1
|
Gao M, Chen S, Kong L, Wang L, Meng X, Xie Z, Xu Z, Mi Y. Genome-wide identification and characterization of CONSTANS-like transcription factors reveal that three CsCOLs regulate the cannabinoid biosynthesis in Cannabis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109942. [PMID: 40318441 DOI: 10.1016/j.plaphy.2025.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/25/2025] [Accepted: 04/18/2025] [Indexed: 05/07/2025]
Abstract
Cannabis (Cannabis sativa L.) has been cultivated as a versatile industrial crop for millennia, serving for food, fiber, and medicine. Cannabinoids are characteristic medicinal active compounds in cannabis, mainly being rich in female inflorescences. CONSTANS-like (COL) transcription factors are primarily involved in the photoperiod process of flowering plants. However, knowledge about their regulatory mechanism for secondary metabolites is limited. Eleven CsCOLs were identified from the cannabis genome based on the phylogenetic relationship and conserved domains in this study. The number of CsCOLs in cannabis showed apparent contraction and their functional divergence. CsCOL1, CsCOL5, and CsCOL7 exhibited high expression in flowers and bracts and their overexpression elevated the content of CBDA and CBGA by promoting the expression of related structural genes involved in cannabinoid biosynthesis. In addition, CsCOL7 was bound to the promoters of four structural genes, including CsAAE, CsOLS, CsPT4, and CsCBDAS, to regulate their gene expression in the manner of repressing the upstream and activating the downstream genes. CsCOL1 positively regulated the expression of CsPT4 and CsCBDAS. In addition, CsCOL5 positively regulated the expression of CsOLS and CsPT4 via binding of their promoters. Here, we explored the potential transcription regulation mechanism of CsCOLs in cannabinoid biosynthesis in C. sativa for the first time, even though a more profound investigation should be conducted in cannabis plants in the future. The findings expanded the knowledge of COLs in regulating secondary metabolites and provided insights into CsCOLs in cannabinoid biosynthesis.
Collapse
Affiliation(s)
- Maolun Gao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Liwei Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Yaolei Mi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Wu J, Zhang M, Gao Y, Li S, Jia R, Zhang L. Genome-wide characterization and expression analysis of the CONSTANS-like gene family of Juglans mandshurica Maxim. PeerJ 2025; 13:e19169. [PMID: 40260195 PMCID: PMC12011014 DOI: 10.7717/peerj.19169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/24/2025] [Indexed: 04/23/2025] Open
Abstract
The zinc-finger proteins encoded by the CONSTANS-like (COLs) gene family in Juglans mandshurica Maxim. play a significant role in regulating photoperiod-dependent flowering time, as well as in various processes such as growth and development. In this study, 15 members of the CONSTANS-like gene family were identified based on the genomic data of Juglans mandshurica. All of these proteins possess an N-terminal zinc-finger B-box domain and a C-terminal CCT domain. Phylogenetic analysis indicates that the JmCOLs proteins can be divided into three subgroups, with gene structures and motif compositions varying among these subgroups. Chromosomal analysis reveals that the 15 JmCOLs genes are distributed across nine chromosomes. The promoters of genes in this family contain stress-related cis-acting elements, hormone-related response elements, and other elements associated with growth and development. Notably, the most prominent elements are the light-responsive elements, suggesting that genes in this family are predominantly expressed in leaves. The expression patterns of JmCOLs genes differ among the members. Specifically, JmCOL5 and JmCOL10 are expressed exclusively in flower buds (p < 0.05). Throughout the 10 stages of flower bud development, the overall expression level of JmCOL4a peaks at approximately 50 to 100 times higher than its lowest point. The expression pattern of JmCOL5, which first reaches its maximum during the physiological differentiation stage of protogynous male flower buds before declining, suggests its potential involvement in the development of heteromorphic and dichogamous flowers.
Collapse
Affiliation(s)
- Jingwen Wu
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| | - Mengmeng Zhang
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| | - Yue Gao
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| | - Shuhan Li
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| | - Ruoxue Jia
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| | - Lijie Zhang
- Breeding and Cultivation of Liaoning Province, Key Laboratory of Forest Tree Genetics, Shenyang, Liaoning, China
- Shenyang Agricultural University, College of Forestry, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Cai K, Li X, Liu D, Bao S, Shi C, Zhu S, Xu K, Sun X, Li X. Function diversification of CONSTANS-like genes in Pyrus and regulatory mechanisms in response to different light quality. BMC PLANT BIOLOGY 2025; 25:303. [PMID: 40059159 PMCID: PMC11892235 DOI: 10.1186/s12870-025-06325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/28/2025] [Indexed: 05/13/2025]
Abstract
Pear (Pyrus L.) is a significant commercial fruit globally, with diverse species exhibiting variations in their flowering periods due to environmental factors. CONSTANS-like (COL) genes, known from previous studies in Arabidopsis, are key regulators of flowering time by sensing photoperiod. However, the evolutionary history and functions of COL genes in different pear species remain unclear. In this study, we identified a total of 79 COL genes in different pear species, including 12 COL genes in Pyrus bretschneideri 'DangshanSuli', 9 in Pyrus ussuriensis × hybrid 'Zhongai 1', 11 in Pyrus communis 'Bartlett', 13 in Pyrus betulifolia, 18 in Pyrus pyrifolia 'Cuiguan', 16 in Pyrus pyrifolia 'Nijisseiki'. Analysis of gene structure, phylogenetic tree, and multiple sequences provided valuable insights into the fundamental understanding of COL genes in pear. The impact of selection pressure on the PbrCOLs in Chinese white pear was assessed using Ka/Ks, revealing that the evolution rate of PbrCOLs was influenced by purification selection factors. The study also revealed different tissue-specific expression patterns of PbrCOLs under varying light quality. Real-time quantitative PCR revealed that under natural light conditions, the expression patterns of PbrCOL2, PbrCOL3, and PbrCOL4 are similar to previous studies on CONSTANS gene in Arabidopsis, with increased expression levels during the day and decreased levels at night. However, PbrCOL1, PbrCOL6, and PbrCOL9 exhibit different expression patterns, with decreased expression levels both during the day and at night. After red light treatment, high expression of PbrCOL3 and PbrCOL4 was observed at night, while the expression patterns of the other four genes did not show significant changes. Following blue light treatment, the expression peaks of PbrCOL1 and PbrCOL6 occurred during the night, showing opposite expression patterns compared to the study in Arabidopsis. The overexpression of PbrCOL3 significantly increase the chlorophyll content in pear seedlings, and its expression significantly affected the expression of other key flowering-related genes. Also, overexpression of PbrCOL3 resulted in a late-flowering phenotype in Arabidopsis. These findings indicate diverse responsive mechanisms and functions of PbrCOL genes on flowering time in pear. In conclusion, this study established a foundation for a deeper understanding of the specific roles of PbrCOLs in regulating the reproductive development of pear, particularly in the context of the photoperiodic flowering process.
Collapse
Affiliation(s)
- Kefan Cai
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xinyi Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Dongrui Liu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Sihan Bao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Cong Shi
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Siting Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xuepeng Sun
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Xiaolong Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
4
|
Yu B, Hu Y, Hou X. More than flowering: CONSTANS plays multifaceted roles in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:425-439. [PMID: 39466065 PMCID: PMC11951404 DOI: 10.1111/jipb.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
Plants have evolved a remarkable ability to sense and respond to changes in photoperiod, allowing adjustments to their growth and development based on seasonal and environmental cues. The floral transition is a pivotal stage in plant growth and development, signifying a shift from vegetative to reproductive growth. CONSTANS (CO), a central photoperiodic response factor conserved in various plants, mediates day-length signals to control the floral transition, although its mechanisms of action vary among plants with different day-length requirements. In addition, recent studies have uncovered roles for CO in organ development and stress responses. These pleiotropic roles in model plants and crops make CO a potentially fruitful target for molecular breeding aimed at modifying crop agronomic traits. This review systematically traces research on CO, from its discovery and functional studies to the exploration of its regulatory mechanisms and newly discovered functions, providing important insight into the roles of CO and laying a foundation for future research.
Collapse
Affiliation(s)
- Bin Yu
- College of Life SciencesXinyang Normal UniversityXinyang464000China
- College of Life SciencesUniversity of the Chinese Academy of SciencesBeijing100190China
| | - Yilong Hu
- College of Life SciencesUniversity of the Chinese Academy of SciencesBeijing100190China
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic ImprovementSouth China Botanical Garden, Chinese Academy of SciencesGuangzhou510650China
| | - Xingliang Hou
- College of Life SciencesUniversity of the Chinese Academy of SciencesBeijing100190China
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic ImprovementSouth China Botanical Garden, Chinese Academy of SciencesGuangzhou510650China
| |
Collapse
|
5
|
Biswal DP, Panigrahi KCS. Photoperiodic control of growth and reproduction in non-flowering plants. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:851-872. [PMID: 39575895 DOI: 10.1093/jxb/erae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/21/2024] [Indexed: 04/27/2025]
Abstract
Photoperiodic responses shape plant fitness to the changing environment and are important regulators of growth, development, and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and the circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy, and flowering are photoperiodically regulated in seed plants (eg. angiosperms). Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic signalling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidence on the conserved and distinct molecular mechanisms across the plant kingdom. In this review, we have attempted to compile and compare photoperiodic responses in the plant kingdom with a special focus on non-angiosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Department of Botany, S.K.C.G. (Autonomous) College, Paralakhemundi, Gajapati, 761200, Odisha, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
6
|
Wu S, Li R, Bu C, Zhu C, Miao C, Zhang Y, Cui J, Jiang Y, Ding X. Photoperiodic Effect on Growth, Photosynthesis, Mineral Elements, and Metabolome of Tomato Seedlings in a Plant Factory. PLANTS (BASEL, SWITZERLAND) 2024; 13:3119. [PMID: 39599328 PMCID: PMC11597524 DOI: 10.3390/plants13223119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
The duration of light exposure is a crucial environmental factor that regulates various physiological processes in plants, with optimal timing differing between species and varieties. To assess the effect of photoperiods on the growth and metabolites of a specific truss tomato cultivar, three photoperiods (12 h, 16 h, and 20 h) were tested in a plant factory. Growth parameters, including plant height, stem diameter, fresh and dry weights of shoots and roots, photosynthetic characteristics, mineral content, and metabolome profiles, were analyzed under these conditions. The results indicated that prolonged light exposure enhanced plant growth, with the highest photosynthesis and chlorophyll content observed under a 20 h photoperiod. However, no significant correlation was observed between the photoperiod and the mineral element content, particularly for macro minerals. Metabolome analysis revealed that different photoperiods influenced the accumulation of metabolites, particularly in the lipid metabolism, amino acid metabolism, and membrane transport pathways. Long periods of light would enhance photosynthesis and metabolism, improving the rapid growth of tomato seedlings. Overall, this study provides a theoretical basis for understanding the responses of truss tomato cultivars to varying photoperiods in plant factories and proposes an optimizable method for accelerating the progress of tomato seedling cultivation.
Collapse
Affiliation(s)
- Shaofang Wu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Rongguang Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chongxing Bu
- Xinjiang Kechuang Tianda Agricultural Engineering Co., Ltd., Changji 831100, China;
| | - Cuifang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Chen Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Yongxue Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Jiawei Cui
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| | - Yuping Jiang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (S.W.); (R.L.); (C.Z.); (C.M.); (Y.Z.); (J.C.)
| |
Collapse
|
7
|
Zhao G, Liu W, Lin G, Wen J. Evaluation of reference genes and expression patterns of CONSTANS-LIKE genes in Tetrastigma hemsleyanum under different photoperiods. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23218. [PMID: 39038159 DOI: 10.1071/fp23218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
CONSTANS-LIKE (COL ) genes are a key signalling molecule that regulates plant growth and development during the photoperiod. Our preliminary experiments showed that the photoperiod greatly influence the formation of Tetrastigma hemsleyanum root tubers. In this study, we examined the oscillation patterns and expression characteristics of COL genes in leaves of T. hemsleyanum under different photoperiod conditions. Six genes were selected as candidate reference genes for further analyses: (1) 18S ribosomal RNA (18S rRNA ); (2) α-tubulin (TUBA ); (3) 30S ribosomal RNA (30S rRNA ); (4) TATA binding protein (TBP ); (5) elongation factor 1α (EF-1α ); and (6) RNA polymerase II (RPII ). The geNorm, NormFinder, and BestKeeper software programs were used to evaluate expression stability. Two ThCOL genes were screened in the T. hemsleyanum transcriptome library, and their expression patterns under different photoperiod conditions were analysed using quantitative reverse transcription PCR. The genes EF-1α , TUBA , and 18S rRNA were used to analyse the expression profiles of CONSTANS genes (ThCOL4 and ThCOL5 ) under different photoperiods. The expression peaks of ThCOL4 and ThCOL5 appeared at different times, demonstrating that their oscillation patterns were influenced by the photoperiod. We speculate that these two ThCOL genes may be involved in different biological processes.
Collapse
Affiliation(s)
- Gang Zhao
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Wenling Liu
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Guowei Lin
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| | - Jing Wen
- Life and Science College, Shangrao Normal University, Shangrao 334000, P. R. China
| |
Collapse
|
8
|
Romero JM, Serrano-Bueno G, Camacho-Fernández C, Vicente MH, Ruiz MT, Pérez-Castiñeira JR, Pérez-Hormaeche J, Nogueira FTS, Valverde F. CONSTANS, a HUB for all seasons: How photoperiod pervades plant physiology regulatory circuits. THE PLANT CELL 2024; 36:2086-2102. [PMID: 38513610 PMCID: PMC11132886 DOI: 10.1093/plcell/koae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
How does a plant detect the changing seasons and make important developmental decisions accordingly? How do they incorporate daylength information into their routine physiological processes? Photoperiodism, or the capacity to measure the daylength, is a crucial aspect of plant development that helps plants determine the best time of the year to make vital decisions, such as flowering. The protein CONSTANS (CO) constitutes the central regulator of this sensing mechanism, not only activating florigen production in the leaves but also participating in many physiological aspects in which seasonality is important. Recent discoveries place CO in the center of a gene network that can determine the length of the day and confer seasonal input to aspects of plant development and physiology as important as senescence, seed size, or circadian rhythms. In this review, we discuss the importance of CO protein structure, function, and evolutionary mechanisms that embryophytes have developed to incorporate annual information into their physiology.
Collapse
Affiliation(s)
- Jose M Romero
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Gloria Serrano-Bueno
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Carolina Camacho-Fernández
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
- Universidad Politécnica de Valencia, Vicerrectorado de Investigación, 46022 Valencia, Spain
| | - Mateus Henrique Vicente
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - M Teresa Ruiz
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - J Román Pérez-Castiñeira
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
- Department of Plant Biochemistry and Molecular Biology, Universidad de Sevilla, 41012 Seville, Spain
| | - Javier Pérez-Hormaeche
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ), University of São Paulo (USP), Piracicaba, 13418-900 São Paulo, Brazil
| | - Federico Valverde
- Plant Development Group - Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41092 Seville, Spain
| |
Collapse
|
9
|
Serrano-Bueno G, de Los Reyes P, Chini A, Ferreras-Garrucho G, Sánchez de Medina-Hernández V, Boter M, Solano R, Valverde F. Regulation of floral senescence in Arabidopsis by coordinated action of CONSTANS and jasmonate signaling. MOLECULAR PLANT 2022; 15:1710-1724. [PMID: 36153646 DOI: 10.1016/j.molp.2022.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
In Arabidopsis, photoperiodic flowering is controlled by the regulatory hub gene CONSTANS (CO), whereas floral organ senescence is regulated by the jasmonates (JAs). Because these processes are chronologically ordered, it remains unknown whether there are common regulators of both processes. In this study, we discovered that CO protein accumulates in Arabidopsis flowers after floral induction, and it displays a diurnal pattern in floral organs different from that in the leaves. We observed that altered CO expression could affect flower senescence and abscission by interfering with JA response, as shown by petal-specific transcriptomic analysis as well as CO overexpression in JA synthesis and signaling mutants. We found that CO has a ZIM (ZINC-FINGER INFLORESCENCE MERISTEM) like domain that mediates its interaction with the JA response repressor JAZ3 (jasmonate ZIM-domain 3). Their interaction inhibits the repressor activity of JAZ3, resulting in activation of downstream transcription factors involved in promoting flower senescence. Furthermore, we showed that CO, JAZ3, and the E3 ubiquitin ligase COI1 (Coronatine Insensitive 1) could form a protein complex in planta, which promotes the degradation of both CO and JAZ3 in the presence of JAs. Taken together, our results indicate that CO, a key regulator of photoperiodic flowering, is also involved in promoting flower senescence and abscission by augmenting JA signaling and response. We propose that coordinated recruitment of photoperiodic and JA signaling pathways could be an efficient way for plants to chronologically order floral processes and ensure the success of offspring production.
Collapse
Affiliation(s)
- Gloria Serrano-Bueno
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| | - Pedro de Los Reyes
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Gabriel Ferreras-Garrucho
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain
| | | | - Marta Boter
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Federico Valverde
- Plant Development Group, Institute for Plant Biochemistry and Photosynthesis, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain.
| |
Collapse
|
10
|
Zhao X, Yu F, Guo Q, Wang Y, Zhang Z, Liu Y. Genome-Wide Identification, Characterization, and Expression Profile Analysis of CONSTANS-like Genes in Woodland Strawberry ( Fragaria vesca). FRONTIERS IN PLANT SCIENCE 2022; 13:931721. [PMID: 35903224 PMCID: PMC9318167 DOI: 10.3389/fpls.2022.931721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
CONSTANS-like (CO-like) gene is one of the most important regulators in the flowering process of the plant, playing a core role in the photoperiodic flowering induction pathway. In this study, we identified 10 distinct CO-like genes (FveCOs) in woodland strawberry (Fragaria vesca). They were classified into three groups with specific gene structure characteristics or protein domains in each group. The effect of selection pressure on the FveCOs in the woodland strawberry was tested by Ka/Ks, and it was shown that the evolution rate of FveCOs was controlled by purification selection factors. Intraspecific synteny analysis of woodland strawberry FveCOs showed that at least one duplication event existed in the gene family members. Collinearity analysis of woodland strawberry genome with genomes of Arabidopsis, rice (Oryza sativa), and apple (Malus × domestica) showed that CO-like genes of F. vesca and Malus × domestica owned higher similarity for their similar genomes compared with those of other two species. The FveCOs showed different tissue-specific expression patterns. Moreover, real-time quantitative PCR results revealed that the expressions of the most FveCOs followed a 24-h rhythm oscillation under both long-day (LD) and short-day (SD) conditions. Further expression analysis showed that the individual expression changing profile of FveCO3 and FveCO5 was opposite to each other under both LD and SD conditions. Moreover, the expression of FveCO3 and FveCO5 was both negatively correlated with the flowering time variation of the woodland strawberry grown under LD and SD conditions, indicating their potential vital roles in the photoperiodic flowering regulation. Further protein interaction network analysis also showed that most of the candidate interaction proteins of FveCO3 and FveCO5 were predicted to be the flowering regulators. Finally, LUC assay indicated that both FveCO3 and FveCO5 could bind to the promoter of FveFT1, the key regulator of flowering regulation in the woodland strawberry, and thus activate its expression. Taken together, this study laid a foundation for understanding the exact roles of FveCOs in the reproductive development regulation of the woodland strawberry, especially in the photoperiodic flowering process.
Collapse
Affiliation(s)
- Xinyong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, Shenyang, China
| | - Fuhai Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- TieLing Academy of Agricultural Science, Tieling, China
| | - Qing Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, Shenyang, China
| | - Yu Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, Shenyang, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, Shenyang, China
| | - Yuexue Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
11
|
Insights into the Major Metabolites Involved in the Underground Floral Differentiation of Erythronium japonicum. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7431151. [PMID: 35601148 PMCID: PMC9122723 DOI: 10.1155/2022/7431151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Background. Erythronium japonicum Decne (Liliaceae) is an early spring ephemeral with an underground initial floral differentiation stage. The flowering mechanism is crucial in ornamental plants due to the associated economic value. Therefore, this study is aimed at exploring the metabolic landscape during floral differentiation, including flower primordium, perianth, stamen, and the pistil differentiation period, in E. japonicum coupled with a conjoint analysis of the metabolome and transcriptome. Using ultraperformance liquid chromatography-tandem mass spectrometry, we identified 586 metabolites from 13 major metabolite classes. Comparative metabolomics between different floral developmental stages revealed several abundant metabolites during the respective phases. Upaccumulation of p-coumaroylputrescine, scopoletin, isorhoifolin, cosmosiin, genistin, and LysoPC 15 : 0 emphasized the significance of these compounds during flower development. Furthermore, previously identified DEGs, viz., EARLY FLOWERING 3, Flowering locus K, PHD finger-containing protein, and zinc finger SWIM domain-containing protein for floral differentiation, depicted a high correlation with lipid, flavonoid, and phenolics accumulation during floral developmental stages. Conclusions. Together, the results improve our interpretation of the underground floral development in E. japonicum.
Collapse
|
12
|
Rawat J, Gupta PK, Pandit S, Prasad R, Pande V. Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech 2021; 11:303. [PMID: 34194896 DOI: 10.1007/s13205-021-02851-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, research initiatives on renewable bioenergy or biofuels have been gaining momentum, not only due to fast depletion of finite reserves of fossil fuels but also because of the associated concerns for the environment and future energy security. In the last few decades, interest is growing concerning microalgae as the third-generation biofuel feedstock. The CO2 fixation ability and conversion of it into value-added compounds, devoid of challenging food and feed crops, make these photosynthetic microorganisms an optimistic producer of biofuel from an environmental point of view. Microalgal-derived fuels are currently being considered as clean, renewable, and promising sustainable biofuel. Therefore, most research targets to obtain strains with the highest lipid productivity and a high growth rate at the lowest cultivation costs. Different methods and strategies to attain higher biomass and lipid accumulation in microalgae have been extensively reported in the previous research, but there are fewer inclusive reports that summarize the conventional methods with the modern techniques for lipid enhancement and biodiesel production from microalgae. Therefore, the current review focuses on the latest techniques and advances in different cultivation conditions, the effect of different abiotic and heavy metal stress, and the role of nanoparticles (NPs) in the stimulation of lipid accumulation in microalgae. Techniques such as genetic engineering, where particular genes associated with lipid metabolism, are modified to boost lipid synthesis within the microalgae, the contribution of "Omics" in metabolic pathway studies. Further, the contribution of CRISPR/Cas9 system technique to the production of microalgae biofuel is also briefly described.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310 India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar 845801 India
| | - Veena Pande
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, Uttarakhand 263136 India
| |
Collapse
|
13
|
Yang T, He Y, Niu S, Yan S, Zhang Y. Identification and characterization of the CONSTANS (CO)/CONSTANS-like (COL) genes related to photoperiodic signaling and flowering in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110653. [PMID: 33218623 DOI: 10.1016/j.plantsci.2020.110653] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 05/15/2023]
Abstract
CO is an important regulator of photoperiodic response and flowering. However, the biological functions of CO and COL genes in tomato (Solanum lycopersicum) remain elusive. Here we identified 13 members in CO/COL family from the tomato genome. They were divided into three groups, and each group had specific characteristics in gene structures and protein domains. The SlCO/SlCOL genes showed different tissue-specific expression patterns and circadian rhythms, indicating their functional diversity in tomato. Moreover, among 13 members, the expression of SlCOL, SlCOL4a, and SlCOL4b was negatively correlated with flowering time variation in ten tomato lines. Through interaction network prediction, we found three FLOWERING LOCUS T (FT) orthologs, SINGLE FLOWER TRUSS (SFT), FT-like (FTL), and FT-like 1 (FTL1), which functioned as candidate interactors of SlCOL, SlCOL4a, and SlCOL4b. Further expression analyses suggested that SFT coincided with the three SlCOL genes in ten tomato lines with varied flowering time. These findings implied that SlCOL, SlCOL4a, and SlCOL4b are potential flowering inducers in tomato, and SFT may act as their downstream target. Thus, our study built a foundation for understanding the precise roles of SlCO/SlCOL family in plant growth and development of tomato, especially in flowering.
Collapse
Affiliation(s)
- Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100 Shaanxi, PR China.
| | - Yu He
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100 Shaanxi, PR China.
| | - Shaobo Niu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100 Shaanxi, PR China.
| | - Siwei Yan
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100 Shaanxi, PR China.
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, PR China; Shaanxi Engineering Research Center for Vegetables, Northwest A&F University, Yangling, 712100 Shaanxi, PR China.
| |
Collapse
|
14
|
Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Fact 2019; 18:178. [PMID: 31638987 PMCID: PMC6805540 DOI: 10.1186/s12934-019-1228-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/04/2019] [Indexed: 11/20/2022] Open
Abstract
The use of fossil fuels has been strongly related to critical problems currently affecting society, such as: global warming, global greenhouse effects and pollution. These problems have affected the homeostasis of living organisms worldwide at an alarming rate. Due to this, it is imperative to look for alternatives to the use of fossil fuels and one of the relevant substitutes are biofuels. There are different types of biofuels (categories and generations) that have been previously explored, but recently, the use of microalgae has been strongly considered for the production of biofuels since they present a series of advantages over other biofuel production sources: (a) they don’t need arable land to grow and therefore do not compete with food crops (like biofuels produced from corn, sugar cane and other plants) and; (b) they exhibit rapid biomass production containing high oil contents, at least 15 to 20 times higher than land based oleaginous crops. Hence, these unicellular photosynthetic microorganisms have received great attention from researches to use them in the large-scale production of biofuels. However, one disadvantage of using microalgae is the high economic cost due to the low-yields of lipid content in the microalgae biomass. Thus, development of different methods to enhance microalgae biomass, as well as lipid content in the microalgae cells, would lead to the development of a sustainable low-cost process to produce biofuels. Within the last 10 years, many studies have reported different methods and strategies to induce lipid production to obtain higher lipid accumulation in the biomass of microalgae cells; however, there is not a comprehensive review in the literature that highlights, compares and discusses these strategies. Here, we review these strategies which include modulating light intensity in cultures, controlling and varying CO2 levels and temperature, inducing nutrient starvation in the culture, the implementation of stress by incorporating heavy metal or inducing a high salinity condition, and the use of metabolic and genetic engineering techniques coupled with nanotechnology.
Collapse
|
15
|
de los Reyes P, Romero-Campero FJ, Ruiz MT, Romero JM, Valverde F. Evolution of Daily Gene Co-expression Patterns from Algae to Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1217. [PMID: 28751903 PMCID: PMC5508029 DOI: 10.3389/fpls.2017.01217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/28/2017] [Indexed: 05/04/2023]
Abstract
Daily rhythms play a key role in transcriptome regulation in plants and microalgae orchestrating responses that, among other processes, anticipate light transitions that are essential for their metabolism and development. The recent accumulation of genome-wide transcriptomic data generated under alternating light:dark periods from plants and microalgae has made possible integrative and comparative analysis that could contribute to shed light on the evolution of daily rhythms in the green lineage. In this work, RNA-seq and microarray data generated over 24 h periods in different light regimes from the eudicot Arabidopsis thaliana and the microalgae Chlamydomonas reinhardtii and Ostreococcus tauri have been integrated and analyzed using gene co-expression networks. This analysis revealed a reduction in the size of the daily rhythmic transcriptome from around 90% in Ostreococcus, being heavily influenced by light transitions, to around 40% in Arabidopsis, where a certain independence from light transitions can be observed. A novel Multiple Bidirectional Best Hit (MBBH) algorithm was applied to associate single genes with a family of potential orthologues from evolutionary distant species. Gene duplication, amplification and divergence of rhythmic expression profiles seems to have played a central role in the evolution of gene families in the green lineage such as Pseudo Response Regulators (PRRs), CONSTANS-Likes (COLs), and DNA-binding with One Finger (DOFs). Gene clustering and functional enrichment have been used to identify groups of genes with similar rhythmic gene expression patterns. The comparison of gene clusters between species based on potential orthologous relationships has unveiled a low to moderate level of conservation of daily rhythmic expression patterns. However, a strikingly high conservation was found for the gene clusters exhibiting their highest and/or lowest expression value during the light transitions.
Collapse
Affiliation(s)
- Pedro de los Reyes
- Plant Development Unit, Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSeville, Spain
| | - Francisco J. Romero-Campero
- Plant Development Unit, Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSeville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de SevillaSeville, Spain
| | - M. Teresa Ruiz
- Plant Development Unit, Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSeville, Spain
| | - José M. Romero
- Plant Development Unit, Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSeville, Spain
| | - Federico Valverde
- Plant Development Unit, Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSeville, Spain
- *Correspondence: Federico Valverde
| |
Collapse
|