1
|
Hao MY, Li HJ, Han HS, Chu T, Wang YW, Si WR, Jiang QY, Wu DD. Recent advances in the role of gasotransmitters in necroptosis. Apoptosis 2025; 30:616-635. [PMID: 39833633 DOI: 10.1007/s10495-024-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis. This paper reviews the evidence that these gasotransmitters are involved in the regulation of necroptosis by influencing the production of reactive oxygen species, regulating the modification of S subunits of RIPK1 and RIPK3, regulating inflammatory mediators, and signal transduction. In addition, this review explores the potential therapeutic applications of these gasotransmitters in pathological conditions such as cardiovascular disease and ischemia-reperfusion injury. Although some studies have revealed the important role of gasotransmitters in necroptosis, the specific mechanism of action is still not fully understood. Future research is needed to further elucidate the molecular mechanisms of gasotransmitters in precisely regulating necroptosis, which will help develop new therapeutic strategies to prevent and treat related diseases.
Collapse
Affiliation(s)
- Meng-Yuan Hao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hong-Jie Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang-Shen Han
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wei-Rong Si
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
2
|
Li S, Li Q, Xiang H, Wang C, Zhu Q, Ruan D, Zhu YZ, Mao Y. H 2S Donor SPRC Ameliorates Cardiac Aging by Suppression of JMJD3, a Histone Demethylase. Antioxid Redox Signal 2025; 42:301-320. [PMID: 39212692 DOI: 10.1089/ars.2024.0605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Aims: S-propargyl-cysteine (SPRC) is an endogenous hydrogen sulfide (H2S) donor obtained by modifying the structure of S-allyl cysteine in garlic. This study aims to investigate the effect of SPRC on mitigating cardiac aging and the involvement of jumonji domain-containing protein 3 (JMJD3), a histone demethylase, which represents the primary risk factor in major aging related diseases, in this process, elucidating the preliminary mechanism through which SPRC regulation of JMJD3 occurs. Results: In vitro, SPRC mitigated the elevated levels of reactive oxygen species, senescence-associated β-galactosidase, p53, and p21, reversing the decline in mitochondrial membrane potential, which represented a reduction in cellular senescence. In vivo, SPRC improved Dox-induced cardiac pathological structure and function. Overexpression of JMJD3 accelerated cardiomyocytes and cardiac senescence, whereas its knockdown in vitro reduced the senescence phenotype. The potential binding site of the upstream transcription factor of JMJD3, sheared X box binding protein 1 (XBP1s), was determined using online software. SPRC promoted the expression of cystathionine γ-lyase (CSE), which subsequently inhibited the IRE1α/XBP1s signaling pathway and decreased JMJD3 expression. Innovations: This study is the first to establish JMJD3 as a crucial regulator of cardiac aging. SPRC can alleviate cardiac aging by upregulating CSE and inhibiting endoplasmic reticulum stress pathways, which in turn suppress JMJD3 expression. Conclusions: JMJD3 plays an essential role in cardiac aging regulation, whereas SPRC can suppress the expression of JMJD3 by upregulating CSE, thus delaying cardiac aging, which suggests that SPRC may serve as an aging protective agent, and pharmacological targeting of JMJD3 may also be a promising therapeutic approach in age-related heart diseases. Antioxid. Redox Signal. 42, 301-320.
Collapse
Affiliation(s)
- Sha Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Qixiu Li
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Hong Xiang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Chenye Wang
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Qi Zhu
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Danping Ruan
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| | - Yi Zhun Zhu
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
- School of Pharmacy and State Key Laboratory for the Quality Research of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yicheng Mao
- Department of Pharmacology, School of Pharmacy, Minhang Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Wang Q, Liu X, Yuan H, Zhang F, Wu J, Yang D, Qian J, Huang YY, Chai G, Luo HB, Guo L. Inhalable Carbonyl Sulfide Donor-Hybridized Selective Phosphodiesterase 10A Inhibitor for Treating Idiopathic Pulmonary Fibrosis by Inhibiting Tumor Growth Factor-β Signaling and Activating the cAMP/Protein Kinase A/cAMP Response Element-Binding Protein (CREB)/p53 Axis. ACS Pharmacol Transl Sci 2025; 8:256-269. [PMID: 39816787 PMCID: PMC11729434 DOI: 10.1021/acsptsci.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear. Herein, we have exploited a novel carbonyl sulfide (COS)/hydrogen sulfide (H2S)-donor hybrid PDE10A inhibitor called COS-2080 with a well-defined mechanism of H2S-releasing action. It exhibited highly potent inhibitory activity against PDE10A and excellent PDE subfamily selectivity. Moreover, COS-2080 demonstrated significant antifibrotic effects by inhibiting cell proliferation and mitigating fibroblast-to-myofibroblast transition (FMT). A dry powder inhalation formulation called COS-2080-DPI has been developed using the ultrasonic spray freeze drying (USFD) technique, demonstrating significant antifibrotic efficacy in mice with bleomycin-induced PF at a dosage approximately 600 times lower than pirfenidone. This remarkable antifibrotic efficacy of COS-2080 on TGF-β1-induced FMT could be primarily attributed to its inhibition of the Smad2/Smad3 phosphorylation. Moreover, COS-2080 effectively attenuated fibrosis in MRC-5 cells by activating the cAMP/protein kinase A (PKA)/CREB pathway and potentially increasing levels of p53 protein. Our findings suggest that effective inhibition of PDE10A potentially confers a protective effect on FMT in PF by impeding TGF-β signaling and activating the cAMP/PKA/CREB/p53 axis.
Collapse
Affiliation(s)
- Quan Wang
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Xinyue Liu
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Han Yuan
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Fengcai Zhang
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Jiafei Wu
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Dongjing Yang
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Jiang Qian
- Laboratory
Animal Center of Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yi-You Huang
- Key
Laboratory of Tropical Biological Resources of Ministry of Education
and Hainan Engineering Research Center for Drug Screening and Evaluation,
School of Pharmaceutical Sciences, Hainan
University, Haikou 570228, P. R. China
| | - Guihong Chai
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- Key
Laboratory of Tropical Biological Resources of Ministry of Education
and Hainan Engineering Research Center for Drug Screening and Evaluation,
School of Pharmaceutical Sciences, Hainan
University, Haikou 570228, P. R. China
| | - Lei Guo
- School
of Pharmaceutical Sciences, Sun Yat-Sen
University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Wang H, Jia M, Chang Y, Ling X, Qi W, Chen H, Chen F, Bai H, Jiang Y, Zhou C. Hydrogen sulfide donor NaHS inhibits formaldehyde-induced epithelial-mesenchymal transition in human lung epithelial cells via activating TGF-β1/Smad2/3 and MAPKs signaling pathways. Curr Res Toxicol 2024; 7:100199. [PMID: 39524036 PMCID: PMC11550156 DOI: 10.1016/j.crtox.2024.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Formaldehyde (FA) long term exposure leads to abnormal pulmonary function and small airway obstruction of the patients. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in a wide range of cellular functions. It is unknown the involvement of H2S in FA-induced lung injury. The purpose of this study is to investigate the therapeutic potential and mechanism of H2S on FA-induced epithelial-mesenchymal transition (EMT) of human lung epithelial cells. The cell viability of Beas2B and A549 cells after FA treatment were assessed using MTT assay. The endogenous H2S was visualized by fluorescence microscopy using of the 7-azido-4-methylcoumarin (AzMC). Cell morphology was observed under phase contrast microscope. The mRNAs and proteins level were evaluated by reverse transcription-polymerase chain reaction and western blotting assays. FA treatment downregulated the endogenous H2S levels and the mRNAs and proteins level of H2S synthesizing enzymes, such as cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) in Beas2B and A549 cells. FA treatment changed the cell morphology of Beas2B cells from cuboid to a spindle-shape, while declined the protein level of E-cadherin and increased the protein level of Vimentin. Moreover, FA treatment increased the proteins level of transforming growth factor-β1 (TGF-β1), phosphorylated-Smad2 (p-Smad2), phosphorylated-Smad3 (p-Smad3), phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-c-Jun N-terminal kinase (p-JNK), and phosphorylated-P38 (p-P38). Furthermore, the inhibitors of TGF-β receptor type 1 (TGFβRI) and mitogen-activated protein kinases (MAPKs) signaling pathways reversed FA-induced decrease in E-cadherin expression and increase in Vimentin expression in Beas2B cells. Sodium hydrogen sulfide (NaHS) increased the level of H2S, while reversed FA-induced the low expression of E-cadherin and the high expression of Vimentin, TGF-β1, p-Smad2, p-Smad3, p-ERK, p-JNK, and p-P38. These findings indicates FA treatment downregulating the endogenous H2S in human lung epithelial cells. NaHS may inhibit FA-induced EMT in human lung epithelial cells via modulating TGF-β1/Smad2/3 and MAPKs signaling pathways. Therefore, we demonstrated that supplementation of exogenous H2S may inhibit FA-induced lung injury.
Collapse
Affiliation(s)
| | | | - Yuxin Chang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xingwei Ling
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Wenyan Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Hongtao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Feipeng Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Haiyang Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Yuhan Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Chengfan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| |
Collapse
|
5
|
Song N, Yu JE, Ji E, Choi KH, Lee S. Hydrogen sulfide inhibits gene expression associated with aortic valve degeneration by inducing NRF2-related pro-autophagy effect in human aortic valve interstitial cells. Mol Cell Biochem 2024; 479:2653-2662. [PMID: 37861880 DOI: 10.1007/s11010-023-04881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Aortic valve stenosis (AS) is the most common valvular heart disease but there are currently no effective medical treatments that can delay disease progression due to a lack of knowledge of the precise pathophysiology. The expression of sulfide: quinone oxidoreductase (SQOR) and nuclear factor erythroid 2-related factor 2 (NRF2) was decreased in the aortic valve of AS patients. However, the role of SQOR and NRF2 in the pathophysiology of AS has not been found. We investigated the effects of hydrogen sulfide (H2S)-releasing compounds on diseased aortic valve interstitial cells (AVICs) to explain the cellular mechanism of SQOR and elucidate the medical value of H2S for AS treatment. Sodium hydrosulfide (NaHS) treatment increased the expression of SQOR and NRF2 gene and consequently induced the NRF2 target genes, such as NAD(P)H quinone dehydrogenase 1 and cystathionine γ-lyase. In addition, NaHS dose-dependently decreased the expression level of fibrosis and inflammation-related genes (MMP9, TNF-α, IL6) and calcification-related genes (ALP, osteocalcin, RUNX2, COL1A1) in human AVICs. Furthermore, NaHS activated the AMPK-mTOR pathway and inhibited the PI3K-AKT pathway, resulting in a pro-autophagy effect in human AVICs. An NRF2 inhibitor, brusatol, attenuated NaHS-induced AMPK activation and decreased the autophagy markers Beclin-1 and LC3AB, suggesting that the mechanism of action of H2S is related to NRF2. In conclusion, H2S decreased gene expression levels related to aortic valve degeneration and activated AMPK-mTOR-mediated pro-autophagy function associated with NRF2 in human AVICs. Therefore, H2S could be a potential therapeutic target for the development of AS treatment.
Collapse
Affiliation(s)
- Naaleum Song
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Jeong Eun Yu
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Eunhye Ji
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Hee Choi
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sahmin Lee
- Division of Cardiology, Heart Institute, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Medical Science, Asan Medical Center, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
6
|
Hajiaqaei M, Ranjbaran M, Kadkhodaee M, Shafie A, Abdi A, Lorian K, Kianian F, Seifi B. Hydrogen sulfide upregulates hypoxia inducible factors and erythropoietin production in chronic kidney disease induced by 5/6 nephrectomized rats. Mol Biol Rep 2024; 51:916. [PMID: 39158746 DOI: 10.1007/s11033-024-09824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
INTRODUCTION In end stage renal disease )ESRD(, reduced EPO production resulted in decreased oxygen diffusion that cause Hypoxia-inducible factors (HIFs) stabilization. The mechanism of beneficial effects of H2S in chronic kidney disease (CKD) is the aim of the present study to examine the effects of the H2S donor sodium hydrosulfide (NaHS) on renal function parameters, oxidative stress indices and expression levels of HIF-2α gene and erythropoietin protein in 5/6 nephrectomy-induced chronic renal failure in rats. METHODS AND MATERIALS Male rats were assigned into 3 groups (n = 8): Sham, CKD and NaHS groups. In the CKD group, 5/6 nephrectomy was performed. In the sham group, rats were anesthetized but 5/6 nephrectomy was not induced. In the NaHS group, 30 µmol/L of NaHS in drinking water for 8 weeks was adminstrated 4 weeks after 5/6 nephrectomy induction. At the end of the 12 week, blood and renal tissues were taken to evaluate renal function parameters, oxidative stress indices and expression levels of HIF-2α gene and erythropoietin protein. RESULTS The induction of 5/6 nephrectomy significantly caused renal dysfunction, oxidative stress, increased HIF-2α gene expression and decreased erythropoietin levels in renal tissue samples. NaHS administration resulted in a marked improvement in renal function and oxidative stress indicators, a marked reduction in HIF-2α gene expression as well as an increase in erythropoietin protein levels in comparison with the CKD group. CONCLUSION In this study, regional hypoxia and oxidative stress in CKD, may cause the stabilization of the HIFs complexes, although erythropoietin synthesis was not increased due to destructive effects of CKD on the kidney tissues. Administration of NaHS caused up-regulating HIF-erythropoietin signaling pathway.
Collapse
Affiliation(s)
- Mahdi Hajiaqaei
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Anahid Shafie
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Arash Abdi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Keivan Lorian
- Research and Clinical Center for Infertility, Yazd Rreproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poorsina Ave, Tehran, Iran.
| |
Collapse
|
7
|
Li A, Wu S, Li Q, Wang Q, Chen Y. Elucidating the Molecular Pathways and Therapeutic Interventions of Gaseous Mediators in the Context of Fibrosis. Antioxidants (Basel) 2024; 13:515. [PMID: 38790620 PMCID: PMC11117599 DOI: 10.3390/antiox13050515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrosis, a pathological alteration of the repair response, involves continuous organ damage, scar formation, and eventual functional failure in various chronic inflammatory disorders. Unfortunately, clinical practice offers limited treatment strategies, leading to high mortality rates in chronic diseases. As part of investigations into gaseous mediators, or gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), numerous studies have confirmed their beneficial roles in attenuating fibrosis. Their therapeutic mechanisms, which involve inhibiting oxidative stress, inflammation, apoptosis, and proliferation, have been increasingly elucidated. Additionally, novel gasotransmitters like hydrogen (H2) and sulfur dioxide (SO2) have emerged as promising options for fibrosis treatment. In this review, we primarily demonstrate and summarize the protective and therapeutic effects of gaseous mediators in the process of fibrosis, with a focus on elucidating the underlying molecular mechanisms involved in combating fibrosis.
Collapse
Affiliation(s)
- Aohan Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Siyuan Wu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qian Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| | - Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China; (A.L.); (S.W.); (Q.L.)
- Engineering Technology Research Center for The Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian 116622, China
| |
Collapse
|
8
|
Hou J, Huang Y, Fu L, Sun M, Wang L, Guo R, Chen L, Lv C. Evaluating the Effect of Hydrogen Sulfide in the Idiopathic Pulmonary Fibrosis Model with a Fluorescent Probe. Anal Chem 2023; 95:5514-5521. [PMID: 36943917 DOI: 10.1021/acs.analchem.2c03640] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Hydrogen sulfide (H2S), a gaseous signaling molecule, is involved in a wide range of physiological and pathological processes. H2S has been proven to play a beneficial role in lung diseases, and the relationship between perturbations in endogenous H2S synthesis and degree with idiopathic pulmonary fibrosis (IPF) has attacted increasing attention. However, the changes in endogenous lung H2S levels in the pathological progression of chronic pulmonary diseases remain unclear. To this end, we synthesized a fluorescent probe (Bcy-HS) for the selective imaging of H2S in living cells and mice. This probe was mainly used for in situ in vivo and cellular imaging as well as a systematic assessment of intrapulmonary H2S levels at different stages of IPF. In addition, we also discussed the potential of H2S supplementation in the treatment of pulmonary fibrotic diseases. Our results confirmed the key role of H2S in pulmonary fibrosis. In cellular and mice models of pulmonary fibrosis, intracellular H2S levels are reduced. However, the severity of oxidative damage and pulmonary fibrosis decreased after NaSH (H2S donor). Therefore, we concluded that increasing the H2S content in vivo may be a novel strategy for IPF treatment.
Collapse
Affiliation(s)
- Junjun Hou
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Yan Huang
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Lili Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingzhao Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lingxiao Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Runjing Guo
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Changjun Lv
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| |
Collapse
|
9
|
Islam RK, Donnelly E, Donnarumma E, Hossain F, Gardner JD, Islam KN. H 2S Prodrug, SG-1002, Protects against Myocardial Oxidative Damage and Hypertrophy In Vitro via Induction of Cystathionine β-Synthase and Antioxidant Proteins. Biomedicines 2023; 11:biomedicines11020612. [PMID: 36831146 PMCID: PMC9953594 DOI: 10.3390/biomedicines11020612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Endogenously produced hydrogen sulfide (H2S) is critical for cardiovascular homeostasis. Therapeutic strategies aimed at increasing H2S levels have proven cardioprotective in models of acute myocardial infarction (MI) and heart failure (HF). The present study was undertaken to investigate the effects of a novel H2S prodrug, SG-1002, on stress induced hypertrophic signaling in murine HL-1 cardiac muscle cells. Treatment of HL-1 cells with SG-1002 under serum starvation without or with H2O2 increased the levels of H2S, H2S producing enzyme, and cystathionine β-synthase (CBS), as well as antioxidant protein levels, such as super oxide dismutase1 (SOD1) and catalase, and additionally decreased oxidative stress. SG-1002 also decreased the expression of hypertrophic/HF protein markers such as atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), galectin-3, TIMP1, collagen type III, and TGF-β1 in stressed HL-1 cells. Treatment with SG-1002 caused a significant induction of cell viability and a marked reduction of cellular cytotoxicity in HL-1 cells under serum starvation incubated without or with H2O2. Experimental results of this study suggest that SG-1002 attenuates myocardial cellular oxidative damage and/or hypertrophic signaling via increasing H2S levels or H2S producing enzymes, CBS, and antioxidant proteins.
Collapse
Affiliation(s)
- Rahib K. Islam
- Departments of Pharmacology and Experimental Medicine, Genetics, and Physiology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Erinn Donnelly
- Departments of Pharmacology and Experimental Medicine, Genetics, and Physiology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Erminia Donnarumma
- Mitochondrial Biology Group, Institute Pasteur, CNRS UMR 3691, 75015 Paris, France
| | - Fokhrul Hossain
- Departments of Pharmacology and Experimental Medicine, Genetics, and Physiology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Jason D. Gardner
- Departments of Pharmacology and Experimental Medicine, Genetics, and Physiology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Kazi N. Islam
- Agricultural Research Development Program, College of Engineering, Science, Technology and Agriculture, Central State University, 1400 Brush Row Road, Wilberforce, OH 45384, USA
- Correspondence: ; Tel.: +1-937-376-6635
| |
Collapse
|
10
|
Feng J, Lu X, Li H, Wang S. The roles of hydrogen sulfide in renal physiology and disease states. Ren Fail 2022; 44:1289-1308. [PMID: 35930288 PMCID: PMC9359156 DOI: 10.1080/0886022x.2022.2107936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous signaling transmitter, has gained recognition for its physiological effects. In this review, we aim to summarize and discuss existing studies about the roles of H2S in renal functions and renal disease as well as the underlying mechanisms. H2S is mainly produced by four pathways, and the kidneys are major H2S–producing organs. Previous studies have shown that H2S can impact multiple signaling pathways via sulfhydration. In renal physiology, H2S promotes kidney excretion, regulates renin release and increases ATP production as a sensor for oxygen. H2S is also involved in the development of kidney disease. H2S has been implicated in renal ischemia/reperfusion and cisplatin–and sepsis–induced kidney disease. In chronic kidney diseases, especially diabetic nephropathy, hypertensive nephropathy and obstructive kidney disease, H2S attenuates disease progression by regulating oxidative stress, inflammation and the renin–angiotensin–aldosterone system. Despite accumulating evidence from experimental studies suggesting the potential roles of H2S donors in the treatment of kidney disease, these results need further clinical translation. Therefore, expanding the understanding of H2S can not only promote our further understanding of renal physiology but also lay a foundation for transforming H2S into a target for specific kidney diseases.
Collapse
Affiliation(s)
- Jianan Feng
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangxue Lu
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shixiang Wang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Lee JH, Im SS. Function of gaseous hydrogen sulfide in liver fibrosis. BMB Rep 2022; 55:481-487. [PMID: 36195563 PMCID: PMC9623240 DOI: 10.5483/bmbrep.2022.55.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 11/06/2022] Open
Abstract
Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver. [BMB Reports 2022; 55(10): 481-487].
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| |
Collapse
|
12
|
Ali FF, Mohammed HH, Elroby Ali DM. Protective effect of hydrogen sulfide against stress-induced lung injury: involvement of Nrf2, NFκB/iNOS, and HIF-1α signaling pathways. Cell Stress Chaperones 2022; 27:55-70. [PMID: 34881408 PMCID: PMC8821758 DOI: 10.1007/s12192-021-01248-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
Abstract
Stress is a common phenomenon that is attracting increasing attention. Hydrogen sulfide (H2S) is a gasotransmitter that plays an important role in many physiological and pathological events. Our study aimed to estimate the effect and the underlying mechanisms of the H2S donor, sodium hydrosulfide (NaHS), against immobilization stress (IS)-induced lung injury. Forty adult male rats were classified into control group, NaHS group, and IS groups with and without NaHS treatment. Serum was obtained to determine corticosterone (CORT), total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) levels. Lung H2S, nitric oxide (NO), inducible nitric oxide synthase (iNOS), and malondialdehyde (MDA) levels were measured. Lung expressions of H2S synthesizing enzymes and Western blot analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) and hypoxia-inducible factor 1 alpha (HIF 1α) were estimated. Histopathological changes and immunohistochemical assessment of nuclear factor kappa B (NF-κB) and caspase-3 were also done. Pretreatment with NaHS led to marked histological protection from lung damage seen in IS rats. Furthermore, pretreatment with NaHS before IS protected lung H2S levels and expressions of H2S-synthesizing enzymes. Similarly, the levels of CORT, TNF-α, IL-10, MDA, TAC, NO, iNOS, HIF-1 α, and nuclear Nrf2 and expressions of NF-kB and caspase 3 were all maintained at near control levels in contrast to that in the IS rats. In conclusion, NaHS is protective against stress-induced lung injury due to its antioxidant, anti-inflammatory, anti-fibrotic, and antiapoptotic effects. Thus, NaHS can be used to minimize stress complications on lung.
Collapse
Affiliation(s)
- Fatma F Ali
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | | | - Doaa M Elroby Ali
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| |
Collapse
|
13
|
Han SJ, Kim JI, Lipschutz JH, Park KM. Hydrogen sulfide, a gaseous signaling molecule, elongates primary cilia on kidney tubular epithelial cells by activating extracellular signal-regulated kinase. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:593-601. [PMID: 34697270 PMCID: PMC8552824 DOI: 10.4196/kjpp.2021.25.6.593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
Primary cilia on kidney tubular cells play crucial roles in maintaining structure and physiological function. Emerging evidence indicates that the absence of primary cilia, and their length, are associated with kidney diseases. The length of primary cilia in kidney tubular epithelial cells depends, at least in part, on oxidative stress and extracellular signal-regulated kinase 1/2 (ERK) activation. Hydrogen sulfide (H2S) is involved in antioxidant systems and the ERK signaling pathway. Therefore, in this study, we investigated the role of H2S in primary cilia elongation and the downstream pathway. In cultured Madin-Darby Canine Kidney cells, the length of primary cilia gradually increased up to 4 days after the cells were grown to confluent monolayers. In addition, the expression of H2S-producing enzyme increased concomitantly with primary cilia length. Treatment with NaHS, an exogenous H2S donor, accelerated the elongation of primary cilia whereas DL-propargylglycine (a cystathionine γ-lyase inhibitor) and hydroxylamine (a cystathionine-β-synthase inhibitor) delayed their elongation. NaHS treatment increased ERK activation and Sec10 and Arl13b protein expression, both of which are involved in cilia formation and elongation. Treatment with U0126, an ERK inhibitor, delayed elongation of primary cilia and blocked the effect of NaHS-mediated primary cilia elongation and Sec10 and Arl13b upregulation. Finally, we also found that H2S accelerated primary cilia elongation after ischemic kidney injury. These results indicate that H2S lengthens primary cilia through ERK activation and a consequent increase in Sec10 and Arl13b expression, suggesting that H2S and its downstream targets could be novel molecular targets for regulating primary cilia.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan 48513, Korea
| | - Jee In Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, SC 29425, USA.,Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29425, USA
| | - Kwon Moo Park
- Department of Anatomy, BK21 Plus, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
14
|
Chirindoth SS, Cancarevic I. Role of Hydrogen Sulfide in the Treatment of Fibrosis. Cureus 2021; 13:e18088. [PMID: 34692303 PMCID: PMC8525665 DOI: 10.7759/cureus.18088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/18/2021] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is a biological gas, the abnormal metabolism of which has associations with the pathogenesis of fibrosis. The purpose of this paper was to determine the potential of H2S in the prevention and treatment of fibrosis. The data is obtained mainly from articles found in the PubMed database using the keywords “fibrosis” and “hydrogen sulfide,” limiting the results to those published within the last 10 years. Some additional resources have also been used, such as books and articles within journals. Evidence of decreased H2S enzyme levels in animal models with fibrotic diseases has been found. The protective role of H2S has been validated by the administration of exogenous H2S donors in animal models with fibrosis. It is also evident that H2S is involved in complex signaling pathways and ion channels that inhibit fibrosis development. These findings support the role of H2S in the treatment of a variety of fibrotic diseases. A randomized controlled trial in fibrosis patients comparing the efficacy of exogenous H2S and placebo in addition to standard of care can be implemented to validate this further.
Collapse
Affiliation(s)
- Swathy S Chirindoth
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
15
|
Chen Y, Yuan S, Cao Y, Kong G, Jiang F, Li Y, Wang Q, Tang M, Zhang Q, Wang Q, Liu L. Gasotransmitters: Potential Therapeutic Molecules of Fibrotic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3206982. [PMID: 34594474 PMCID: PMC8478550 DOI: 10.1155/2021/3206982] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is defined as the pathological progress of excessive extracellular matrix (ECM), such as collagen, fibronectin, and elastin deposition, as the regenerative capacity of cells cannot satisfy the dynamic repair of chronic damage. The well-known features of tissue fibrosis are characterized as the presence of excessive activated and proliferated fibroblasts and the differentiation of fibroblasts into myofibroblasts, and epithelial cells undergo the epithelial-mesenchymal transition (EMT) to expand the number of fibroblasts and myofibroblasts thereby driving fibrogenesis. In terms of mechanism, during the process of fibrosis, the activations of the TGF-β signaling pathway, oxidative stress, cellular senescence, and inflammatory response play crucial roles in the activation and proliferation of fibroblasts to generate ECM. The deaths due to severe fibrosis account for almost half of the total deaths from various diseases, and few treatment strategies are available for the prevention of fibrosis as yet. Recently, numerous studies demonstrated that three well-defined bioactive gasotransmitters, including nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), generally exhibited anti-inflammatory, antioxidative, antiapoptotic, and antiproliferative properties. Besides these effects, a number of studies have reported that low-dose exogenous and endogenous gasotransmitters can delay and interfere with the occurrence and development of fibrotic diseases, including myocardial fibrosis, idiopathic pulmonary fibrosis, liver fibrosis, renal fibrosis, diabetic diaphragm fibrosis, and peritoneal fibrosis. Furthermore, in animal and clinical experiments, the inhalation of low-dose exogenous gas and intraperitoneal injection of gaseous donors, such as SNAP, CINOD, CORM, SAC, and NaHS, showed a significant therapeutic effect on the inhibition of fibrosis through modulating the TGF-β signaling pathway, attenuating oxidative stress and inflammatory response, and delaying the cellular senescence, while promoting the process of autophagy. In this review, we first demonstrate and summarize the therapeutic effects of gasotransmitters on diverse fibrotic diseases and highlight their molecular mechanisms in the process and development of fibrosis.
Collapse
Affiliation(s)
- Yingqing Chen
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin Province, China
| | - Yuying Cao
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Guangyao Kong
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Feng Jiang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Minli Tang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Qinggao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin Province, China
| | - Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| | - Liping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning, China
- Engineering Technology Research Center for the Utilization of Functional Components of Organic Natural Products, Dalian University, Dalian, 116622 Liaoning, China
| |
Collapse
|
16
|
Wang WJ, Chen XM, Cai GY. Cellular senescence and the senescence-associated secretory phenotype: Potential therapeutic targets for renal fibrosis. Exp Gerontol 2021; 151:111403. [PMID: 33984448 DOI: 10.1016/j.exger.2021.111403] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/25/2022]
Abstract
Renal fibrosis plays a crucial role in the progression of chronic kidney disease and end-stage renal disease. However, because the aetiology of this pathological process is complex and remains unclear, there is still no effective treatment. Cellular senescence and the senescence-associated secretory phenotype (SASP) have been reported to lead to renal fibrosis. This review first discusses the relationships among cellular senescence, the SASP and renal fibrosis. Then, the key role of the SASP in irreversible renal fibrosis, including fibroblast activation and abnormal extracellular matrix accumulation, is discussed, with the results of studies having indicated that inhibiting cellular senescence and the SASP might be a potential preventive and therapeutic strategy for renal fibrosis. Finally, we summarize promising therapeutic strategies revealed by existing research on senescent cells and the SASP, including emerging interventions targeting the SASP, caloric restriction and mimetics, and novel regeneration therapies with stem cells.
Collapse
Affiliation(s)
- Wen-Juan Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xiang-Mei Chen
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Guang-Yan Cai
- School of Medicine, Nankai University, Tianjin 300071, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
17
|
DiNicolantonio JJ, McCarty MF, Barroso-Aranda J, Assanga S, Lujan LML, O'Keefe JH. A nutraceutical strategy for downregulating TGFβ signalling: prospects for prevention of fibrotic disorders, including post-COVID-19 pulmonary fibrosis. Open Heart 2021; 8:openhrt-2021-001663. [PMID: 33879509 PMCID: PMC8061562 DOI: 10.1136/openhrt-2021-001663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | | | - Simon Assanga
- Department of Research and Postgraduate Studies in Food, University of Sonora, Sonora, Mexico
| | | | - James H O'Keefe
- University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
18
|
The Role of Hydrogen Sulfide in Respiratory Diseases. Biomolecules 2021; 11:biom11050682. [PMID: 34062820 PMCID: PMC8147381 DOI: 10.3390/biom11050682] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability around the globe, with a diverse range of health problems. Treatment of respiratory diseases and infections has been verified to be thought-provoking because of the increasing incidence and mortality rate. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in an extensive range of cellular functions, and physiological and pathological processes in a variety of diseases, including respiratory diseases. Recently, the therapeutic potential of H2S for respiratory diseases has been widely investigated. H2S plays a vital therapeutic role in obstructive respiratory disease, pulmonary fibrosis, emphysema, pancreatic inflammatory/respiratory lung injury, pulmonary inflammation, bronchial asthma and bronchiectasis. Although the therapeutic role of H2S has been extensively studied in various respiratory diseases, a concrete literature review will have an extraordinary impact on future therapeutics. This review provides a comprehensive overview of the effective role of H2S in respiratory diseases. Besides, we also summarized H2S production in the lung and its metabolism processes in respiratory diseases.
Collapse
|
19
|
McCarty MF. Nutraceutical, Dietary, and Lifestyle Options for Prevention and Treatment of Ventricular Hypertrophy and Heart Failure. Int J Mol Sci 2021; 22:ijms22073321. [PMID: 33805039 PMCID: PMC8037104 DOI: 10.3390/ijms22073321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Although well documented drug therapies are available for the management of ventricular hypertrophy (VH) and heart failure (HF), most patients nonetheless experience a downhill course, and further therapeutic measures are needed. Nutraceutical, dietary, and lifestyle measures may have particular merit in this regard, as they are currently available, relatively safe and inexpensive, and can lend themselves to primary prevention as well. A consideration of the pathogenic mechanisms underlying the VH/HF syndrome suggests that measures which control oxidative and endoplasmic reticulum (ER) stress, that support effective nitric oxide and hydrogen sulfide bioactivity, that prevent a reduction in cardiomyocyte pH, and that boost the production of protective hormones, such as fibroblast growth factor 21 (FGF21), while suppressing fibroblast growth factor 23 (FGF23) and marinobufagenin, may have utility for preventing and controlling this syndrome. Agents considered in this essay include phycocyanobilin, N-acetylcysteine, lipoic acid, ferulic acid, zinc, selenium, ubiquinol, astaxanthin, melatonin, tauroursodeoxycholic acid, berberine, citrulline, high-dose folate, cocoa flavanols, hawthorn extract, dietary nitrate, high-dose biotin, soy isoflavones, taurine, carnitine, magnesium orotate, EPA-rich fish oil, glycine, and copper. The potential advantages of whole-food plant-based diets, moderation in salt intake, avoidance of phosphate additives, and regular exercise training and sauna sessions are also discussed. There should be considerable scope for the development of functional foods and supplements which make it more convenient and affordable for patients to consume complementary combinations of the agents discussed here. Research Strategy: Key word searching of PubMed was employed to locate the research papers whose findings are cited in this essay.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity Foundation, 811 B Nahant Ct., San Diego, CA 92109, USA
| |
Collapse
|
20
|
Testai L, Citi V, Martelli A, Brogi S, Calderone V. Role of hydrogen sulfide in cardiovascular ageing. Pharmacol Res 2020; 160:105125. [PMID: 32783975 DOI: 10.1016/j.phrs.2020.105125] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are the main cause of morbidity and mortality in the Western society and ageing is a relevant non-modifiable risk factor. Morphological and functional alterations at endothelial level represent first events of ageing, inevitably followed by vascular dysfunction and consequent atherosclerosis that deeply influences cardiovascular health. Indeed, myocardial hypertrophy and fibrosis typically occur and contribute to compromise overall cardiac output. As regards the intracellular molecular mechanisms involved in the cardiovascular ageing, an intricate network is emerging, revealing a role for many mediators, including SIRT1/AMPK/PCG1α pathway, anti-oxidants factors (i.e. Nrf-2 and FOXOs) and pro-inflammatory cytokines. Thus, the search for pharmacological and non-pharmacological strategies that can promote a "healthy ageing", in order to slow down age-related machinery, are currently an exciting challenge for the biomedical research. Interestingly, hydrogen sulfide (H2S) has been recently recognized as a new player capable to influence intracellular machinery involved in ageing and then it is view as a potential target for preventing cardiovascular diseases. Therefore, this review is focused on the role of H2S in cardiovascular ageing, and on the evidence of the relationship between progressive decline in endogenous H2S levels and the onset of various cardiovascular age-related diseases.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy.
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6-56120, Pisa, Italy; Interdepartmental Research Centre of Ageing, Biology and Pathology, University of Pisa, 56120, Pisa, Italy; Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)", University of Pisa, 56120, Pisa, Italy
| |
Collapse
|
21
|
Ellmers LJ, Templeton EM, Pilbrow AP, Frampton C, Ishii I, Moore PK, Bhatia M, Richards AM, Cameron VA. Hydrogen Sulfide Treatment Improves Post-Infarct Remodeling and Long-Term Cardiac Function in CSE Knockout and Wild-Type Mice. Int J Mol Sci 2020; 21:4284. [PMID: 32560137 PMCID: PMC7352717 DOI: 10.3390/ijms21124284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Hydrogen sulfide (H2S) is recognized as an endogenous gaseous signaling molecule generated by cystathionine γ-lyase (CSE) in cardiovascular tissues. H2S up-regulation has been shown to reduce ischemic injury, and H2S donors are cardioprotective in rodent models when administered concurrent with myocardial ischemia. We evaluated the potential utility of H2S therapy in ameliorating cardiac remodeling with administration delayed until 2 h post-infarction in mice with or without cystathionine γ-lyase gene deletion (CSE-/-). The slow-release H2S donor, GYY4137, was administered from 2 h after surgery and daily for 28 days following myocardial infarction (MI) induced by coronary artery ligation, comparing responses in CSE-/- with wild-type (WT) mice (n = 5-10/group/genotype). Measures of cardiac function and expression of key genes associated with cardiac hypertrophy, fibrosis, and apoptosis were documented in atria, ventricle, and kidney tissues. Post-MI GYY4137 administration reduced infarct area and restored cardiac function, accompanied by reduction of the elevated ventricular expression of genes mediating cardiac remodeling to near-normal levels. Few differences between WT and CSE-/- mice were observed, except CSE-/- mice had higher blood pressures, and higher atrial Mir21a expression across all treatment groups. These findings suggest endogenous CSE gene deletion does not substantially exacerbate the long-term response to MI. Moreover, the H2S donor GYY4137 administered after onset of MI preserves cardiac function and protects against adverse cardiac remodeling in both WT and CSE-deficient mice.
Collapse
Affiliation(s)
- Leigh J. Ellmers
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8140, New Zealand; (L.J.E.); (E.M.T.); (A.P.P.); (C.F.); (A.M.R.)
| | - Evelyn M. Templeton
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8140, New Zealand; (L.J.E.); (E.M.T.); (A.P.P.); (C.F.); (A.M.R.)
| | - Anna P. Pilbrow
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8140, New Zealand; (L.J.E.); (E.M.T.); (A.P.P.); (C.F.); (A.M.R.)
| | - Chris Frampton
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8140, New Zealand; (L.J.E.); (E.M.T.); (A.P.P.); (C.F.); (A.M.R.)
| | - Isao Ishii
- Laboratory of Health Chemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan;
| | - Philip K. Moore
- Department of Pharmacology, National University of Singapore, Singapore 119228, Singapore;
| | - Madhav Bhatia
- Inflammation Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| | - A. Mark Richards
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8140, New Zealand; (L.J.E.); (E.M.T.); (A.P.P.); (C.F.); (A.M.R.)
- Cardiovascular Research Institute, National University of Singapore, Singapore 119228, Singapore
| | - Vicky A. Cameron
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8140, New Zealand; (L.J.E.); (E.M.T.); (A.P.P.); (C.F.); (A.M.R.)
| |
Collapse
|
22
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. Implications of hydrogen sulfide in liver pathophysiology: Mechanistic insights and therapeutic potential. J Adv Res 2020; 27:127-135. [PMID: 33318872 PMCID: PMC7728580 DOI: 10.1016/j.jare.2020.05.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background Over the last several decades, hydrogen sulfide (H2S) has been found to exert multiple physiological functions in mammal systems. The endogenous production of H2S is primarily mediated by cystathione β-synthase (CBS), cystathione γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST). These enzymes are widely expressed in the liver tissues and regulate hepatic functions by acting on various molecular targets. Aim of Review In the present review, we will highlight the recent advancements in the cellular events triggered by H2S under liver diseases. The therapeutic effects of H2S donors on hepatic diseases will also be discussed. Key Scientific Concepts of Review As a critical regulator of liver functions, H2S is critically involved in the etiology of various liver disorders, such as nonalcoholic steatohepatitis (NASH), hepatic fibrosis, hepatic ischemia/reperfusion (IR) injury, and liver cancer. Targeting H2S-producing enzymes may be a promising strategy for managing hepatic disorders.
Collapse
Key Words
- 3-MP, 3-mercaptopyruvate
- 3-MST, 3-mercaptopyruvate sulfurtransferase
- AGTR1, angiotensin II type 1 receptor
- AMPK, AMP-activated protein kinase
- Akt, protein kinase B
- CAT, cysteine aminotransferase
- CBS, cystathione β-synthase
- CO, carbon monoxide
- COX-2, cyclooxygenase-2
- CSE, cystathione γ-lyase
- CX3CR1, chemokine CX3C motif receptor 1
- Cancer
- DAO, D-amino acid oxidase
- DATS, Diallyl trisulfide
- EGFR, epidermal growth factor receptor
- ERK, extracellular regulated protein kinases
- FAS, fatty acid synthase
- Fibrosis
- H2S, hydrogen sulfide
- HFD, high fat diet
- HO-1, heme oxygenase 1
- Hydrogen sulfide
- IR, ischemia/reperfusion
- Liver disease
- MMP-2, matrix metalloproteinase 2
- NADH, nicotinamide adenine dinucleotide
- NADPH, nicotinamide adenine dinucleotide phosphate
- NAFLD, non-alcoholic fatty liver diseases
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-kappa B
- NaHS, sodium hydrosulfide
- Nrf2, nuclear factor erythroid2-related factor 2
- PI3K, phosphatidylinositol 3-kinase
- PLP, pyridoxal 5′-phosphate
- PPG, propargylglycine
- PTEN, phosphatase and tensin homolog deleted on chromosome ten
- SAC, S-allyl-cysteine
- SPRC, S-propargyl-cysteine
- STAT3, signal transducer and activator of transcription 3
- Steatosis
- VLDL, very low density lipoprotein
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen 518037, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.,National University of Singapore Research Institute, Suzhou 215000, China
| |
Collapse
|
23
|
Martelli A, Citi V, Testai L, Brogi S, Calderone V. Organic Isothiocyanates as Hydrogen Sulfide Donors. Antioxid Redox Signal 2020; 32:110-144. [PMID: 31588780 DOI: 10.1089/ars.2019.7888] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Hydrogen sulfide (H2S), the "new entry" in the series of endogenous gasotransmitters, plays a fundamental role in regulating the biological functions of various organs and systems. Consequently, the lack of adequate levels of H2S may represent the etiopathogenetic factor of multiple pathological alterations. In these diseases, the use of H2S donors represents a precious and innovative opportunity. Recent Advances: Natural isothiocyanates (ITCs), sulfur compounds typical of some botanical species, have long been investigated because of their intriguing pharmacological profile. Recently, the ITC moiety has been proposed as a new H2S-donor chemotype (with a l-cysteine-mediated reaction). Based on this recent discovery, we can clearly observe that almost all the effects of natural ITCs can be explained by the H2S release. Consistently, the ITC function was also used as an original H2S-releasing moiety for the design of synthetic H2S donors and original "pharmacological hybrids." Very recently, the chemical mechanism of H2S release, resulting from the reaction between l-cysteine and some ITCs, has been elucidated. Critical Issues: Available literature gives convincing demonstration that H2S is the real player in ITC pharmacology. Further, countless studies have been carried out on natural ITCs, but this versatile moiety has been used only rarely for the design of synthetic H2S donors with optimal drug-like properties. Future Directions: The development of more ITC-based synthetic H2S donors with optimal drug-like properties and selectivity toward specific tissues/pathologies seem to represent a stimulating and indispensable prospect of future experimental activities.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | | | - Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre "Nutraceuticals and Food for Health (NUTRAFOOD)," University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of "Ageing Biology and Pathology," University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Sun HJ, Wu ZY, Cao L, Zhu MY, Liu TT, Guo L, Lin Y, Nie XW, Bian JS. Hydrogen Sulfide: Recent Progression and Perspectives for the Treatment of Diabetic Nephropathy. Molecules 2019; 24:molecules24152857. [PMID: 31390847 PMCID: PMC6696501 DOI: 10.3390/molecules24152857] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease develops in approximately 40% of diabetic patients and is a major cause of chronic kidney diseases (CKD) and end stage kidney disease (ESKD) worldwide. Hydrogen sulfide (H2S), the third gasotransmitter after nitric oxide (NO) and carbon monoxide (CO), is synthesized in nearly all organs, including the kidney. Though studies on H2S regulation of renal physiology and pathophysiology are still in its infancy, emerging evidence shows that H2S production by renal cells is reduced under disease states and H2S donors ameliorate kidney injury. Specifically, aberrant H2S level is implicated in various renal pathological conditions including diabetic nephropathy. This review presents the roles of H2S in diabetic renal disease and the underlying mechanisms for the protective effects of H2S against diabetic renal damage. H2S may serve as fundamental strategies to treat diabetic kidney disease. These H2S treatment modalities include precursors for H2S synthesis, H2S donors, and natural plant-derived compounds. Despite accumulating evidence from experimental studies suggests the potential role of the H2S signaling pathway in the treatment of diabetic nephropathy, these results need further clinical translation. Expanding understanding of H2S in the kidney may be vital to translate H2S to be a novel therapy for diabetic renal disease.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Meng-Yuan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Teng-Teng Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Lei Guo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ye Lin
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- National University of Singapore (Suzhou) Research Institute, Suzhou 215000, China.
| |
Collapse
|
25
|
Exogenous Hydrogen Sulfide Supplement Attenuates Isoproterenol-Induced Myocardial Hypertrophy in a Sirtuin 3-Dependent Manner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9396089. [PMID: 30647820 PMCID: PMC6311776 DOI: 10.1155/2018/9396089] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/11/2018] [Indexed: 01/25/2023]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter with a variety of cardiovascular protective effects. Sirtuin 3 (SIRT3) is closely related to mitochondrial function and oxidative stress. We found that NaHS increased SIRT3 expression in the preventive effect on isoproterenol- (ISO-) induced myocardial hypertrophy. We further investigated whether exogenous H2S supplement improved ISO-induced myocardial hypertrophy in a SIRT3-dependent manner. 10-week-old male 129S1/SvImJ (WT) mice and SIRT3 knockout (KO) mice were intraperitoneally injected with NaHS (50 μmol/kg/d) for two weeks and then intraperitoneally injected with ISO (60 mg/kg/d) for another two weeks. In WT mice, NaHS significantly reduced the cardiac index of ISO-induced mice, decreased the cross-sectional area of cardiomyocytes, and inhibited the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNA. The activity of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in the myocardium was increased, but the level of malondialdehyde (MDA) was decreased. The fluorescence intensity of dihydroethidium staining for superoxide anion was attenuated. Optic atrophy 1 (OPA1) expression was upregulated, while dynamin-related protein 1 (DRP1) expression was downregulated. ERK, but not P38 and JNK, phosphorylation was downregulated. However, all above protective effects were unavailable in ISO-induced SIRT3 KO mice. Our present study suggested that exogenous H2S supplement inhibited ISO-induced cardiac hypertrophy depending on SIRT3, which might be associated with antioxidant stress.
Collapse
|
26
|
Reversal of Sp1 transactivation and TGFβ1/SMAD1 signaling by H 2S prevent nickel-induced fibroblast activation. Toxicol Appl Pharmacol 2018; 356:25-35. [PMID: 30055191 DOI: 10.1016/j.taap.2018.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/18/2018] [Accepted: 07/25/2018] [Indexed: 01/17/2023]
Abstract
Nickel as a heavy metal is known to bring threat to human health, and nickel exposure is associated with changes in fibroblast activation which may contribute to its fibrotic properties. H2S has recently emerged as an important gasotransmitter involved in numerous cellular signal transduction and pathophysiological responses. Interaction of nickel and H2S on fibroblast cell activation has not been studied so far. Here, we showed that a lower dose of nickel (200 μM) induced the activation of human fibroblast cells, as evidenced by increased cell growth, migration and higher expressions of α-smooth muscle actin (αSMA) and fibronectin, while high dose of nickel (1 mM) inhibited cell viability. Nickel reduced intracellular thiol contents and stimulated oxidative stress. Nickel also repressed the mRNA and protein expression of cystathionine gamma-lyase (CSE, a H2S-generating gene) and blocked the endogenous production of H2S. Exogenously applied NaHS (a H2S donor) had no effect on nickel-induced cell viability but significantly attenuated nickel-stimulated cell migration and the expression of αSMA and fibronectin. In contrast, CSE deficiency worsened nickel-induced αSMA expression. Moreover, H2S incubation reversed nickel-stimulated TGFβ1/SMAD1 signal and blocked TGFβ1-initiated expressions of αSMA and fibronectin. Nickel inhibited the interaction of Sp1 with CSE promoter but strengthened the binding of Sp1 with TGFβ1 promoter, which was reversed by exogenously applied NaHS. These data reveal that H2S protects from nickel-stimulated fibroblast activation and CSE/H2S system can be a potential target for the treatment of tissue fibrosis induced by nickel.
Collapse
|
27
|
Seifi B, Sajedizadeh A, Kadkhodaee M, Ranjbaran M. Long-term exercise restores hydrogen sulfide in the kidney and contributes to exercise benefits in 5/6 nephrectomized rats. Clin Exp Hypertens 2018; 41:87-91. [PMID: 29521543 DOI: 10.1080/10641963.2018.1445752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/08/2023]
Abstract
Physical exercise is shown to have protective effects on chronic kidney disease (CKD). CKD itself is associated with a reduction in renal hydrogen sulfide (H2S) concentration. This study was designed to investigate whether protective effects of exercise in 5/6 nephrectomized (5/6 NX) rats is associated with H2S levels in the kidney? Twenty four male Wistar rats weighing 250-300 g were assigned into 4 groups: 1- Sham 2- Sham exercise 3-5/6 NX 4-5/6 NX+exercise. To induce CKD, 4 days after removing upper and lower one-third parts of the left kidney, total right nephrectomy was performed. In the Sham groups, anesthesia and surgery were performed like the other groups without removal of the kidney mass. Exercise was performed by treadmill at a speed of 18 m/min for 8 weeks. At the end of the twelfth week, blood and kidney samples were collected to measure renal function (levels of plasma urea and creatinine), oxidative stress markers (renal MDA level and SOD activity), and histological indices. Eight weeks exercise significantly improved serum creatinine, BUN, renal MDA level, SOD activity, renal sympathetic nerve activity (RSNA), hypertension, and renal histology in addition to renal H2S level compared to the 5/6 NX group. The results suggest that regular exercise improves renal oxidative status and ameliorates renal damage, hypertension, and RSNA in 5/6 nephrectomized rats. These improvements by exercise might be associated with the increase in renal H2S level.
Collapse
Affiliation(s)
- Behjat Seifi
- a Department of Physiology, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Abdollah Sajedizadeh
- a Department of Physiology, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mehri Kadkhodaee
- a Department of Physiology, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mina Ranjbaran
- a Department of Physiology, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
28
|
Han SJ, Noh MR, Jung JM, Ishii I, Yoo J, Kim JI, Park KM. Hydrogen sulfide-producing cystathionine γ-lyase is critical in the progression of kidney fibrosis. Free Radic Biol Med 2017; 112:423-432. [PMID: 28842346 DOI: 10.1016/j.freeradbiomed.2017.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/29/2017] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
Cystathionine γ-lyase (CSE), the last key enzyme of the transsulfuration pathway, is involved in the production of hydrogen sulfide (H2S) and glutathione (GSH), which regulate redox balance and act as important antioxidant molecules. Impairment of the H2S- and GSH-mediated antioxidant system is associated with the progression of chronic kidney disease (CKD), characterized by kidney fibrosis and dysfunction. Here, we evaluated the role of CSE in the progression of kidney fibrosis after unilateral ureteral obstruction (UUO) using mice deficient in the Cse gene. UUO of wild-type mice reduced the expression of H2S-producing enzymes, CSE, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase in the obstructed kidneys, resulting in decreased H2S and GSH levels. Cse gene deletion lowered H2S and GSH levels in the kidneys. Deleting the Cse gene exacerbated the decrease in H2S and GSH levels and increase in superoxide formation and oxidative damage to proteins, lipids, and DNA in the kidneys after UUO, which were accompanied by greater kidney fibrosis, deposition of extracellular matrixes, expression of α-smooth muscle actin, tubular damage, and infiltration of inflammatory cells. Furthermore, Cse gene deletion exacerbated mitochondrial fragmentation and apoptosis of renal tubule cells after UUO. The data provided herein constitute in vivo evidence that Cse deficiency impairs renal the H2S- and GSH-producing activity and exacerbates UUO-induced kidney fibrosis. These data propose a novel therapeutic approach against CKD by regulating CSE and the transsulfuration pathway.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Mi Ra Noh
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Jung-Min Jung
- Department of Molecular Medicine, BK21 Plus, Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Isao Ishii
- Laboratory of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Jeongsoo Yoo
- Department of Molecular Medicine, BK21 Plus, Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea
| | - Jee In Kim
- Department of Molecular Medicine and MRC, College of Medicine, Keimyung University, 1095 Dalgubeol-daero 250-gil, Dalseogu, Daegu 42601, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, Kyungpook National University School of Medicine, 680 Gukchaebosang-ro, Junggu, Daegu 41944, Republic of Korea.
| |
Collapse
|
29
|
Vela-Anero Á, Hermida-Gómez T, Gato-Calvo L, Vaamonde-García C, Díaz-Prado S, Meijide-Faílde R, Blanco FJ, Burguera EF. Long-term effects of hydrogen sulfide on the anabolic-catabolic balance of articular cartilage in vitro. Nitric Oxide 2017; 70:42-50. [PMID: 28821460 DOI: 10.1016/j.niox.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/25/2022]
Abstract
Healthy cartilage maintenance relies on an equilibrium among the anabolic and catabolic processes in chondrocytes. With the onset of osteoarthritis (OA), increased interleukin (IL)-1β levels induce an inhibition of the synthesis of extracellular matrix (ECM) proteins, as well as an increase in proteases. This eventually leads to a predominance of the catabolic phenotype and the progressive loss of articular cartilage. Hydrogen sulfide (H2S) is a small gaseous molecule recognized as the third endogenous gasotransmitter. When administered exogenously, it has shown anti-inflammatory and anti-catabolic properties in several in vitro and in vivo models. Here, OA cartilage disks were co-cultured in vitro with IL-1β (5 ng/ml) and NaSH or GYY4137 (200 or 1000 μM) for 21 days. The ability of these two H2S-producing compounds to avoid long term extracellular matrix (ECM) destruction was evaluated. We used a glycosaminoglycan (GAG) quantification kit histology and immunohistochemistry (IHC) to evaluate matrix proteins degradation and matrix metalloproteinases (MMP) abundance. Through the GAGs quantification assay, safranin O (S-O) and toluidine blue (TB) stains, and keratan/chondroitin sulfate (KS/ChS) IHCs it was shown that co-stimulation with H2S-forming reagents effectively avoided GAGs destruction. Both Masson's trichrome (MT) stain and collagen (col) type II IHC, as well as aggrecan (agg) IHC demonstrated that not only were these proteins protected but even promoted, their abundance being higher than in the basal condition. Further, stains also demonstrated that positivity in the inter-territorial and intra-cellular for the different matrix components were rescued, suggesting that NaSH and GYY4137 might also have pro-anabolic effects. In addition, a clear protective effect against the increased MMPs levels was seen, since increased MMP3 and 13 levels were subsequently reduced with the co-stimulation with sulfide compounds. In general, GYY4137 was more effective than NaSH, and increasing the dose improved the results. This study demonstrates that H2S anti-catabolic effects, which had been previously proven in short-term (24-48 h) in vitro cellular models, are maintained over time directly in OA cartilage tissue.
Collapse
Affiliation(s)
- Á Vela-Anero
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Ciencias Biomédicas, Medicina y Fisioterapia, Facultad de Ciencias de la Salud, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña-Complejo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde, A Coruña, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Grupo de Bioingieneria Tisular y Terapia Celular (GBTTC), Spain.
| | - T Hermida-Gómez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Grupo de Bioingieneria Tisular y Terapia Celular (GBTTC), Spain; Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña-Complejo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde, A Coruña, Spain.
| | - L Gato-Calvo
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña-Complejo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde, A Coruña, Spain.
| | - C Vaamonde-García
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Ciencias Biomédicas, Medicina y Fisioterapia, Facultad de Ciencias de la Salud, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña-Complejo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde, A Coruña, Spain.
| | - S Díaz-Prado
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Ciencias Biomédicas, Medicina y Fisioterapia, Facultad de Ciencias de la Salud, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña-Complejo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde, A Coruña, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Grupo de Bioingieneria Tisular y Terapia Celular (GBTTC), Spain.
| | - R Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Departamento de Ciencias Biomédicas, Medicina y Fisioterapia, Facultad de Ciencias de la Salud, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña-Complejo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde, A Coruña, Spain.
| | - F J Blanco
- Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña-Complejo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde, A Coruña, Spain.
| | - E F Burguera
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Grupo de Bioingieneria Tisular y Terapia Celular (GBTTC), Spain; Grupo de Investigación en Reumatología, Instituto de Investigación Biomédica de A Coruña-Complejo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde, A Coruña, Spain.
| |
Collapse
|
30
|
Yuan X, Zhang J, Xie F, Tan W, Wang S, Huang L, Tao L, Xing Q, Yuan Q. Loss of the Protein Cystathionine β-Synthase During Kidney Injury Promotes Renal Tubulointerstitial Fibrosis. Kidney Blood Press Res 2017; 42:428-443. [PMID: 28750410 DOI: 10.1159/000479295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Renal tubulointerstitial fibrosis (TIF) is the common pathway of progressive chronic kidney disease. Inflammation has been widely accepted as the major driving force of TIF. Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway. CBS is considered to play protective role in liver and pulmonary fibrosis, but its role in TIF remains unknown. The purpose of this study was to investigate the potential role and mechanism of CBS in renal inflammation and TIF. METHODS Renal function, tubulointerstitium damage index score, extracellular matrix (ECM) deposition, and the expressions of collagen I, collagen III, fibronectin, CD3, CD68, IL-1β, TNF-α were measured in sham operation and unilateral ureteral obstruction (UUO) rats. Proteomics and gene array analysis were performed to screen differentially expressed molecules in the development of renal inflammation and TIF in UUO rats. The expression of CBS was detected in patients with obstructive nephropathy and UUO rats. We confirmed the expression of CBS using western blot and real-time PCR in HK-2 cells. Overexpression plasmid and siRNA were transfected specifically to study the possible function of CBS in HK-2 cells. RESULTS Abundant expression of CBS, localized in renal tubular epithelial cells, was revealed in human and rat renal tissue, which correlated negatively with the progression of fibrotic disease. Expression of CBS was dramatically decreased in the obstructed kidney from UUO rats as compared with the sham group (SHM). In addition, knocking down CBS exacerbated extracellular matrix (ECM) deposition, whereas CBS overexpression attenuated TGF-β1-induced ECM deposition in vitro. Inflammatory and chemotactic factors were also increased in CBS knockdown HK-2 cells stimulated by IL-1β. CONCLUSIONS These findings establish CBS as a novel inhibitor in renal fibrosis and as a new therapeutic target in patients with chronic kidney disease.
Collapse
Affiliation(s)
- Xiangning Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Jin Zhang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Feifei Xie
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Wenqing Tan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Shuting Wang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Ling Huang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Lijian Tao
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| | - Qiqi Xing
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Qiongjing Yuan
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Changsha, China
| |
Collapse
|
31
|
Ci L, Yang X, Gu X, Li Q, Guo Y, Zhou Z, Zhang M, Shi J, Yang H, Wang Z, Fei J. Cystathionine γ-Lyase Deficiency Exacerbates CCl 4-Induced Acute Hepatitis and Fibrosis in the Mouse Liver. Antioxid Redox Signal 2017; 27:133-149. [PMID: 27848249 DOI: 10.1089/ars.2016.6773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS The present study examined the role of cystathionine γ-lyase (CSE) in carbon tetrachloride (CCl4)-induced liver damage. RESULTS A CSE gene knock-out and luciferase gene knock-in (KI) mouse model was constructed to study the function of CSE and to trace its expression in living status. CCl4 or lipopolysaccharide markedly downregulated CSE expression in the liver of mice. CSE-deficient mice showed increased serum alanine aminotransferase and aspartate aminotransferase levels, and liver damage after CCl4 challenge, whereas albumin and endogenous hydrogen sulfide (H2S) levels decreased significantly. CSE knockout mice showed increased serum homocysteine levels, upregulation of inflammatory cytokines, and increased autophagy and IκB-α degradation in the liver in response to CCl4 treatment. The increase in pro-inflammatory cytokines, including tumor necrosis factor-alpha in CSE-deficient mice after CCl4 challenge, was accompanied by a significant increase in liver tissue hydroxyproline and α-smooth muscle actin and histopathologic changes in the liver. However, H2S donor pretreatment effectively attenuated most of these imbalances. INNOVATION Here, a CSE knock-out and luciferase KI mouse model was established for the first time to study the transcriptional regulation of CSE expression in real time in a non-invasive manner, providing information on the effects and potential mechanisms of CSE on CCl4-induced liver injury. CONCLUSION CSE deficiency increases pro-inflammatory cytokines in the liver and exacerbates acute hepatitis and liver fibrosis by reducing H2S production from L-cysteine in the liver. The present data suggest the potential of an H2S donor for the treatment of liver diseases such as toxic hepatitis and fibrosis. Antioxid. Redox Signal. 27, 133-149.
Collapse
Affiliation(s)
- Lei Ci
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Xingyu Yang
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Xiaowen Gu
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Qing Li
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China .,2 Shanghai Research Center for Model Organisms , Shanghai, China
| | - Yang Guo
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Ziping Zhou
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Mengjie Zhang
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Jiahao Shi
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Hua Yang
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China
| | - Zhugang Wang
- 2 Shanghai Research Center for Model Organisms , Shanghai, China
| | - Jian Fei
- 1 School of Life Science and Techonology, Tongji University , Shanghai, China .,2 Shanghai Research Center for Model Organisms , Shanghai, China
| |
Collapse
|
32
|
Wang SS, Chen YH, Chen N, Wang LJ, Chen DX, Weng HL, Dooley S, Ding HG. Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death Dis 2017; 8:e2688. [PMID: 28333142 PMCID: PMC5386547 DOI: 10.1038/cddis.2017.18] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide (H2S), in its gaseous form, plays an important role in tumor carcinogenesis. This study investigated the effects of H2S on the cell biological functions of hepatocellular carcinoma (HCC). HCC cell lines, HepG2 and HLE, were treated with NaHS, a donor of H2S, and rapamycin, a classic autophagy inducer, for different lengths of time. Western blotting, immunofluorescence, transmission electron microscopy (TEM), scratch assay, CCK-8 and flow cytometric analysis were carried out to examine the effects of H2S on HCC autophagy, cell behavior and PI3K/Akt/mTOR signaling. Treatment with NaHS upregulated expression of LC3-II and Atg5, two autophagy-related proteins, in HepG2 and HLE cells. TEM revealed increased numbers of intracellular double-membrane vesicles in those cells treated with NaHS. Like rapamycin, NaHS also significantly inhibited expression of p-PI3K, p-Akt and mTOR proteins in HCC cells. Interestingly, the expression of LC3-II was further increased when the cells were treated with NaHS together with rapamycin. In addition, NaHS inhibited HCC cell migration, proliferation and cell division. These findings show that H2S can induce HCC cell apoptosis. The biological function of the gasotransmitter H2S in HCC cells was enhanced by the addition of rapamycin. Hydrogen sulfide influences multiple biological functions of HCC cells through inhibiting the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Shanshan S Wang
- Department of Gastrointestinal and Hepatology, Beijing You' An Hospital Affiliated to Capital Medical University, Beijing, 100069, China
- Cell Biology Laboratory, Beijing Institute of Hepatology, Beijing, 100069, China
| | - Yuhan H Chen
- Department of Gastrointestinal and Hepatology, Beijing You' An Hospital Affiliated to Capital Medical University, Beijing, 100069, China
| | - Ning Chen
- Department of Infections Disease, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Lijun J Wang
- Department of Gastroenterology, Pinggu Hospital, Pinggu District, Beijing 101200,China
| | - Dexi X Chen
- Cell Biology Laboratory, Beijing Institute of Hepatology, Beijing, 100069, China
| | - Honglei L Weng
- Molecular Hepatology, University of Heidelberg, University Medical Center Mannheim, Mannheim 68167, Germany
| | - Steven Dooley
- Molecular Hepatology, University of Heidelberg, University Medical Center Mannheim, Mannheim 68167, Germany
| | - Huiguo G Ding
- Department of Gastrointestinal and Hepatology, Beijing You' An Hospital Affiliated to Capital Medical University, Beijing, 100069, China
| |
Collapse
|
33
|
Bazhanov N, Escaffre O, Freiberg AN, Garofalo RP, Casola A. Broad-Range Antiviral Activity of Hydrogen Sulfide Against Highly Pathogenic RNA Viruses. Sci Rep 2017; 7:41029. [PMID: 28106111 PMCID: PMC5247713 DOI: 10.1038/srep41029] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide is an important endogenous mediator that has been the focus of intense investigation in the past few years, leading to the discovery of its role in vasoactive, cytoprotective and anti-inflammatory responses. Recently, we made a critical observation that H2S also has a protective role in paramyxovirus infection by modulating inflammatory responses and viral replication. In this study we tested the antiviral and anti-inflammatory activity of the H2S slow-releasing donor GYY4137 on enveloped RNA viruses from Ortho-, Filo-, Flavi- and Bunyavirus families, for which there is no FDA-approved vaccine or therapeutic available, with the exception of influenza. We found that GYY4137 significantly reduced replication of all tested viruses. In a model of influenza infection, GYY4137 treatment was associated with decreased expression of viral proteins and mRNA, suggesting inhibition of an early step of replication. The antiviral activity coincided with the decrease of viral-induced pro-inflammatory mediators and viral-induced nuclear translocation of transcription factors from Nuclear Factor (NF)-kB and Interferon Regulatory Factor families. In conclusion, increasing cellular H2S is associated with significant antiviral activity against a broad range of emerging enveloped RNA viruses, and should be further explored as potential therapeutic approach in relevant preclinical models of viral infections.
Collapse
Affiliation(s)
- Nikolay Bazhanov
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Olivier Escaffre
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alexander N Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonella Casola
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.,Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
34
|
Qu K, Liu YM, He XL, Zhang H, Zhang K, Peng J, Tang YL, Yu XH, Zeng JF, Lei JJ, Wei DH, Wang Z. H2S inhibits apo(a) expression and secretion through PKCα/FXR and Akt/HNF4α pathways in HepG2 cells. Cell Biol Int 2016; 40:906-16. [DOI: 10.1002/cbin.10632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/09/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Kai Qu
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
| | - Ya-mi Liu
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
| | - Xing-lan He
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
| | - Hai Zhang
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
| | - Kai Zhang
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
- The Second Hospital Affiliated to University of South China; Hengyang Hunan 421001 PR China
| | - Juan Peng
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
| | - Ya-ling Tang
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
| | - Xiao-hua Yu
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
| | - Jun-fa Zeng
- The Second Hospital Affiliated to University of South China; Hengyang Hunan 421001 PR China
| | - Jian-jun Lei
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
| | - Dang-heng Wei
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
| | - Zuo Wang
- Institute of Cardiovascular Research; Key Laboratory for Atherosclerology of Hunan Province; University of South China; Hengyang Hunan 421001 PR China
| |
Collapse
|
35
|
Chen LY, Chen Q, Cheng YF, Jin HH, Kong DS, Zhang F, Wu L, Shao JJ, Zheng SZ. Diallyl trisulfide attenuates ethanol-induced hepatic steatosis by inhibiting oxidative stress and apoptosis. Biomed Pharmacother 2016; 79:35-43. [DOI: 10.1016/j.biopha.2016.01.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/26/2022] Open
|