1
|
Chan BCL, Li P, Tsang MSM, Sung JCC, Kwong KWY, Zheng T, Hon SSM, Lau CP, Cheng W, Chen F, Lau CBS, Leung PC, Wong CK. Creating a Vaccine-like Supplement against Respiratory Infection Using Recombinant Bacillus subtilis Spores Expressing SARS-CoV-2 Spike Protein with Natural Products. Molecules 2023; 28:4996. [PMID: 37446658 DOI: 10.3390/molecules28134996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Vaccination is the most effective method of combating COVID-19 infection, but people with a psychological fear of needles and side effects are hesitant to receive the current vaccination, and alternative delivery methods may help. Bacillus subtilis, a harmless intestinal commensal, has recently earned a strong reputation as a vaccine production host and delivery vector, with advantages such as low cost, safety for human consumption, and straightforward oral administration. In this study, we have succeeded generating "S spores" by engineering B. subtilis with spore coat proteins resembling the spike (S) protein of the ancestral SARS-CoV-2 coronavirus. With the addition of two immunostimulating natural products as adjuvants, namely Astragalus membranaceus (Fisch.) Bge (AM) and Coriolus versicolor (CV), oral administration of S spores could elicit mild immune responses against COVID-19 infection without toxicity. Mucosal IgA against the S protein was enhanced by co-feeding with AM and CV in an S spores-inoculated mouse model. Faster and stronger IgG responses against the S protein were observed when the mice were fed with S spores prior to vaccination with the commercial COVID-19 vaccine CoronaVac. In vitro studies demonstrated that AM, CV, and B. subtilis spores could dose-dependently activate both macrophages and dendritic cells by secreting innate immunity-related IL-1β, IL-6, and TNF-α, and some other proinflammatory chemokines and cytokines. In conclusion, the combination of S spores with AM and CV may be helpful in developing a vaccine-like supplement against respiratory infection.
Collapse
Affiliation(s)
- Ben Chung-Lap Chan
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Peiting Li
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Miranda Sin-Man Tsang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- China-Australia International Research Centre for Chinese Medicine, School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC 3083, Australia
| | | | | | - Tao Zheng
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Sharon Sze-Man Hon
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Ching-Po Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Wen Cheng
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Fang Chen
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Ping-Chung Leung
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Chen K, Wu T, Wang D, Li R, Shen X, Zhao T, Ozato K, Li R. Transcriptomics and quantitative proteomics reveal changes after second stimulation of bone marrow-derived macrophages from lupus-prone MRL/lpr mice. Front Immunol 2022; 13:1004232. [PMID: 36341359 PMCID: PMC9627492 DOI: 10.3389/fimmu.2022.1004232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immune memory can cause the occurrence and exacerbation of autoimmune diseases, and it is as well as being strongly associated with the pathogenesis of systemic lupus erythematosus (SLE), however, the specific mechanism remains to be further studied. We learned that IFN-γ stimulation generated innate immune memory in bone marrow-derived macrophages (BMDMs) and activated memory interferon-stimulated genes (ISGs). This research used IFN-γ and lipopolysaccharide (LPS) to treat BMDMs with lupus-prone MRL/lpr mice and showed that particular memory ISGs were substantially elevated in prestimulated macrophages. In order to identify the differentially expressed genes (DEGs), researchers turned to RNA-seq. GO and KEGG analysis showed that up-regulated DEGs were enriched in defense and innate immune responses, and were related to the expression of pattern recognition receptors (PRRs)-related pathways in macrophages. TMT-based proteome analysis revealed differentially expressed proteins (DEPs) up-regulated in BMDMs were abundant in metabolic pathways such as glucose metabolism. Our study found that after the secondary stimulation of MRL/lpr mice, the expression of PRRs in innate immune cells was changed, and IFN-related pathways were activated to release a large number of ISGs to promote the secondary response. At the same time, related metabolic modes such as glycolysis were enhanced, and epigenetic changes may occur. Therefore, SLE is brought on, maintained, and worsened by a variety of factors that work together to produce innate immune memory.
Collapse
Affiliation(s)
- Keyue Chen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tiyun Wu
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Danyan Wang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Li
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangfeng Shen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Keiko Ozato
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Keiko Ozato, ; Rongqun Li,
| | - Rongqun Li
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Keiko Ozato, ; Rongqun Li,
| |
Collapse
|
3
|
Dechavanne C, Nouatin O, Adamou R, Edslev S, Hansen A, Meurisse F, Sadissou I, Gbaguidi E, Milet J, Cottrell G, Gineau L, Sabbagh A, Massougbodji A, Moutairou K, Donadi EA, Carosella ED, Moreau P, Remarque E, Theisen M, Rouas-Freiss N, Garcia A, Favier B, Courtin D. Placental Malaria is Associated with Higher LILRB2 Expression in Monocyte Subsets and Lower Anti-Malarial IgG Antibodies During Infancy. Front Immunol 2022; 13:909831. [PMID: 35911674 PMCID: PMC9326509 DOI: 10.3389/fimmu.2022.909831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background Placental malaria (PM) is associated with a higher susceptibility of infants to Plasmodium falciparum (Pf) malaria. A hypothesis of immune tolerance has been suggested but no clear explanation has been provided so far. Our goal was to investigate the involvement of inhibitory receptors LILRB1 and LILRB2, known to drive immune evasion upon ligation with pathogen and/or host ligands, in PM-induced immune tolerance. Method Infants of women with or without PM were enrolled in Allada, southern Benin, and followed-up for 24 months. Antibodies with specificity for five blood stage parasite antigens were quantified by ELISA, and the frequency of immune cell subsets was quantified by flow cytometry. LILRB1 or LILRB2 expression was assessed on cells collected at 18 and 24 months of age. Findings Infants born to women with PM had a higher risk of developing symptomatic malaria than those born to women without PM (IRR=1.53, p=0.040), and such infants displayed a lower frequency of non-classical monocytes (OR=0.74, p=0.01) that overexpressed LILRB2 (OR=1.36, p=0.002). Moreover, infants born to women with PM had lower levels of cytophilic IgG and higher levels of IL-10 during active infection. Interpretation Modulation of IgG and IL-10 levels could impair monocyte functions (opsonisation/phagocytosis) in infants born to women with PM, possibly contributing to their higher susceptibility to malaria. The long-lasting effect of PM on infants’ monocytes was notable, raising questions about the capacity of ligands such as Rifins or HLA-I molecules to bind to LILRB1 and LILRB2 and to modulate immune responses, and about the reprogramming of neonatal monocytes/macrophages.
Collapse
Affiliation(s)
- Celia Dechavanne
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Odilon Nouatin
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Rafiou Adamou
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Sofie Edslev
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anita Hansen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Florian Meurisse
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - Ibrahim Sadissou
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Erasme Gbaguidi
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Jacqueline Milet
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Gilles Cottrell
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Laure Gineau
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Audrey Sabbagh
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Achille Massougbodji
- Centre d’Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l’Enfance, Cotonou, Benin
| | - Kabirou Moutairou
- Laboratoire de Biologie et Physiologie Cellulaires, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, Cotonou, Benin
| | - Eduardo A. Donadi
- Laboratory of Clinical Immunology, Ribeirão Preto Medicine School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edgardo D. Carosella
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Philippe Moreau
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - Ed Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Nathalie Rouas-Freiss
- CEAA, DRF-Institut François Jacob, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis, Paris, France
- U976 HIPI Unit, IRSL, Université Paris, Paris, France
| | - André Garcia
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Benoit Favier
- Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Inserm, CEA, Fontenay-aux-Roses, France
| | - David Courtin
- UMR 261 MERIT, Université Paris Cité, Institut de Recherche pour le Développement (IRD), Paris, France
- *Correspondence: David Courtin,
| |
Collapse
|
4
|
Kotlyarov S. Involvement of the Innate Immune System in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022; 23:985. [PMID: 35055174 PMCID: PMC8778852 DOI: 10.3390/ijms23020985] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common, socially significant disease characterized by progressive airflow limitation due to chronic inflammation in the bronchi. Although the causes of COPD are considered to be known, the pathogenesis of the disease continues to be a relevant topic of study. Mechanisms of the innate immune system are involved in various links in the pathogenesis of COPD, leading to persistence of chronic inflammation in the bronchi, their bacterial colonization and disruption of lung structure and function. Bronchial epithelial cells, neutrophils, macrophages and other cells are involved in the development and progression of the disease, demonstrating multiple compromised immune mechanisms.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
5
|
Boonmee A, Benjaskulluecha S, Kueanjinda P, Wongprom B, Pattarakankul T, Palaga T. The chemotherapeutic drug carboplatin affects macrophage responses to LPS and LPS tolerance via epigenetic modifications. Sci Rep 2021; 11:21574. [PMID: 34732786 PMCID: PMC8566489 DOI: 10.1038/s41598-021-00955-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022] Open
Abstract
Following re-exposure to lipopolysaccharide (LPS), macrophages exhibit an immunosuppressive state known as LPS tolerance, which is characterized by repressed proinflammatory cytokine production. LPS-induced tolerance in macrophages is mediated in part by epigenetic changes. Carboplatin, an anticancer chemotherapeutic drug, exerts its effect by inhibiting DNA replication and transcription, as well as through epigenetic modifications. Through an unbiased screen, we found that carboplatin rescued TNF-α and IL-6 production in LPS-tolerant macrophages. Transcriptomic analysis and gene set enrichment analyses revealed that p53 was one of the most significantly upregulated hallmarks in both LPS-primed and LPS-tolerant macrophages in the presence of carboplatin, while E2F and G2/M were the most negatively regulated hallmarks. Heterochromatin protein 1 (HP1-α), which is associated with gene silencing, was significantly reduced in carboplatin-treated LPS-tolerant macrophages at the mRNA and protein levels. Dynamic changes in the mRNA level of genes encoding H3K9me3 methyltransferases, setdb2, kdm4d, and suv39h1 were induced in the presence of carboplatin in LPS-tolerant macrophages. Taken together, we provide evidence that carboplatin treatment interferes with proinflammatory cytokine production during the acute LPS response and LPS tolerance in macrophages, possibly via H3K9me3 modification.
Collapse
Affiliation(s)
- Atsadang Boonmee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Salisa Benjaskulluecha
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Inter-Disciplinary Graduate Program in Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Patipark Kueanjinda
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjawan Wongprom
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Thitiporn Pattarakankul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Sheerin D, Dold C, O'Connor D, Pollard AJ, Rollier CS. Distinct patterns of whole blood transcriptional responses are induced in mice following immunisation with adenoviral and poxviral vector vaccines encoding the same antigen. BMC Genomics 2021; 22:777. [PMID: 34717548 PMCID: PMC8556829 DOI: 10.1186/s12864-021-08061-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral vectors, including adenovirus (Ad) and modified vaccinia Ankara (MVA), have gained increasing attention as vaccine platforms in recent years due to their capacity to express antigens from a wide array of pathogens, their rapid induction of humoral and cellular protective immune responses, and their relatively low production costs. In particular, the chimpanzee Ad vector, ChAdOx1, has taken centre stage as a leading COVID-19 vaccine candidate. However, despite mounting data, both clinical and pre-clinical, demonstrating effective induction of adaptive immune responses, the innate immune signals that precede the protective responses that make these vectors attractive vaccine platforms remain poorly understood. RESULTS In this study, a mouse immunisation model was used to evaluate whole blood gene expression changes 24 h after either a single dose or heterologous prime-boost regimen of an Ad and/or MVA vaccine. We demonstrate through comparative analysis of Ad vectors encoding different antigens that a transgene product-specific gene signature can be discerned from the vector-induced transcriptional response. Expression of genes involved in TLR2 stimulation and γδ T cell and natural killer cell activation were induced after a single dose of Ad, while MVA led to greater expression of type I interferon genes. The order of prime-boost combinations was found to influence the magnitude of the gene expression changes, with MVA/Ad eliciting greater transcriptional perturbation than Ad/MVA. Contrasting the two regimens revealed significant enrichment of epigenetic regulation pathways and augmented expression of MHC class I and II molecules associated with MVA/Ad. CONCLUSION These data demonstrate that the order in which vaccines from heterologous prime-boost regimens are administered leads to distinct transcriptional responses and may shape the immune response induced by such combinations. The characterisation of early vaccine-induce responses strengthens our understanding of viral vector vaccine mechanisms of action ahead of their characterisation in human clinical trials and are a valuable resource to inform the pre-clinical design of appropriate vaccine constructs for emerging infectious diseases.
Collapse
Affiliation(s)
- Dylan Sheerin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK.
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research (WEHI), Melbourne, Victoria, 3052, Australia.
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| |
Collapse
|
7
|
Barbosa MMF, Kanno AI, Farias LP, Madej M, Sipos G, Sbrana S, Romani L, Boraschi D, Leite LCC, Italiani P. Primary and Memory Response of Human Monocytes to Vaccines: Role of Nanoparticulate Antigens in Inducing Innate Memory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:931. [PMID: 33917456 PMCID: PMC8067467 DOI: 10.3390/nano11040931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.
Collapse
Affiliation(s)
- Mayra M. Ferrari Barbosa
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Alex Issamu Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Leonardo Paiva Farias
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 40296-710, Brazil;
| | - Mariusz Madej
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
| | - Gergö Sipos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
| | - Silverio Sbrana
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, 54100 Massa, Italy;
| | - Luigina Romani
- Dipartimento di Medicina e Chirurgia, University of Perugia, 06132 Perugia, Italy;
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Paola Italiani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
8
|
Camilli G, Bohm M, Piffer AC, Lavenir R, Williams DL, Neven B, Grateau G, Georgin-Lavialle S, Quintin J. β-Glucan-induced reprogramming of human macrophages inhibits NLRP3 inflammasome activation in cryopyrinopathies. J Clin Invest 2021; 130:4561-4573. [PMID: 32716363 DOI: 10.1172/jci134778] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Exposure of mononuclear phagocytes to β-glucan, a naturally occurring polysaccharide, contributes to the induction of innate immune memory, which is associated with long-term epigenetic, metabolic, and functional reprogramming. Although previous studies have shown that innate immune memory induced by β-glucan confers protection against secondary infections, its impact on autoinflammatory diseases, associated with inflammasome activation and IL-1β secretion, remains poorly understood. In particular, whether β-glucan-induced long-term reprogramming affects inflammasome activation in human macrophages in the context of these diseases has not been explored. We found that NLRP3 inflammasome-mediated caspase-1 activation and subsequent IL-1β production were reduced in β-glucan-reprogrammed macrophages. β-Glucan acted upstream of the NLRP3 inflammasome by preventing potassium (K+) efflux, mitochondrial ROS (mtROS) generation, and, ultimately, apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization and speck formation. Importantly, β-glucan-induced memory in macrophages resulted in a remarkable attenuation of IL-1β secretion and caspase-1 activation in patients with an NLRP3-associated autoinflammatory disease, cryopyrin-associated periodic syndromes (CAPS). Our findings demonstrate that β-glucan-induced innate immune memory represses IL-1β-mediated inflammation and support its potential clinical use in NLRP3-driven diseases.
Collapse
Affiliation(s)
- Giorgio Camilli
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | - Mathieu Bohm
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | - Alícia Corbellini Piffer
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France.,Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rachel Lavenir
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| | - David L Williams
- Department of Surgery, Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Benedicte Neven
- Pediatric Hematology-Immunology and Rheumatology Department, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Gilles Grateau
- Service de Médecine Interne et Centre de Références des Maladies Auto-inflammatoires et des Amyloses Inflammatoires, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Sophie Georgin-Lavialle
- Service de Médecine Interne et Centre de Références des Maladies Auto-inflammatoires et des Amyloses Inflammatoires, Hôpital Tenon, Sorbonne Université, Paris, France
| | - Jessica Quintin
- Immunology of Fungal Infections, Department of Mycology, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Alemnew B, Hoff ST, Abebe T, Abebe M, Aseffa A, Howe R, Wassie L. Ex vivo mRNA expression of toll-like receptors during latent tuberculosis infection. BMC Immunol 2021; 22:9. [PMID: 33509080 PMCID: PMC7842038 DOI: 10.1186/s12865-021-00400-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Background Understanding immune mechanisms, particularly the role of innate immune markers during latent TB infection remains elusive. The main objective of this study was to evaluate mRNA gene expression patterns of toll-like receptors (TLRs) as correlates of immunity during latent TB infection and further infer their roles as potential diagnostic biomarkers. Methods Messenger RNA (mRNA) levels were analysed in a total of 64 samples collected from apparently healthy children and adolescents latently infected with tuberculosis (n = 32) or non-infected (n = 32). Relative expression in peripheral blood of selected genes encoding TLRs (TLR-1, TLR-2, TLR-4, TLR-6 and TLR-9) was determined with a quantitative real-time polymerase chain reaction (qRT-PCR) using specific primers and florescent labelled probes and a comparative threshold cycle method to define fold change. Data were analysed using Graph-Pad Prism 7.01 for Windows and a p-value less than 0.05 was considered statistically significant. Results An increased mean fold change in the relative expression of TLR-2 and TLR-6 mRNA was observed in LTBI groups relative to non-LTBI groups (p < 0.05), whereas a slight fold decrease was observed for TLR-1 gene. Conclusions An increased mRNA expression of TLR-2 and TLR-6 was observed in latently infected individuals relative to those non-infected, possibly indicating the roles these biomarkers play in sustenance of the steady state interaction between the dormant TB bacilli and host immunity. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00400-4.
Collapse
Affiliation(s)
- Birhan Alemnew
- College of Health Sciences, Department of Medical Laboratory Sciences, Woldia University, Woldia, Ethiopia.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Tamrat Abebe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, School of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Rawleigh Howe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Liya Wassie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia.
| |
Collapse
|
10
|
Swartzwelter BJ, Verde A, Rehak L, Madej M, Puntes VF, De Luca AC, Boraschi D, Italiani P. Interaction between Macrophages and Nanoparticles: In Vitro 3D Cultures for the Realistic Assessment of Inflammatory Activation and Modulation of Innate Memory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:207. [PMID: 33467414 PMCID: PMC7830034 DOI: 10.3390/nano11010207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
Understanding the modes of interaction between human monocytes/macrophages and engineered nanoparticles is the basis for assessing particle safety, in terms of activation of innate/inflammatory reactions, and their possible exploitation for medical applications. In vitro assessment of nanoparticle-macrophage interaction allows for examining the response of primary human cells, but the conventional 2D cultures do not reproduce the three-dimensional spacing of a tissue and the interaction of macrophages with the extracellular tissue matrix, conditions that shape macrophage recognition capacity and reactivity. Here, we have compared traditional 2D cultures with cultures on a 3D collagen matrix for evaluating the capacity gold nanoparticles to induce monocyte activation and subsequent innate memory in human blood monocytes in comparison to bacterial LPS. Results show that monocytes react to stimuli almost in the same way in 2D and 3D cultures in terms of production of TNFα and IL-6, but that notable differences are found when IL-8 and IL-1Ra are examined, in particular in the recall/memory response of primed cells to a second stimulation, with the 3D cultures showing cell activation and memory effects of nanoparticles better. In addition, the response variations in monocytes/macrophages from different donors point towards a personalized assessment of the nanoparticle effects on macrophage activation.
Collapse
Affiliation(s)
- Benjamin J. Swartzwelter
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Alessandro Verde
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Laura Rehak
- Athena Biomedical Innovations, 00100 Roma, Italy;
| | - Mariusz Madej
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Victor. F. Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona, Spain;
| | - Anna Chiara De Luca
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, 80131 Napoli, Italy; (B.J.S.); (A.V.); (M.M.); (A.C.D.L.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
11
|
Fulop T, Larbi A, Hirokawa K, Cohen AA, Witkowski JM. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin Immunopathol 2020; 42:521-536. [PMID: 32930852 PMCID: PMC7490574 DOI: 10.1007/s00281-020-00818-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
Alterations in the immune system with aging are considered to underlie many age-related diseases. However, many elderly individuals remain healthy until even a very advanced age. There is also an increase in numbers of centenarians and their apparent fitness. We should therefore change our unilaterally detrimental consideration of age-related immune changes. Recent data taking into consideration the immunobiography concept may allow for meaningful distinctions among various aging trajectories. This implies that the aging immune system has a homeodynamic characteristic balanced between adaptive and maladaptive aspects. The survival and health of an individual depends from the equilibrium of this balance. In this article, we highlight which parts of the aging of the immune system may be considered adaptive in contrast to those that may be maladaptive.
Collapse
Affiliation(s)
- T Fulop
- Department of Geriatrics, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec, J1H 5N4, Canada.
| | - A Larbi
- Biology of Aging Program and Immunomonitoring Platform, Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, 138648, Singapore
| | - K Hirokawa
- Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Department of Pathology, Tokyo Med. Dent. University, Tokyo, Japan
| | - A A Cohen
- Department of Family Medicine, Faculty of Medicine, Research Center on Aging, University of Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - J M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
Leite Pereira A, Jouhault Q, Marcos Lopez E, Cosma A, Lambotte O, Le Grand R, Lehmann MH, Tchitchek N. Modulation of Cell Surface Receptor Expression by Modified Vaccinia Virus Ankara in Leukocytes of Healthy and HIV-Infected Individuals. Front Immunol 2020; 11:2096. [PMID: 33013882 PMCID: PMC7506042 DOI: 10.3389/fimmu.2020.02096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/03/2020] [Indexed: 11/19/2022] Open
Abstract
Viral vectors are increasingly used as delivery means to induce a specific immunity in humans and animals. However, they also impact the immune system, and it depends on the given context whether this is beneficial or not. The attenuated vaccinia virus strain modified vaccinia virus Ankara (MVA) has been used as a viral vector in clinical studies intended to treat and prevent cancer and infectious diseases. The adjuvant property of MVA is thought to be due to its capability to stimulate innate immunity. Here, we confirmed that MVA induces interleukin-8 (IL-8), and this chemokine was upregulated significantly more in monocytes and HLA-DRbright dendritic cells (DCs) of HIV-infected patients on combined antiretroviral therapy (ART) than in cells of healthy persons. The effect of MVA on cell surface receptors is mostly unknown. Using mass cytometry profiling, we investigated the expression of 17 cell surface receptors in leukocytes after ex vivo infection of human whole-blood samples with MVA. We found that MVA downregulates most of the characteristic cell surface markers in particular types of leukocytes. In contrast, C-X-C motif chemokine receptor 4 (CXCR4) was significantly upregulated in each leukocyte type of healthy persons. Additionally, we detected a relative higher cell surface expression of the HIV-1 co-receptors C-C motif chemokine receptor 5 (CCR5) and CXCR4 in leukocytes of HIV-ART patients than in healthy persons. Importantly, we showed that MVA infection significantly downregulated CCR5 in CD4+ T cells, CD8+ T cells, B cells, and three different DC populations. CD86, a costimulatory molecule for T cells, was significantly upregulated in HLA-DRbright DCs after MVA infection of whole blood from HIV-ART patients. However, MVA was unable to downregulate cell surface expression of CD11b and CD32 in monocytes and neutrophils of HIV-ART patients to the same extent as in monocytes and neutrophils of healthy persons. In summary, MVA modulates the expression of many different kinds of cell surface receptors in leukocytes, which can vary in cells originating from persons previously infected with other pathogens.
Collapse
Affiliation(s)
- Adrien Leite Pereira
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Quentin Jouhault
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Ernesto Marcos Lopez
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Antonio Cosma
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France.,INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France.,APHP, Service de Médecine Interne et Immunologie Clinique, Hôpitaux Universitaires Paris Saclay, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| | - Michael H Lehmann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicolas Tchitchek
- INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases, IDMIT Infrastructure, CEA-Université Paris Sud 11, Fontenay-aux-Roses, France
| |
Collapse
|
13
|
Liberti A, Bertocci I, Pollet A, Musco L, Locascio A, Ristoratore F, Spagnuolo A, Sordino P. An indoor study of the combined effect of industrial pollution and turbulence events on the gut environment in a marine invertebrate. MARINE ENVIRONMENTAL RESEARCH 2020; 158:104950. [PMID: 32217300 DOI: 10.1016/j.marenvres.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/25/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Natural storms are able to determine reworking of seabed up to considerable depths and favour suspension of sediment-associated chemicals. Yet, a direct link between exposure to resuspended contaminants and the biological effects on marine organisms have to be fully established. We exposed adults of a suspension feeder, the ascidian Ciona robusta, to polluted sediment (e.g., containing mixtures of polycyclic aromatic hydrocarbons and heavy metals) from the industrial area of Bagnoli-Coroglio under two temporal patterns ('aggregated' vs. 'spaced') of turbulence events. Then, we assessed the impact of resuspended pollutants on the ascidian gut environment via four broad categories: oxidative stress, innate immunity, host-microbiota interactions, and epithelium. An early oxidative stress response was seen after a week of exposure to static sediment. Instead, water turbulence had no effect on the antioxidant defence. The first episode of turbulent suspension induced a minimal pro-inflammatory response in the 'spaced' pattern. Mucus overproduction and a complete occlusion of the crypt lumen were found following sediment reworking. This study suggests a protective response of the gut environment in marine invertebrates exposed to environmental extremes, leading to increased susceptibility to disease and to concerns on the combined effects of chronic environmental contamination and acute disturbance events possibly associated with climate change.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Iacopo Bertocci
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, University of Pisa, CoNISMa, Pisa, Italy
| | | | - Luigi Musco
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
14
|
Elicitation of integrated immunity in mice by a novel pneumococcal polysaccharide vaccine conjugated with HBV surface antigen. Sci Rep 2020; 10:6470. [PMID: 32286332 PMCID: PMC7156719 DOI: 10.1038/s41598-020-62185-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
The conjugation of polysaccharides with an effective carrier protein is critical for the development of effective bacterial polysaccharide vaccines. Therefore, the identification and optimization of carrier proteins to induce an effective immune response is necessary for developing a combined vaccine. In the current study, we utilized hepatitis B virus surface antigen (HBsAg) as a novel carrier protein combined with a capsular polysaccharide molecule to develop a new pneumococcal conjugated vaccine. The specific antibodies and T cell immune response against the capsular polysaccharide and HBsAg in the mice immunized with this conjugated vaccine were evaluated. In addition, the unique gene profiles of immune cells induced by this conjugated vaccine in the immunized mice were analyzed. Our results demonstrated that the vaccine consisting of pneumonia type 33 F capsular polysaccharide (Pn33Fps) conjugated with HBsAg can induce strong specific immune responses against both antigens in vivo in immunized mice. Furthermore, the conjugated vaccine induced higher expression of genes related to the activation of immunity and higher antibody titers against Pn33Fps and HBsAg in mice than those obtained via vaccination with a single antigen. Analyses of the dynamic expression changes in immunity-related genes in mice immunized with Pn33Fps_HBs, Pn33Fps, or HBsAg indicated the potent immunogenicity of the conjugated vaccine. In addition, a pathological evaluation of the organs from immunized mice further suggested that the conjugated vaccine is safe. Together, these results indicate that a conjugated vaccine consisting of Pn33Fps with HBsAg is a novel and effective vaccine.
Collapse
|
15
|
Angelidou A, Diray-Arce J, Conti MG, Smolen KK, van Haren SD, Dowling DJ, Husson RN, Levy O. BCG as a Case Study for Precision Vaccine Development: Lessons From Vaccine Heterogeneity, Trained Immunity, and Immune Ontogeny. Front Microbiol 2020; 11:332. [PMID: 32218774 PMCID: PMC7078104 DOI: 10.3389/fmicb.2020.00332] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Vaccines have been traditionally developed with the presumption that they exert identical immunogenicity regardless of target population and that they provide protection solely against their target pathogen. However, it is increasingly appreciated that vaccines can have off-target effects and that vaccine immunogenicity can vary substantially with demographic factors such as age and sex. Bacille Calmette-Guérin (BCG), the live attenuated Mycobacterium bovis vaccine against tuberculosis (TB), represents a key example of these concepts. BCG vaccines are manufactured under different conditions across the globe generating divergent formulations. Epidemiologic studies have linked early life immunization with certain BCG formulations to an unanticipated reduction (∼50%) in all-cause mortality, especially in low birthweight males, greatly exceeding that attributable to TB prevention. This mortality benefit has been related to prevention of sepsis and respiratory infections suggesting that BCG induces "heterologous" protection against unrelated pathogens. Proposed mechanisms for heterologous protection include vaccine-induced immunometabolic shifts, epigenetic reprogramming of innate cell populations, and modulation of hematopoietic stem cell progenitors resulting in altered responses to subsequent stimuli, a phenomenon termed "trained immunity." In addition to genetic differences, licensed BCG formulations differ markedly in content of viable mycobacteria key for innate immune activation, potentially contributing to differences in the ability of these diverse formulations to induce TB-specific and heterologous protection. BCG immunomodulatory properties have also sparked interest in its potential use to prevent or alleviate autoimmune and inflammatory diseases, including type 1 diabetes mellitus and multiple sclerosis. BCG can also serve as a model: nanoparticle vaccine formulations incorporating Toll-like receptor 8 agonists can mimic some of BCG's innate immune activation, suggesting that aspects of BCG's effects can be induced with non-replicating stimuli. Overall, BCG represents a paradigm for precision vaccinology, lessons from which will help inform next generation vaccines.
Collapse
Affiliation(s)
- Asimenia Angelidou
- Division of Newborn Medicine, Boston Children’s Hospital and Beth Israel Deaconess Medical Center, Boston, MA, United States
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Joann Diray-Arce
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Maria Giulia Conti
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Kinga K. Smolen
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Simon Daniël van Haren
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - David J. Dowling
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Robert N. Husson
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Ofer Levy
- Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Kang Y, Nii T, Isobe N, Yoshimura Y. Effects of the routine multiple vaccinations on the expression of innate immune molecules and induction of histone modification in ovarian cells of layer chicks. Poult Sci 2019; 98:5127-5136. [PMID: 31002109 DOI: 10.3382/ps/pez214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to determine whether vaccination affects the expression of Toll-like receptors (TLRs), cytokines, and avian β-defensins (AvBDs) in the chick ovary with or without lipopolysaccharide (LPS) stimulation. White Leghorn female chicks were administered vaccines for infectious bronchitis, Marek's disease, Newcastle disease, and infectious bursal disease during the first 14 D after hatching and ovarian tissues were collected on day 21. Control chicks received water or dilution buffer in place of vaccine. In Experiment 1, ovarian tissues were incubated with or without LPS, and the expression of innate immune molecules (TLRs, cytokines, and AvBDs) was examined by real-time PCR. In Experiment 2, the levels of histone modification in fresh ovarian tissues were examined by western blot analysis. The results of Experiment 1 showed that, in vaccinated chick ovaries, the expression of TLR1-1, 2-1, 2-2, and 21 was up-regulated, whereas that of TLR1-2, 4, and 7 was down-regulated under LPS stimulation. Among the examined 6 cytokines, only the expression of TNFSF15 was lower in the ovaries of vaccinated chicks than that in control with or without LPS stimulation. The expression of AvBD1, 2, 4, and 7 was lower in the ovaries of vaccinated chicks than in control without LPS stimulation, and that of AvBD1 and 2 was also lower even in ovaries incubated with LPS. In Experiment 2, the density of di-methyl histone H3 (Lys9) and acetyl histone H3 (Lys9) was significantly higher in the vaccine group than in the control, whereas di-methyl and tri-methyl histone H3 (Lys4) and acetyl histone H3 (Lys27) did not show differences between the groups. These results suggest that vaccination positively or negatively affects the expression of innate immune molecules in the chick ovary including TLRs, TNFSF15, and AvBDs, and it may be associated with epigenetic reprogramming by histone modifications in ovarian cells. Thus, in the future, it may be possible to develop or improve vaccination programs for the enhancement of the innate immune system in the hen ovary.
Collapse
Affiliation(s)
- Y Kang
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - T Nii
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - N Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Y Yoshimura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
17
|
Kang Y, Nii T, Isobe N, Yoshimura Y. Effects of Salmonella enteritidis Vaccination on the Expression of Innate Immune Molecules and Histone Modifications in the Follicular Theca of Laying Hens. J Poult Sci 2019; 56:298-307. [PMID: 32055228 PMCID: PMC7005392 DOI: 10.2141/jpsa.0190034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to examine whether Salmonella enteritidis (SE) vaccination affects innate immune function and histone modifications responsible for epigenetic reprogramming in the follicular theca of laying hens. White Leghorn laying hens were administered the SE vaccine or phosphate buffered saline (PBS; control) one week before sample collection. The largest follicles (F1) were collected for total RNA and histone protein extraction. Gene expression levels of immune molecules (Toll-like receptors [TLRs], cytokines, and avian β-defensins [AvBDs]), and histone modifications in the follicular thecal tissues, were examined using real-time PCR and western blot, respectively. The results showed that the expression levels of TLR1-1, 2-1, 4, and 15 were upregulated by SE vaccination. Although vaccination caused no significant change in cytokine expression, AvBDl, 2, 4, and 7 expression levels were significantly upregulated in the vaccinated group. In addition, the relative density of histone H3-lysine9 dimethylation (H3K9me2) was increased by the vaccination. These results suggest that SE vaccination enhances innate immune functions in the ovary of laying hens, including upregulating TLR and AvBD expression, and is also associated with an increase in histone H3K9me2 in thecal cells.
Collapse
Affiliation(s)
- Ye Kang
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takahiro Nii
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
- The Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
- The Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yukinori Yoshimura
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
- The Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
18
|
Santecchia I, Vernel-Pauillac F, Rasid O, Quintin J, Gomes-Solecki M, Boneca IG, Werts C. Innate immune memory through TLR2 and NOD2 contributes to the control of Leptospira interrogans infection. PLoS Pathog 2019; 15:e1007811. [PMID: 31107928 PMCID: PMC6544334 DOI: 10.1371/journal.ppat.1007811] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/31/2019] [Accepted: 05/02/2019] [Indexed: 12/25/2022] Open
Abstract
Leptospira interrogans are pathogenic spirochetes responsible for leptospirosis, a worldwide reemerging zoonosis. Many Leptospira serovars have been described, and prophylaxis using inactivated bacteria provides only short-term serovar-specific protection. Therefore, alternative approaches to limit severe leptospirosis in humans and morbidity in cattle would be welcome. Innate immune cells, including macrophages, play a key role in fighting infection and pathogen clearance. Recently, it has been shown that functional reprograming of innate immune cells through the activation of pattern recognition receptors leads to enhanced nonspecific antimicrobial responses upon a subsequent microbial encounter. This mechanism is known as trained immunity or innate immune memory. We have previously shown that oral treatment with Lactobacillus plantarum confers a beneficial effect against acute leptospirosis. Here, using a macrophage depletion protocol and live imaging in mice, we established the role of peritoneal macrophages in limiting the initial dissemination of leptospires. We further showed that intraperitoneal priming of mice with CL429, a TLR2 and NOD2 agonist known to mimic the modulatory effect of Lactobacillus, alleviated acute leptospiral infection. The CL429 treatment was characterized as a training effect since i.) it was linked to peritoneal macrophages that produced ex vivo more pro-inflammatory cytokines and chemokines against 3 different pathogenic serovars of Leptospira, independently of the presence of B and T cells, ii.) it had systemic effects on splenic cells and bone marrow derived macrophages, and iii.) it was sustained for 3 months. Importantly, trained macrophages produced more nitric oxide, a potent antimicrobial compound, which has not been previously linked to trained immunity. Accordingly, trained macrophages better restrict leptospiral survival. Finally, we could use CL429 to train ex vivo human monocytes that produced more cytokines upon leptospiral stimulation. In conclusion, host-directed treatment using a TLR2/NOD2 agonist could be envisioned as a novel prophylactic strategy against acute leptospirosis.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Groupe Avenir, INSERM, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frédérique Vernel-Pauillac
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Groupe Avenir, INSERM, Paris, France
| | - Orhan Rasid
- Chromatine et Infection G5, Institut Pasteur, Paris, France
| | - Jessica Quintin
- Immunologie des infections fongiques G5, Institut Pasteur, Paris, France
| | - Maria Gomes-Solecki
- University of Tennessee Health Science Center, Department of Microbiology, Immunology and Biochemistry, Memphis, Tennessee, United States of America
| | - Ivo G. Boneca
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Groupe Avenir, INSERM, Paris, France
| | - Catherine Werts
- Unité Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Groupe Avenir, INSERM, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Li S, Feng X, Wang J, He L, Wang C, Ding J, Chen X. Polymer nanoparticles as adjuvants in cancer immunotherapy. NANO RESEARCH 2018; 11:5769-5786. [DOI: 10.1007/s12274-018-2124-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 10/14/2024]
|
20
|
A Corylus avellana L. extract enhances human macrophage bactericidal response against Staphylococcus aureus by increasing the expression of anti-inflammatory and iron metabolism genes. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Boraschi D, Italiani P. Innate Immune Memory: Time for Adopting a Correct Terminology. Front Immunol 2018; 9:799. [PMID: 29725331 PMCID: PMC5917086 DOI: 10.3389/fimmu.2018.00799] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- Diana Boraschi
- Laboratory of Innate Immunity and Inflammation, Institute of Protein Biochemistry, National Research Council, Napoli, Italy
| | - Paola Italiani
- Laboratory of Innate Immunity and Inflammation, Institute of Protein Biochemistry, National Research Council, Napoli, Italy
| |
Collapse
|
22
|
Infectious Agents as Stimuli of Trained Innate Immunity. Int J Mol Sci 2018; 19:ijms19020456. [PMID: 29401667 PMCID: PMC5855678 DOI: 10.3390/ijms19020456] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.
Collapse
|
23
|
Kumar S, Kesharwani SS, Kuppast B, Bakkari MA, Tummala H. Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses. J Control Release 2017; 261:263-274. [PMID: 28669593 PMCID: PMC6487847 DOI: 10.1016/j.jconrel.2017.06.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/26/2017] [Indexed: 01/24/2023]
Abstract
New and improved vaccines are needed against challenging diseases such as malaria, tuberculosis, Ebola, influenza, AIDS, and cancer. The majority of existing vaccine adjuvants lack the ability to significantly stimulate the cellular immune response, which is required to prevent the aforementioned diseases. This study designed a novel particulate based pathogen-mimicking vaccine delivery system (PMVDS) to target antigen-presenting-cells (APCs) such as dendritic cells. The uniqueness of PMVDS is that the polymer used to prepare the delivery system, Inulin Acetate (InAc), activates the innate immune system. InAc was synthesized from the plant polysaccharide, inulin. PMVDS provided improved and persistent antigen delivery to APCs as an efficient vaccine delivery system, and simultaneously, activated Toll-Like Receptor-4 (TLR-4) on APCs to release chemokine's/cytokines as an immune-adjuvant. Through this dual mechanism, PMVDS robustly stimulated both the humoral (>32 times of IgG1 levels vs alum) and the cell-mediated immune responses against the encapsulated antigen (ovalbumin) in mice. More importantly, PMVDS stimulated both cytotoxic T cells and natural killer cells of cell-mediated immunity to provide tumor (B16-ova-Melanoma) protection in around 40% of vaccinated mice and significantly delayed tumor progression in rest of the mice. PMVDS is a unique bio-active vaccine delivery technology with broader applications for vaccines against cancer and several intracellular pathogens, where both humoral and cellular immune responses are desired.
Collapse
Affiliation(s)
- Sunny Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, SAV # 255, Box 2202C, Brookings, SD 57007, USA
| | - Siddharth S Kesharwani
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, SAV # 255, Box 2202C, Brookings, SD 57007, USA
| | - Bhimanna Kuppast
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, SAV # 255, Box 2202C, Brookings, SD 57007, USA; Chicago College of Pharmacy, 555, 31st Street, Downers Grove, IL 60515, USA
| | - Mohammed Ali Bakkari
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, SAV # 255, Box 2202C, Brookings, SD 57007, USA
| | - Hemachand Tummala
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, SAV # 255, Box 2202C, Brookings, SD 57007, USA.
| |
Collapse
|
24
|
Franceschi C, Salvioli S, Garagnani P, de Eguileor M, Monti D, Capri M. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Front Immunol 2017; 8:982. [PMID: 28861086 PMCID: PMC5559470 DOI: 10.3389/fimmu.2017.00982] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
Owing to its memory and plasticity, the immune system (IS) is capable of recording all the immunological experiences and stimuli it was exposed to. The combination of type, dose, intensity, and temporal sequence of antigenic stimuli that each individual is exposed to has been named “immunobiography.” This immunological history induces a lifelong continuous adaptation of the IS, which is responsible for the capability to mount strong, weak or no response to specific antigens, thus determining the large heterogeneity of immunological responses. In the last years, it is becoming clear that memory is not solely a feature of adaptive immunity, as it has been observed that also innate immune cells are provided with a sort of memory, dubbed “trained immunity.” In this review, we discuss the main characteristics of trained immunity as a possible contributor to inflammaging within the perspective of immunobiography, with particular attention to the phenotypic changes of the cell populations known to be involved in trained immunity. In conclusion, immunobiography emerges as a pervasive and comprehensive concept that could help in understanding and interpret the individual heterogeneity of immune responses (to infections and vaccinations) that becomes particularly evident at old age and could affect immunosenescence and inflammaging.
Collapse
Affiliation(s)
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| | - Magda de Eguileor
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Madej MP, Töpfer E, Boraschi D, Italiani P. Different Regulation of Interleukin-1 Production and Activity in Monocytes and Macrophages: Innate Memory as an Endogenous Mechanism of IL-1 Inhibition. Front Pharmacol 2017. [PMID: 28642703 PMCID: PMC5462974 DOI: 10.3389/fphar.2017.00335] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Production and activity of interleukin (IL)-1β are kept under strict control in our body, because of its powerful inflammation-promoting capacity. Control of IL-1β production and activity allows IL-1 to exert its defensive activities without causing extensive tissue damage. Monocytes are the major producers of IL-1β during inflammation, but they are also able to produce significant amounts of IL-1 inhibitors such as IL-1Ra and the soluble form of the decoy receptor IL-1R2, in an auto-regulatory feedback loop. Here, we investigated how innate immune memory could modulate production and activity of IL-1β by human primary monocytes and monocyte-derived tissue-like/deactivated macrophages in vitro. Cells were exposed to Gram-negative (Escherichia coli) and Gram-positive (Lactobacillus acidophilus) bacteria for 24 h, then allowed to rest, and then re-challenged with the same stimuli. The presence of biologically active IL-1β in cell supernatants was calculated as the ratio between free IL-1β (i.e., the cytokine that is not bound/inhibited by sIL-1R2) and its receptor antagonist IL-1Ra. As expected, we observed that the responsiveness of tissue-like/deactivated macrophages to bacterial stimuli was lower than that of monocytes. After resting and re-stimulation, a memory effect was evident for the production of inflammatory cytokines, whereas production of alarm signals (chemokines) was minimally affected. We observed a high variability in the innate memory response among individual donors. This is expected since innate memory largely depends on the previous history of exposure or infections, which is different in different subjects. Overall, innate memory appeared to limit the amount of active IL-1β produced by macrophages in response to a bacterial challenge, while enhancing the responsiveness of monocytes. The functional re-programming of mononuclear phagocytes through modulation of innate memory may provide innovative approaches in the management of inflammatory diseases, as well as in the design of new immunization strategies. In this respect, the interindividual variability in innate memory suggests the need of a personalized assessment.
Collapse
Affiliation(s)
- Mariusz P Madej
- Institute of Protein Biochemistry, National Research CouncilNaples, Italy
| | - Elfi Töpfer
- Institute of Protein Biochemistry, National Research CouncilNaples, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research CouncilNaples, Italy
| | - Paola Italiani
- Institute of Protein Biochemistry, National Research CouncilNaples, Italy
| |
Collapse
|
26
|
Sui Z, Shi Y, Gao Z, Yang D, Wang Z. Expression of programmed cell death1 in T follicular helper cells is regulated by prostaglandin E2 secreted by HBV-infected HepG2.2.1.5 cells. Mol Med Rep 2017; 15:4305-4311. [PMID: 28440484 DOI: 10.3892/mmr.2017.6503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/14/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the distribution of T follicular helper (Tfh)-cell subsets in patients with hepatitis B virus (HBV) and determine the underlying mechanism of HBV regulation of Tfh cells. The frequency of peripheral blood Tfh subsets was analyzed using flow cytometry. The expression level of programmed cell death‑1 (PD‑1) and prostaglandin E2 (PGE2) was quantified using reverse transcription‑quantitative polymerase chain reaction and western blotting. The PGE2 level in culture supernatant was detected using enzyme‑linked immunosorbent assay. A Transwell chamber was used to co‑culture Tfh cells with HepG2 and HepG2.2.1.5. The percentage of inducible T‑cell costimulator (ICOS)+ and total Tfh cells was high at the immune activation (IA) group; however, it was reduced in the immune tolerance (IT), responders with HBsAg seroconversion (RP) and healthy control (HC) groups. The percentage of PD‑1+ Tfh cells was significantly higher in IA and IT compared with RP and HC. The ratio of PD‑1+/total Tfh cells was positively correlated with the load of HBV DNA; therefore, this ratio may act as an indicator for HBV replication. The expression level of PD‑1 in Tfh cells was higher in the HepG2.2.1.5 co‑cultured group compared with the HepG2 group, this may be due to the high PGE2 expression level in HBV‑infected HepG2.2.1.5 cells. The findings of the present study revealed an imbalanced distribution of PD‑1+ Tfh cells in patients with HBV at different immune phases. Additionally, HBV may upregulate the expression of PD‑1 in Tfh cells by promoting HepG2.2.1.5 to secret PGE2. Identifying the effect of HBV on Tfh‑cell subsets is crucial for improving immuno-based therapy for HBV.
Collapse
Affiliation(s)
- Zhefeng Sui
- Department of Nursing, Hulunbeier Vocational Technical College, Hulunbuir, Inner Mongolia 021000, P.R. China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Zhiling Gao
- Department of Pharmacy, Baicheng Medical College, Baicheng, Jilin 137000, P.R. China
| | - Deguang Yang
- Department of Cardiology, The Third Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhihao Wang
- Department of Gerontology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
27
|
García-Valtanen P, Martínez-López A, López-Muñoz A, Bello-Perez M, Medina-Gali RM, Ortega-Villaizán MDM, Varela M, Figueras A, Mulero V, Novoa B, Estepa A, Coll J. Zebra Fish Lacking Adaptive Immunity Acquire an Antiviral Alert State Characterized by Upregulated Gene Expression of Apoptosis, Multigene Families, and Interferon-Related Genes. Front Immunol 2017; 8:121. [PMID: 28243233 PMCID: PMC5303895 DOI: 10.3389/fimmu.2017.00121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
To investigate fish innate immunity, we have conducted organ and cell immune-related transcriptomic as well as immunohistologic analysis in mutant zebra fish (Danio rerio) lacking adaptive immunity (rag1−/−) at different developmental stages (egg, larvae, and adult), before and after infection with spring viremia carp virus (SVCV). The results revealed that, compared to immunocompetent zebra fish (rag1+/+), rag1−/− acquired increased resistance to SVCV with age, correlating with elevated transcript levels of immune genes in skin/fins and lymphoid organs (head kidney and spleen). Gene sets corresponding to apoptotic functions, immune-related multigene families, and interferon-related genes were constitutively upregulated in uninfected adult rag1−/− zebra fish. Overexpression of activated CASPASE-3 in different tissues before and after infection with SVCV further confirmed increased apoptotic function in rag1−/− zebra fish. Concurrently, staining of different tissue samples with a pan-leukocyte antibody marker showed abundant leukocyte infiltrations in SVCV-infected rag1−/− fish, coinciding with increased transcript expression of genes related to NK-cells and macrophages, suggesting that these genes played a key role in the enhanced immune response of rag1−/− zebra fish to SVCV lethal infection. Overall, we present evidence that indicates that rag1−/− zebra fish acquire an antiviral alert state while they reach adulthood in the absence of adaptive immunity. This antiviral state was characterized by (i) a more rapid response to viral infection, which resulted in increased survival, (ii) the involvement of NK-cell- and macrophage-mediated transcript responses rather than B- and/or T-cell dependent cells, and (iii) enhanced apoptosis, described here for the first time, as well as the similar modulation of multigene family/interferon-related genes previously associated to fish that survived lethal viral infections. From this and other studies, it might be concluded that some of the characteristics of mammalian trained immunity are present in lower vertebrates.
Collapse
Affiliation(s)
- Pablo García-Valtanen
- Departamento de Bioquímica, Universidad Miguel Hernández de Elche (UMH) , Alicante , Spain
| | - Alicia Martínez-López
- Departamento de Bioquímica, Universidad Miguel Hernández de Elche (UMH) , Alicante , Spain
| | - Azucena López-Muñoz
- Facultad de Biología, Departamento de Biología Celular e Histología, Universidad de Murcia, IMIB-Arrixaca , Murcia , Spain
| | - Melissa Bello-Perez
- Departamento de Bioquímica, Universidad Miguel Hernández de Elche (UMH) , Alicante , Spain
| | - Regla M Medina-Gali
- Departamento de Bioquímica, Universidad Miguel Hernández de Elche (UMH) , Alicante , Spain
| | | | - Monica Varela
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC) , Vigo , Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC) , Vigo , Spain
| | - Víctoriano Mulero
- Facultad de Biología, Departamento de Biología Celular e Histología, Universidad de Murcia, IMIB-Arrixaca , Murcia , Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC) , Vigo , Spain
| | - Amparo Estepa
- Departamento de Bioquímica, Universidad Miguel Hernández de Elche (UMH) , Alicante , Spain
| | - Julio Coll
- Departamento de Biotecnología, Instituto Nacional Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
28
|
Wałajtys-Rode E, Dzik JM. Monocyte/Macrophage: NK Cell Cooperation-Old Tools for New Functions. Results Probl Cell Differ 2017; 62:73-145. [PMID: 28455707 DOI: 10.1007/978-3-319-54090-0_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Monocyte/macrophage and natural killer (NK) cells are partners from a phylogenetic standpoint of innate immune system development and its evolutionary progressive interaction with adaptive immunity. The equally conservative ways of development and differentiation of both invertebrate hemocytes and vertebrate macrophages are reviewed. Evolutionary conserved molecules occurring in macrophage receptors and effectors have been inherited by vertebrates after their common ancestor with invertebrates. Cytolytic functions of mammalian NK cells, which are rooted in immune cells of invertebrates, although certain NK cell receptors (NKRs) are mammalian new events, are characterized. Broad heterogeneity of macrophage and NK cell phenotypes that depends on surrounding microenvironment conditions and expression profiles of specific receptors and activation mechanisms of both cell types are discussed. The particular tissue specificity of macrophages and NK cells, as well as their plasticity and mechanisms of their polarization to different functional subtypes have been underlined. The chapter summarized studies revealing the specific molecular mechanisms and regulation of NK cells and macrophages that enable their highly specific cross-cooperation. Attention is given to the evolving role of human monocyte/macrophage and NK cell interaction in pathogenesis of hypersensitivity reaction-based disorders, including autoimmunity, as well as in cancer surveillance and progression.
Collapse
Affiliation(s)
- Elżbieta Wałajtys-Rode
- Faculty of Chemistry, Department of Drug Technology and Biotechnology, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland.
| | - Jolanta M Dzik
- Faculty of Agriculture and Biology, Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
29
|
Wong TM, Petrovsky N, Bissel SJ, Wiley CA, Ross TM. Delta inulin-derived adjuvants that elicit Th1 phenotype following vaccination reduces respiratory syncytial virus lung titers without a reduction in lung immunopathology. Hum Vaccin Immunother 2016; 12:2096-2105. [PMID: 27215855 PMCID: PMC4994749 DOI: 10.1080/21645515.2016.1162931] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 10/21/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of lower respiratory tract infections resulting in bronchiolitis and even mortality in the elderly and young children/infants. Despite the impact of this virus on human health, no licensed vaccine exists. Unlike many other viral infections, RSV infection or vaccination does not induce durable protective antibodies in humans. In order to elicit high titer, neutralizing antibodies against RSV, we investigated the use of the adjuvant Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles, to enhance antibody titers following vaccination. BALB/c mice were vaccinated intramuscularly with live RSV as a vaccine antigen in combination with one of two formulations of Advax™. Advax-1 was comprised of the standard delta inulin adjuvant and Advax-2 was formulated delta inulin plus CpG oligodendronucleotides (ODNs). An additional group of mice were either mock vaccinated, immunized with vaccine only, or administered vaccine plus Imject Alum. Following 3 vaccinations, mice had neutralizing antibody titers that correlated with reduction in viral titers in the lungs. Advax-1 significantly enhanced serum RSV-specific IgG1 levels at week 6 indicative of a Th2 response, similar to titers in mice administered vaccine plus Imject Alum. In contrast, mice vaccinated with vaccine plus Advax-2 had predominately IgG2a titers indicative of a Th1 response that was maintained during the entire study. Interestingly, regardless of which AdvaxTM adjuvant was used, the neutralizing titers were similar between groups, but the viral lung titers were significantly lower (∼10E+3pfu/g) in mice administered vaccine with either AdvaxTM adjuvant compared to mice administered adjuvants only. The lung pathology in vaccinated mice with AdvaxTM was similar to Imject Alum. Overall, RSV vaccine formulated with AdvaxTM had high neutralizing antibody titers with low lung viral titers, but exacerbated lung pathology compared to unvaccinated mice.
Collapse
Affiliation(s)
- Terianne M. Wong
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA USA
| | | | | | - Clayton A. Wiley
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, Department of Infectious Diseases, University of Georgia, Athens, GA USA
| |
Collapse
|