1
|
Froom ZSCS, Callaghan NI, Davenport Huyer L. Cellular crosstalk in fibrosis: insights into macrophage and fibroblast dynamics. J Biol Chem 2025:110203. [PMID: 40334985 DOI: 10.1016/j.jbc.2025.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
Pathological fibrosis, the excessive deposition of extracellular matrix and tissue stiffening that causes progressive organ dysfunction, underlies diverse chronic diseases. The fibrotic microenvironment is driven by the dynamic microenvironmental interaction between various cell types; macrophages and fibroblasts play central roles in fibrotic disease initiation, maintenance, and progression. Macrophage functional plasticity to microenvironmental stimuli modulates fibroblast functionality by releasing pro-inflammatory cytokines, growth factors, and matrix remodeling enzymes that promote fibroblast proliferation, activation, and differentiation into myofibroblasts. Activated fibroblasts and myofibroblasts serve as the fibrotic effector cells, secreting extracellular matrix components and initiating microenvironmental contracture. Fibroblasts also modulate macrophage function through the release of their own pro-inflammatory cytokines and growth factors, creating bidirectional crosstalk that reinforces the chronic fibrotic cycle. The intricate interplay between macrophages and fibroblasts, including their secretomes and signaling interactions, leads to tissue damage and pathological loss of tissue function. In this review, we examine macrophage-fibroblast reciprocal dynamic interactions in pathological fibrotic conditions. We discuss the specific lineages and functionality of macrophages and fibroblasts implicated in fibrotic progression, with focus on their signal transduction pathways and secretory signalling that enables their pro-fibrotic behaviour. We then finish with a set of recommendations for future experimentation with the goal of developing a set of potential targets for anti-fibrotic therapeutic candidates. Understanding the cellular interactions between macrophages and fibroblasts provides valuable insights into potential therapeutic strategies to mitigate fibrotic disease progression.
Collapse
Affiliation(s)
- Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Neal I Callaghan
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada; Nova Scotia Health, Halifax, NS B3S 0H6, Canada.
| |
Collapse
|
2
|
Goleij P, Amini A, Tabari MAK, Hadipour M, Rezaee A, Daglia M, Aschner M, Sanaye PM, Kumar AP, Khan H. Unraveling the role of the IL-20 cytokine family in neurodegenerative diseases: Mechanisms and therapeutic insights. Int Immunopharmacol 2025; 152:114399. [PMID: 40068518 DOI: 10.1016/j.intimp.2025.114399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/03/2025] [Accepted: 02/27/2025] [Indexed: 03/24/2025]
Abstract
The IL-20 cytokine family, comprising IL-19, IL-20, IL-22, IL-24, and IL-26, has emerged as a critical player in the pathogenesis of neurodegenerative diseases due to its multiple roles in inflammation, tissue repair, and immune modulation. These cytokines signal through IL-20 receptor complexes (IL-20RA/IL-20RB and IL-22RA1/IL-20RB), triggering diverse immune processes. Recent evidence highlights their significant contributions to neuroinflammation and neurodegeneration in central nervous system disorders. IL-20 family cytokines impact microglial activation, which, when dysregulated, exacerbates neuronal damage. Specifically, IL-20 and IL-24 are linked to elevated pro-inflammatory markers in glial cells, promoting neurodegeneration. In contrast, IL-22 exhibits dual functionality, exerting protective and pathological roles depending on the inflammatory milieu. Key mechanisms involve the regulation of blood-brain barrier integrity, oxidative stress, and autophagy. IL-22 and IL-24 also protect neurons by enhancing antioxidant defenses and maintaining epithelial barrier function, while their dysregulation contributes to blood-brain barrier disruption and protein aggregate accumulation, hallmark features of Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Elevated IL-22 levels in Alzheimer's disease and IL-19's regulatory role in multiple sclerosis suggest they may serve as potential biomarkers and therapeutic targets. IL-26's role in amplifying inflammatory cascades further underscores the complexity of this cytokine family in neurodegenerative pathology. Therapeutically, strategies targeting IL-20 cytokines include monoclonal antibodies, receptor modulation, and recombinant cytokine administration. These approaches aim to mitigate neuroinflammation, restore immune balance, and protect neuronal integrity. This review underscores the IL-20 family's emerging relevance in neurodegenerative diseases, highlighting its potential for novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Alireza Amini
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran 4815733971, Iran
| | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas 7919693116, Iran
| | - Aryan Rezaee
- Medical Doctor, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Pantea Majma Sanaye
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Department of Pharmacy, Korea University, Sejong, 20019, South Korea.
| |
Collapse
|
3
|
Fonseka O, Gare SR, Chen X, Zhang J, Alatawi NH, Ross C, Liu W. Molecular Mechanisms Underlying Heart Failure and Their Therapeutic Potential. Cells 2025; 14:324. [PMID: 40072053 PMCID: PMC11899429 DOI: 10.3390/cells14050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
Heart failure (HF) is a prominent fatal cardiovascular disorder afflicting 3.4% of the adult population despite the advancement of treatment options. Therefore, a better understanding of the pathogenesis of HF is essential for exploring novel therapeutic strategies. Hypertrophy and fibrosis are significant characteristics of pathological cardiac remodeling, contributing to HF. The mechanisms involved in the development of cardiac remodeling and consequent HF are multifactorial, and in this review, the key underlying mechanisms are discussed. These have been divided into the following categories thusly: (i) mitochondrial dysfunction, including defective dynamics, energy production, and oxidative stress; (ii) cardiac lipotoxicity; (iii) maladaptive endoplasmic reticulum (ER) stress; (iv) impaired autophagy; (v) cardiac inflammatory responses; (vi) programmed cell death, including apoptosis, pyroptosis, and ferroptosis; (vii) endothelial dysfunction; and (viii) defective cardiac contractility. Preclinical data suggest that there is merit in targeting the identified pathways; however, their clinical implications and outcomes regarding treating HF need further investigation in the future. Herein, we introduce the molecular mechanisms pivotal in the onset and progression of HF, as well as compounds targeting the related mechanisms and their therapeutic potential in preventing or rescuing HF. This, therefore, offers an avenue for the design and discovery of novel therapies for the treatment of HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (O.F.); (S.R.G.); (X.C.); (J.Z.); (N.H.A.)
| |
Collapse
|
4
|
Alekseeva LA, Sen’kova AV, Sounbuli K, Savin IA, Zenkova MA, Mironova NL. Pulmozyme Ameliorates LPS-Induced Lung Fibrosis but Provokes Residual Inflammation by Modulating Cell-Free DNA Composition and Controlling Neutrophil Phenotype. Biomolecules 2025; 15:298. [PMID: 40001601 PMCID: PMC11853346 DOI: 10.3390/biom15020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Pulmonary fibrosis, a chronic progressive lung disorder, can be the result of previous acute inflammation-associated lung injury and involves a wide variety of inflammatory cells, causing the deposition of extracellular matrix (ECM) components in the lungs. Such lung injury is often associated with excessive neutrophil function and the formation of DNA networks in the lungs, which are also some of the most important factors for fibrosis development. Acute lung injury with subsequent fibrosis was initiated in C57Bl/6 mice by a single intranasal (i.n.) administration of LPS. Starting from day 14, human recombinant DNase I in the form of Pulmozyme for topical administration was instilled i.n. twice a week at a dose of 50 U/mouse. Cell-free DNA (cfDNA), DNase activity, and cell content were analyzed in blood serum and bronchoalveolar lavage fluid (BALF). Inflammatory and fibrotic changes in lung tissue were evaluated by histological analysis. The gene expression profile in spleen-derived neutrophils was analyzed by RT-qPCR. We demonstrated that Pulmozyme significantly reduced connective tissue expansion in the lungs. However, despite the reliable antifibrotic effect, complete resolution of inflammation in the respiratory system of mice treated with Pulmozyme was not achieved, possibly due to enhanced granulocyte recruitment and changes in the nuclear/mitochondrial cfDNA balance in the BALF. Moreover, Pulmozyme introduction caused the enrichment of the spleen-derived neutrophil population by those with an unusual phenotype, combining pro-inflammatory and anti-inflammatory features, which can also maintain lung inflammation. Pulmozyme can be considered a promising drug for lung fibrosis management; however, the therapy may be accompanied by residual inflammation.
Collapse
Affiliation(s)
- Ludmila A. Alekseeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (L.A.A.); (A.V.S.); (K.S.); (I.A.S.); (M.A.Z.)
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (L.A.A.); (A.V.S.); (K.S.); (I.A.S.); (M.A.Z.)
| | - Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (L.A.A.); (A.V.S.); (K.S.); (I.A.S.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, Pirogova St., 1, Novosibirsk 630090, Russia
| | - Innokenty A. Savin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (L.A.A.); (A.V.S.); (K.S.); (I.A.S.); (M.A.Z.)
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (L.A.A.); (A.V.S.); (K.S.); (I.A.S.); (M.A.Z.)
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), Lavrentiev Ave., 8, Novosibirsk 630090, Russia; (L.A.A.); (A.V.S.); (K.S.); (I.A.S.); (M.A.Z.)
| |
Collapse
|
5
|
Lu W, Teoh A, Waters M, Haug G, Shakeel I, Hassan I, Shahzad AM, Callerfelt AKL, Piccari L, Sohal SS. Pathology of idiopathic pulmonary fibrosis with particular focus on vascular endothelium and epithelial injury and their therapeutic potential. Pharmacol Ther 2025; 265:108757. [PMID: 39586361 DOI: 10.1016/j.pharmthera.2024.108757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/15/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) remains a challenging disease with no drugs available to change the trajectory. It is a condition associated with excessive and highly progressive scarring of the lungs with remodelling and extracellular matrix deposition. It is a highly "destructive" disease of the lungs. The diagnosis of IPF is challenging due to continuous evolution of the disease, which also makes early interventions very difficult. The role of vascular endothelial cells has not been explored in IPF in great detail. We do not know much about their contribution to arterial or vascular remodelling, extracellular matrix changes and contribution to pulmonary hypertension and lung fibrosis in general. Endothelial to mesenchymal transition appears to be central to such changes in IPF. Similarly, for epithelial changes, the process of epithelial to mesenchymal transition seem to be the key both for airway epithelial cells and type-2 pneumocytes. We focus here on endothelial and epithelial cell changes and its contributions to IPF. In this review we revisit the pathology of IPF, mechanistic signalling pathways, clinical definition, update on diagnosis and new advances made in treatment of this disease. We discuss ongoing clinical trials with mode of action. A multidisciplinary collaborative approach is needed to understand this treacherous disease for new therapeutic targets.
Collapse
Affiliation(s)
- Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Alan Teoh
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Maddison Waters
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Department of Respiratory Medicine, Launceston General Hospital, Launceston, Tasmania 7250, Australia
| | - Ilma Shakeel
- Centre For Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Imtaiyaz Hassan
- Centre For Interdisciplinary Research In Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; Medical School, Oceania University of Medicine, Apia, Samoa
| | | | - Lucilla Piccari
- Department of Pulmonology, Hospital del Mar, Barcelona, Spain
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Newnham, Tasmania 7248, Australia; National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia.
| |
Collapse
|
6
|
Jiang C, Wang W, Chen YL, Chen JH, Zhang ZW, Li J, Yang ZC, Li XC. Macrophage polarization and macrophage-related factor expression in hypertrophy of the ligamentum flavum. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:4476-4487. [PMID: 39375228 DOI: 10.1007/s00586-024-08513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/03/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE Owing to the unknow types of infiltrating macrophages and the corresponded factors, we aimed to investigate the specific types of infiltrating macrophages involved in HLF and the expression of macrophage-related factors. METHODS The ligamentum flavum was obtained from patients with lumbar spinal stenosis (HLF group; n = 15) and lumbar disc herniation (non-hypertrophic ligamentum flavum [NLF] group; n = 15). Ligamentum flavum specimens were paraffin embedded, followed by histological and immunohistochemical staining to identify the macrophage type and expression of macrophage-related factors. RESULTS The HLF group demonstrated CD206 marker expression, while the NLF group did not (P < 0.0001; n = 11). CD68 marker was expressed in both groups (P > 0.05; n = 11). CCR7 was not expressed in either group. The expression levels of the extracellular matrix proteins aggrecan (Agg), type I collagen (Coll1), and type II collagen (Coll2) were higher in the HLF group than in the NLF group (P < 0.0001; n = 11). The aging markers p21, p16, and p53 were expressed in the HLF group, but not in the NLF group (P < 0.0001; n = 11). The expression levels of the inflammatory factors TNF-α and IL-1β were higher in the HLF group than in the NLF group (P < 0.0001; n = 11). Similarly, the expression level of the fibrosis factor TGF-β1 was higher in the HLF group than in the NLF group (P < 0.0001; n = 11). CONCLUSIONS The infiltration of M2 macrophages may be involved in HLF, while involvement of M1 macrophages may only occur early in inflammation. The expression of extracellular matrix proteins and macrophage-related factors was increased. Aging may also be associated with HLF.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou, 525200, Guangdong, China
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou, 525200, China
| | - Wei Wang
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Yong-Long Chen
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Jiong-Hui Chen
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Zhen-Wu Zhang
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Jun Li
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Zhi-Chao Yang
- Graduate School of Guangdong Medical University, No. 2, Wenming East Road, Zhanjiang, 524023, Guangdong, China
| | - Xiao-Chuan Li
- Department of Orthopedic Surgery, Gaozhou People's Hospital, No.89 XiGuan Rd, Gaozhou, 525200, Guangdong, China.
- Central Laboratory of Orthopedics, Gaozhou People's Hospital, XiGuan Rd, Gaozhou, 525200, China.
| |
Collapse
|
7
|
Tan ESJ, Choi H, DeFilippi CR, Oon YY, Chan SP, Gong L, Lunaria JB, Liew OW, Chong JPC, Tay ELW, Soo WM, Yip JWL, Yong QW, Lee EM, Daniel Yeo PS, Ding ZP, Tang HC, Ewe SH, Chin CWL, Chai SC, Goh PP, Ling LF, Ong HY, Richards AM, Ling LH. Circulating Plasma Proteins in Aortic Stenosis: Associations With Severity, Myocardial Response, and Clinical Outcomes. J Am Heart Assoc 2024; 13:e035486. [PMID: 39344657 DOI: 10.1161/jaha.124.035486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Echocardiographic indexes of aortic stenosis may not comprehensively reflect disease morbidity. Plasma proteomic profiling may add prognostic value in these patients. METHODS AND RESULTS Proximity extension assays (Olink) of 183 circulating cardiovascular and inflammatory proteins were performed in a prospective follow-up study of 122 asymptomatic/minimally symptomatic patients (mean±SD age, 69.1±10.9 years; 61% men) with moderate to severe aortic stenosis and preserved left ventricular ejection fraction. Protein signatures of higher-risk echocardiographic subgroups were determined. Associations of proteins with the primary composite outcome (heart failure hospitalization, progression to New York Heart Association class III-IV, or all-cause mortality) were evaluated using competing risk analyses, with aortic valve replacement being the competing risk. Network analysis unveiled mutually exclusive communities of proteins and echocardiographic parameters, connected only through NT-proBNP (N-terminal pro-B-type natriuretic peptide). Members of the tumor necrosis factor receptor superfamily (TNFRSF1A, TNFRSF1B, and TNFRSF14), and trefoil factor-3 were major hub proteins among the circulating biomarkers. Left ventricular global longitudinal strain >-15% was associated with higher levels of proteins, primarily of inflammation and immune regulation, whereas aortic valve area <1 cm2, E/e' >15, and left atrial reservoir strain <20% were associated with higher levels of NT-proBNP. Of 14 proteins associated with the primary end point, phospholipase-C, C-X-C motif chemokine-9, and interleukin-10 receptor subunit β demonstrated the highest hazard ratios after adjusting for clinical factors (q<0.05). CONCLUSIONS Plasma proteins involved in inflammation and immune regulation were differentially expressed in patients with aortic stenosis with reduced left ventricular global longitudinal strain, and associated with adverse clinical outcomes. Their incorporation into aortic stenosis risk stratification warrants further assessment.
Collapse
Affiliation(s)
- Eugene S J Tan
- National University Heart Centre Singapore Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Hyungwon Choi
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Cardiovascular Research Institute, National University Health System Singapore Singapore
| | | | - Yen-Yee Oon
- Sarawak Heart Centre Kota Samarahan Sarawak Malaysia
| | - Siew-Pang Chan
- National University Heart Centre Singapore Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Lingli Gong
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Josephine B Lunaria
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | - Oi-Wah Liew
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Cardiovascular Research Institute, National University Health System Singapore Singapore
| | - Jenny Pek-Ching Chong
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Cardiovascular Research Institute, National University Health System Singapore Singapore
| | - Edgar Lik-Wui Tay
- National University Heart Centre Singapore Singapore
- Asian Heart and Vascular Centre Singapore Singapore
| | - Wern-Miin Soo
- National University Heart Centre Singapore Singapore
| | - James Wei-Luen Yip
- National University Heart Centre Singapore Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
| | | | | | - Poh Shuan Daniel Yeo
- Tan Tock Seng Hospital Singapore Singapore
- Apex Heart Clinic Gleneagles Hospital Singapore Singapore
| | | | | | | | | | | | | | | | | | - A Mark Richards
- National University Heart Centre Singapore Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Cardiovascular Research Institute, National University Health System Singapore Singapore
- Christchurch Heart Institute, University of Otago Christchurch New Zealand
| | - Lieng-Hsi Ling
- National University Heart Centre Singapore Singapore
- Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Cardiovascular Research Institute, National University Health System Singapore Singapore
| |
Collapse
|
8
|
Li Y, Yin H, Yuan H, Wang E, Wang C, Li H, Geng X, Zhang Y, Bai J. IL-10 deficiency aggravates cell senescence and accelerates BLM-induced pulmonary fibrosis in aged mice via PTEN/AKT/ERK pathway. BMC Pulm Med 2024; 24:443. [PMID: 39261827 PMCID: PMC11389321 DOI: 10.1186/s12890-024-03260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an aging-related progressive lung disorder. The aged lung undergoes functional and structural changes termed immunosenescence and inflammaging, which facilitate the occurrence of fibrosis. Interleukin-10 (IL-10) is a potent anti-inflammatory and immunoregulatory cytokine, yet it remains unclear how IL-10 deficiency-induced immunosenescence participates in the development of PF. METHODS Firstly we evaluated the susceptibility to fibrosis and IL-10 expression in aged mice. Then 13-month-old wild-type (WT) and IL-10 knockout (KO) mice were subjected to bleomycin(BLM) and analyzed senescence-related markers by PCR, western blot and immunohistochemistry staining of p16, p21, p53, as well as DHE and SA-β-gal staining. We further compared 18-month-old WT mice with 13-month-old IL-10KO mice to assess aging-associated cell senescence and inflamation infiltration in both lung and BALF. Moreover, proliferation and apoptosis of alveolar type 2 cells(AT2) were evaluated by FCM, immunofluorescence, TUNEL staining, and TEM analysis. Recombinant IL-10 (rIL-10) was also administered intratracheally to evaluate its therapeutic potential and related mechanism. For the in vitro experiments, 10-week-old naïve pramily lung fibroblasts(PLFs) were treated with the culture medium of 13-month PLFs derived from WT, IL-10KO, or IL-10KO + rIL-10 respectively, and examined the secretion of senescence-associated secretory phenotype (SASP) factors and related pathways. RESULTS The aged mice displayed increased susceptibility to fibrosis and decreased IL-10 expression. The 13-month-old IL-10KO mice exhibited significant exacerbation of cell senescence compared to their contemporary WT mice, and even more severe epithelial-mesenchymal transition (EMT) than that of 18 month WT mice. These IL-10 deficient mice showed heightened inflammatory responses and accelerated PF progression. Intratracheal administration of rIL-10 reduced lung CD45 + cell infiltration by 15%, including a 6% reduction in granulocytes and a 10% reduction in macrophages, and increased the proportion of AT2 cells by approximately 8%. Additionally, rIL-10 significantly decreased α-SMA and collagen deposition, and reduced the expression of senescence proteins p16 and p21 by 50% in these mice. In vitro analysis revealed that conditioned media from IL-10 deficient mice promoted SASP secretion and upregulated senescence genes in naïve lung fibroblasts, which was mitigated by rIL-10 treatment. Mechanistically, rIL-10 inhibited TGF-β-Smad2/3 and PTEN/PI3K/AKT/ERK pathways, thereby suppressing senescence and fibrosis-related proteins. CONCLUSIONS IL-10 deficiency in aged mice leads to accelerated cell senescence and exacerbated fibrosis, with IL-10KO-PLFs displaying increased SASP secretion. Recombinant IL-10 treatment effectively mitigates these effects, suggesting its potential as a therapeutic target for PF.
Collapse
Affiliation(s)
- Yinzhen Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Yin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, China
| | - Huixiao Yuan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Chunmei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongqiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Ying Zhang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
9
|
Mao Y, Zha Y, Zang Y, Gao Y, Sun J, Liu Y, Wang Z, Wei Z, Wang M, Yang Y. Isorhamnetin improves diabetes-induced erectile dysfunction in rats through activation of the PI3K/AKT/eNOS signaling pathway. Biomed Pharmacother 2024; 177:116987. [PMID: 38897159 DOI: 10.1016/j.biopha.2024.116987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/01/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Erectile dysfunction is a complex and common complication of diabetes mellitus, which lacks an effective treatment. The repairing role of vascular endothelium is the current research hotspot of diabetic mellitus erectile dysfunction (DMED), and the activation of PI3K/AKT/eNOS pathway positively affects the repair of vascular endothelium. The herbal extract isorhamnetin has significant vasoprotective effects and has great potential in treating DMED. This study aimed to clarify whether isorhamnetin has an ameliorative effect on DMED and to investigate the modulation of the PI3K/AKT/eNOS signaling pathway by isorhamnetin to discover its potential mechanism of action. In vivo experiments were performed using a streptozotocin-induced diabetic rat model, and efficacy was assessed after 4 weeks of isorhamnetin gavage administration at 10 mg/kg or 20 mg/kg. Erectile function in rats was assessed by maximum intracavernous pressure/mean arterial pressure (ICPmax/MAP), and changes in corpus cavernosum (CC) fibrosis, inflammation levels, oxidative stress levels, and apoptosis were assessed by molecular biology techniques. In vitro experiments using high glucose-induced corpus cavernosum endothelial cells were performed to further validate the anti-apoptotic effect of isorhamnetin and its regulation of the PI3K/AKT/eNOS pathway. The findings demonstrated that isorhamnetin enhanced erectile function, decreased collagen content, and increased smooth muscle content in the CC of diabetic rats. In addition, isorhamnetin decreased the serum levels of pro-inflammatory factors IL-6, TNF-α, and IL-1β, increased the levels of anti-inflammatory factors IL-10 and IL-4, increased the activities of SOD, GPx, and CAT as well as the levels of NO, and decreased the levels of MDA in corpus cavernosum tissues. Isorhamnetin also increased the content of CD31 in CC tissues of diabetic rats, activated the PI3K/AKT/eNOS signaling pathway, and inhibited apoptosis. In conclusion, isorhamnetin exerts a protective effect on erectile function in diabetic rats by reducing the inflammatory response, attenuating the level of oxidative stress and CC fibrosis, improving the endothelial function and inhibiting apoptosis. The mechanism underlying these effects may be linked to the activation of the PI3K/AKT/eNOS pathway.
Collapse
Affiliation(s)
- Yinhui Mao
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yarong Zha
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yueyue Zang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yanan Gao
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Juntao Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Liu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhuo Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China
| | - Mingxing Wang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Yong Yang
- Changchun University of Chinese Medicine, Changchun 130117, China; Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| |
Collapse
|
10
|
Ma D, Wei J, He H, Yang W, Mo Z, Wang F. A case of type 2 diabetes mellitus complicated with IgG4-related retroperitoneal fibrosis and a literature review. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1073-1081. [PMID: 39788495 PMCID: PMC11495986 DOI: 10.11817/j.issn.1672-7347.2024.240421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 01/12/2025]
Abstract
IgG4-related disease (IgG4-RD) is an immune-mediated fibroinflammatory disorder that can affect multiple organs throughout the body, predominantly in middle-aged and elderly males, with a male-to-female ratio of 2꞉1 to 3꞉1. IgG4-related retroperitoneal fibrosis (IgG4-RPF), a rare subtype of IgG4-RD, has an unclear etiology, and its comorbidity with type 2 diabetes mellitus is also uncommon. A lack of awareness of this condition in clinical practice can easily lead to misdiagnosis. On July 14, 2016, the Third Xiangya Hospital of Central South University admitted a patient with type 2 diabetes mellitus complicated by IgG4-RPF. Following comprehensive treatment, including blood glucose and blood pressure control, kidney protection, circulation improvement, and the use of prednisone, the patient's condition significantly improved. The retroperitoneal fibrotic mass decreased in size, renal function improved, and serum IgG4 levels decreased. After 8 years of follow-up, the condition did not recur. Analyzing this case in conjunction with a literature review suggests that the development of IgG4-RPF in diabetic patients may be related to chronic inflammation from metabolic syndrome and atherosclerotic plaques associated with long-standing diabetes. This provides valuable clinical ideas for clinicians in diagnosing and treating this rare comorbidity.
Collapse
Affiliation(s)
- Dan Ma
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Junlin Wei
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Honghui He
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenjun Yang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhaohui Mo
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Fang Wang
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
11
|
Cheng S, Jiang D, Lan X, Liu K, Fan C. Voltage-gated potassium channel 1.3: A promising molecular target in multiple disease therapy. Biomed Pharmacother 2024; 175:116651. [PMID: 38692062 DOI: 10.1016/j.biopha.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.
Collapse
Affiliation(s)
- Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Wang C, Oishi K, Kobayashi T, Fujii K, Horii M, Fushida N, Kitano T, Maeda S, Ikawa Y, Komuro A, Hamaguchi Y, Matsushita T. The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis. Int J Mol Sci 2024; 25:6133. [PMID: 38892317 PMCID: PMC11172923 DOI: 10.3390/ijms25116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The bleomycin-induced scleroderma model is a well-established and dependable method for creating a mouse model of SSc (systemic sclerosis). In the field of skin connective tissue diseases, increasing evidence from clinical and animal experiments suggests that TLRs (Toll-like receptors) play an important role in several diseases. This study aimed to determine the role of TLR7 (Toll-like receptor 7) and TLR9 (Toll-like receptor 9) in the mechanisms of immune abnormalities and fibrosis in SSc. This study used TLR7-KO mice (TLR7-knockout mice with a balb/c background) and TLR9-KO mice (TLR9-knockout mice with a balb/c background) as well as WT mice (wild-type balb/c mice). All three kinds of mice were induced by BLM (bleomycin) in a scleroderma model as the experimental group; meanwhile, WT mice treated with PBS (phosphate-buffered saline) were used as the control group. We analyzed the fibrotic phenotype and the immunological abnormality phenotype of TLR7-deficient and TLR9-deficient mice in the SSc disease model using flow cytometry, RT-PCR (reverse transcription-polymerase chain reaction), a histological examination, and IHC (immunohistochemical staining). In a mouse model of SSc disease, the deletion of TLR7 attenuated skin and lung fibrosis, while the deletion of TLR9 exacerbated skin and lung fibrosis. The deletion of TLR7 resulted in a relative decrease in the infiltration and expression of various pro-inflammatory and fibrotic cells and cytokines in the skin. On the other hand, the deletion of TLR9 resulted in a relative increase in the infiltration and expression of various pro-inflammatory and cytokine-inhibiting cells and cytokines in the skin. Under the influence of pDCs (plasmacytoid dendritic cells), the balances of Beff/Breg (IL-6 + CD19 + B cell/IL-10 + CD19 + B cell), Th17/Treg (IL-17A + CD4 + T cell/Foxp3 + CD25 + CD4 + T cell), M1/M2 (CD86 + macrophage/CD206 + macrophage), and Th1/Th2 (TNFα + CD3 + CD4 + T cell/IL-4 + CD3 + CD4 + T cell) were biased towards the suppression of inflammation and fibrosis as a result of the TLR7 deletion. Comparatively, the balance was biased towards promoting inflammation and fibrosis due to the TLR9 deletion. In the SSc model, TLR7 promoted inflammation and fibrosis progression, while TLR9 played a protective role. These results suggest that TLR7 and TLR9 play opposite roles in triggering SSc to produce immune system abnormalities and skin fibrosis.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Kyosuke Oishi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tadahiro Kobayashi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Ko Fujii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Motoki Horii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Natsumi Fushida
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tasuku Kitano
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Shintaro Maeda
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Yuichi Ikawa
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Akito Komuro
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| |
Collapse
|
13
|
Huang P, Liu Q, Zhang T, Yang J. Gut microbiota influence acute pancreatitis through inflammatory proteins: a Mendelian randomization analysis. Front Cell Infect Microbiol 2024; 14:1380998. [PMID: 38881734 PMCID: PMC11176513 DOI: 10.3389/fcimb.2024.1380998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Background/Aim We employed Mendelian randomization (MR) analysis to investigate the causal relationship between the gut microbiota, acute pancreatitis, and potential inflammatory proteins. Methods The data for gut microbiota, acute pancreatitis, and inflammatory proteins are sourced from public databases. We conducted a bidirectional MR analysis to explore the causal relationship between gut microbiota and acute pancreatitis, and employed a two-step MR analysis to identify potential mediating inflammatory proteins. IVW is the primary analysis method, heterogeneity, pleiotropy, and sensitivity analyses were also conducted simultaneously. Results We identified five bacterial genera associated with the risk of acute pancreatitis, namely genus.Coprococcus3, genus.Eubacterium fissicatena group, genus.Erysipelotrichaceae UCG-003, genus.Fusicatenibacter, and genus.Ruminiclostridium6. Additionally, we have discovered three inflammatory proteins that are also associated with the occurrence of acute pancreatitis, namely interleukin-15 receptor subunit alpha (IL-15RA), monocyte chemoattractant protein-4 (CCL13), and tumor necrosis factor receptor superfamily member 9 (TNFRSF9). Following a two-step MR analysis, we ultimately identified IL-15RA as a potential intermediate factor, with a mediated effect of 0.018 (95% CI: 0.005 - 0.032). Conclusion Our results support the idea that genus.Coprococcus3 promotes the occurrence of acute pancreatitis through IL-15RA. Furthermore, there is a potential causal relationship between the gut microbiota, inflammatory proteins, and acute pancreatitis. These findings provide new insights for subsequent acute pancreatitis prevention.
Collapse
Affiliation(s)
- Peiyao Huang
- Department of Gastroenterology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qiang Liu
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianfeng Yang
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
14
|
Li Y, Wang W, Kong C, Chen X, Li C, Lu S. Identifying the miRNA-gene networks contributes to exploring paravertebral muscle degeneration's underlying pathogenesis and therapy strategy. Heliyon 2024; 10:e30517. [PMID: 38765163 PMCID: PMC11098802 DOI: 10.1016/j.heliyon.2024.e30517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Low back pain (LBP) is a worldwide problem with public health. Paravertebral muscle degeneration (PMD) is believed to be associated with LBP. Increasing evidence has demonstrated that microRNA (miRNA)-mRNA signaling networks have been implicated in the pathophysiology of diseases. Research suggests that cell death, oxidative stress, inflammatory and immune response, and extracellular matrix (ECM) metabolism are the pathogenesis of PMD; however, the miRNA-mRNA mediated the pathological process of PMD remains elusive. RNA sequencing (RNA-seq) and single cell RNA-seq (scRNA-seq) are invaluable tools for uncovering the functional biology underlying these miRNA and gene expression changes. Using scRNA-seq, we show that multiple immunocytes are presented during PMD, revealing that they may have been implicated with PMD. Additionally, using RNA-seq, we identified 76 differentially expressed genes (DEGs) and 106 differentially expressed miRNAs (DEMs), among which IL-24 and CCDC63 were the top upregulated and downregulated genes in PMD. Comprehensive bioinformatics analyses, including Venn diagrams, differential expression, functional enrichment, and protein-protein interaction analysis, were then conducted to identify six ferroptosis-related DEGs, two oxidative stress-related DEGs, eleven immunity-related DEGs, five ECM-related DEGs, among which AKR1C2/AKR1C3/SIRT1/ALB/IL-24 belong to inflammatory genes. Furthermore, 67 DEMs were predicted to be upstream miRNAs of 25 key DEGs by merging RNA-seq, TargetScan, and mirDIP databases. Finally, a miRNA-gene network was constructed using Cytoscape software and an alluvial plot. ROC curve analysis unveiled multiple key DEGs with the high clinical diagnostic value, providing novel approaches for diagnosing and treating PMD diseases.
Collapse
Affiliation(s)
- Yongjin Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
- Spine Center, Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17, Lujiang Road, Hefei, Anhui, 230001, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| | - Chaoyi Li
- Department of Joint Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, China
| |
Collapse
|
15
|
Hao XM, Liu Y, Hailaiti D, Gong Y, Zhang XD, Yue BN, Liu JP, Wu XL, Yang KZ, Wang J, Liu QG. Mechanisms of inflammation modulation by different immune cells in hypertensive nephropathy. Front Immunol 2024; 15:1333170. [PMID: 38545112 PMCID: PMC10965702 DOI: 10.3389/fimmu.2024.1333170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024] Open
Abstract
Hypertensive nephropathy (HTN) is the second leading cause of end-stage renal disease (ESRD) and a chronic inflammatory disease. Persistent hypertension leads to lesions of intrarenal arterioles and arterioles, luminal stenosis, secondary ischemic renal parenchymal damage, and glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Studying the pathogenesis of hypertensive nephropathy is a prerequisite for diagnosis and treatment. The main cause of HTN is poor long-term blood pressure control, but kidney damage is often accompanied by the occurrence of immune inflammation. Some studies have found that the activation of innate immunity, inflammation and acquired immunity is closely related to the pathogenesis of HTN, which can cause damage and dysfunction of target organs. There are more articles on the mechanism of diabetic nephropathy, while there are fewer studies related to immunity in hypertensive nephropathy. This article reviews the mechanisms by which several different immune cells and inflammatory cytokines regulate blood pressure and renal damage in HTN. It mainly focuses on immune cells, cytokines, and chemokines and inhibitors. However, further comprehensive and large-scale studies are needed to determine the role of these markers and provide effective protocols for clinical intervention and treatment.
Collapse
Affiliation(s)
- Xiao-Min Hao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yu Gong
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Dong Zhang
- Department of Chinese Medicine, Beijing Jishuitan Hospital, Beijing, China
| | - Bing-Nan Yue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ji-Peng Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Li Wu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ke-Zhen Yang
- Department of Rehabilitation Medicine, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Hosseinzadeh A, Pourhanifeh MH, Amiri S, Sheibani M, Irilouzadian R, Reiter RJ, Mehrzadi S. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis. Pharmacol Rep 2024; 76:25-50. [PMID: 37995089 DOI: 10.1007/s43440-023-00554-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Fibrosis, the excessive deposition of fibrous connective tissue in an organ in response to injury, is a pathological condition affecting many individuals worldwide. Fibrosis causes the failure of tissue function and is largely irreversible as the disease progresses. Pharmacologic treatment options for organ fibrosis are limited, but studies suggest that antioxidants, particularly melatonin, can aid in preventing and controlling fibrotic damage to the organs. Melatonin, an indole nocturnally released from the pineal gland, is commonly used to regulate circadian and seasonal biological rhythms and is indicated for treating sleep disorders. While it is often effective in treating sleep disorders, melatonin's anti-inflammatory and antioxidant properties also make it a promising molecule for treating other disorders such as organ fibrosis. Melatonin ameliorates the necrotic and apoptotic changes that lead to fibrosis in various organs including the heart, liver, lung, and kidney. Moreover, melatonin reduces the infiltration of inflammatory cells during fibrosis development. This article outlines the protective effects of melatonin against fibrosis, including its safety and potential therapeutic effects. The goal of this article is to provide a summary of data accumulated to date and to encourage further experimentation with melatonin and increase its use as an anti-fibrotic agent in clinical settings.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Clinical Research Development Unit of Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Cates WT, Denbeigh JM, Salvagno RT, Kakar S, van Wijnen AJ, Eaton C. Inflammatory Markers Involved in the Pathogenesis of Dupuytren's Contracture. Crit Rev Eukaryot Gene Expr 2024; 34:1-35. [PMID: 38912961 DOI: 10.1615/critreveukaryotgeneexpr.2024052889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Dupuytren's disease is a common fibroproliferative disease that can result in debilitating hand deformities. Partial correction and return of deformity are common with surgical or clinical treatments at present. While current treatments are limited to local procedures for relatively late effects of the disease, the pathophysiology of this connective tissue disorder is associated with both local and systemic processes (e.g., fibrosis, inflammation). Hence, a better understanding of the systemic circulation of Dupuytren related cytokines and growth factors may provide important insights into disease progression. In addition, systemic biomarker analysis could yield new concepts for treatments of Dupuytren that attenuate circulatory factors (e.g., anti-inflammatory agents, neutralizing antibodies). Progress in the development of any disease modifying biologic treatment for Dupuytren has been hampered by the lack of clinically useful biomarkers. The characterization of nonsurgical Dupuytren biomarkers will permit disease staging from diagnostic and prognostic perspectives, as well as allows evaluation of biologic responses to treatment. Identification of such markers may transcend their use in Dupuytren treatment, because fibrotic biological processes fundamental to Dupuytren are relevant to fibrosis in many other connective tissues and organs with collagen-based tissue compartments. There is a wide range of potential Dupuytren biomarker categories that could be informative, including disease determinants linked to genetics, collagen metabolism, as well as immunity and inflammation (e.g., cytokines, chemokines). This narrative review provides a broad overview of previous studies and emphasizes the importance of inflammatory mediators as candidate circulating biomarkers for monitoring Dupuytren's disease.
Collapse
Affiliation(s)
- William T Cates
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet M Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
18
|
Rezaei-Golmisheh A, Sadrkhanlou R, Ahmadi A, Malekinejad H. Effects of lupeol and flutamide on experimentally-induced polycystic ovary syndrome in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1067-1076. [PMID: 38911242 PMCID: PMC11193499 DOI: 10.22038/ijbms.2024.77602.16783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024]
Abstract
Objectives Polycystic ovary syndrome (PCOS) is one of the main causes of infertility in women. This study was conducted to uncover the effects of lupeol as an anti-androgenic triterpene on experimentally-induced PCOS in mice. Materials and Methods Eighty immature female mice were divided into 4 groups: Control (C), PCOS (P), Lupeol (L), and Flutamide (F). PCOS was induced in test groups by injection of Dehydroepiandrosterone (60 mg/kg/day, IP) for twenty days. Following the PCOS induction, the two groups of L and F were treated with lupeol (40 mg/kg/day) and/or flutamide (10 mg/kg/day) respectively and the two groups of C and P received sesame oil (0.1 ml/mouse/day) for 15 days. After the treatment period, ten animals in each group were selected for collecting blood and ovary samples. In vitro fertilization assessment was carried out on 10 remaining mice in each group. The hormonal assays and oxidative stress biomarker determination were performed on serum and tissue samples. Moreover, histopathological analyses were conducted on the ovaries. Results PCOS-elevated concentration of LH and Testosterone was significantly (P<0.05) lowered in lupeol and flutamide-received animals. Lupeol and flutamide both reduced PCOS-induced fibrosis and the number of atretic follicles. Both compounds declined the PCOS-increased lipid peroxidation and protein oxidation in serum and the ovaries. Lupeol increased the PCOS-reduced fertility rate and decreased the number of arrested embryos by 12%. Conclusion These findings indicate that lupeol could be a novel compound in the treatment of PCOS as it reduced PCOS-induced structural and also functional disorders.
Collapse
Affiliation(s)
- Ali Rezaei-Golmisheh
- Department of Basic Sciences, School of Veterinary Medicine, Ardakan University, Ardakan, Iran
- Biology and Animal Reproduction Science Research Institute, Ardakan University, Ardakan, Iran
| | - Rajabali Sadrkhanlou
- Department of Comparative Histology and Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Abbas Ahmadi
- Department of Anatomy, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hassan Malekinejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
19
|
Lin X, Fu T, Lei Y, Xu J, Wang S, He F, Xie Z, Zhang L. An injectable and light curable hyaluronic acid composite gel with anti-biofilm, anti-inflammatory and pro-healing characteristics for accelerating infected wound healing. Int J Biol Macromol 2023; 253:127190. [PMID: 37802452 DOI: 10.1016/j.ijbiomac.2023.127190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Bacterial biofilm formation and drug resistance are common issues associated with wound healing. Antimicrobial peptides (AMPs) are a new class of antimicrobial agents with the potential to solve these global health issues. New injectable adhesive antibacterial hydrogels have excellent prospects of becoming the next innovative wound-healing dressings. In this study, the hyaluronic acid was connected to the antibacterial peptide Plantaricin 149 (Pln149), obtaining HAD@AMP. HAD@AMP performed well in efficient antimicrobial activity, good histocompatibility, low drug resistance, low bacterial biofilm formation, and fast wound healing process which are essential for rapid healing of infected wound. During the hydrogel degradation process, Pln149 was released to inhibit bacterial communication and reduce bacterial biofilm formation. Meanwhile, HAD@AMP could up-regulate anti-inflammatory and pro-angiogenic factors, and down-regulate inflammatory factors to promote the healing of infected wounds, which provide a new idea for skin healing strategies.
Collapse
Affiliation(s)
- Xiaolong Lin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Tao Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China; Department of Oral and Maxillofacial Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang 310006, China
| | - Yuqing Lei
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jiajia Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Sa Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Fuming He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ling Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
20
|
Di Zazzo A, Cutrupi F, De Antoniis MG, Ricci M, Esposito G, Antonini M, Coassin M, Micera A, Perrella E, Bonini S. Tissue Remodeling in Ocular Mucous Membrane Pemphigoid. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 38095906 PMCID: PMC10723221 DOI: 10.1167/iovs.64.15.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose Ocular mucous membrane pemphigoid (OcMMP) is a rare eye disease characterized by relapsing-remitting or persisting long-lasting inflammatory events associated with progressive scarring. Despite long-term immunomodulating therapy, abnormal fibrosis keeps worsening in patients with OcMMP. This study investigates the fibrotic process in patients with OcMMP, as well as the critical role of the epithelium in modulating the local fibrosis. Methods In this prospective, observational pilot study, patients affected by long-lasting OcMMP were compared with age- and gender-matched healthy controls. Clinical grading was assessed, and conjunctival biopsy and impression cytology were performed. Conjunctival samples were used for quantifying the expression of transcripts regulating the inflammatory and fibrogenic processes. Results Ocular surface clinical and functional markers worsened in patients with OcMMP with fibrotic disease progression. In more advanced disease stages, both impression cytologies and conjunctival biopsies revealed increased tissue remodeling and profibrotic markers (α-SMA and TGF-β), and decreased levels of inflammatory markers (I-CAM1, IL-10, and IL-17). Increased epithelial expression of profibrotic markers and histological changes were detected. Conclusions Chronic OcMMP is characterized by a progressive, aberrant self-sustaining fibrotic process that worsens clinical signs and symptoms. Conjunctival epithelial cells may transdifferentiate into myofibroblast-like phenotypes when chronically exposed to high levels of inflammation, as in the case of OcMMP. Tissue remodeling markers in OcMMP could be used as early diagnostic, prognostic, and therapeutic biomarkers, harvested in a non-invasive and painless procedure such as impression cytologies.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology, Foundation Campus Bio-Medico University Hospital, Rome, Italy
| | - Francesco Cutrupi
- Ophthalmology, Foundation Campus Bio-Medico University Hospital, Rome, Italy
| | | | - Milena Ricci
- Ophthalmology, Foundation Campus Bio-Medico University Hospital, Rome, Italy
| | - Graziana Esposito
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, Rome, Italy
| | - Marco Antonini
- Ophthalmology, Foundation Campus Bio-Medico University Hospital, Rome, Italy
| | - Marco Coassin
- Ophthalmology, Foundation Campus Bio-Medico University Hospital, Rome, Italy
| | - Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Science, IRCCS-Fondazione Bietti, Rome, Italy
| | - Eleonora Perrella
- Anatomical Pathology, Foundation Campus Bio-Medico University Hospital, Rome, Italy
| | - Stefano Bonini
- Ophthalmology, Foundation Campus Bio-Medico University Hospital, Rome, Italy
| |
Collapse
|
21
|
Lowe KO, Tanase CE, Maghami S, Fisher LE, Ghaemmaghami AM. Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically. IMMUNO 2023; 3:375-408. [DOI: 10.3390/immuno3040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a complex, dynamic process associated with a broad spectrum of chronic liver diseases and acute liver failure, characterised by the dysregulated intrahepatic production of extracellular matrix proteins replacing functional liver cells with scar tissue. Fibrosis progresses due to an interrelated cycle of hepatocellular injury, triggering a persistent wound-healing response. The accumulation of scar tissue and chronic inflammation can eventually lead to cirrhosis and hepatocellular carcinoma. Currently, no therapies exist to directly treat or reverse liver fibrosis; hence, it remains a substantial global disease burden. A better understanding of the intricate inflammatory network that drives the initiation and maintenance of liver fibrosis to enable the rationale design of new intervention strategies is required. This review clarifies the most current understanding of the hepatic fibrosis cellular network with a focus on the role of regulatory T cells, and a possible trajectory for T cell immunotherapy in fibrosis treatment. Despite good progress in elucidating the role of the immune system in liver fibrosis, future work to better define the function of different immune cells and their mediators at different fibrotic stages is needed, which will enhance the development of new therapies.
Collapse
Affiliation(s)
- Kirstin O. Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK
| | - Leanne E. Fisher
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
22
|
Xiang HR, Li Y, Cheng X, He B, Li HM, Zhang QZ, Wang B, Peng WX. Serum levels of IL-6/IL-10/GLDH may be early recognition markers of anti-tuberculosis drugs (ATB) -induced liver injury. Toxicol Appl Pharmacol 2023; 475:116635. [PMID: 37487937 DOI: 10.1016/j.taap.2023.116635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
To explore the potential value of serum glutamate dehydrogenase (GLDH) combined with inflammatory cytokines as diagnostic biomarkers for anti-tuberculosis drug -induced liver injury (ATB-DILI). We collected the residual serum from the patients who met the criteria after liver function tests. We have examined these parameters including GLDH which were determined by enzyme-linked immunosorbent assay and cytokines which were determined by cytokine combination detection kit. Multivariate logistics stepwise forward regression was applied to establish regression models. A total of 138 tuberculosis patients were included in the diagnostic markers study of ATB-DILI, including normal liver function group (n = 108) and ATB-DILI group(n = 30). Serum GLDH, IL-6 and IL-10 levels were significantly increased in the ATB-DILI group. Receiver operating characteristic curve (ROC) curve showed that the area under curve (AUC) of serum GLDH, IL-6 and IL-10 for the diagnosis of ATB-DILI were 0.870, 0.714 and 0.811, respectively. In logistic regression modeling, the AUC of GLDH combined with IL-10 as an ATB-DILI marker is 0.912. Serum IL-6、IL-10 and GLDH levels began to rise preceded the increase in ALT by 7 days, with significant differences in IL-6 compared with 7 days. Serum GLDH, IL-6 and IL-10 levels were correlated with the severity of liver injury. In conclusion, we found that GLDH, IL-6 and IL-10 alone as diagnostic markers of ATB-DILI had good diagnostic efficacy. Logistic regression model established by GLDH and IL-10 had better diagnostic efficacy and IL-6 may be an early predictor of liver injury in the setting of ATB poisoning.
Collapse
Affiliation(s)
- Huai-Rong Xiang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yun Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xuan Cheng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bei He
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hua-Min Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Qi-Zhi Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bin Wang
- Institute of Medical Laboratory, the First hospital of Changsha City, Changsha, Hunan 410011, China.
| | - Wen-Xing Peng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
23
|
Luo Q, Zhou P, Chang S, Huang Z, Zhu Y. The gut-lung axis: Mendelian randomization identifies a causal association between inflammatory bowel disease and interstitial lung disease. Heart Lung 2023; 61:120-126. [PMID: 37247539 DOI: 10.1016/j.hrtlng.2023.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Previous studies have suggested the association between interstitial lung disease (ILD) and inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC). OBJECTIVES To examine the potential bidirectional causal relationship between IBD and ILD using the Mendelian randomization (MR) method. METHODS We obtained the data from the genome-wide association studies (GWASs) in European individuals for IBD (25,042 cases and 34,915 controls) and ILD (21,806 cases and 196,986 controls) from the IEU GWAS database. We screened for instrumental variables based on the three assumptions of MR. The two-sample bidirectional MR analysis was performed using the inverse-variance weighted method and multiple sensitivity analyses. RESULTS Genetic liability to IBD was significantly associated with an increased ILD risk (odds ratio (OR) = 1.20, 95% confidence interval (CI) = 1.17-1.24, p = 3.67E-33). When considering the IBD subtypes, ILD risk was associated with genetic liability to both CD (OR = 1.14, 95% CI = 1.10-1.17, p = 1.91E-17) and UC (OR = 1.16, 95% CI = 1.12-1.21, p = 3.51E-13). There was weak evidence for the effect of genetic liability to ILD on IBD (OR = 1.32, 95% CI = 0.99-1.76, p = 0.062), CD (OR = 1.25, 95% CI = 1.00-1.55, p = 0.046), and UC (OR = 1.47, 95%CI = 1.01-2.14, p = 0.046). CONCLUSION The results indicate a strong causal effect of IBD (including CD and UC) on ILD.
Collapse
Affiliation(s)
- Qinghua Luo
- Department of Anorectal Surgery, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Ping Zhou
- Department of Anorectal Surgery, Jiangxi Hospital of Integrated Traditional Chinese and Western Medicine, Nanchang, China
| | - Shuangqing Chang
- Department of Anorectal Surgery, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Zhifang Huang
- Department of Anorectal Surgery, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, China
| | - Yuan Zhu
- Department of Anorectal Surgery, Jiangxi Fifth People's Hospital, Nanchang, China.
| |
Collapse
|
24
|
Qin S, Tan P, Xie J, Zhou Y, Zhao J. A systematic review of the research progress of traditional Chinese medicine against pulmonary fibrosis: from a pharmacological perspective. Chin Med 2023; 18:96. [PMID: 37537605 PMCID: PMC10398979 DOI: 10.1186/s13020-023-00797-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Pulmonary fibrosis is a chronic progressive interstitial lung disease caused by a variety of etiologies. The disease can eventually lead to irreversible damage to the lung tissue structure, severely affecting respiratory function and posing a serious threat to human health. Currently, glucocorticoids and immunosuppressants are the main drugs used in the clinical treatment of pulmonary fibrosis, but their efficacy is limited and they can cause serious adverse effects. Traditional Chinese medicines have important research value and potential for clinical application in anti-pulmonary fibrosis. In recent years, more and more scientific researches have been conducted on the use of traditional Chinese medicine to improve or reduce pulmonary fibrosis, and some important breakthroughs have been made. This review paper systematically summarized the research progress of pharmacological mechanism of traditional Chinese medicines and their active compounds in improving or reducing pulmonary fibrosis. We conducted a systematic search in several main scientific databases, including PubMed, Web of Science, and Google Scholar, using keywords such as idiopathic pulmonary fibrosis, pulmonary fibrosis, interstitial pneumonia, natural products, herbal medicine, and therapeutic methods. Ultimately, 252 articles were included and systematically evaluated in this analysis. The anti-fibrotic mechanisms of these traditional Chinese medicine studies can be roughly categorized into 5 main aspects, including inhibition of epithelial-mesenchymal transition, anti-inflammatory and antioxidant effects, improvement of extracellular matrix deposition, mediation of apoptosis and autophagy, and inhibition of endoplasmic reticulum stress. The purpose of this article is to provide pharmaceutical researchers with information on the progress of scientific research on improving or reducing Pulmonary fibrosis with traditional Chinese medicine, and to provide reference for further pharmacological research.
Collapse
Affiliation(s)
- Shanbo Qin
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Peng Tan
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Junjie Xie
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yongfeng Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junning Zhao
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| |
Collapse
|
25
|
Purushothaman AK, Nelson EJR. Role of innate immunity and systemic inflammation in cystic fibrosis disease progression. Heliyon 2023; 9:e17553. [PMID: 37449112 PMCID: PMC10336457 DOI: 10.1016/j.heliyon.2023.e17553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Pathophysiological manifestations of cystic fibrosis (CF) result from a functional defect in the cystic fibrosis transmembrane conductance regulator (CFTR) paving way for mucus obstruction and pathogen colonization. The role of CFTR in modulating immune cell function and vascular integrity, irrespective of mucus thickening, in determining the host cell response to pathogens/allergens and causing systemic inflammation is least appreciated. Since CFTR plays a key role in the conductance of anions like Cl-, loss of CFTR function could affect various basic cellular processes, such as cellular homeostasis, lysosome acidification, and redox balance. CFTR aids in endotoxin tolerance by regulating Toll-like receptor-mediated signaling resulting in uncontrolled activation of innate immune cells. Although leukocytes of CF patients are hyperactivated, they exhibit compromised phagosome activity thus favouring the orchestration of sepsis from defective pathogen clearance. This review will emphasize the importance of innate immunity and systemic inflammatory response in the development of CF and other CFTR-associated pathologies.
Collapse
Affiliation(s)
- Anand Kumar Purushothaman
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Everette Jacob Remington Nelson
- Gene Therapy Laboratory, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
26
|
Dammak A, Sanchez Naves J, Huete-Toral F, Carracedo G. New Biomarker Combination Related to Oxidative Stress and Inflammation in Primary Open-Angle Glaucoma. Life (Basel) 2023; 13:1455. [PMID: 37511830 PMCID: PMC10381240 DOI: 10.3390/life13071455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease and the second leading cause of blindness. Detection of clinically relevant biomarkers would aid better diagnoses and monitoring during treatment. In glaucoma, the protein composition of aqueous humor (AH) is relevant for the discovery of biomarkers. This study analyzes AH protein concentrations of putative biomarkers in patients with primary open-angle glaucoma (POAG) compared to a control group. Biomarkers were selected from known oxidative-stress and inflammatory pathways. Osteopontin (OPN), matrix metalloproteinase 9 (MMP-9), tumor necrosis factor-alpha (TNF-alpha), transforming growth factor-beta (TGF-beta), and interleukin-10 (IL-10) were measured using the ELISA technique. Thirty-two patients were recruited to the study, including sixteen control and sixteen glaucoma patients. The glaucoma group consisted of patients diagnosed with glaucoma. In both groups, the aqueous humor sample was obtained during cataract surgery. A significant increase in OPN, MMP-9, TNF-alpha, and IL-10 was observed in the POAG aqueous humor, compared to the control group (p < 0.05). Of note, the AH of POAG patients contained 5.6 ± 1.2-fold more OPN compared to that of control patients. Different expression profiles of oxidative stress-related and inflammatory biomarkers were observed between patients with POAG and controls. This confirms the reported involvement of inflammatory and oxidative stress pathways in POAG pathophysiology. In the future, several, targeted AH proteins may be used to generate a potential biomarker expression profile of this disease, aiding diagnoses and disease progression monitoring. This approach highlights the importance of biomarkers in the future. Biomarkers provide a way to measure disease progression and response to treatment. In the future, biomarkers will play a more critical role in the toolkit of ophthalmology healthcare professionals as the field moves towards personalized medicine and precision healthcare.
Collapse
Affiliation(s)
- Azza Dammak
- Ocupharm Group Research, Faculty of Optic and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Juan Sanchez Naves
- Institute of Ophthalmology Palma de Mallorca, 07012 Palma de Mallorca, Spain
| | - Fernando Huete-Toral
- Ocupharm Group Research, Faculty of Optic and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Gonzalo Carracedo
- Ocupharm Group Research, Faculty of Optic and Optometry, Universidad Complutense de Madrid, 28037 Madrid, Spain
- Faculty of Optic and Optometry, Department Optometry and Vision, C/Arcos del Jalon 118, 28032 Madrid, Spain
| |
Collapse
|
27
|
Ofori M, Danquah CA, Asante J, Ativui S, Doe P, Abdul-Nasir Taribabu A, Nugbemado IN, Mensah AN. Betulin and Crinum asiaticum L. bulbs extract attenuate pulmonary fibrosis by down regulating pro-fibrotic and pro-inflammatory cytokines in bleomycin-induced fibrosis mice model. Heliyon 2023; 9:e16914. [PMID: 37346329 PMCID: PMC10279834 DOI: 10.1016/j.heliyon.2023.e16914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Background Pulmonary fibrosis (PF) is a lung disease characterized by scaring of lung tissue that impairs lung functions. The estimated survival time of patients with pulmonary fibrosis is 3-5 years. Bleomycin (BLM) is used clinically in the treatment of Hodgkin lymphoma and testicular germ-cell tumors. Bleomycin's mechanism of action is the inhibition of DNA and protein synthesis. This happens when leukocytes induce the release of cytokines and chemokines which increase the pro-fibrotic and pro-inflammatory cytokines such as IL-6, TNF-alpha, IL-13, IL-1β and transforming growth factor-beta 1 (TGF-β). Crinum asiaticum L. bulbs (CAE) are widely found in parts of Africa, Asia and Indian Ocean Island. It is also prevalent in southern part of Ghana and traditionally used by the indigenes to treat upper respiratory tract infections, and for wound healing. Betulin (BET) is found in the bulbs of Crinum asiaticum L. but widely isolated from the external bark of birches and sycamore trees. Betulin as a lupine type triterpenes has been researched for their pharmacological and biological activities including anticancer, anti-inflammatory, antimicrobial activities and anti-liver fibrosis effects.Aim of the study: The aim was to study the anti-pulmonary fibrosis effect of Crinum asiaticum L. bulbs extract and betulin in bleomycin-induced pulmonary fibrosis in mice. Materials and method There was a single oropharyngeal administration of bleomycin (80 mg/kg) in mice followed by the treatment of CAE and BET after 48 h of exposure to BLM. Results There was increased survival rate in CAE and BET treatment groups compared to the BLM induced group. There was a marked decreased in the levels of hydroxyproline, collagen I and III in the CAE and BET treatment groups compared to BLM-treated group. The treatment groups of CAE and BET significantly down regulated the levels of pro-fibrotic and pro-inflammatory cytokines concentrations such as TGF-β1, MMP9, IL-6, IL-1β and TNF-alpha compared to an increased in the BLM treated groups. The histological findings of the lungs suggested the curative effects of CAE and BET following BLM induced pulmonary fibrosis in mice, the study showed improved lung functions with wide focal area of viable alveolar spaces and few collagen fibers deposition on lungs of treatment groups. Conclusion CAE and BET attenuated pulmonary fibrosis by down regulating pro-fibrotic and pro-inflammatory cytokines as well as improving lung function. This could be a lead in drug discovery where compounds with anti-fibrotic effects could be developed for the treatment of lung injury.
Collapse
Affiliation(s)
- Michael Ofori
- Department of Pharmaceutical Science, Dr Hilla Limann Technical University, Wa, Ghana
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| | | | - Joshua Asante
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
- Department of Medical Laboratory, Diamed Diagnostic Center, Kumasi, Ghana
| | - Selase Ativui
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| | - Peace Doe
- Department of Pharmaceutical Science, School of Pharmacy, Central University, Accra, Ghana
| | | | | | - Adwoa Nkrumah Mensah
- Department of Pharmacology, Kwame Nkrumah University of Science and Technology, Ghana
| |
Collapse
|
28
|
Wang Z, Du K, Jin N, Tang B, Zhang W. Macrophage in liver Fibrosis: Identities and mechanisms. Int Immunopharmacol 2023; 120:110357. [PMID: 37224653 DOI: 10.1016/j.intimp.2023.110357] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Liver fibrosis is a chronic disease characterized by the deposition of extracellular matrix and continuous loss of tissues that perform liver functions. Macrophages are crucial modulators of innate immunity and play important roles in liver fibrogenesis. Macrophages comprise heterogeneous subpopulations that exhibit different cellular functions. Understanding the identity and function of these cells is essential for understanding the mechanisms of liver fibrogenesis. According to different definitions, liver macrophages are divided into M1/M2 macrophages or monocyte-derived macrophages/Kupffer cells. Classic M1/M2 phenotyping corresponds to pro- or anti-inflammatory effects, and, therefore, influences the degree of fibrosis in later phases. In contrast, the origin of the macrophages is closely associated with their replenishment and activation during liver fibrosis. These two classifications of macrophages depict the function and dynamics of liver-infiltrating macrophages. However, neither description properly elucidates the positive or negative role of macrophages in liver fibrosis. Critical tissue cells mediating liver fibrosis include hepatic stellate cells and hepatic fibroblasts, with hepatic stellate cells being of particular interest because of their close association with macrophages in liver fibrosis. However, the molecular biological descriptions of macrophages are inconsistent between mice and humans, warranting further investigations. In liver fibrosis, macrophages can secrete various pro-fibrotic cytokines, such as TGF-β, Galectin-3 and interleukins (ILs), and fibrosis-inhibiting cytokines, such as IL10. These different secretions may be associated with the specific identity and spatiotemporal characteristics of macrophages. Furthermore, during fibrosis dissipation, macrophages may degrade extracellular matrix by secreting matrix metalloproteinases (MMPs). Notably, using macrophages as therapeutic targets in liver fibrosis has been explored. The current therapeutic approaches for liver fibrosis can by categorized as follows: treatment with macrophage-related molecules and macrophage infusion therapy. Although there have been limited studies, macrophages have shown reliable potential for liver fibrosis treatment. In this review, we focu on the identity and function of macrophages and their relationship to the progression and regression of liver fibrosis.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Emergency Medicine Center, Jinhua Municipal Central Hospital, Zhejiang, China.
| | - Kailei Du
- Dongyang Peoples hospital, Zhejiang, China
| | - Nake Jin
- Ningbo Hangzhou Bay Hospital, Zhejiang, China
| | - Biao Tang
- Jinhua Municipal Central Hospital, Zhejiang, China
| | - Wenwu Zhang
- Department of Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
29
|
Kidzeru EB, Lebeko M, Sharma JR, Nkengazong L, Adeola HA, Ndlovu H, P Khumalo N, Bayat A. Immune cells and associated molecular markers in dermal fibrosis with focus on raised cutaneous scars. Exp Dermatol 2023; 32:570-587. [PMID: 36562321 PMCID: PMC10947010 DOI: 10.1111/exd.14734] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/04/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Raised dermal scars including hypertrophic, and keloid scars as well as scalp-associated fibrosing Folliculitis Keloidalis Nuchae (FKN) are a group of fibrotic raised dermal lesions that mostly occur following cutaneous injury. They are characterized by increased extracellular matrix (ECM) deposition, primarily excessive collagen type 1 production by hyperproliferative fibroblasts. The extent of ECM deposition is thought to be proportional to the severity of local skin inflammation leading to excessive fibrosis of the dermis. Due to a lack of suitable study models, therapy for raised dermal scars remains ill-defined. Immune cells and their associated markers have been strongly associated with dermal fibrosis. Therefore, modulation of the immune system and use of anti-inflammatory cytokines are of potential interest in the management of dermal fibrosis. In this review, we will discuss the importance of immune factors in the pathogenesis of raised dermal scarring. The aim here is to provide an up-to-date comprehensive review of the literature, from PubMed, Scopus, and other relevant search engines in order to describe the known immunological factors associated with raised dermal scarring. The importance of immune cells including mast cells, macrophages, lymphocytes, and relevant molecules such as cytokines, chemokines, and growth factors, antibodies, transcription factors, and other immune-associated molecules as well as tissue lymphoid aggregates identified within raised dermal scars will be presented. A growing body of evidence points to a shift from proinflammatory Th1 response to regulatory/anti-inflammatory Th2 response being associated with the development of fibrogenesis in raised dermal scarring. In summary, a better understanding of immune cells and associated molecular markers in dermal fibrosis will likely enable future development of potential immune-modulated therapeutic, diagnostic, and theranostic targets in raised dermal scarring.
Collapse
Affiliation(s)
- Elvis Banboye Kidzeru
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Maribanyana Lebeko
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Present address:
Cape Biologix Technologies (PTY, LTD)Cape TownSouth Africa
| | - Jyoti Rajan Sharma
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
- Present address:
Biomedical Research and Innovation Platform, South African Medical Research Council, Francie van Zijl Drive, Parow ValleyCape TownSouth Africa
| | - Lucia Nkengazong
- Microbiology, Infectious Diseases, and Immunology Laboratory (LAMMII)Centre for Research on Health and Priority Pathologies (CRSPP)Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and InnovationYaoundéCameroon
| | - Henry Ademola Adeola
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Hlumani Ndlovu
- Department of Integrative Biomedical SciencesUniversity of Cape TownCape TownSouth Africa
| | - Nonhlanhla P Khumalo
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| | - Ardeshir Bayat
- Wound Healing And Keloid Scar Unit, Medical Research Council (South Africa), Hair and Skin Research Laboratory, Division of Dermatology, Department of MedicineUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
30
|
Choi J, Cho Y, Choi H, Lee S, Han H, Lee J, Kwon J. Thymosin Beta 4 Inhibits LPS and ATP-Induced Hepatic Stellate Cells via the Regulation of Multiple Signaling Pathways. Int J Mol Sci 2023; 24:ijms24043439. [PMID: 36834849 PMCID: PMC9959661 DOI: 10.3390/ijms24043439] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Risk signals are characteristic of many common inflammatory diseases and can function to activate nucleotide-binding oligomerization (NLR) family pyrin domain-containing 3 (NLRP3), the innate immune signal receptor in cytoplasm. The NLRP3 inflammasome plays an important role in the development of liver fibrosis. Activated NLRP3 nucleates the assembly of inflammasomes, leading to the secretion of interleukin (IL)-1β and IL-18, the activation of caspase-1, and the initiation of the inflammatory process. Therefore, it is essential to inhibit the activation of the NLRP3 inflammasome, which plays a vital role in the immune response and in initiating inflammation. RAW 264.7 and LX-2 cells were primed with lipopolysaccharide (LPS) for 4 h and subsequently stimulated for 30 min with 5 mM of adenosine 5'-triphosphate (ATP) to activate the NLRP3 inflammasome. Thymosin beta 4 (Tβ4) was supplemented to RAW264.7 and LX-2 cells 30 min before ATP was added. As a result, we investigated the effects of Tβ4 on the NLRP3 inflammasome. Tβ4 prevented LPS-induced NLRP3 priming by inhibiting NF-kB and JNK/p38 MAPK expression and the LPS and ATP-induced production of reactive oxygen species. Moreover, Tβ4 induced autophagy by controlling autophagy markers (LC3A/B and p62) through the inhibition of the PI3K/AKT/mTOR pathway. LPS combined with ATP significantly increased thee protein expression of inflammatory mediators and NLRP3 inflammasome markers. These events were remarkably suppressed by Tβ4. In conclusion, Tβ4 attenuated NLRP3 inflammasomes by inhibiting NLRP3 inflammasome-related proteins (NLRP3, ASC, IL-1β, and caspase-1). Our results indicate that Tβ4 attenuated the NLRP3 inflammasome through multiple signaling pathway regulations in macrophage and hepatic stellate cells. Therefore, based on the above findings, it is hypothesized that Tβ4 could be a potential inflammatory therapeutic agent targeting the NLRP3 inflammasome in hepatic fibrosis regulation.
Collapse
|
31
|
Sun T, Xu W, Wang J, Song J, Wang T, Wang S, Liu K, Liu J. Paeonol ameliorates diabetic erectile dysfunction by inhibiting HMGB1/RAGE/NF-kB pathway. Andrology 2023; 11:344-357. [PMID: 35678254 DOI: 10.1111/andr.13203] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND The management of diabetes mellitus-induced erectile dysfunction (DMED) is progressively becoming tricky due to the surge in the number of patients and the poor efficiency of phosphodiesterase type 5 inhibitors in DMED. Paeonol (Pae), as a traditional Chinese medicine, has been more and more widely used in the treatment of diabetic complications. However, whether Pae could be a potential therapeutic drug of DMED needs to be further evaluated. OBJECTIVES To investigate the pharmacological effect and possible mechanism of Pae in the treatment of DMED. METHODS Intraperitoneal streptozotocin injection and an apomorphine test were used to construct the model of DMED. Seventeen DMED rats were divided into two groups: DMED group (n = 8) and DMED+Pae group (Pae; 100 mg/kg/d; oral administration; n = 9). In addition, there were still 10 normal age-matched male rats as control group. Four weeks later, the cavernous nerve electric stimulation was carried out to measure the erectile response. Moreover, the corpus cavernosum smooth muscle cells (CCSMCs) were primarily isolated and exposed to high glucose (HG) stimulation, Pae treatment and glycyrrhizin (GL; the selective inhibitor of HMGB1). After an incubation for 1 week, the CCSMCs were harvested for detection. RESULTS The impairment of erectile function was observed in DMED rats compared with control samples, accompanied by the upregulation of HMGB1/RAGE/NF-κB Pathway. The lower nitric oxide and cGMP level and the higher level of inflammation, fibrosis, and apoptosis were also observed in DMED rats. It showed contrast that Pae treatment could improve the erectile function, as well as histologic alteration and related molecular changes. In addition, Pae could downregulate the HMGB1/RAGE/NF-κB pathway to regulate the apoptosis and inflammation levels of CCSMCs in high-glucose conditions, which is similar to the results of GL treatment. CONCLUSION Pae alleviated ED in DMED rats, likely by inhibiting HMGB1/RAGE/NF-κB Pathway, inflammatory, apoptosis, and fibrotic activity, and moderating endothelial dysfunction. Our study provide evidence for a potential new therapy for DMED.
Collapse
Affiliation(s)
- Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
32
|
Huangfu Y, Yu X, Wan C, Zhu Y, Wei Z, Li F, Wang Y, Zhang K, Li S, Dong Y, Li Y, Niu H, Xin G, Huang W. Xanthohumol alleviates oxidative stress and impaired autophagy in experimental severe acute pancreatitis through inhibition of AKT/mTOR. Front Pharmacol 2023; 14:1105726. [PMID: 36744265 PMCID: PMC9890064 DOI: 10.3389/fphar.2023.1105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a lethal gastrointestinal disorder, yet no specific and effective treatment is available. Its pathogenesis involves inflammatory cascade, oxidative stress, and autophagy dysfunction. Xanthohumol (Xn) displays various medicinal properties, including anti-inflammation, antioxidative, and enhancing autophagic flux. However, it is unclear whether Xn inhibits SAP. This study investigated the efficacy of Xn on sodium taurocholate (NaT)-induced SAP (NaT-SAP) in vitro and in vivo. First, Xn attenuated biochemical and histopathological responses in NaT-SAP mice. And Xn reduced NaT-induced necrosis, inflammation, oxidative stress, and autophagy impairment. The mTOR activator MHY1485 and the AKT activator SC79 partly reversed the treatment effect of Xn. Overall, this is an innovative study to identify that Xn improved pancreatic injury by enhancing autophagic flux via inhibition of AKT/mTOR. Xn is expected to become a novel SAP therapeutic agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Guang Xin
- *Correspondence: Wen Huang, ; Guang Xin,
| | - Wen Huang
- *Correspondence: Wen Huang, ; Guang Xin,
| |
Collapse
|
33
|
van der Elst G, Varol H, Hermans M, Baan CC, Duong-van Huyen JP, Hesselink DA, Kramann R, Rabant M, Reinders MEJ, von der Thüsen JH, van den Bosch TPP, Clahsen-van Groningen MC. The mast cell: A Janus in kidney transplants. Front Immunol 2023; 14:1122409. [PMID: 36891297 PMCID: PMC9986315 DOI: 10.3389/fimmu.2023.1122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Mast cells (MCs) are innate immune cells with a versatile set of functionalities, enabling them to orchestrate immune responses in various ways. Aside from their known role in allergy, they also partake in both allograft tolerance and rejection through interaction with regulatory T cells, effector T cells, B cells and degranulation of cytokines and other mediators. MC mediators have both pro- and anti-inflammatory actions, but overall lean towards pro-fibrotic pathways. Paradoxically, they are also seen as having potential protective effects in tissue remodeling post-injury. This manuscript elaborates on current knowledge of the functional diversity of mast cells in kidney transplants, combining theory and practice into a MC model stipulating both protective and harmful capabilities in the kidney transplant setting.
Collapse
Affiliation(s)
- G van der Elst
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - H Varol
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - M Hermans
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - C C Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - D A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - R Kramann
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany.,Division of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - M Rabant
- Department of Pathology, Necker Hospital, APHP, Paris, France
| | - M E J Reinders
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - J H von der Thüsen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - T P P van den Bosch
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands
| | - M C Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus University Center Rotterdam, Rotterdam, Netherlands.,Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
34
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
35
|
Ma C, Qi X, Wei YF, Li Z, Zhang HL, Li H, Yu FL, Pu YN, Huang YC, Ren YX. Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles. Bioact Mater 2023; 19:139-154. [PMID: 35475028 PMCID: PMC9014323 DOI: 10.1016/j.bioactmat.2022.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022] Open
Abstract
Ligamentum flavum (LF) hypertrophy (LFH) has been recognised as one of the key contributors to lumbar spinal stenosis. Currently, no effective methods are available to ameliorate this hypertrophy. In this study, human umbilical cord mesenchymal stromal cell-derived extracellular vesicles (hUCMSC-EVs) were introduced for the first time as promising vehicles for drug delivery to treat LFH. The downregulation of miR-146a-5p and miR-221-3p expressions in human LF tissues negatively correlated with increased LF thickness. The hUCMSC-EVs enriched with these two miRNAs significantly suppressed LFH in vivo and notably ameliorated the progression of transforming growth factor β1(TGF-β1)-induced fibrosis in vitro after delivering these two miRNAs to mouse LF cells. The results further demonstrated that miR-146a-5p and miR-221-3p directly bonded to the 3'-UTR regions of SMAD4 mRNA, thereby inhibiting the TGF-β/SMAD4 signalling pathway. Therefore, this translational study determined the effectiveness of a hUCMSC-EVs-based approach for the treatment of LFH and revealed the critical target of miR-146a-5p and miR-221-3p. Our findings provide new insights into promising therapeutics using a hUCMSC-EVs-based delivery system for patients with lumbar spinal stenosis.
Collapse
Affiliation(s)
- Cheng Ma
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xin Qi
- Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yi-Fan Wei
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhi Li
- Department of Orthopaedics, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210024, China
| | - He-Long Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - He Li
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Feng-Lei Yu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ya-Nan Pu
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yong-Xin Ren
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
36
|
Xia T, Zhang M, Lei W, Yang R, Fu S, Fan Z, Yang Y, Zhang T. Advances in the role of STAT3 in macrophage polarization. Front Immunol 2023; 14:1160719. [PMID: 37081874 PMCID: PMC10110879 DOI: 10.3389/fimmu.2023.1160719] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
The physiological processes of cell growth, proliferation, differentiation, and apoptosis are closely related to STAT3, and it has been demonstrated that aberrant STAT3 expression has an impact on the onset and progression of a number of inflammatory immunological disorders, fibrotic diseases, and malignancies. In order to produce the necessary biological effects, macrophages (M0) can be polarized into pro-inflammatory (M1) and anti-inflammatory (M2) types in response to various microenvironmental stimuli. STAT3 signaling is involved in macrophage polarization, and the research of the effect of STAT3 on macrophage polarization has gained attention in recent years. In order to provide references for the treatment and investigation of disorders related to macrophage polarization, this review compiles the pertinent signaling pathways associated with STAT3 and macrophage polarization from many fundamental studies.
Collapse
Affiliation(s)
- Tingting Xia
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Meng Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Lei
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ruilin Yang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Shengping Fu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhenhai Fan
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ying Yang
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Dermatology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- The Clinical Stem Cell Research Institute, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- *Correspondence: Tao Zhang,
| |
Collapse
|
37
|
Wang EY, Zhao Y, Okhovatian S, Smith JB, Radisic M. Intersection of stem cell biology and engineering towards next generation in vitro models of human fibrosis. Front Bioeng Biotechnol 2022; 10:1005051. [PMID: 36338120 PMCID: PMC9630603 DOI: 10.3389/fbioe.2022.1005051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 08/31/2023] Open
Abstract
Human fibrotic diseases constitute a major health problem worldwide. Fibrosis involves significant etiological heterogeneity and encompasses a wide spectrum of diseases affecting various organs. To date, many fibrosis targeted therapeutic agents failed due to inadequate efficacy and poor prognosis. In order to dissect disease mechanisms and develop therapeutic solutions for fibrosis patients, in vitro disease models have gone a long way in terms of platform development. The introduction of engineered organ-on-a-chip platforms has brought a revolutionary dimension to the current fibrosis studies and discovery of anti-fibrotic therapeutics. Advances in human induced pluripotent stem cells and tissue engineering technologies are enabling significant progress in this field. Some of the most recent breakthroughs and emerging challenges are discussed, with an emphasis on engineering strategies for platform design, development, and application of machine learning on these models for anti-fibrotic drug discovery. In this review, we discuss engineered designs to model fibrosis and how biosensor and machine learning technologies combine to facilitate mechanistic studies of fibrosis and pre-clinical drug testing.
Collapse
Affiliation(s)
- Erika Yan Wang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jacob B. Smith
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Ko JY, Chen SH, Wu RW, Wu KT, Hsu CC, Kuo SJ. Decreased Expression of Leptin among Patients with Shoulder Stiffness. Life (Basel) 2022; 12:life12101588. [PMID: 36295022 PMCID: PMC9605091 DOI: 10.3390/life12101588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
Shoulder stiffness (SS) is a disease that is fibroblastic and inflammatory in nature. Leptin is an adipokine-mediating the fibroblastic and inflammatory processes of various diseases. Our study tried to investigate the role of leptin in SS pathogenesis. Subacromial bursa from stiff and non-stiff shoulders were obtained for reverse transcription-polymerase chain reaction (RT-PCR) analysis and immunoblotting. Subacromial fluid was obtained for enzyme-linked immunosorbent assay. We showed that the expression level of leptin was lower in the subacromial bursae from the stiff shoulders in RT-PCR analysis (p < 0.001) and immunoblotting (p < 0.001). The concentration of leptin was also lower in the subacromial fluid derived from stiff shoulders. The leptin level in the subacromial fluid was positively associated with the constant score, total range of motion, flexion, abduction, and external rotation. The synovial fibroblasts derived from stiff shoulder-retrieved subacromial bursa were treated by 0, 1, and 3 μM leptin. Under RT-qPCR analysis, leptin was shown to dose-dependently decrease the transcription of IL-6, IL-10, and IL-13, but without impact on IL-1β and IL-4 (p < 0.001, p = 0.001, p = 0.001, p = 0.137, and p = 0.883 by ANOVA test, respectively). These results shed light on the role of leptin in orchestrating the disease processes of SS.
Collapse
Affiliation(s)
- Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Sung-Hsiung Chen
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Re-Wen Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Kuan-Ting Wu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Chieh-Cheng Hsu
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404327, Taiwan
- Correspondence:
| |
Collapse
|
39
|
Possible Toxic Mechanisms of Deoxynivalenol (DON) Exposure to Intestinal Barrier Damage and Dysbiosis of the Gut Microbiota in Laying Hens. Toxins (Basel) 2022; 14:toxins14100682. [PMID: 36287951 PMCID: PMC9609298 DOI: 10.3390/toxins14100682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Deoxynivalenol is one the of most common mycotoxins in cereals and grains and causes a serious health threat to poultry and farm animals. Our previous study found that DON decreased the production performance of laying hens. It has been reported that DON could exert significant toxic effects on the intestinal barrier and microbiota. However, whether the decline of laying performance is related to intestinal barrier damage, and the underlying mechanisms of DON induced intestine function injury remain largely unclear in laying hens. In this study, 80 Hy-line brown laying hens at 26 weeks were randomly divided into 0, 1, 5 and 10 mg/kg.bw (body weight) DON daily for 6 weeks. The morphology of the duodenum, the expression of inflammation factors and tight junction proteins, and the diversity and abundance of microbiota were analyzed in different levels of DON treated to laying hens. The results demonstrated that the mucosal detachment and reduction of the villi number were presented in different DON treated groups with a dose-effect manner. Additionally, the genes expression of pro-inflammatory factors IL-1β, IL-8, TNF-α and anti-inflammatory factors IL-10 were increased or decreased at 5 and 10 mg/kg.bw DON groups, respectively. The levels of ZO-1 and claudin-1 expression were significantly decreased in 5 and 10 mg/kg.bw DON groups. Moreover, the alpha diversity including Chao, ACE and Shannon indices were all reduced in DON treated groups. At the phylum level, Firmicutes and Actinobacteria and Bacteroidetes, Proteobacteria, and Spirochaetes were decreased and increased in 10 mg/kg.bw DON group, respectively. At the genus levels, the relative abundance of Clostridium and Lactobacillus in 5 and 10 mg/kg.bw DON groups, and Alkanindiges and Spirochaeta in the 10 mg/kg.bw DON were significantly decreased and increased, respectively. Moreover, there were significant correlation between the expression of tight junction proteins and the relative abundance of Lactobacillus and Succinispira. These results indicated that DON exposure to the laying hens can induce the inflammation and disrupt intestinal tight junctions, suggesting that DON can directly damage barrier function, which may be closely related to the dysbiosis of intestinal microbiota.
Collapse
|
40
|
Xue L, Li X, Zhu X, Zhang J, Zhou S, Tang W, Chen D, Chen Y, Dai J, Wu M, Wu M, Wang S. Carbon tetrachloride exposure induces ovarian damage through oxidative stress and inflammatory mediated ovarian fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113859. [PMID: 35816842 DOI: 10.1016/j.ecoenv.2022.113859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Carbon tetrachloride (CCL4) is widely used as a chemical intermediate and as a feedstock in the production of chlorofluorocarbons. CCL4 is highly toxic in the liver, kidney, testicle, brain and other tissues. However, the effect of CCL4 on ovarian function has not been reported. In this study, we found that the mice treated with CCL4 showed decreased ovarian function with disturbed estrus cycle, decreased serum level of 17β-estradiol and the reduced number of healthy follicles. Ovarian damage was accompanied by oxidative stress and the production of proinflammatory cytokines, especially interleukins. The indicators of oxidative stress, 4-Hydroxynonenal (4-HNE), 8-hydroxy-2´-deoxyguanosine (8-OHdG), 3-Nitrotyrosine (3-NT) and malondialdehyde (MDA), and the levels of proinflammatory cytokines IL-1α, IL-1β, IL-6 and IL-11 were increased, while the antioxidants, including superoxide dismutase (SOD), nuclear factor erythroid2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1), were decreased in the CCL4 group. In the CCL4 treated group, the results of Sirius Red staining, immunohistochemistry and qPCR indicated that proinflammatory cytokines caused further ovarian fibrosis. And CCL4 could also promote ovarian thecal cells to secrete inflammatory cytokines, resulting in fibrosis in vitro. In addition, CCL4 inhibited oocyte development and triggered oocyte apoptosis. In conclusion, CCL4 exposure causes ovarian damage by strong oxidative stress and the high expression of the proinflammatory cytokine mediated ovarian fibrosis.
Collapse
Affiliation(s)
- Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Xiang Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China; Department of Obstetrics and Gynecology, Xiehe Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoran Zhu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China.
| | - Mingfu Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, 430030 Wuhan, Hubei, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, 430030 Wuhan, Hubei, China.
| |
Collapse
|
41
|
Chen J, Liu Q, He J, Li Y. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front Immunol 2022; 13:958790. [PMID: 36045667 PMCID: PMC9420855 DOI: 10.3389/fimmu.2022.958790] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022] Open
Abstract
Diabetic nephropathy (DN) is a chronic, inflammatory disease affecting millions of diabetic patients worldwide. DN is associated with proteinuria and progressive slowing of glomerular filtration, which often leads to end-stage kidney diseases. Due to the complexity of this metabolic disorder and lack of clarity about its pathogenesis, it is often more difficult to diagnose and treat than other kidney diseases. Recent studies have highlighted that the immune system can inadvertently contribute to DN pathogenesis. Cells involved in innate and adaptive immune responses can target the kidney due to increased expression of immune-related localization factors. Immune cells then activate a pro-inflammatory response involving the release of autocrine and paracrine factors, which further amplify inflammation and damage the kidney. Consequently, strategies to treat DN by targeting the immune responses are currently under study. In light of the steady rise in DN incidence, this timely review summarizes the latest findings about the role of the immune system in the pathogenesis of DN and discusses promising preclinical and clinical therapies.
Collapse
Affiliation(s)
| | | | - Jinhan He
- *Correspondence: Jinhan He, ; Yanping Li,
| | - Yanping Li
- *Correspondence: Jinhan He, ; Yanping Li,
| |
Collapse
|
42
|
Xuan L, Zhang N, Wang X, Zhang L, Bachert C. IL-10 family cytokines in chronic rhinosinusitis with nasal polyps: From experiments to the clinic. Front Immunol 2022; 13:947983. [PMID: 36003393 PMCID: PMC9393419 DOI: 10.3389/fimmu.2022.947983] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is considered a nasal sinus inflammatory disease that can be dominated by immune cells and cytokines. IL-10 family cytokines exert essential functions in immune responses during infection and inflammation. Recently, the understanding of the roles of the IL-10 family in CRSwNP is being reconsidered. IL-10 family members are now considered complex cytokines that are capable of affecting epithelial function and involved in allergies and infections. Furthermore, the IL-10 family responds to glucocorticoid treatment, and there have been clinical trials of therapies manipulating these cytokines to remedy airway inflammatory diseases. Here, we summarize the recent progress in the understanding of IL-10 family cytokines in CRSwNP and suggest more specific strategies to exploit these cytokines for the effective treatment of CRSwNP.
Collapse
Affiliation(s)
- Lijia Xuan
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Nan Zhang
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- *Correspondence: Luo Zhang,
| | - Claus Bachert
- Upper Airways Research Laboratory, Ghent University, Ghent, Belgium
| |
Collapse
|
43
|
Li X, Li Y, Lv S, Xu H, Ma R, Sun Z, Li Y, Guo C. Long-term respiratory exposure to amorphous silica nanoparticles promoted systemic inflammation and progression of fibrosis in a susceptible mouse model. CHEMOSPHERE 2022; 300:134633. [PMID: 35439488 DOI: 10.1016/j.chemosphere.2022.134633] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Exposure to amorphous silica nanoparticles (SiNPs) has increased dramatically, and concerns are growing about their potential health effects. However, their long-term systemic toxicity profile and underlying mechanisms following respiratory exposure still remains unexplored. It is well documented that the inhalation of ultrafine particles is firmly associated with adverse effects in humans. Environmental pollutants may contribute to diverse adverse effect or comorbidity in susceptible individuals. Thereby, we examined the long-term systemic effects of inhaled SiNPs using a sensitive mouse model (ApoE-/-) fed by a western diet. Male ApoE-/- mice were intratracheally instilled with SiNPs suspension at a dose of 1.5, 3.0 and 6.0 mg/kg·bw, respectively, once per week, 12 times in total. The histological analysis was conducted. The serum cytokine levels were quantified by RayBiotech antibody array. As a result, systemic histopathological alterations were noticed, mainly characterized by inflammation and fibrosis. More importantly, cytokine array analysis indicated the key role of mast cells accumulation in systemic inflammation and fibrosis progression induced by inhaled SiNPs. Collectively, our study firstly demonstrated that long-term exposure to inhaled SiNPs promoted the mast cell-dominated activation of inflammatory response, not only in the lung but also in heart, liver and kidney, etc., eventually leading to the progression of tissue fibrosis in ApoE-/- mice.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Songqing Lv
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China; Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
44
|
Chen J, Liu Y, Xia S, Ye X, Chen L. Annexin A2 (ANXA2) regulates the transcription and alternative splicing of inflammatory genes in renal tubular epithelial cells. BMC Genomics 2022; 23:544. [PMID: 35906541 PMCID: PMC9336024 DOI: 10.1186/s12864-022-08748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 07/08/2022] [Indexed: 11/15/2022] Open
Abstract
Background Renal inflammation plays a crucial role during the progression of Chronic kidney disease (CKD), but there is limited research on hub genes involved in renal inflammation. Here, we aimed to explore the effects of Annexin A2 (ANXA2), a potential inflammatory regulator, on gene expression in human proximal tubular epithelial (HK2) cells. RNA-sequencing and bioinformatics analysis were performed on ANXA2-knockdown versus control HK2 cells to reveal the differentially expressed genes (DEGs) and regulated alternative splicing events (RASEs). Then the DEGs and RASEs were validated by qRT-PCR. Results A total of 220 upregulated and 171 downregulated genes related to ANXA2 knockdown were identified. Genes enriched in inflammatory response pathways, such as interferon-mediated signaling, cytokine-mediated signaling, and nuclear factor κB signaling, were under global transcriptional and alternative splicing regulation by ANXA2 knockdown. qRT-PCR confirmed ANXA2-regulated transcription of chemokine gene CCL5, as well as interferon-regulating genes ISG15, IFI6, IFI44, IFITM1, and IRF7, in addition to alternative splicing of inflammatory genes UBA52, RBCK1, and LITAF. Conclusions The present study indicated that ANXA2 plays a role in inflammatory response in HK2 cells that may be mediated via the regulation of transcription and alternative splicing of inflammation-related genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08748-6.
Collapse
Affiliation(s)
- Jing Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yuwei Liu
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Shang Xia
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xujun Ye
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China.
| | - Ling Chen
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
45
|
Two New Potential Therapeutic Approaches in Radiation Cystitis Derived from Mesenchymal Stem Cells: Extracellular Vesicles and Conditioned Medium. BIOLOGY 2022; 11:biology11070980. [PMID: 36101361 PMCID: PMC9312102 DOI: 10.3390/biology11070980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Background: Radiation cystitis (RC) results from chronic inflammation, fibrosis, and vascular damage. The urinary symptoms it causes have a serious impact on patients’ quality of life. Despite the improvement in irradiation techniques, the incidence of radiation cystitis remains stable over time, and the therapeutic possibilities remain limited. Mesenchymal stem/stromal cells (MSC) appear to offer2 a promising therapeutic approach by promoting tissue repair through their paracrine action via extracellular vesicles (MSC-EVs) or conditioned medium from human mesenchymal stromal cells (MSC-CM). We assess the therapeutic potential of MSC-EVs or MSC-CM in an in vitro model of RC. Methods:in vitro RC was induced by irradiation of human bladder fibroblasts (HUBF) with the small-animal radiation research platform (SARRP). HUBF were induced towards an RC phenotype after 3 × 3.5 Gy irradiation in the presence of either MSC-EVs or MSC-CM, to assess their effect on fibrosis, angiogenesis, and inflammatory markers. Results: Our data revealed in vitro a higher therapeutic potential of MSC-EVs and MSC-CM in prevention of RC. This was confirmed by down-regulation of α-SMA and CTGF transcription, and the induction of the secretion of anti-fibrotic cytokines, such as IFNγ, IL10 and IL27 and the decrease in the secretion of pro-fibrotic cytokines, IGFBP2, IL1β, IL6, IL18, PDGF, TNFα, and HGF, by irradiated HUBFs, conditioned with MSC-EVs or MSC-CM. The secretome of MSC (MSC-CM) or its subsecretome (MSC-EVs) are proangiogenic, with the ability to induce vessels from HUVEC cells, ensuring the management of bladder vascular lesions induced by irradiation. Conclusion: MSC-EVs and MSC-CM appear to have promising therapeutic potential in the prevention of RC in vitro, by targeting the three main stages of RC: fibrosis, inflammation and vascular damage.
Collapse
|
46
|
González-Sánchez E, Muñoz-Callejas A, Gómez-Román J, San Antonio E, Marengo A, Tsapis N, Bohne-Japiassu K, González-Tajuelo R, Pereda S, García-Pérez J, Cavagna L, González-Gay MÁ, Vicente-Rabaneda E, Meloni F, Fattal E, Castañeda S, Urzainqui A. Everolimus targeted nanotherapy reduces inflammation and fibrosis in scleroderma-related interstitial lung disease (SSc-ILD) developed by PSGL-1 deficient mice. Br J Pharmacol 2022; 179:4534-4548. [PMID: 35726496 DOI: 10.1111/bph.15898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Interstitial lung disease (ILD) is the main cause of mortality in systemic sclerosis (SSc) and current therapies available are of low efficacy or high toxicity. Thus, the identification of innovative less toxic and high efficacy therapeutic approaches to ILD treatment is a crucial point. P-selectin Glycoprotein Ligand-1 (PSGL-1) interaction with P-selectin initiates leukocyte extravasation and the lack of its expression brings to SSc-like syndrome with high incidence of ILD in aged mice. EXPERIMENTAL APPROACH Aged PSGL-1-/- mice were used to assay the therapeutic efficacy of an innovative nanotherapy with everolimus (Ev), included in liposomes decorated with high MW hyaluronic acid (LipHA+Ev) and administrated intratracheally to specifically target CD44-expressing lung cells. KEY RESULTS PSGL-1-/- mice had increased number of CD45+ and CD45- cells, including alveolar and interstitial macrophages, eosinophils, granulocytes and NK cells, and elevated number of myofibroblasts in broncoalveolar lavage (BAL). CD45+ and CD45- cells expressing proinflammatory and profibrotic cytokines were also increased. PSGL-1-/- mice lung histopathology showed increased immune cell infiltration and apoptosis and exacerbated interstitial and peribronchial fibrosis. Targeted nanotherapy with LipHA+Ev reduced BAL number of myofibroblast, cells producing proinflammatory and profibrotic cytokines, and the degree of lung inflammation at histology. LipHA+Ev treatment also provided an important decrease in severity of peribronchial and interstitial lung fibrosis from moderate to mild injury score. CONCLUSIONS AND IMPLICATIONS Our preclinical study in PSGL-1-/- mice indicates that targeted nanotherapy with LipHA+Ev represents an effective treatment for SSc-ILD, reducing the number of inflammatory and fibrotic cells in BAL and reducing inflammation and fibrosis in lungs.
Collapse
Affiliation(s)
- Elena González-Sánchez
- Immunology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| | - Antonio Muñoz-Callejas
- Immunology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| | - Javier Gómez-Román
- Pathology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Esther San Antonio
- Immunology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| | - Alessandro Marengo
- Institut Galien Paris Sud, UMR CNRS 8612. School of Pharmacy at University Paris-Saclay, Châtenay-Malabry, France
| | - Nicolas Tsapis
- Institut Galien Paris Sud, UMR CNRS 8612. School of Pharmacy at University Paris-Saclay, Châtenay-Malabry, France
| | - Kamila Bohne-Japiassu
- Institut Galien Paris Sud, UMR CNRS 8612. School of Pharmacy at University Paris-Saclay, Châtenay-Malabry, France
| | - Rafael González-Tajuelo
- Immunology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| | - Saray Pereda
- Pathology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Cantabria, Spain
| | - Javier García-Pérez
- Pneumology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital Universitario de la Princesa, Madrid, Spain
| | - Lorenzo Cavagna
- Rheumatology Department, University and IRCCS Policlinico S. Matteo Foundation, Università degli Studi di Pavia, Pavia, Italy
| | - Miguel Ángel González-Gay
- Rheumatology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Esther Vicente-Rabaneda
- Rheumatology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| | - Federica Meloni
- Internal Medicine Department, Pneumology Division, IRCCS San Matteo Foundation and Università degli Studi di Pavia, Pavia, Italy
| | - Elias Fattal
- Institut Galien Paris Sud, UMR CNRS 8612. School of Pharmacy at University Paris-Saclay, Châtenay-Malabry, France
| | - Santos Castañeda
- Rheumatology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain.,Cathedra UAM-Roche, EPID-Future, Department of Medicine, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Urzainqui
- Immunology Department, Hospital Universitario de la Princesa, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Madrid, Spain
| |
Collapse
|
47
|
Xia Y, Wang Y, Xiao Y, Shan M, Hao Y, Zhang L. Identification of a Diagnostic Signature and Immune Cell Infiltration Characteristics in Keloids. Front Mol Biosci 2022; 9:879461. [PMID: 35669563 PMCID: PMC9163372 DOI: 10.3389/fmolb.2022.879461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Keloid disorder is a recurrent fibroproliferative cutaneous tumor. Due to the lack of early identification of keloid patients before the formation of keloids, it is impossible to carry out pre-traumatic intervention and prevention for these patients. This led us to identify and determine signatures with diagnostic significance for keloids. Methods: Public series of matrix files were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were calculated from expression profiling data, and the diagnostic signature was identified by constructing a protein-protein interaction (PPI) network. The diagnostic efficacy of the screened signature was assessed by employing receiver operating characteristic (ROC) curves. Furthermore, we calculated the proportion of different immune cells in the gene expression matrix microenvironment by the “ssGSEA” algorithm, and assessed the difference in immune cell abundance between keloids and control groups and the relationship between the signature and immune cell infiltration. Clinical keloid and normal skin tissues were collected, and the expression of the screened diagnostic signature was validated by RT-qPCR and immunohistochemical assay. Results: By screening the key genes in PPI, TGM2 was recognized and validated as a diagnostic signature and the infiltrating abundance of 10 immune cells was significantly correlated with TGM2 expression. Gene ontology enrichment analysis demonstrated that TGM2 and molecules interacting with it were mainly enriched in processes involving wound healing and collagen fiber organization. TGM2 correlated positively with HIF-1A (R = 0.82, p-value = 1.4e-05), IL6 (R = 0.62, p-value = 0.0053), and FN1 (R = 0.66, p-value = 0.0019). Besides, TGM2 was significantly upregulated in clinical keloid samples compared to normal skin tissues. Conclusion: TGM2 may serve as an auxiliary diagnostic indicator for keloids. However, the role of TGM2 in keloids has not been adequately reported in the current literature, which may provide a new direction for molecular studies of keloids.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Youbin Wang,
| | - Yingjie Xiao
- Department of Cardiothoracic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lingyun Zhang
- Department of Plastic Surgery, Heze Municipal Hospital, Heze, China
| |
Collapse
|
48
|
Kang MS, Kim SH, Yang MJ, Kim HY, Kim IH, Kang JW, Choi HS, Jin SW, Park EJ. Polyhexamethylene guanidine phosphate-induced necrosis may be linked to pulmonary fibrosis. Toxicol Lett 2022; 362:1-16. [DOI: 10.1016/j.toxlet.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/05/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
49
|
Weng Y, Lu D, Tang L, Bao Y, Chen X, Junhai Z. Association between gene polymorphism of inflammatory factors, thrombogenic factors, and stress-related proteins and abdominal aortic aneurysm: A meta-analysis and systematic review. Vascular 2022; 31:417-432. [PMID: 35287513 DOI: 10.1177/17085381221077502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a deadly disease in the elderly population. Currently, the association between single nucleotide polymorphisms (SNPs) and the presence of AAAs has become a hot topic and is a concern for many researchers. METHOD We performed a document retrieval in PubMed, EMBASE, and the Cochrane Library (to January 2020). A total of 17 case-control reports on SNPs of AAAs and eight SNPs of correlation factors were selected. All essential data, including race, age, country, criteria of AAA diagnosis, method of AAA measurement, method of genotype detection, name of SNPs, minor allele frequency (MAF), Hardy Weinberg equilibrium (HWE) of the control group, and number of cases and control groups were extracted by two reviewers independently. The fixed-effect model and random-effect model were used to calculate the overall odds ratios (ORs) and 95% confidence intervals (CIs). The association between selected SNPs and the presence of AAAs was evaluated under different genetic models (dominant, codominant, recessive, overdominant, and allele models). RESULTS A total of 17 articles (sample size ranging from to 42-665 AAA cases and 49-2,297 controls) and 23 SNPs of related factors were identified. Eight SNPs were assessed in at least two studies and were selected for further meta-analysis. We found that the A allele of interleukin (IL)-10 (-1082 G/A) (OR: 1.35, 95% CI: 1.18-1.54, p < 0.0001) was a risk factor for AAAs under random and fixed-effect models. In addition, partial genetic models of these SNPs were confirmed to be related to the presence of AAA. Subgroup analysis revealed that haptoglobin (HP)-1 was a risk factor for AAAs (OR: 1.30, 95% CI: 1.04-1.63, p = 0.02) in the European population. No association was found between the occurrence of AAA and the other SNPs. CONCLUSION In our current meta-analysis, we speculated that the genotype distribution of IL-10 (-1082 G/A) may be associated with the emergence of AAA.
Collapse
Affiliation(s)
- Yingzheng Weng
- Department of Cardiology, 584020Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Difan Lu
- Department of Medicine, the Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lijiang Tang
- Department of Cardiology, 584020Zhejiang Hospital, Hangzhou, Zhejiang, China.,Department of Medicine, the Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yizong Bao
- Department of Geriatrics, Zhejiang Hospital, Hangzhou, ChinaRinggoldID:584020
| | - Xiaofeng Chen
- Department of Medicine, the Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.,Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Junhai
- Department of Intensive Care Medicine, 584020Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
50
|
Funk-Hilsdorf TC, Behrens F, Grune J, Simmons S. Dysregulated Immunity in Pulmonary Hypertension: From Companion to Composer. Front Physiol 2022; 13:819145. [PMID: 35250621 PMCID: PMC8891568 DOI: 10.3389/fphys.2022.819145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) represents a grave condition associated with high morbidity and mortality, emphasizing a desperate need for innovative and targeted therapeutic strategies. Cumulative evidence suggests that inflammation and dysregulated immunity interdependently affect maladaptive organ perfusion and congestion as hemodynamic hallmarks of the pathophysiology of PH. The role of altered cellular and humoral immunity in PH gains increasing attention, especially in pulmonary arterial hypertension (PAH), revealing novel mechanistic insights into the underlying immunopathology. Whether these immunophysiological aspects display a universal character and also hold true for other types of PH (e.g., PH associated with left heart disease, PH-LHD), or whether there are unique immunological signatures depending on the underlying cause of disease are points of consideration and discussion. Inflammatory mediators and cellular immune circuits connect the local inflammatory landscape in the lung and heart through inter-organ communication, involving, e.g., the complement system, sphingosine-1-phosphate (S1P), cytokines and subsets of, e.g., monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs), and T- and B-lymphocytes with distinct and organ-specific pro- and anti-inflammatory functions in homeostasis and disease. Perivascular macrophage expansion and monocyte recruitment have been proposed as key pathogenic drivers of vascular remodeling, the principal pathological mechanism in PAH, pinpointing toward future directions of anti-inflammatory therapeutic strategies. Moreover, different B- and T-effector cells as well as DCs may play an important role in the pathophysiology of PH as an imbalance of T-helper-17-cells (TH17) activated by monocyte-derived DCs, a potentially protective role of regulatory T-cells (Treg) and autoantibody-producing plasma cells occur in diverse PH animal models and human PH. This article highlights novel aspects of the innate and adaptive immunity and their interaction as disease mediators of PH and its specific subtypes, noticeable inflammatory mediators and summarizes therapeutic targets and strategies arising thereby.
Collapse
Affiliation(s)
- Teresa C. Funk-Hilsdorf
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Behrens
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jana Grune
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Szandor Simmons
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- *Correspondence: Szandor Simmons,
| |
Collapse
|