together, we propose a model illustrating the relationship between neoblasts and intestinal cells, and also highlight the essential role of the intestinal system in planarian regeneration and tissue homeostasis.
Collapse
|
24
|
Majid S, Van Belleghem F, Ploem JP, Wouters A, Blust R, Smeets K. Interactive toxicity of copper and cadmium in regenerating and adult planarians. CHEMOSPHERE 2022; 297:133819. [PMID: 35114265 DOI: 10.1016/j.chemosphere.2022.133819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In a polluted environment, metals are present as complex mixtures. As a result, organisms are exposed to different metals at the same time, which affects both metal-specific as well as overall toxicity. Detailed information about the molecular mechanisms underlying the adverse effects of combined exposures remains limited in terms of different life stages. In this study, the freshwater planarian Schmidtea mediterranea was used to investigate developmental and physiological responses associated with a combined exposure to Cu and Cd. In addition, the cellular and molecular mechanisms underlying the provoked adverse effects were studied in different exposure scenarios. Mixed exposure resulted in a decline in survival, diverse non-lethal morphological changes, neuroregenerative impairments, altered behaviour and a limited repair capacity. Underlying to these effects, the cellular redox state was altered in all exposure conditions. In adult animals, this led to DNA damage and corresponding transcriptional changes in cell cycle and DNA repair genes. In regenerating animals, changes in hydrogen peroxide and glutathione contents led to regenerative defects. Overall, our results demonstrate that (1) developing organisms are more susceptible to metal exposures, and (2) the toxicity of an individual metal increases significantly in a mixed exposure scenario. These aspects have to be included in current risk assessment strategies.
Collapse
Affiliation(s)
- Sanah Majid
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Frank Van Belleghem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Department of Environmental Sciences, Faculty of Science, Open University of the Netherlands, Heerlen, 6419, AT, the Netherlands
| | - Jan-Pieter Ploem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Annelies Wouters
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Ronny Blust
- Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Karen Smeets
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
25
|
Pucci C, Martinelli C, De Pasquale D, Battaglini M, di Leo N, Degl’Innocenti A, Belenli Gümüş M, Drago F, Ciofani G. Tannic Acid-Iron Complex-Based Nanoparticles as a Novel Tool against Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15927-15941. [PMID: 35352893 PMCID: PMC9011352 DOI: 10.1021/acsami.1c24576] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Accumulation of reactive oxygen species in cells leads to oxidative stress, with consequent damage for cellular components and activation of cell-death mechanisms. Oxidative stress is often associated with age-related conditions, as well as with several neurodegenerative diseases. For this reason, antioxidant molecules have attracted a lot of attention, especially those derived from natural sources─like polyphenols and tannins. The main issue related to the use of antioxidants is their inherent tendency to be oxidized, their quick enzymatic degradation in biological fluids, and their poor bioavailability. Nanomedicine, in this sense, has helped in finding new solutions to deliver and protect antioxidants; however, the concentration of the encapsulated molecule in conventional nanosystems could be very low and, therefore, less effective. We propose to exploit the properties of tannic acid, a known plant-derived antioxidant, to chelate iron ions, forming hydrophobic complexes that can be coated with a biocompatible and biodegradable phospholipid to improve stability in biological media. By combining nanoprecipitation and hot sonication procedures, we obtained three-dimensional networks composed of tannic acid-iron with a hydrodynamic diameter of ≈200 nm. These nanostructures show antioxidant properties and scavenging activity in cells after induction of an acute chemical pro-oxidant insult; moreover, they also demonstrated to counteract damage induced by oxidative stress both in vitro and on an in vivo model organism (planarians).
Collapse
Affiliation(s)
- Carlotta Pucci
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Chiara Martinelli
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Daniele De Pasquale
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Matteo Battaglini
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Nicoletta di Leo
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Andrea Degl’Innocenti
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Melike Belenli Gümüş
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
- The
Biorobotics Institute, Scuola Superiore
Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Filippo Drago
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Gianni Ciofani
- Smart
Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| |
Collapse
|
26
|
Dornelas ASP, de Jesus Ferreira JS, Silva LCR, de Souza Saraiva A, Cavallini GS, Gravato CAS, da Maia Soares AMV, Almeida Sarmento R. The sexual reproduction of the nontarget planarian Girardia tigrina is affected by ecologically relevant concentrations of difenoconazole: new sensitive tools in ecotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:27095-27103. [PMID: 34981389 DOI: 10.1007/s11356-021-18423-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The fungicide difenoconazole, widely used to reduce the negative impacts of fungi diseases on areas with intensive farming, can reach freshwater systems causing deleterious effects on nontarget organisms. The acute and chronic toxicity of a commercial formulation containing 250 g L-1 of difenoconazole (Prisma®) as the active ingredient was assessed in the freshwater planarian Girardia tigrina. The endpoints evaluated were feeding rate, locomotion, regeneration, and sexual reproduction of planarians. The estimated 48 h LC50 of the commercial formulation on planarians expressed as the concentration of the active ingredient difenoconazole was 47.5 mg a.i.L-1. A significant decrease of locomotion (LOEC = 18.56 mg a.i.L-1), delayed regeneration (LOEC = 9.28 mg a.i.L-1), and sexual reproduction impairment, i.e., decreased fecundity and fertility rates (LOEC ≤ 1.16 mg a.i.L-1) were observed on planarians exposed to sublethal concentrations of the formulation. This study demonstrated the importance of using reproductive, physiological, and behavioral parameters as more sensitive and complementary tools to assess the deleterious effects induced by a commercial formulation of difenoconazole on a nontarget freshwater organism. The added value and importance of our research work, namely, the impairment of sexual reproduction of planarians, contributes to the development of useful tools for ecotoxicology and highlights the fact that those tools should be developed as guidelines for testing of chemicals. Our results showed that the use of reproductive parameters of Girardia tigrina would help to complement and achieve a better assessment of the risk posed by triazole fungicides to freshwater ecosystems.
Collapse
Affiliation(s)
- Aline Silvestre Pereira Dornelas
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Joel Santiago de Jesus Ferreira
- Curso de Engenharia de Bioprocessos E Biotecnologia, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Laila Cristina Rezende Silva
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Althiéris de Souza Saraiva
- Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Campos Belos (Laboratório de Conservação de Agroecossistemas E Ecotoxicologia), Campos Belos, Goiás, 73840-000, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | | | | | - Renato Almeida Sarmento
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins (UFT), Campus Universitário de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| |
Collapse
|
27
|
Coronel-Córdoba P, Molina MD, Cardona G, Fraguas S, Pascual-Carreras E, Saló E, Cebrià F, Adell T. FoxK1 is Required for Ectodermal Cell Differentiation During Planarian Regeneration. Front Cell Dev Biol 2022; 10:808045. [PMID: 35273960 PMCID: PMC8901602 DOI: 10.3389/fcell.2022.808045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Forkhead box (Fox) genes belong to the “winged helix” transcription factor superfamily. The function of some Fox genes is well known, such as the role of foxO in controlling metabolism and longevity and foxA in controlling differentiation of endodermal tissues. However, the role of some Fox factors is not yet well characterized. Such is the case of FoxK genes, which are mainly studied in mammals and have been implicated in diverse processes including cell proliferation, tissue differentiation and carcinogenesis. Planarians are free-living flatworms, whose importance in biomedical research lies in their regeneration capacity. Planarians possess a wide population of pluripotent adult stem cells, called neoblasts, which allow them to regenerate any body part after injury. In a recent study, we identified three foxK paralogs in the genome of Schmidtea mediterranea. In this study, we demonstrate that foxK1 inhibition prevents regeneration of the ectodermal tissues, including the nervous system and the epidermis. These results correlate with foxK1 expression in neoblasts and in neural progenitors. Although the triggering of wound genes expression, polarity reestablishment and proliferation was not affected after foxK1 silencing, the apoptotic response was decreased. Altogether, these results suggest that foxK1 would be required for differentiation and maintenance of ectodermal tissues.
Collapse
Affiliation(s)
- Pablo Coronel-Córdoba
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - M Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Gemma Cardona
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Susanna Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Eudald Pascual-Carreras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Emili Saló
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - Teresa Adell
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
28
|
Thauvin M, de Sousa RM, Alves M, Volovitch M, Vriz S, Rampon C. An early Shh-H2O2 reciprocal regulatory interaction controls the regenerative program during zebrafish fin regeneration. J Cell Sci 2022; 135:274206. [PMID: 35107164 DOI: 10.1242/jcs.259664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species (ROS), originally classified as toxic molecules, have attracted increasing interest given their actions in cell signaling. Hydrogen peroxide (H2O2), the major ROS produced by cells, acts as a second messenger to modify redox-sensitive proteins or lipids. After caudal fin amputation, tight spatiotemporal regulation of ROS is required first for wound healing and later to initiate the regenerative program. However, the mechanisms carrying out this sustained ROS production and their integration with signaling pathways are still poorly understood. We focused on the early dialog between H2O2 and Sonic Hedgehog (Shh) during fin regeneration. We demonstrate that H2O2 controls Shh expression and that Shh in turn regulates the H2O2 level via a canonical pathway. Moreover, the means of this tight reciprocal control change during the successive phases of the regenerative program. Dysregulation of the Hedgehog pathway has been implicated in several developmental syndromes, diabetes and cancer. These data support the existence of an early positive crosstalk between Shh and H2O2 that might be more generally involved in various processes paving the way to improve regenerative processes, particularly in vertebrates.
Collapse
Affiliation(s)
- Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Rodolphe Matias de Sousa
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Sorbonne Université, Paris, France
| | - Marine Alves
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,École Normale Supérieure, PSL Research University, Department of Biology, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,Université de Paris, Faculty of Sciences, Paris, France
| |
Collapse
|
29
|
Metabolic cost of development, regeneration, and reproduction in the planarian Schmidtea mediterranea. Comp Biochem Physiol A Mol Integr Physiol 2021; 265:111127. [PMID: 34968657 DOI: 10.1016/j.cbpa.2021.111127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
Planaria are known for their ability to completely regenerate upon fissioning or experimental amputation. Yet, metabolic costs of regeneration have not been directly measured in planaria. Our goal was to establish the relationships between oxygen consumption (V̇O2), regeneration, and reproductive mode for asexual and sexual strains of Schmidtea mediterranea. We hypothesized that V̇O2 would vary by regeneration day for both sexual and asexual S. mediterranea, reflecting different costs of tissue reconstruction, but with an additional cost for regenerating sexual organs. Testes regeneration and body mass, as indicators of regeneration progress, and routine mass-specific V̇O2 as a function of maturity, regeneration, and reproductive mode, were measured over a 22-day regeneration period. Testes growth was highest in sexually mature adults, ~1/2 that in 14-day post-amputation sexual adults, and not detectable in juveniles and hatchlings. Mass-specific routine V̇O2 in sexuals was highest in mature controls at ~23 μl O2/g/h, but only half that in juveniles, hatchlings, and 14 day post-amputation adults. Both intact and 14-day post-amputation asexuals had a mass-specific routine V̇O2 of ~10-12 μl O2/g/h. The sum of V̇O2 of all amputated sections was ~100% higher than pre-amputation levels in the first 6 days of regeneration in asexuals, but not sexuals. There was no significant difference in V̇O2 of head, middle, and tail sections during regeneration. Overall, the highest metabolic costs associated with regeneration occurred during the initial 1-6 days of regeneration in both strains, but regeneration costs for sexual structures were not reflected in major V̇O2 differences between sexual and asexual strains.
Collapse
|
30
|
Molina MD, Cebrià F. Decoding Stem Cells: An Overview on Planarian Stem Cell Heterogeneity and Lineage Progression. Biomolecules 2021; 11:1532. [PMID: 34680165 PMCID: PMC8533874 DOI: 10.3390/biom11101532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/26/2023] Open
Abstract
Planarians are flatworms capable of whole-body regeneration, able to regrow any missing body part after injury or amputation. The extraordinary regenerative capacity of planarians is based upon the presence in the adult of a large population of somatic pluripotent stem cells. These cells, called neoblasts, offer a unique system to study the process of stem cell specification and differentiation in vivo. In recent years, FACS-based isolation of neoblasts, RNAi functional analyses as well as high-throughput approaches such as single-cell sequencing have allowed a rapid progress in our understanding of many different aspects of neoblast biology. Here, we summarize our current knowledge on the molecular signatures that define planarian neoblasts heterogeneity, which includes a percentage of truly pluripotent stem cells, and guide the commitment of pluripotent neoblasts into lineage-specific progenitor cells, as well as their differentiation into specific planarian cell types.
Collapse
Affiliation(s)
- M. Dolores Molina
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| | - Francesc Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), 08028 Barcelona, Spain
| |
Collapse
|
31
|
Carbonell M B, Zapata Cardona J, Delgado JP. Hydrogen peroxide is necessary during tail regeneration in juvenile axolotl. Dev Dyn 2021; 251:1054-1076. [PMID: 34129260 DOI: 10.1002/dvdy.386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Hydrogen peroxide (H2 O2 ) is a key reactive oxygen species (ROS) generated during appendage regeneration among vertebrates. However, its role during tail regeneration in axolotl as redox signaling molecule is unclear. RESULTS Treatment with exogenous H2 O2 rescues inhibitory effects of apocynin-induced growth suppression in tail blastema cells leading to cell proliferation. H2 O2 also promotes recruitment of immune cells, regulate the activation of AKT kinase and Agr2 expression during blastema formation. Additionally, ROS/H2 O2 regulates the expression and transcriptional activity of Yap1 and its target genes Ctgf and Areg. CONCLUSIONS These results show that H2 O2 is necessary and sufficient to promote tail regeneration in axolotls. Additionally, Akt signaling and Agr2 were identified as ROS targets, suggesting that ROS/H2 O2 is likely to regulate epimorphic regeneration through these signaling pathways. In addition, ROS/H2 O2 -dependent-Yap1 activity is required during tail regeneration.
Collapse
Affiliation(s)
- Belfran Carbonell M
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
| | - Juliana Zapata Cardona
- Grupo de Investigación en Patobiología Quirón, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
| | - Jean Paul Delgado
- Grupo de Genética, Regeneración y Cáncer, Universidad de Antioquia, Sede de Investigación Universitaria, Medellín, Colombia
| |
Collapse
|
32
|
Bijnens K, Jaenen V, Wouters A, Leynen N, Pirotte N, Artois T, Smeets K. A Spatiotemporal Characterisation of Redox Molecules in Planarians, with a Focus on the Role of Glutathione during Regeneration. Biomolecules 2021; 11:biom11050714. [PMID: 34064618 PMCID: PMC8150688 DOI: 10.3390/biom11050714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/23/2022] Open
Abstract
A strict coordination between pro- and antioxidative molecules is needed for normal animal physiology, although their exact function and dynamics during regeneration and development remains largely unknown. Via in vivo imaging, we were able to locate and discriminate between reactive oxygen species (ROS) in real-time during different physiological stages of the highly regenerative planarian Schmidtea mediterranea. All ROS signals were strong enough to overcome the detected autofluorescence. Combined with an in situ characterisation and quantification of the transcription of several antioxidant genes, our data showed that the planarian gut and epidermis have a well-equipped redox system. Pharmacological inhibition or RNA interference of either side of the redox balance resulted in alterations in the regeneration process, characterised by decreased blastema sizes and delayed neurodevelopment, thereby affecting tails more than heads. Focusing on glutathione, a central component in the redox balance, we found that it is highly present in planarians and that a significant reduction in glutathione content led to regenerative failure with tissue lesions, characterised by underlying stem cell alterations. This exploratory study indicates that ROS and antioxidants are tightly intertwined and should be studied as a whole to fully comprehend the function of the redox balance in animal physiology.
Collapse
|
33
|
Mohamed Haroon M, Lakshmanan V, Sarkar SR, Lei K, Vemula PK, Palakodeti D. Mitochondrial state determines functionally divergent stem cell population in planaria. Stem Cell Reports 2021; 16:1302-1316. [PMID: 33861990 PMCID: PMC8185449 DOI: 10.1016/j.stemcr.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial state changes were shown to be critical for stem cell function. However, variation in the mitochondrial content in stem cells and the implication, if any, on differentiation is poorly understood. Here, using cellular and molecular studies, we show that the planarian pluripotent stem cells (PSCs) have low mitochondrial mass compared with their progenitors. Transplantation experiments provided functional validation that neoblasts with low mitochondrial mass are the true PSCs. Further, the mitochondrial mass correlated with OxPhos and inhibiting the transition to OxPhos dependent metabolism in cultured cells resulted in higher PSCs. In summary, we show that low mitochondrial mass is a hallmark of PSCs in planaria and provide a mechanism to isolate live, functionally active, PSCs from different cell cycle stages (G0/G1 and S, G2/M). Our study demonstrates that the change in mitochondrial metabolism, a feature of PSCs is conserved in planaria and highlights its role in organismal regeneration. Mitochondrial state differs between stem (X1) and differentiated (Xins) cells X1 cells with low MTG are enriched for pluripotent cells compared with high MTG cells MTG-based sorting yields functional neoblasts from G1, S/G2/M phase of cell cycle Inhibition of mitochondrial activity affects neoblast differentiation in vitro
Collapse
Affiliation(s)
- Mohamed Mohamed Haroon
- Integrative Chemical Biology, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India; SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Vairavan Lakshmanan
- Integrative Chemical Biology, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India; SASTRA University, Thirumalaisamudram, Thanjavur, India
| | | | - Kai Lei
- Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Praveen Kumar Vemula
- Integrative Chemical Biology, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India.
| | - Dasaradhi Palakodeti
- Integrative Chemical Biology, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India.
| |
Collapse
|
34
|
Bideau L, Kerner P, Hui J, Vervoort M, Gazave E. Animal regeneration in the era of transcriptomics. Cell Mol Life Sci 2021; 78:3941-3956. [PMID: 33515282 PMCID: PMC11072743 DOI: 10.1007/s00018-021-03760-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 12/27/2022]
Abstract
Animal regeneration, the ability to restore a lost body part, is a process that has fascinated scientists for centuries. In this review, we first present what regeneration is and how it relates to development, as well as the widespread and diverse nature of regeneration in animals. Despite this diversity, animal regeneration includes three common mechanistic steps: initiation, induction and activation of progenitors, and morphogenesis. In this review article, we summarize and discuss, from an evolutionary perspective, the recent data obtained for a variety of regeneration models which have allowed to identify key shared mechanisms that control these main steps of animal regeneration. This review also synthesizes the wealth of high-throughput mRNA sequencing data (bulk mRNA-seq) concerning regeneration which have been obtained in recent years, highlighting the major advances in the regeneration field that these studies have revealed. We stress out that, through a comparative approach, these data provide opportunities to further shed light on the evolution of regeneration in animals. Finally, we point out how the use of single-cell mRNA-seq technology and integration with epigenomic approaches may further help researchers to decipher mechanisms controlling regeneration and their evolution in animals.
Collapse
Affiliation(s)
- Loïc Bideau
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Pierre Kerner
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France
| | - Jerome Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Michel Vervoort
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| | - Eve Gazave
- Université de Paris, CNRS, Institut Jacques Monod, 75006, Paris, France.
| |
Collapse
|
35
|
Analysis of Fox genes in Schmidtea mediterranea reveals new families and a conserved role of Smed-foxO in controlling cell death. Sci Rep 2021; 11:2947. [PMID: 33536473 PMCID: PMC7859237 DOI: 10.1038/s41598-020-80627-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/18/2020] [Indexed: 01/30/2023] Open
Abstract
The forkhead box (Fox) genes encode transcription factors that control several key aspects of development. Present in the ancestor of all eukaryotes, Fox genes underwent several duplications followed by loss and diversification events that gave rise to the current 25 families. However, few Fox members have been identified from the Lophotrochozoa clade, and specifically from planarians, which are a unique model for understanding development, due to the striking plasticity of the adult. The aim of this study was to identify and perform evolutionary and functional studies of the Fox genes of lophotrochozoan species and, specifically, of the planarian Schmidtea mediterranea. Generating a pipeline for identifying Forkhead domains and using phylogenetics allowed us the phylogenetic reconstruction of Fox genes. We corrected the annotation for misannotated genes and uncovered a new family, the QD, present in all metazoans. According to the new phylogeny, the 27 Fox genes found in Schmidtea mediterranea were classified into 12 families. In Platyhelminthes, family losses were accompanied by extensive gene diversification and the appearance of specific families, the A(P) and N(P). Among the newly identified planarian Fox genes, we found a single copy of foxO, which shows an evolutionary conserved role in controlling cell death.
Collapse
|
36
|
Helston O, Amaya E. Reactive oxygen species during heart regeneration in zebrafish: Lessons for future clinical therapies. Wound Repair Regen 2021; 29:211-224. [PMID: 33471940 PMCID: PMC8611801 DOI: 10.1111/wrr.12892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
In humans, myocardial infarction (MI) is associated with irreversible damage to heart tissue, resulting in increased morbidity and mortality in patients. By comparison, the zebrafish (Danio rerio) is capable of repairing damaged and injured hearts by activating a full regenerative response. By studying model organisms that can regenerate loss heart tissue following injury, such as the zebrafish, a greater insight will be gained into the molecular pathways that can induce and sustain a regenerative response following injury. There is hope that such information may lead to new treatments or therapies aimed at stimulating a better regenerative response in humans that have suffered heart attacks. Recent findings in zebrafish have highlighted an important role for sustained elevated levels of Reactive Oxygen Species (ROS), including hydrogen peroxide (H2O2) in the promotion of a regenerative response. Given that elevated levels of H2O2 can be harmful, simply elevating ROS levels directly may not be easy or practical to translate clinically. An alternative approach would be to identify the critical downstream targets of ROS in the promotion of heart regeneration, and then target these clinically using drugs. One such family of potential downstream targets of ROS during heart regeneration are the family of protein tyrosine phosphatases (PTPs), which are known to be exquisitely sensitive to redox regulation and whose inhibition have been linked to the promotion of heart regeneration in zebrafish. In this review, we present an overview of the zebrafish as a model organism for studying cardiac regeneration, including the molecular mechanisms by which cardiac regeneration occurs in response to injury. We then present recent findings linking elevated ROS levels to heart regeneration and their potential downstream targets, the PTPs, including protein tyrosine phosphatase 1B (PTP1B) and the dual specificity phosphatase 6 (DUSP6) in the promotion of heart regeneration.
Collapse
Affiliation(s)
- Olivia Helston
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
37
|
Jaenen V, Fraguas S, Bijnens K, Heleven M, Artois T, Romero R, Smeets K, Cebrià F. Reactive oxygen species rescue regeneration after silencing the MAPK-ERK signaling pathway in Schmidtea mediterranea. Sci Rep 2021; 11:881. [PMID: 33441641 PMCID: PMC7806912 DOI: 10.1038/s41598-020-79588-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Despite extensive research on molecular pathways controlling the process of regeneration in model organisms, little is known about the actual initiation signals necessary to induce regeneration. Recently, the activation of ERK signaling has been shown to be required to initiate regeneration in planarians. However, how ERK signaling is activated remains unknown. Reactive Oxygen Species (ROS) are well-known early signals necessary for regeneration in several models, including planarians. Still, the probable interplay between ROS and MAPK/ERK has not yet been described. Here, by interfering with major mediators (ROS, EGFR and MAPK/ERK), we were able to identify wound-induced ROS, and specifically H2O2, as upstream cues in the activation of regeneration. Our data demonstrate new relationships between regeneration-related ROS production and MAPK/ERK activation at the earliest regeneration stages, as well as the involvement of the EGFR-signaling pathway. Our results suggest that (1) ROS and/or H2O2 have the potential to rescue regeneration after MEK-inhibition, either by H2O2-treatment or light therapy, (2) ROS and/or H2O2 are required for the activation of MAPK/ERK signaling pathway, (3) the EGFR pathway can mediate ROS production and the activation of MAPK/ERK during planarian regeneration.
Collapse
Affiliation(s)
- V Jaenen
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - S Fraguas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
| | - K Bijnens
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - M Heleven
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - T Artois
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - R Romero
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain
| | - K Smeets
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium. .,Department of Biology and Geology, Faculty of Sciences, Agoralaan Building D, 3590, Diepenbeek, Belgium.
| | - F Cebrià
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain. .,Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
38
|
Transcriptomic analysis of early stages of intestinal regeneration in Holothuria glaberrima. Sci Rep 2021; 11:346. [PMID: 33431961 PMCID: PMC7801731 DOI: 10.1038/s41598-020-79436-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
Echinoderms comprise a group of animals with impressive regenerative capabilities. They can replace complex internal organs following injury or autotomy. In holothurians or sea cucumbers, cellular processes of intestinal regeneration have been extensively studied. The molecular machinery behind this faculty, however, remains to be understood. Here we assembled and annotated a de novo transcriptome using RNA-seq data consisting of regenerating and non-regenerating intestinal tissues from the sea cucumber Holothuria glaberrima. Comparisons of differential expression were made using the mesentery as a reference against 24 h and 3 days regenerating intestine, revealing a large number of differentially expressed transcripts. Gene ontology and pathway enrichment analysis showed evidence of increasing transcriptional activity. Further analysis of transcripts associated with transcription factors revealed diverse expression patterns with mechanisms involving developmental and cancer-related activity that could be related to the regenerative process. Our study demonstrates the broad and diversified gene expression profile during the early stages of the process using the mesentery as the focal point of intestinal regeneration. It also establishes the genes that are the most important candidates in the cellular processes that underlie regenerative responses.
Collapse
|
39
|
Bijnens K, Thijs S, Leynen N, Stevens V, McAmmond B, Van Hamme J, Vangronsveld J, Artois T, Smeets K. Differential effect of silver nanoparticles on the microbiome of adult and developing planaria. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105672. [PMID: 33227667 DOI: 10.1016/j.aquatox.2020.105672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/04/2020] [Accepted: 10/27/2020] [Indexed: 05/23/2023]
Abstract
Silver nanoparticles (AgNPs) are widely incorporated in household, consumer and medical products. Their unintentional release via wastewaters raises concerns on their environmental impact, particularly for aquatic organisms and their associated bacterial communities. It is known that the microbiome plays an important role in its host's health and physiology, e.g. by producing essential nutrients and providing protection against pathogens. A thorough understanding of the effects of AgNPs on bacterial communities and on their interactions with the host is crucial to fully assess AgNP toxicity on aquatic organisms. Our results indicate that the microbiome of the invertebrate Schmidtea mediterranea, a freshwater planarian, is affected by AgNP exposure at the tested 10 μg/ml concentration. Using targeted amplification of the bacterial 16S rRNA gene V3-V4 region, two independent experiments on the microbiomes of adult worms revealed a consistent decrease in Betaproteobacteriales after AgNP exposure, mainly attributed to a decrease in Curvibacter and Undibacterium. Although developing tissues and organisms are known to be more sensitive to toxic compounds, three independent experiments in regenerating worms showed a less pronounced effect of AgNP exposure on the microbiome, possibly because underlying bacterial community changes during development mask the AgNP induced effect. The presence of a polyvinyl-pyrrolidone (PVP) coating did not significantly alter the outcome of the experiments compared to those with uncoated particles. The observed variation between the different experiments underlines the highly variable nature of microbiomes and emphasises the need to repeat microbiome experiments, within and between physiological states of the animal.
Collapse
Affiliation(s)
- Karolien Bijnens
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Hasselt, Belgium
| | - Nathalie Leynen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - Vincent Stevens
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Hasselt, Belgium
| | - Breanne McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Jonathan Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Hasselt, Belgium; Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Skłodowska-Curie University, Lublin, Poland
| | - Tom Artois
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - Karen Smeets
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
40
|
García‐Lepe UO, Cruz‐Ramírez A, Bermúdez‐Cruz RM. DNA repair during regeneration in
Ambystoma mexicanum. Dev Dyn 2020; 250:788-799. [DOI: 10.1002/dvdy.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ulises Omar García‐Lepe
- Genetics and Molecular Biology Department Centro de Investigacion y Estudios Avanzados del IPN Mexico city Mexico
| | - Alfredo Cruz‐Ramírez
- Molecular and Developmental Complexity Group Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del IPN Guanajuato Mexico
| | - Rosa María Bermúdez‐Cruz
- Genetics and Molecular Biology Department Centro de Investigacion y Estudios Avanzados del IPN Mexico city Mexico
| |
Collapse
|
41
|
Yosef B, Zhou Y, Mouschouris K, Poteracki J, Soker S, Criswell T. N-Acetyl-L-Cysteine Reduces Fibrosis and Improves Muscle Function After Acute Compartment Syndrome Injury. Mil Med 2020; 185:25-34. [PMID: 32074330 DOI: 10.1093/milmed/usz232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Upon injury, skeletal muscle undergoes a multiphase process beginning with degeneration of the damaged tissue, which is accompanied by inflammation and finally regeneration. One consequence of an injured microenvironment is excessive production of reactive oxygen species, which results in attenuated regeneration and recovery of function ultimately leading to fibrosis and disability. The objective of this research was to test the potential of the antioxidant, N-Acetyl-L-Cysteine (NAC), as a mediator of reactive oxygen species damage that results from traumatic muscle injury in order to support repair and regeneration of wounded muscle tissue and improve function recovery. MATERIALS AND METHODS Adult female Lewis rats were subjected to compartment syndrome injury as previously published by our group. Rats received intramuscular injections of NAC or vehicle at 24, 48, and 72 hours postinjury. Muscle function, tissue fibrosis, and the expression of myogenic and angiogenic markers were measured. RESULTS Muscle function was significantly improved, and tissue fibrosis was significantly decreased in NAC-treated muscles. CONCLUSIONS These results suggest that NAC treatment of skeletal muscle after injury may be a viable option for the prevention of long-term fibrosis and scar formation, facilitating recovery of muscle function.
Collapse
Affiliation(s)
- Benyam Yosef
- Department of Cardiac Surgery, Brigham and Young Women's Hospital, 75 Francis St., Boston, MA 02115
| | - Yu Zhou
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - Kathryn Mouschouris
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - James Poteracki
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| | - Tracy Criswell
- Department of Cardiac Surgery, Brigham and Young Women's Hospital, 75 Francis St., Boston, MA 02115.,Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Medical Center Blvd, Winston-Salem, NC 27157
| |
Collapse
|
42
|
Saraiva AS, Sarmento RA, Gravato C, Rodrigues ACM, Campos D, Simão FCP, Soares AMVM. Strategies of cellular energy allocation to cope with paraquat-induced oxidative stress: Chironomids vs Planarians and the importance of using different species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140443. [PMID: 32887009 DOI: 10.1016/j.scitotenv.2020.140443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 05/22/2023]
Abstract
Paraquat (PQ) is still used in several countries worldwide as an herbicide for weed control in agricultural production, ponds, reservoirs and irrigation canals. Thus, PQ is frequently found in surface water systems and is potentially toxic to aquatic organisms, since it can cause mitochondrial dysfunction altering in the redox state of cells. This study aimed to investigate the chronic effects of PQ to Chironomus riparius and Girardia tigrina, and compare their physiological strategies to cope with environmental stress. The mean emergence time was the most sensitive endpoint for Chironomids, with the lowest observed effect concentrations (LOEC) being 0.02 for males and 0.1 mg PQ L-1 for females. Moreover, PQ reduced the body weight of male and female imagoes, with LOECs of 0.5 and 2.5 mg PQ L-1, respectively. Paraquat also decreased the respiration rate (LOEC = 2.5 mg PQ L-1) and total glutathione (tGSH) content (LOEC = 0.5 mg PQ L-1). Thus, the aerobic production of energy was not affected and allowed chironomids to cope with oxidative stress induced by PQ, but with consequent physiological costs in terms of development rates and weight of adults. In planarians, PQ decreased the locomotion and feeding activity, and delayed photoreceptor regeneration (LOECs = 2.5 mg PQ L-1 for all endpoints). Despite increased aerobic energy production (LOEC = 0.5 mg PQ L-1), planarians were not able to cope with oxidative stress induced by the highest PQ concentrations, since lipid peroxidation levels were significantly increased (LOEC = 2.5 mg PQ L-1) concomitantly with a significant decrease of tGSH (LOEC = 2.5 mg PQ L-1). These results showed that planarians were unable to cope with oxidative stress induced by PQ with consequent impairments of behavior and regeneration despite an increased aerobic energy production.
Collapse
Affiliation(s)
- Althiéris S Saraiva
- Departamento de Agropecuária (Conservação de Agroecossistemas e Ecotoxicologia), Instituto Federal de Educação, Ciência e Tecnologia, Goiano - Campus Campos Belos, 73840-000 Campos Belos, Goiás, Brazil
| | - Renato A Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Universitário de Gurupi, 77402-970 Gurupi, Tocantins, Brazil
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia C M Rodrigues
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fátima C P Simão
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
43
|
Ferrario C, Sugni M, Somorjai IML, Ballarin L. Beyond Adult Stem Cells: Dedifferentiation as a Unifying Mechanism Underlying Regeneration in Invertebrate Deuterostomes. Front Cell Dev Biol 2020; 8:587320. [PMID: 33195242 PMCID: PMC7606891 DOI: 10.3389/fcell.2020.587320] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
The diversity of regenerative phenomena seen in adult metazoans, as well as their underlying mechanistic bases, are still far from being comprehensively understood. Reviewing both ultrastructural and molecular data, the present work aims to showcase the increasing relevance of invertebrate deuterostomes, i.e., echinoderms, hemichordates, cephalochordates and tunicates, as invaluable models to study cellular aspects of adult regeneration. Our comparative approach suggests a fundamental contribution of local dedifferentiation -rather than mobilization of resident undifferentiated stem cells- as an important cellular mechanism contributing to regeneration in these groups. Thus, elucidating the cellular origins, recruitment and fate of cells, as well as the molecular signals underpinning tissue regrowth in regeneration-competent deuterostomes, will provide the foundation for future research in tackling the relatively limited regenerative abilities of vertebrates, with clear applications in regenerative medicine.
Collapse
Affiliation(s)
- Cinzia Ferrario
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milan, Italy
- GAIA 2050 Center, Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Ildiko M. L. Somorjai
- The Willie Russel Laboratories, Biomedical Sciences Research Complex, North Haugh, University of St Andrews, St Andrews, United Kingdom
| | | |
Collapse
|
44
|
Haval GA, Pekhale KD, Perween NA, Ghaskadbi SM, Ghaskadbi SS. Excess hydrogen peroxide inhibits head and foot regeneration in hydra by affecting DNA repair and expression of essential genes. J Biochem Mol Toxicol 2020; 34:e22577. [PMID: 32627281 DOI: 10.1002/jbt.22577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 11/07/2022]
Abstract
Reactive oxygen species (ROS) are necessary for various cellular processes. However, excess ROS cause damage to many biological molecules and therefore must be tightly regulated in time and space. Hydrogen peroxide (H2 O2 ) is the most commonly used ROS as second messenger in the cell. It is a relatively long-lived freely diffusible signaling molecule during early events of injury. In the Cnidarian hydra, injury-induced ROS production is essential for regeneration to proceed. In the present study, we have examined influence of varying exposure to H2 O2 on head and foot regeneration in the middlepieces of trisected hydra. We find that longer (4 hours) exposure to 1 mM H2 O2 inhibits both head and foot regeneration while shorter exposure (2 hours) does not. Longer exposure to H2 O2 resulted in extensive damage to DNA that could not be repaired, probably due to suboptimal induction of APE1, an enzyme necessary for base excision repair (BER). Concomitantly, genes involved in activation of Wnt pathway, necessary for head regeneration, were significantly downregulated. This appeared to be due to failure of both stabilization and transient nuclear localization of β-catenin. Similarly, genes involved in foot regeneration were also downregulated on longer exposure to H2 O2 . Thus, exposure to excess ROS inhibits regenerative processes in hydra through reduced expression of genes involved in regeneration and diminished DNA repair.
Collapse
Affiliation(s)
- Gauri A Haval
- Department of Zoology, Savitribai Phule Pune University, Pune, India.,Department of Zoology, Abasaheb Garware College, Pune, India
| | - Komal D Pekhale
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Nusrat A Perween
- Department of Zoology, Savitribai Phule Pune University, Pune, India.,Department of Zoology, Abeda Inamdar Senior College, Pune, India
| | - Surendra M Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Savitribai Phule Pune University, Pune, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
45
|
Cao Z, Liu H, Zhao B, Pang Q, Zhang X. Extreme Environmental Stress-Induced Biological Responses in the Planarian. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7164230. [PMID: 32596359 PMCID: PMC7305541 DOI: 10.1155/2020/7164230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022]
Abstract
Planarians are bilaterally symmetric metazoans of the phylum Platyhelminthes. They have well-defined anteroposterior and dorsoventral axes and have a highly structured true brain which consists of all neural cell types and neuropeptides found in a vertebrate. Planarian flatworms are famous for their strong regenerative ability; they can easily regenerate any part of the body including the complete neoformation of a functional brain within a few days and can survive a series of extreme environmental stress. Nowadays, they are an emerging model system in the field of developmental, regenerative, and stem cell biology and have offered lots of helpful information for these realms. In this review, we will summarize the response of planarians to some typical environmental stress and hope to shed light on basic mechanisms of how organisms interact with extreme environmental stress and survive it, such as altered gravity, temperature, and oxygen, and this information will help researchers improve the design in future studies.
Collapse
Affiliation(s)
- Zhonghong Cao
- School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo 255049, China
| | - Hongjin Liu
- School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo 255049, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo 255049, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo 255049, China
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, 266 Xincun Western Road, Zibo 255049, China
| |
Collapse
|
46
|
Wouters A, Ploem JP, Langie SAS, Artois T, Aboobaker A, Smeets K. Regenerative responses following DNA damage - β-catenin mediates head regrowth in the planarian Schmidtea mediterranea. J Cell Sci 2020; 133:jcs237545. [PMID: 32107291 DOI: 10.1242/jcs.237545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/09/2020] [Indexed: 12/12/2022] Open
Abstract
Pluripotent stem cells hold great potential for regenerative medicine. Increased replication and division, such is the case during regeneration, concomitantly increases the risk of adverse outcomes through the acquisition of mutations. Seeking for driving mechanisms of such outcomes, we challenged a pluripotent stem cell system during the tightly controlled regeneration process in the planarian Schmidtea mediterranea Exposure to the genotoxic compound methyl methanesulfonate (MMS) revealed that despite a similar DNA-damaging effect along the anteroposterior axis of intact animals, responses differed between anterior and posterior fragments after amputation. Stem cell proliferation and differentiation proceeded successfully in the amputated heads, leading to regeneration of missing tissues. Stem cells in the amputated tails showed decreased proliferation and differentiation capacity. As a result, tails could not regenerate. Interference with the body-axis-associated component β-catenin-1 increased regenerative success in tail fragments by stimulating proliferation at an early time point. Our results suggest that differences in the Wnt signalling gradient along the body axis modulate stem cell responses to MMS.
Collapse
Affiliation(s)
- Annelies Wouters
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jan-Pieter Ploem
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Sabine A S Langie
- Vito Health, 2400 Mol, Belgium
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Tom Artois
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Aziz Aboobaker
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Karen Smeets
- Zoology, Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
47
|
Pinal N, Calleja M, Morata G. Pro-apoptotic and pro-proliferation functions of the JNK pathway of Drosophila: roles in cell competition, tumorigenesis and regeneration. Open Biol 2020; 9:180256. [PMID: 30836847 PMCID: PMC6451367 DOI: 10.1098/rsob.180256] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase family. It appears to be conserved in all animal species where it regulates important physiological functions involved in apoptosis, cell migration, cell proliferation and regeneration. In this review, we focus on the functions of JNK in Drosophila imaginal discs, where it has been reported that it can induce both cell death and cell proliferation. We discuss this apparent paradox in the light of recent findings and propose that the pro-apoptotic and the pro-proliferative functions are intrinsic properties of JNK activity. Whether one function or another is predominant depends on the cellular context.
Collapse
Affiliation(s)
- Noelia Pinal
- Centro de Biología Molecular CSIC-UAM , Madrid , Spain
| | | | - Ginés Morata
- Centro de Biología Molecular CSIC-UAM , Madrid , Spain
| |
Collapse
|
48
|
Abstract
Understanding how to promote organ and appendage regeneration is a key goal of regenerative medicine. The frog, Xenopus, can achieve both scar-free healing and tissue regeneration during its larval stages, although it predominantly loses these abilities during metamorphosis and adulthood. This transient regenerative capacity, alongside their close evolutionary relationship with humans, makes Xenopus an attractive model to uncover the mechanisms underlying functional regeneration. Here, we present an overview of Xenopus as a key model organism for regeneration research and highlight how studies of Xenopus have led to new insights into the mechanisms governing regeneration.
Collapse
Affiliation(s)
- Lauren S Phipps
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Lindsey Marshall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Karel Dorey
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
49
|
Sabry Z, Ho A, Ireland D, Rabeler C, Cochet-Escartin O, Collins EMS. Pharmacological or genetic targeting of Transient Receptor Potential (TRP) channels can disrupt the planarian escape response. PLoS One 2019; 14:e0226104. [PMID: 31805147 PMCID: PMC6894859 DOI: 10.1371/journal.pone.0226104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
In response to noxious stimuli, planarians cease their typical ciliary gliding and exhibit an oscillatory type of locomotion called scrunching. We have previously characterized the biomechanics of scrunching and shown that it is induced by specific stimuli, such as amputation, noxious heat, and extreme pH. Because these specific inducers are known to activate Transient Receptor Potential (TRP) channels in other systems, we hypothesized that TRP channels control scrunching. We found that chemicals known to activate TRPA1 (allyl isothiocyanate (AITC) and hydrogen peroxide) and TRPV (capsaicin and anandamide) in other systems induce scrunching in the planarian species Dugesia japonica and, except for anandamide, in Schmidtea mediterranea. To confirm that these responses were specific to either TRPA1 or TRPV, respectively, we tried to block scrunching using selective TRPA1 or TRPV antagonists and RNA interference (RNAi) mediated knockdown. Unexpectedly, co-treatment with a mammalian TRPA1 antagonist, HC-030031, enhanced AITC-induced scrunching by decreasing the latency time, suggesting an agonistic relationship in planarians. We further confirmed that TRPA1 in both planarian species is necessary for AITC-induced scrunching using RNAi. Conversely, while co-treatment of a mammalian TRPV antagonist, SB-366791, also enhanced capsaicin-induced reactions in D. japonica, combined knockdown of two previously identified D. japonica TRPV genes (DjTRPVa and DjTRPVb) did not inhibit capsaicin-induced scrunching. RNAi of DjTRPVa/DjTRPVb attenuated scrunching induced by the endocannabinoid and TRPV agonist, anandamide. Overall, our results show that although scrunching induction can involve different initial pathways for sensing stimuli, this behavior's signature dynamical features are independent of the inducer, implying that scrunching is a stereotypical planarian escape behavior in response to various noxious stimuli that converge on a single downstream pathway. Understanding which aspects of nociception are conserved or not across different organisms can provide insight into the underlying regulatory mechanisms to better understand pain sensation.
Collapse
Affiliation(s)
- Ziad Sabry
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Alicia Ho
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Danielle Ireland
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Christina Rabeler
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
| | - Olivier Cochet-Escartin
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| | - Eva-Maria S. Collins
- Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Department of Physics, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
50
|
Pietak A, Bischof J, LaPalme J, Morokuma J, Levin M. Neural control of body-plan axis in regenerating planaria. PLoS Comput Biol 2019; 15:e1006904. [PMID: 30990801 PMCID: PMC6485777 DOI: 10.1371/journal.pcbi.1006904] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 04/26/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
Control of axial polarity during regeneration is a crucial open question. We developed a quantitative model of regenerating planaria, which elucidates self-assembly mechanisms of morphogen gradients required for robust body-plan control. The computational model has been developed to predict the fraction of heteromorphoses expected in a population of regenerating planaria fragments subjected to different treatments, and for fragments originating from different regions along the anterior-posterior and medio-lateral axis. This allows for a direct comparison between computational and experimental regeneration outcomes. Vector transport of morphogens was identified as a fundamental requirement to account for virtually scale-free self-assembly of the morphogen gradients observed in planarian homeostasis and regeneration. The model correctly describes altered body-plans following many known experimental manipulations, and accurately predicts outcomes of novel cutting scenarios, which we tested. We show that the vector transport field coincides with the alignment of nerve axons distributed throughout the planarian tissue, and demonstrate that the head-tail axis is controlled by the net polarity of neurons in a regenerating fragment. This model provides a comprehensive framework for mechanistically understanding fundamental aspects of body-plan regulation, and sheds new light on the role of the nervous system in directing growth and form.
Collapse
Affiliation(s)
- Alexis Pietak
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
| | - Johanna Bischof
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Joshua LaPalme
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Junji Morokuma
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|