1
|
Feng Y, Geng Y, Liu Z, Lu L, Cai C, Ding C, Dong S, Gao B. QRICH1, as a key effector of endoplasmic reticulum stress, enhances HBV in promoting HMGB1 translocation and secretion in hepatocytes. Immunobiology 2025; 230:152913. [PMID: 40383084 DOI: 10.1016/j.imbio.2025.152913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/24/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Extracellular high mobility group box 1 (HMGB1) serves as a damage-associated molecular pattern (DAMP) and leads to diverse biological effects, including the aggravation of HBV-related liver diseases. However, mechanisms underlying HMGB1 secretion in HBV-induced hepatic injury and fibrosis remain unclear. Glutamine-rich 1 (QRICH1) is known as a critical effector of endoplasmic reticulum (ER) stress and is elevated in liver diseases. Whether QRICH1 participates in HBV-induced hepatic fibrosis warrants further investigation. Here, we explore the mechanism of HMGB1 secretion during HBV-induced hepatic fibrosis and the effect of QRICH1 on the process. METHODS In vivo experiments were conducted using a chronic recombinant cccDNA (rcccDNA) mouse model. Clinical specimens were obtained from Zhongshan Hospital, Fudan University. The levels of QRICH1 and HMGB1 were determined via immunohistochemistry. Liver collagen deposition was determined by Sirius red and Masson's trichrome staining. The serum levels of HMGB1 and indicators of liver injury were detected via ELISA. HMGB1 cyto-translocation was analyzed by Western blotting and quantitative real-time PCR (qRT-PCR). RESULTS Our findings demonstrated that ER stress promoted HBV-induced hepatic fibrosis in a mouse model. QRICH1 expression and HMGB1 secretion were elevated and positively correlated in rcccDNA mice with ER stress activation and chronic hepatitis B (CHB) patients with severe fibrosis. HBV modulated Sirtuin6 (SIRT6) expression, affecting HMGB1 cyto-translocation via acetylation regulation. Furthermore, QRICH1 enhanced HBV-induced HMGB1 translocation and secretion by regulating HMGB1 transcription. CONCLUSION HBV promotes HMGB1 acetylation and cyto-translocation by modulating SIRT6 expression. QRICH1 enhances HBV-induced HMGB1 translocation and secretion by regulating HMGB1 transcription.
Collapse
Affiliation(s)
- Ying Feng
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yucai Geng
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhixiang Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lin Lu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chen Cai
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chenke Ding
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuyu Dong
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China..
| |
Collapse
|
2
|
Patiño-Martinez E, Nakabo S, Jiang K, Carmona-Rivera C, Li Tsai W, Claybaugh D, Yu ZX, Romero A, Bohrnsen E, Schwarz B, Solís-Barbosa MA, Blanco LP, Naqi M, Temesgen-Oyelakim Y, Davis M, Manna Z, Gupta S, Mehta N, Naz F, dell’Orso S, Hasni S, Kaplan MJ. The Aconitate Decarboxylase 1/Itaconate Pathway Modulates Immune Dysregulation and Associates with Cardiovascular Disease Markers and Disease Activity in Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:419-434. [PMID: 38949522 PMCID: PMC11817569 DOI: 10.4049/jimmunol.2400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.
Collapse
Affiliation(s)
- Eduardo Patiño-Martinez
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shuichiro Nakabo
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS/NIH
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Dillon Claybaugh
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute (NHLBI), NIH
| | - Aracely Romero
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Eric Bohrnsen
- Protein & Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, MT, USA
| | - Benjamin Schwarz
- Protein & Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, MT, USA
| | - Miguel A. Solís-Barbosa
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del I.P.N, 07360 Mexico City, Mexico
| | - Luz P. Blanco
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | | | | | | | | | - Faiza Naz
- Office of Science and Technology, NIAMS/NIH
| | | | | | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
3
|
Wu Y, Dong HR, Liu LT, Peng ML, Su XL. Advances in the study of exosome-derived miRNAs in the pathogenesis, diagnosis, and treatment of systemic lupus erythematosus. Lupus 2023; 32:1475-1485. [PMID: 37906972 PMCID: PMC10666474 DOI: 10.1177/09612033231212280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory disease caused by autoantibodies, with high morbidity and mortality. It involves multiple systems, particularly the renal, which can lead to lupus nephritis (LN); its multi-system effects have a significant impact on the physical and mental health of patients. Exosomes are vesicles that are secreted during cell activity and carry a variety of nucleic acids, proteins, and lipids. They are distributed through body fluids for cellular communication. MicroRNAs (miRNAs) are nucleic acids that are packaged within the exosome that are taken up and released in response to changes in plasma membrane structure. MiRNAs are potential participants in immune and inflammatory responses, which are transported to target cells and can inhibit gene expression in receptor cells. It has been suggested that exosomal miRNA can regulate the pathogenesis of SLE and, as such, they are of value in diagnosis and treatment. In this paper, we focus on the research progress into exosomal miRNA in SLE and inspire new directions for SLE related research.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | | | - Li Tin Liu
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Mei Lin Peng
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xiu Lan Su
- Clinical Medical Research Center of the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
4
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
5
|
Allegra A, Cicero N, Mirabile G, Giorgianni CM, Gangemi S. Novel Biomarkers for Diagnosis and Monitoring of Immune Thrombocytopenia. Int J Mol Sci 2023; 24:ijms24054438. [PMID: 36901864 PMCID: PMC10003036 DOI: 10.3390/ijms24054438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Lower-than-normal platelet counts are a hallmark of the acquired autoimmune illness known as immune thrombocytopenia, which can affect both adults and children. Immune thrombocytopenia patients' care has evolved significantly in recent years, but the disease's diagnosis has not, and it is still only clinically achievable with the elimination of other causes of thrombocytopenia. The lack of a valid biomarker or gold-standard diagnostic test, despite ongoing efforts to find one, adds to the high rate of disease misdiagnosis. However, in recent years, several studies have helped to elucidate a number of features of the disease's etiology, highlighting how the platelet loss is not only caused by an increase in peripheral platelet destruction but also involves a number of humoral and cellular immune system effectors. This made it possible to identify the role of immune-activating substances such cytokines and chemokines, complement, non-coding genetic material, the microbiome, and gene mutations. Furthermore, platelet and megakaryocyte immaturity indices have been emphasized as new disease markers, and prognostic signs and responses to particular types of therapy have been suggested. Our review's goal was to compile information from the literature on novel immune thrombocytopenia biomarkers, markers that will help us improve the management of these patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy
- Correspondence:
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, 98100 Messina, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy
| | - Concetto Mario Giorgianni
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, 98100 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
6
|
He M, Chu T, Wang Z, Feng Y, Shi R, He M, Feng S, Lu L, Cai C, Fang F, Zhang X, Liu Y, Gao B. Inhibition of macrophages inflammasome activation via autophagic degradation of HMGB1 by EGCG ameliorates HBV-induced liver injury and fibrosis. Front Immunol 2023; 14:1147379. [PMID: 37122751 PMCID: PMC10140519 DOI: 10.3389/fimmu.2023.1147379] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Liver fibrosis is a reversible wound-healing response that can lead to end-stage liver diseases without effective treatment, in which HBV infection is a major cause. However, the underlying mechanisms for the development of HBV-induced fibrosis remains elusive, and efficacious therapies for this disease are still lacking. In present investigation, we investigated the effect and mechanism of green tea polyphenol epigallocatechin-3-gallate (EGCG) on HBV-induced liver injury and fibrosis. Methods The effect of EGCG on liver fibrosis was examined in a recombinant cccDNA (rcccDNA) chronic HBV mouse model by immunohistochemical staining, Sirius red and Masson's trichrome staining. The functional relevance between high mobility group box 1 (HMGB1) and inflammasome activation and the role of EGCG in it were analyzed by Western blotting. The effect of EGCG on autophagic flux was determined by Western blotting and flow cytometric analysis. Results EGCG treatment efficiently was found to alleviate HBV-induced liver injury and fibrosis in a recombinant cccDNA (rcccDNA) chronic HBV mouse model, a proven suitable research platform for HBV-induced fibrosis. Mechanistically, EGCG was revealed to repress the activation of macrophage NLRP3 inflammasome, a critical trigger of HBV-induced liver fibrosis. Further study revealed that EGCG suppressed macrophage inflammasome through downregulating the level of extracellular HMGB1. Furthermore, our data demonstrated that EGCG treatment downregulated the levels of extracellular HMGB1 through activating autophagic degradation of cytoplasmic HMGB1 in hepatocytes. Accordingly, autophagy blockade was revealed to significantly reverse EGCG-mediated inhibition on extracellular HMGB1-activated macrophage inflammasome and thus suppress the therapeutic effect of EGCG on HBV-induced liver injury and fibrosis. Conclusion EGCG ameliorates HBV-induced liver injury and fibrosis via autophagic degradation of cytoplasmic HMGB1 and the subsequent suppression of macrophage inflammasome activation. These data provided a new pathogenic mechanism for HBV-induced liver fibrosis involving the extracellular HMGB1-mediated macrophage inflammasome activation, and also suggested EGCG administration as a promising therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Minjing He
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Tianhao Chu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ziteng Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Ying Feng
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Runhan Shi
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Muyang He
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Siheng Feng
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lin Lu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Chen Cai
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Fang Fang
- Department of Dermatology, Shanghai Eighth People’s Hospital, Shanghai, China
| | - Xuemin Zhang
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Bo Gao, ; Yi Liu, ; Xuemin Zhang,
| | - Yi Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Bo Gao, ; Yi Liu, ; Xuemin Zhang,
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- *Correspondence: Bo Gao, ; Yi Liu, ; Xuemin Zhang,
| |
Collapse
|
7
|
Chen D, Lu L, Wang H, Peng S, Liu J, Zhang X, Li Z, Huang X, Ouyang P, Qu L, Geng Y. Expression profiling and inflammatory activation analysis of high-mobility group box 1 in Schizothorax prenanti. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:174-183. [PMID: 36063081 DOI: 10.1002/aah.10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE High-mobility group box 1 (HMGB1) is a highly conserved nuclear protein and participates in the immune response to pathogens in bony fish. In this study, the structure and function of HMGB1 in the cyprinid fish Schizothorax prenanti (SpHMGB1) were investigated. METHODS The spatial structure of SpHMGB1 was predicted by CPHmodels. Quantitative reverse transcription PCR was used to detect the mRNA of SpHMGB1 in different tissues and Streptococcus agalactiae infection. The macrophage was treated with synthetic SpHMGB1-B box peptide to analyze the inflammatory activity. RESULT Structurally, SpHMGB1 had the conserved A box, B box, and acid tail compared with Zebrafish Danio rerio and mice Mus musculus. SpHMGB1 was universally expressed in various tissues, with the highest expression in the middle kidney. In vivo, SpHMGB1 was significantly induced in response to Streptococcus agalactiae infection in the blood and spleen. Synthetic SpHMGB1-B box peptide activated respiratory burst and up-regulated the messenger RNA expression of interleukin-1β, tumor necrosis factor α, interleukin-10, interferon regulatory factor 1, interferon regulatory factor 7, C-X-C motif chemokine ligand 11-1, C-X-C motif chemokine ligand 11-2, and toll-like receptor 4 in macrophages. CONCLUSION This study suggested that SpHMGB1 participated in the response to bacterial pathogens and that SpHMGB1-B box peptide played an important role in mediating the immune response of S. prenanti.
Collapse
Affiliation(s)
- Defang Chen
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hong Wang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuang Peng
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaxi Liu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Ouyang
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lianshi Qu
- Ya'an Fishery Development Center, Ya'an, China
| | - Yi Geng
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Danieli MG, Antonelli E, Piga MA, Claudi I, Palmeri D, Tonacci A, Allegra A, Gangemi S. Alarmins in autoimmune diseases. Autoimmun Rev 2022; 21:103142. [PMID: 35853572 DOI: 10.1016/j.autrev.2022.103142] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 12/18/2022]
Abstract
Alarmins are endogenous, constitutively expressed, chemotacting and immune activating proteins or peptides released because of non-programmed cell death (i.e. infections, trauma, etc). They are considered endogenous damage-associated molecular patterns (DAMPs), able to induce a sterile inflammation. In the last years, several studies highlighted a possible role of different alarmins in the pathogenesis of various autoimmune and immune-mediated diseases. We reviewed the relevant literature about this topic, for about 160 articles. Particularly, we focused on systemic autoimmune diseases (systemic lupus erythematosus, rheumatoid arthritis, idiopathic inflammatory myopathies, ANCA-associated vasculitides, Behçet's disease) and cutaneous organ-specific autoimmune diseases (vitiligo, psoriasis, alopecia, pemphigo). Finally, we discussed about future perspectives and potential therapeutic implications of alarmins in autoimmune diseases. In fact, identification of receptors and downstream signal transducers of alarmins may lead to the identification of antagonistic inhibitors and agonists, with the capacity to modulate alarmins-related pathways and potential therapeutic applicability.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Eleonora Antonelli
- PostGraduate School of Internal Medicine, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Mario Andrea Piga
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Ilaria Claudi
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Davide Palmeri
- Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy.
| |
Collapse
|
9
|
Dong Y, Ming B, Dong L. The Role of HMGB1 in Rheumatic Diseases. Front Immunol 2022; 13:815257. [PMID: 35250993 PMCID: PMC8892237 DOI: 10.3389/fimmu.2022.815257] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022] Open
Abstract
HMGB1, a highly conserved non-histone nuclear protein, is widely expressed in mammalian cells. HMGB1 in the nucleus binds to the deoxyribonucleic acid (DNA) to regulate the structure of chromosomes and maintain the transcription, replication, DNA repair, and nucleosome assembly. HMGB1 is actively or passively released into the extracellular region during cells activation or necrosis. Extracellular HMGB1 as an alarmin can initiate immune response alone or combined with other substances such as nucleic acid to participate in multiple biological processes. It has been reported that HMGB1 is involved in various inflammatory responses and autoimmunity. This review article summarizes the physiological function of HMGB1, the post-translational modification of HMGB1, its interaction with different receptors, and its recent advances in rheumatic diseases and strategies for targeted therapy.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Ahamada MM, Jia Y, Wu X. Macrophage Polarization and Plasticity in Systemic Lupus Erythematosus. Front Immunol 2022; 12:734008. [PMID: 34987500 PMCID: PMC8721097 DOI: 10.3389/fimmu.2021.734008] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that attacks almost every organ. The condition mostly happens to adults but is also found in children, and the latter have the most severe manifestations. Among adults, females, especially non-Caucasian, are mostly affected. Even if the etiology of SLE remains unclear, studies show a close relation between this disease and both genetics and environment. Despite the large number of published articles about SLE, we still do not have a clear picture of its pathogenesis, and no specific drug has been found to treat this condition effectively. The implication of macrophages in SLE development is gaining ground, and studying it could answer these gaps. Indeed, both in vivo and in vitro studies increasingly report a strong link between this disease and macrophages. Hence, this review aims to explore the role of macrophages polarization and plasticity in SLE development. Understanding this role is of paramount importance because in-depth knowledge of the connection between macrophages and this systemic disease could clarify its pathogenesis and provide a foundation for macrophage-centered therapeutic approaches.
Collapse
Affiliation(s)
- Mariame Mohamed Ahamada
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Jia
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Possible role of the HMGB1 and RAGE inflammatory pathway in primary sclerosing cholangitis. Clin Res Hepatol Gastroenterol 2022; 46:101791. [PMID: 34400366 DOI: 10.1016/j.clinre.2021.101791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Activation of the receptor for advanced glycation end products (RAGE) and its ligand High Mobility Group Box Protein 1 (HMGB1), a nuclear protein with proinflammatory properties, has been implicated in several inflammatory disorders. OBJECTIVE To analyse the influence of RAGE and HMGB1 signalling in patients with primary sclerosing cholangitis (PSC). METHODS Levels of HMGB1 and bile acid in serum and bile samples of 69 PSC patients and 32 controls were measured. Additionally, 640 patients with PSC and other liver diseases were analysed for the gain-of-function RAGE G82S SNP by PCR. Laboratory and clinical parameters were retrieved by chart review. RESULTS ELISA analysis showed significantly higher biliary HMGB1 concentrations in PSC patients (n=69, median 124,1 ng/ml) than in the control group (n=32, median 6,85 ng/ml, p<0,001). Median serum HMGB1 (n=22, median 2,4 ng/ml) was significantly lower than median biliary HMGB1 of the concomitant bile samples (n=22, median 151 ng/ml, p =0,001). There was no correlation of biliary HMGB1 levels with laboratory parameters or clinical end points. Analysis of the gain-of-function G82SSNP RAGE SNP in PSC patients showed 8 patients with heterozygote mutant alleles (8/324, 2,5%). Patients carrying the mutation developed more often dominant strictures of the large bile ducts (100.0% vs. 61.3%; p=0.04) and had reduced transplantation-free survival in the mutant allele group (p<0.001). CONCLUSIONS Biliary HMGB1 levels are elevated in PSC patients compared to controls and a gain-of-function SNP in RAGE is associated with development of dominant strictures and reduced survival in PSC patients.
Collapse
|
12
|
Wen Z, Xu L, Xu W, Xiong S. Retinoic Acid Receptor-Related Orphan Nuclear Receptor γt Licenses the Differentiation and Function of a Unique Subset of Follicular Helper T Cells in Response to Immunogenic Self-DNA in Systemic Lupus Erythematosus. Arthritis Rheumatol 2021; 73:1489-1500. [PMID: 33559400 DOI: 10.1002/art.41687] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Accumulating studies have identified self-DNA as driving IgG anti-double-stranded DNA (anti-dsDNA) in lupus, though the underpinning mechanisms of this process remain largely undefined. Here, we explored the activity of transcription factor retinoic acid receptor-related orphan nuclear receptor γt (RORγt) in the differentiation and function of self-DNA-specific follicular helper T (Tfh) cells in lupus. METHODS B6, TCRα-/- , CD4-/- , RORγtfl/fl CD4Cre, RORγt+/+ CD4Cre, Bcl-6fl/fl CD4Cre, Bcl-6+/+ CD4Cre, IL-17-/- , and ICOS-/- mice were immunized with normal self-DNA, immunogenic self-DNA, and pathogen DNA to induce the production of Tfh cells and IgG anti-dsDNA. Tfh cells with or without interleukin-17 (IL-17) were evaluated for their role in supporting the generation of IgG. NSG mice were reconstituted with immune cells and circulating DNA from human subjects for translational studies. IL-17-positive Tfh cells were analyzed for their correlation with IgG anti-dsDNA levels as well as their response to circulating self-DNA in lupus patients. RESULTS Unlike normal self-DNA, immunogenic self-DNA and pathogen DNA efficiently induced IgG responses. Immunogenic self-DNA induced IgG in a CD4+ T cell-dependent manner, which was abrogated by RORγt deficiency. In contrast, RORγt was not required for the generation of pathogen DNA-induced IgG. Further analyses identified RORγt as essential for the differentiation and function of Tfh cells in response to immunogenic self-DNA, assigning IL-17 as a feature cytokine. These IL-17-positive Tfh cells functioned independent of inducible costimulator (ICOS), critically supporting IgG generation. Targeting immunogenic self-DNA-specific Tfh cells by RORγ knockdown and IL-17 blockade ameliorated IgG response and lupus nephritis in a humanized mouse model. The presence of IL-17-positive Tfh cells was associated with IgG anti-dsDNA levels and were expanded by circulating immunogenic self-DNA in lupus patients. CONCLUSION Immunogenic self-DNA instructs ICOS-dispensable IL-17-positive Tfh cells via RORγt to produce an IgG anti-dsDNA response. As such, IL-17-positive Tfh cells are a promising therapeutic target for lupus patients.
Collapse
Affiliation(s)
| | - Lin Xu
- Soochow University, Suzhou, China
| | - Wei Xu
- Soochow University, Suzhou, China
| | | |
Collapse
|
13
|
You Y, Zhao X, Wu Y, Mao J, Ge L, Guo J, Zhao C, Chen D, Song Z. Integrated Transcriptome Profiling Revealed That Elevated Long Non-Coding RNA- AC007278.2 Expression Repressed CCR7 Transcription in Systemic Lupus Erythematosus. Front Immunol 2021; 12:615859. [PMID: 34220794 PMCID: PMC8242351 DOI: 10.3389/fimmu.2021.615859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Systemic lupus erythematosus (SLE) is a serious autoimmune disease. Its molecular pathogenesis, especially the long non-coding RNA (lncRNA) function, remains unclear. We want to investigate the lncRNA dysregulation profile and their molecular mechanisms in SLE. Methods In this study, we analyzed the transcriptome profiles (RNA-seq) of peripheral blood mononuclear cells (PBMCs) from SLE patients and two published transcriptome datasets to explore lncRNA profiles. The differentially expressed lncRNAs were confirmed by quantitative real-time PCR in another set of female patients. We constructed the lncRNA-mRNA regulatory networks by performing weighted gene co-expression network analysis (WGCNA). Dysregulated lncRNA AC007278.2 was repressed by short hairpin RNA (shRNA) in Jurkat cells. Dual-luciferase reporter gene assay was performed to investigate the regulatory mechanism of AC007278.2 on target gene CCR7. Results We observed dominant up-regulation of transcripts, including mRNAs and lncRNAs, in SLE patients. By WGCNA method, we identified three modules that were highly related to SLE. We then focused on one lncRNA, AC007278.2, with a T-helper 1 lineage-specific expression pattern. We observed consistently higher AC007278.2 expression in SLE patients. Co-expression network revealed that AC007278.2 participated in the innate immune response and inflammatory bowel disease pathways. By knocking down AC007278.2 expression, we found that AC007278.2 could regulate the expression of inflammatory and cytokine stimulus response-related genes, including CCR7, AZU1, and TNIP3. AC007278.2 inhibits the functional CCR7 promoter to repress its transcription, thereby regulating autoimmunity and follicular T-helper cell differentiation. Conclusion In summary, our study indicated the important regulatory role of lncRNAs in SLE. AC007278.2 may be treated as a novel biomarker for SLE diagnosis and treatment.
Collapse
Affiliation(s)
- Yi You
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yaguang Wu
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiangming Mao
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Lan Ge
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Junkai Guo
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chenglei Zhao
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc., Wuhan, China.,Science Department, ABLife BioBigData Institute, Wuhan, China
| | - Zhiqiang Song
- Department of Dermatology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
14
|
High mobility group box 1 is involved in the pathogenesis of passive transfer myasthenia gravis model. Neuroreport 2021; 32:803-807. [PMID: 33994526 DOI: 10.1097/wnr.0000000000001665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease with autoantibodies against the mainly nicotinic acetylcholine receptor (AChR). High mobility group box1 (HMGB1) acts as a danger signal and drives the pathogenesis of autoimmune-mediated diseases. However, the role of HMGB1 in the pathogenesis of MG is not fully understood. Therefore, in this study, we analyzed serum levels of HMGB1 and immunohistochemical HMGB1 staining of muscle tissues in the passive transfer MG model to investigate the role of HMGB1 in MG. As a result, serum HMGB1 levels tended to be higher and the quantitative score of muscle pathology showed greater HMGB1 deposition (P = 0.02) along with sparser AChR staining and more severe inflammation in the passive transfer MG rats (n = 6) than those in control rats (n = 6). These findings indicate that HMGB1 is an important mediator and biomarker for inflammation in the pathogenesis of MG and can be a therapeutic target in MG.
Collapse
|
15
|
Song X, Zhang H, Zhao Y, Lin Y, Tang Q, Zhou X, Zhong X. HMGB1 Activates Myeloid Dendritic Cells by Up-Regulating mTOR Pathway in Systemic Lupus Erythematosus. Front Med (Lausanne) 2021; 8:636188. [PMID: 34164408 PMCID: PMC8215142 DOI: 10.3389/fmed.2021.636188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/15/2021] [Indexed: 01/12/2023] Open
Abstract
Research has shown that HMGB1 can activate dendritic cells (DCs), but its molecular mechanisms are not clear. In this study, we reported that the myeloid dendritic cells (mDCs) were activated in the peripheral blood of SLE patients, and the activation of mDCs was associated with the up-regulation of HMGB1 and mTOR. After stimulated by HMGB1, expression of mTOR and its substrates P70S6K and 4EBP1 in dendritic cells increased considerably (P < 0.01). The expression of HLA-DR, CD40, and CD86 on dendritic cells also significantly increased following these stimuli (P < 0.01). In addition, stimulation with HMGB1 enhanced cytokine (IL-1β, IL-6, and TNF-a) production in dendritic cells. In contrast, the HMGB1-mediated expression of HLA-DR, CD40, and CD86 on dendritic cells and production of IL-1β, IL-6, and TNF-α were reduced by rapamycin. Rapamycin can inhibit HMGB1-induced activation of mDCs and secretion of pro-inflammatory cytokines. These findings indicated that HMGB1activates mDCs by up-regulating the mTOR pathway in SLE.
Collapse
Affiliation(s)
- Xinghui Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Rheumatism and Immunology, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Hui Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yun Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanzhen Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiya Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
16
|
Watanabe H, Son M. The Immune Tolerance Role of the HMGB1-RAGE Axis. Cells 2021; 10:564. [PMID: 33807604 PMCID: PMC8001022 DOI: 10.3390/cells10030564] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The disruption of the immune tolerance induces autoimmunity such as systemic lupus erythematosus and vasculitis. A chromatin-binding non-histone protein, high mobility group box 1 (HMGB1), is released from the nucleus to the extracellular milieu in particular environments such as autoimmunity, sepsis and hypoxia. Extracellular HMGB1 engages pattern recognition receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation endproducts (RAGE). While the HMGB1-RAGE axis drives inflammation in various diseases, recent studies also focus on the anti-inflammatory effects of HMGB1 and RAGE. This review discusses current perspectives on HMGB1 and RAGE's roles in controlling inflammation and immune tolerance. We also suggest how RAGE heterodimers responding microenvironments functions in immune responses.
Collapse
Affiliation(s)
- Haruki Watanabe
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
17
|
Vijayakumar EC, Bhatt LK, Prabhavalkar KS. High Mobility Group Box-1 (HMGB1): A Potential Target in Therapeutics. Curr Drug Targets 2020; 20:1474-1485. [PMID: 31215389 DOI: 10.2174/1389450120666190618125100] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
High mobility group box-1 (HMGB1) mainly belongs to the non-histone DNA-binding protein. It has been studied as a nuclear protein that is present in eukaryotic cells. From the HMG family, HMGB1 protein has been focused particularly for its pivotal role in several pathologies. HMGB-1 is considered as an essential facilitator in diseases such as sepsis, collagen disease, atherosclerosis, cancers, arthritis, acute lung injury, epilepsy, myocardial infarction, and local and systemic inflammation. Modulation of HMGB1 levels in the human body provides a way in the management of these diseases. Various strategies, such as HMGB1-receptor antagonists, inhibitors of its signalling pathway, antibodies, RNA inhibitors, vagus nerve stimulation etc. have been used to inhibit expression, release or activity of HMGB1. This review encompasses the role of HMGB1 in various pathologies and discusses its therapeutic potential in these pathologies.
Collapse
Affiliation(s)
- Eyaldeva C Vijayakumar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
18
|
Abstract
The high-mobility group box 1 (HMGB1) has been shown to exert proinflammatory effects on many cells of the innate immune system. Originally identified as a nuclear protein, HMGB1 has been found to play an important role in mediating inflammation when released from apoptotic or necrotic cells as a damage-associated molecular pattern (DAMP). Systemic lupus erythematosus (SLE) is a disease of non-resolving inflammation, characterized by the presence of autoantibodies and systemic inflammation involving multiple organ systems. SLE patients have impaired clearance of apoptotic debris, which releases HMGB1 and other DAMPs extracellularly. HMGB1 activity is implicated in multiple disease phenotypes in SLE, including lupus nephritis and neuropsychiatric lupus. Elucidating the various properties of HMGB1 in SLE provides a better understanding of the disease and opens up new opportunities for designing potential therapeutics.
Collapse
Affiliation(s)
- Tianye Liu
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
19
|
High salt diet accelerates the progression of murine lupus through dendritic cells via the p38 MAPK and STAT1 signaling pathways. Signal Transduct Target Ther 2020; 5:34. [PMID: 32296043 PMCID: PMC7145808 DOI: 10.1038/s41392-020-0139-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/08/2020] [Accepted: 01/20/2020] [Indexed: 02/05/2023] Open
Abstract
The increased incidence of systemic lupus erythematosus (SLE) in recent decades might be related to changes in modern dietary habits. Since sodium chloride (NaCl) promotes pathogenic T cell responses, we hypothesize that excessive salt intake contributes to the increased incidence of autoimmune diseases, including SLE. Given the importance of dendritic cells (DCs) in the pathogenesis of SLE, we explored the influence of an excessive sodium chloride diet on DCs in a murine SLE model. We used an induced lupus model in which bone marrow-derived dendritic cells (BMDCs) were incubated with activated lymphocyte-derived DNA (ALD-DNA) and transferred into C57BL/6 recipient mice. We observed that a high-salt diet (HSD) markedly exacerbated lupus progression, which was accompanied by increased DC activation. NaCl treatment also stimulated the maturation, activation and antigen-presenting ability of DCs in vitro. Pretreatment of BMDCs with NaCl also exacerbated BMDC-ALD-DNA-induced lupus. These mice had increased production of autoantibodies and proinflammatory cytokines, more pronounced splenomegaly and lymphadenopathy, and enhanced pathological renal lesions. The p38 MAPK–STAT1 pathway played an important role in NaCl-induced DC immune activities. Taken together, our results demonstrate that HSD intake promotes immune activation of DCs through the p38 MAPK–STAT1 signaling pathway and exacerbates the features of SLE. Thus, changes in diet may provide a novel strategy for the prevention or amelioration of lupus or other autoimmune diseases.
Collapse
|
20
|
Ding J, Su S, You T, Xia T, Lin X, Chen Z, Zhang L. Serum interleukin-6 level is correlated with the disease activity of systemic lupus erythematosus: a meta-analysis. Clinics (Sao Paulo) 2020; 75:e1801. [PMID: 33084768 PMCID: PMC7536892 DOI: 10.6061/clinics/2020/e1801] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin-6 (IL-6) plays a crucial role in systemic autoimmunity and pathologic inflammation. Numerous studies have explored serum IL-6 levels in systemic lupus erythematosus (SLE) and their correlation with disease activity. Here, we performed a meta-analysis to quantitatively assess the correlation between the serum IL-6 levels and SLE activity. The PubMed and EMBASE databases were thoroughly searched for relevant studies up to September 2019. Standardized mean differences (SMDs) with 95% confidence intervals (95% CIs) were used to describe the differences between serum IL-6 levels in SLE patients and healthy controls and between those in active SLE patients and inactive SLE patients. The correlation between the serum IL-6 levels and disease activity was evaluated using Fisher's z values. A total of 24 studies involving 1817 SLE patients and 874 healthy controls were included in this meta-analysis. Serum IL-6 levels were significantly higher in SLE patients than in the healthy controls (pooled SMD: 2.12, 95% CI: 1.21-3.03, Active SLE patients had higher serum IL-6 levels than inactive SLE patients (pooled SMD: 2.12, 95% CI: 1.21-3.03). Furthermore, the pooled Fisher's z values (pooled Fisher's z=0.36, 95% CI: 0.26-0.46, p<0.01) showed that there was a positive correlation between the serum IL-6 levels and SLE activity. This study suggested that serum IL-6 levels were higher in patients with SLE than in healthy controls, and they were positively correlated with disease activity when Systemic Lupus Erythematosus Disease Activity Index>4 was defined as active SLE. More homogeneous studies with large sample sizes are warranted to confirm our findings due to several limitations in our meta-analysis.
Collapse
Affiliation(s)
- Jianwen Ding
- Department of Kidney Disease, Lanzhou University Second Hospital, Lanzhou 730030, China
- *Corresponding authors. E-mail: / / E-mail:
| | - Shujun Su
- Department of Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Corresponding authors. E-mail: / / E-mail:
| | - Tao You
- Department of Endocrinology and Rheumatology, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
- *Corresponding authors. E-mail: / / E-mail:
| | - Tingting Xia
- Center for Reproductive Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou city, Guangdong Province, China
| | - Xiaoying Lin
- Department of Endocrinology and Rheumatology, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
| | - Zhaocong Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
- *Corresponding authors. E-mail: / / E-mail:
| | - Liqun Zhang
- Department of Endocrinology and Rheumatology, Affiliated Southeast Hospital of Xiamen University/909th Hospital of People's Liberation Army, 269 Zhanghua Middle Road, Zhangzhou, 363000, Fujian Province, China
- *Corresponding authors. E-mail: / / E-mail:
| |
Collapse
|
21
|
The contribution of macrophages to systemic lupus erythematosus. Clin Immunol 2019; 207:1-9. [DOI: 10.1016/j.clim.2019.06.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
|
22
|
Mandke P, Vasquez KM. Interactions of high mobility group box protein 1 (HMGB1) with nucleic acids: Implications in DNA repair and immune responses. DNA Repair (Amst) 2019; 83:102701. [PMID: 31563843 DOI: 10.1016/j.dnarep.2019.102701] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/10/2023]
Abstract
High mobility group box protein 1 (HMGB1) is a highly versatile, abundant, and ubiquitously expressed, non-histone chromosomal protein, which belongs to the HMGB family of proteins. These proteins form an integral part of the architectural protein repertoire to support chromatin structure in the nucleus. In the nucleus, the role of HMGB1 is attributed to its ability to bind to undamaged DNA, damaged DNA, and alternative (i.e. non-B) DNA structures with high affinity and subsequently induce bending of the DNA substrates. Due to its binding to DNA, HMGB1 has been implicated in critical biological processes, such as DNA transcription, replication, repair, and recombination. In addition to its intracellular functions, HMGB1 can also be released in the extracellular space where it elicits immunological responses. HMGB1 associates with many different molecules, including DNA, RNA, proteins, and lipopolysaccharides to modulate a variety of processes in both DNA metabolism and in innate immunity. In this review, we will focus on the implications of the interactions of HMGB1 with nucleic acids in DNA repair and immune responses. We report on the roles of HMGB1 in nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR) and DNA double-strand break repair (DSBR). We also report on its roles in immune responses via its potential effects on antigen receptor diversity generation [V(D)J recombination] and interactions with foreign and self-nucleic acids. HMGB1 expression is altered in a variety of cancers and immunological disorders. However, due to the diversity and complexity of the biological processes influenced by HMGB1 (and its family members), a detailed understanding of the intracellular and extracellular roles of HMGB1 in DNA damage repair and immune responses is warranted to ensure the development of effective HMGB1-related therapies.
Collapse
Affiliation(s)
- Pooja Mandke
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA.
| |
Collapse
|
23
|
Luo H, Wang L, Bao D, Wang L, Zhao H, Lian Y, Yan M, Mohan C, Li QZ. Novel Autoantibodies Related to Cell Death and DNA Repair Pathways in Systemic Lupus Erythematosus. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:248-259. [PMID: 31494269 PMCID: PMC6818352 DOI: 10.1016/j.gpb.2018.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/16/2018] [Accepted: 12/25/2018] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune syndrome characterized by various co-existing autoantibodies (autoAbs) in patients’ blood. However, the full spectrum of autoAbs in SLE has not been comprehensively elucidated. In this study, a commercial platform bearing 9400 antigens (ProtoArray) was used to identify autoAbs that were significantly elevated in the sera of SLE patients. By comparing the autoAb profiles of SLE patients with those of healthy controls, we identified 437 IgG and 1213 IgM autoAbs that the expression levels were significantly increased in SLE (P < 0.05). Use of the ProtoArray platform uncovered over 300 novel autoAbs targeting a broad range of nuclear, cytoplasmic, and membrane antigens. Molecular interaction network analysis revealed that the antigens targeted by the autoAbs were most significantly enriched in cell death, cell cycle, and DNA repair pathways. A group of autoAbs associated with cell apoptosis and DNA repair function, including those targeting APEX1, AURKA, POLB, AGO1, HMGB1, IFIT5, MAPKAPK3, PADI4, RGS3, SRP19, UBE2S, and VRK1, were further validated by ELISA and Western blot in a larger cohort. In addition, the levels of autoAbs against APEX1, HMGB1, VRK1, AURKA, PADI4, and SRP19 were positively correlated with the level of anti-dsDNA in SLE patients. Comprehensive autoAb screening has identified novel autoAbs, which may shed light on potential pathogenic pathways leading to lupus.
Collapse
Affiliation(s)
- Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Wang
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Nephrology, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, China
| | - Ding Bao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Li Wang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongjun Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yun Lian
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mei Yan
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX 77004, USA
| | - Quan-Zhen Li
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China; Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
Tanaka A, Ito T, Kibata K, Inagaki-Katashiba N, Amuro H, Nishizawa T, Son Y, Ozaki Y, Nomura S. Serum high-mobility group box 1 is correlated with interferon-α and may predict disease activity in patients with systemic lupus erythematosus. Lupus 2019; 28:1120-1127. [PMID: 31299881 DOI: 10.1177/0961203319862865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sensing self-nucleic acids through toll-like receptors in plasmacytoid dendritic cells (pDCs), and the dysregulated type I IFN production, represent pathogenic events in the development of the autoimmune responses in systemic lupus erythematosus (SLE). Production of high-mobility group box-1 protein (HMGB1) promotes type I IFN response in pDCs. To better understand the active pathogenic mechanism of SLE, we measured serum levels of HMGB1, thrombomodulin, and cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-17F, IFNα, IFNγ, TNFα) in 35 patients with SLE. Serum HMGB1 and IFNα were significantly higher in patients with active SLE (SLE Disease Activity Index (SLEDAI) score ≥ 6) compared with healthy donors or patients with inactive SLE. Furthermore, the HMGB1 levels were significantly correlated with IFNα levels. By qualitative analysis, the detection of serum IFNα or HMGB1 suggests active SLE and the presence of SLE-related arthritis, fever, and urinary abnormality out of SLEDAI manifestations. Collectively, HMGB1 and IFNα levels are biomarkers reflecting disease activity, and qualitative analysis of IFNα or HMGB1 is a useful screening test to estimate SLE severity and manifestations. Our results suggest the clinical significance of type I IFNs and HMGB1 as key molecules promoting the autoimmune process in SLE.
Collapse
Affiliation(s)
- A Tanaka
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - T Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - K Kibata
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - N Inagaki-Katashiba
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - H Amuro
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - T Nishizawa
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Y Son
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - Y Ozaki
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| | - S Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata city, Osaka, Japan
| |
Collapse
|
25
|
Gorgulho CM, Romagnoli GG, Bharthi R, Lotze MT. Johnny on the Spot-Chronic Inflammation Is Driven by HMGB1. Front Immunol 2019; 10:1561. [PMID: 31379812 PMCID: PMC6660267 DOI: 10.3389/fimmu.2019.01561] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/24/2019] [Indexed: 12/24/2022] Open
Abstract
Although much has been made of the role of HMGB1 acting as an acute damage associated molecular pattern (DAMP) molecule, prompting the response to tissue damage or injury, it is also released at sites of chronic inflammation including sites of infection, autoimmunity, and cancer. As such, the biology is distinguished from homeostasis and acute inflammation by the recruitment and persistence of myeloid derived suppressor cells, T regulatory cells, fibrosis and/or exuberant angiogenesis depending on the antecedents and the other individual inflammatory partners that HMGB1 binds and focuses, including IL-1β, CXCL12/SDF1, LPS, DNA, RNA, and sRAGE. High levels of HMGB1 released into the extracellular milieu and its persistence in the microenvironment can contribute to the pathogenesis of many if not all autoimmune disorders and is a key factor that drives inflammation further and worsens symptoms. HMGB1 is also pivotal in the maintenance of chronic inflammation and a “wound healing” type of immune response that ultimately contributes to the onset of carcinogenesis and tumor progression. Exosomes carrying HMGB1 and other instructive molecules are released and shape the response of various cells in the chronic inflammatory environment. Understanding the defining roles of REDOX, DAMPs and PAMPs, and the host response in chronic inflammation requires an alternative means for positing HMGB1's central role in limiting and focusing inflammation, distinguishing chronic from acute inflammation.
Collapse
Affiliation(s)
- Carolina M Gorgulho
- Tumor Immunology Laboratory, Department of Microbiology and Immunology, Botucatu Institute of Biosciences, São Paulo State University, Botucatu, Brazil.,DAMP Laboratory, Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Graziela G Romagnoli
- Tumor Immunology Laboratory, Department of Microbiology and Immunology, Botucatu Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Rosh Bharthi
- DAMP Laboratory, Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael T Lotze
- DAMP Laboratory, Department of Surgery, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Brilland B, Scherlinger M, Khoryati L, Goret J, Duffau P, Lazaro E, Charrier M, Guillotin V, Richez C, Blanco P. Platelets and IgE: Shaping the Innate Immune Response in Systemic Lupus Erythematosus. Clin Rev Allergy Immunol 2019; 58:194-212. [DOI: 10.1007/s12016-019-08744-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Jiang JQ, Li C, Cui CX, Ma YN, Zhao GQ, Peng XD, Xu Q, Wang Q, Zhu GQ, Li CY. Inhibition of LOX-1 alleviates the proinflammatory effects of high-mobility group box 1 in Aspergillus fumigatus keratitis. Int J Ophthalmol 2019; 12:898-903. [PMID: 31236343 DOI: 10.18240/ijo.2019.06.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/13/2019] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the inflammatory amplification effect of high-mobility group box 1 (HMGB1) in Aspergillus fumigatus (A. fumigatus) keratitis and the relationship between lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) and HMGB1 in keratitis immune responses. METHODS Phosphate buffer saline (PBS), and Boxb were injected into BALB/c mice subconjunctivally before the corneas were infected with A. fumigatus. RAW264.7 macrophages and neutrophils were pretreated with PBS and Boxb to determine the HMGB1 inflammatory amplification effects. Abdominal cavity extracted macrophages were pretreated with Boxb and Poly (I) (a LOX-1 inhibitor) before A. fumigatus hyphae stimulation to prove the the relationship between the two molecules. LOX-1, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), macrophage inflammatory protein-2 (MIP-2) and IL-10 were assessed by polymerase chain reaction and Western blot. RESULTS Pretreatment with Boxb exacerbated corneal inflammation. In macrophages and neutrophils, A. fumigatus induced LOX-1, IL-1β, TNF-α and MIP-2 expression in Boxb group was higher than those in PBS group. Poly (I) treatments before infection alleviated the proinflammatory effects of Boxb in abdominal cavity extracted macrophages. Pretreatment with Boxb did not influence Dectin-1 mRNA levels in macrophages and neutrophils. CONCLUSION In fungal keratitis, HMGB1 is a proinflammatory factor in the first line of immune response. HMGB1 mainly stimulates neutrophils and macrophages to produce inflammatory cytokines and chemokines during the immune response. LOX-1 participates in HMGB1 induced inflammatory exacerbation in A. fumigatus keratitis.
Collapse
Affiliation(s)
- Jia-Qian Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cong-Xian Cui
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Yu-Na Ma
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Xu-Dong Peng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Guo-Qiang Zhu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Chen-Yu Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
28
|
Ma WT, Gao F, Gu K, Chen DK. The Role of Monocytes and Macrophages in Autoimmune Diseases: A Comprehensive Review. Front Immunol 2019; 10:1140. [PMID: 31178867 PMCID: PMC6543461 DOI: 10.3389/fimmu.2019.01140] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Monocytes (Mo) and macrophages (Mϕ) are key components of the innate immune system and are involved in regulation of the initiation, development, and resolution of many inflammatory disorders. In addition, these cells also play important immunoregulatory and tissue-repairing roles to decrease immune reactions and promote tissue regeneration. Several lines of evidence have suggested a causal link between the presence or activation of these cells and the development of autoimmune diseases. In addition, Mo or Mϕ infiltration in diseased tissues is a hallmark of several autoimmune diseases. However, the detailed contributions of these cells, whether they actually initiate disease or perpetuate disease progression, and whether their phenotype and functional alteration are merely epiphenomena are still unclear in many autoimmune diseases. Additionally, little is known about their heterogeneous populations in different autoimmune diseases. Elucidating the relevance of Mo and Mϕ in autoimmune diseases and the associated mechanisms could lead to the identification of more effective therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Gao
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Kui Gu
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - De-Kun Chen
- Veterinary Immunology Laboratory, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Hossny E, El-Ghoneimy D, Soliman DA, Ashour A. Diagnostic value of serum high-mobility group box-1 in pediatric systemic lupus erythematosus. Int J Rheum Dis 2019; 22:1402-1409. [PMID: 30938057 DOI: 10.1111/1756-185x.13556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/22/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND High-mobility group box-1 (HMGB1) acts as a damage-associated molecular pattern or as an alarmin and it stimulates inflammatory and immunological activities. AIM We sought to investigate serum HMGB1 protein expression in patients with pediatric systemic lupus erythematosus (pSLE) in relation to the disease characteristics and activity. PATIENTS AND METHODS This is a controlled cross-sectional study which comprised 50 children and adolescents with Systemic lupus erythematosus (SLE) and 50 age- and sex-matched healthy subjects who served as a control group. Study measurements included clinical assessment, laboratory workup for SLE (complete blood count, erythrocyte sedimentation rate, serum creatinine, creatinine clearance and 24-hour urinary protein, C3 and anti-double-stranded DNA, lupus anticoagulant and anticardiolipin antibodies) and measurement of serum HMGB1 by enzyme-linked immunosorbent assay in patients and controls. RESULTS Serum HMGB1 expression was significantly higher in the pSLE patients than the control group (P < 0.001). Patients with lupus nephritis (LN) had significantly higher serum HMGB1 as compared to those with normal kidneys (P < 0.04). Serum HMGB1 in LN patients correlated positively to the SLE Disease Activity Index (P < 0.0001), and 24 hours urinary proteins and negatively to creatinine clearance (P < 0.001). At a cut-off point of ≥40 µg/L, serum HMGB1 showed good diagnostic value for pSLE with sensitivity and specificity of 98% and 95%, respectively. CONCLUSION Serum HMGB1 seems to be a reliable biomarker for diagnosis of pSLE and monitoring disease status, especially in LN. HMBG1 might prove to be a potential therapeutic target in LN.
Collapse
Affiliation(s)
- Elham Hossny
- Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Dalia El-Ghoneimy
- Pediatric Allergy and Immunology Unit, Children's Hospital, Ain Shams University, Cairo, Egypt
| | - Dina A Soliman
- Department of Clinical Pathology, Ain Shams University, Cairo, Egypt
| | - Ayman Ashour
- Ministry of Public Health Hospitals, Cairo, Egypt
| |
Collapse
|
30
|
Burbano C, Gómez-Puerta JA, Muñoz-Vahos C, Vanegas-García A, Rojas M, Vásquez G, Castaño D. HMGB1 + microparticles present in urine are hallmarks of nephritis in patients with systemic lupus erythematosus. Eur J Immunol 2019; 49:323-335. [PMID: 30537116 DOI: 10.1002/eji.201847747] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022]
Abstract
Non-classical monocytes infiltrate the kidney parenchyma and participate in tissue damage in patients with lupus nephritis (LN). Circulating microparticles (MPs) seem to play critical roles in the activation of monocytes in systemic lupus erythematosus (SLE) patients. This study aims to characterize the phenotypes of MPs and monocyte subsets in LN patients and to determine their potential to discriminate between SLE patients with and without LN. Blood and urine samples from SLE patients were collected. In monocyte subsets from whole blood samples several phenotypic markers were evaluated. MPs were isolated from platelet-poor plasma and urine by centrifugation. This phenotypic marker characterization was performed using multiparametric flow cytometry. We observed that patients with active LN have lower counts of non-classical monocytes than do those without renal involvement. All monocyte subsets exhibited lower expression of CX3CR1 and ICAM-1 in LN than in patients without LN. High frequencies of MP-HMGB1+ and MP-HLA-DR+ were detected in circulation and urine of LN patients. Although MP-HMGB1+ , MP-HLA-DR+ , and MP-CX3CR1+ from urine were able to discriminate between patients with and without LN, only urinary MP-HMGB1+ were different between patients with active and inactive LN. Therefore, these vesicles may be useful as biomarkers of LN.
Collapse
Affiliation(s)
- Catalina Burbano
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Jóse A Gómez-Puerta
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Servicio de Reumatología, Hospital Clinic, Barcelona, España
| | - Carlos Muñoz-Vahos
- Sección de Reumatología. Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Adriana Vanegas-García
- Sección de Reumatología. Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Sección de Reumatología. Hospital Universitario San Vicente Fundación, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia.,Carrera 53 #61-30 Laboratorio 510, Sede de Investigación Universitaria, Medellín, Colombia
| |
Collapse
|
31
|
Song J, Jung KJ, Yoon SJ, Lee K, Kim B. Polyhexamethyleneguanidine phosphate induces cytotoxicity through disruption of membrane integrity. Toxicology 2019; 414:35-44. [PMID: 30629986 DOI: 10.1016/j.tox.2019.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 02/03/2023]
Abstract
Polyhexamethyleneguanidine phosphate (PHMG-P) is a polymeric biocide with a guanidine group. It has multiple positive charges in physiological conditions due to nitrogen atom in the guanidine and this cationic property contributes antimicrobial effect by disrupting cell membranes. To determine whether the cationic nature of PHMG-P results in cytotoxicity in human cell lines, anionic compounds were treated with PHMG-P. The cytotoxic effect was evaluated with ROS production and HMGB1 release into media. To verify the protection effect of anion against PHMG-P-induced cell death in vivo, a zebrafish assay was adopted. In addition, membrane disruption by PHMG-P was evaluated using fluorescein diacetate and propidium iodine staining. As a result, anionic substances such as DNA and poly-l-glutamic acids, decreased PHMG-P induced cell death in a dose-dependent manner. While HMGB1 and ROS production increased with PHMG-P concentration, the addition of anionic compounds with PHMG-P reduced the ROS production and HMGB1 release. The mortality of the zebrafish increased with PHMG-P concentration and co-treatment of anionic compounds with PHMG-P decreased mortality in a dose-dependent manner. In addition, FDA and PI staining confirmed that PHMG-P disrupts plasma membrane. Taken together, a cationic property is considered to be one of the main causes of PHMG-P-induced mammalian cell toxicity.
Collapse
Affiliation(s)
- Jeongah Song
- Animal Disease Research Center, Korea Institute of Toxicology, Jeonbuk 56212, Republic of Korea
| | - Kyung Jin Jung
- Analytical Research Center, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Seok-Joo Yoon
- Systems Toxicology Center, Predictive Toxicology Department, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, 30, Baekhak 1-Gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea; Human and Environment Toxicology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, 79, Gobong-ro, Iksan, 54596, Republic of Korea.
| |
Collapse
|
32
|
Porat A, Giat E, Kowal C, He M, Son M, Latz E, Ben-Zvi I, Al-Abed Y, Diamond B. DNA-Mediated Interferon Signature Induction by SLE Serum Occurs in Monocytes Through Two Pathways: A Mechanism to Inhibit Both Pathways. Front Immunol 2018; 9:2824. [PMID: 30619247 PMCID: PMC6297782 DOI: 10.3389/fimmu.2018.02824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 02/05/2023] Open
Abstract
A primary mechanism for activation of innate immunity is recognition of damage or pathogen associated molecular patterns by pattern recognition receptors (PRRs). Nucleic acid is a damage associated molecular pattern molecule that when internalized into a monocyte and recognized by intracellular nucleic acid sensing toll like receptors will cause production of type 1 interferon. The process by which DNA or RNA is delivered into the cytosol of monocytes in systemic lupus erythematosus remains incompletely understood, and therapeutic approaches to prevent DNA-mediated monocyte activation are needed. We identified two mechanisms for internalization of DNA by monocytes. IgG-bound DNA was internalized by interacting with Fc gamma receptor IIa, while high-mobility group box-1 protein-bound DNA was internalized by interacting with the receptor for advanced glycation end products. Both pathways contribute to an inflammatory phenotype in monocytes exposed to serum from patients with SLE. Moreover, both of these pathways can be inhibited by a pentapeptide, DWEYS, which is a DNA mimetope. In one instance DWEYS directly competes with DNA for antibody binding and in the other DWEYS binds high-mobility group box-1 and blocks its interaction with RAGE. Our data highlight distinct pathways involved in nucleic acid enters monocytes in SLE, and identify a potential therapeutic to prevent nucleic acid internalization in SLE.
Collapse
Affiliation(s)
- Amit Porat
- Elmezzi Graduate School for Molecular Medicine, Manhasset, NY, United States.,Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Eitan Giat
- Elmezzi Graduate School for Molecular Medicine, Manhasset, NY, United States.,Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Czeslawa Kowal
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Mingzhu He
- Center for Molecular Innovation, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Eicke Latz
- Biomedical Centre (BMZ), Institute of Innate Immunity, 1G007 University Hospital, University of Bonn, Bonn, Germany
| | - Ilan Ben-Zvi
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
33
|
Wolf SJ, Estadt SN, Gudjonsson JE, Kahlenberg JM. Human and Murine Evidence for Mechanisms Driving Autoimmune Photosensitivity. Front Immunol 2018; 9:2430. [PMID: 30405625 PMCID: PMC6205973 DOI: 10.3389/fimmu.2018.02430] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/02/2018] [Indexed: 01/29/2023] Open
Abstract
Ultraviolet (UV) light is an important environmental trigger for systemic lupus erythematosus (SLE) patients, yet the mechanisms by which UV light impacts disease are not fully known. This review covers evidence in both human and murine systems for the impacts of UV light on DNA damage, apoptosis, autoantigen exposure, cytokine production, inflammatory cell recruitment, and systemic flare induction. In addition, the role of the circadian clock is discussed. Evidence is compared in healthy individuals and SLE patients as well as in wild-type and lupus-prone mice. Further research is needed into the effects of UV light on cutaneous and systemic immune responses to understand how to prevent UV-light mediated lupus flares.
Collapse
Affiliation(s)
- Sonya J. Wolf
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Immunology Program, University of Michigan, Ann Arbor, MI, United States
| | - Shannon N. Estadt
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- Immunology Program, University of Michigan, Ann Arbor, MI, United States
| | | | - J. Michelle Kahlenberg
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
34
|
Azithromycin promotes alternatively activated macrophage phenotype in systematic lupus erythematosus via PI3K/Akt signaling pathway. Cell Death Dis 2018; 9:1080. [PMID: 30348950 PMCID: PMC6197274 DOI: 10.1038/s41419-018-1097-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 01/06/2023]
Abstract
Alternatively activated macrophages have been reported to be helpful to alleviate systematic lupus erythematosus (SLE), and azithromycin could serve as an immunomodulator by promoting alternatively activated macrophage phenotype. However, the effect of azithromycin in SLE and the involved mechanism remain undetermined. The aim of this study is to characterize azithromycin and the underlying mechanism contributing to SLE therapy. First, we compared monocytes from SLE patients and matched healthy donors, and found monocytes from SLE patients exhibited more CD14+CD86+ cells, impaired phagocytic activity, and elevated interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α (the classical activated phenotype), which could be blocked by azithromycin. On the contrary, there were fewer CD14+CD163+ cells in SLE patients, accompanied by decreased arginase (Arg)-1 and found in inflammatory zone (Fizz)-1 (the alternatively activated phenotype). And IL-10, the crucial immune regulatory factor secreted by alternatively activated monocytes/macrophages, also showed a decreased trend in SLE patients. In addition, all these markers were up-regulated after azithromycin treatment. Next, we used activated lymphocyte-derived-DNA to imitate SLE macrophages in vitro to investigate the possible mechanism involved. Azithromycin showed the same effect in imitated SLE macrophages, with distinct Akt phosphorylation at 30 min and 12 h. After inhibiting Akt phosphorylation by LY294002, the down-regulation of CD80, IL-1β, IL-6, and TNF-α caused by azithromycin raised again, meanwhile, the up-regulation of CD206, Arg-1, Fizz-1, and IL-10 due to azithromycin was abolished. Additionally, insulin-like growth factor 1 (IGF-1), the specific agonist of Akt, played a similar role to azithromycin in imitated SLE macrophages. Taken together, our data indicated a novel role of azithromycin in alleviating SLE by promoting alternatively activated macrophage phenotype, and the PI3K/Akt signaling pathway was involved. Our findings provide a rationale for further investigation of novel therapeutic strategy for SLE patients.
Collapse
|
35
|
Zhu B, Zhu Q, Li N, Wu T, Liu S, Liu S. Association of serum/plasma high mobility group box 1 with autoimmune diseases: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e11531. [PMID: 30024540 PMCID: PMC6086504 DOI: 10.1097/md.0000000000011531] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) is a kind of proinflammatory mediator to stimulate the innate and adaptive immune system and participates in a number of acute and chronic inflammatory processes after sterile injury or microbial invasion. HMGB1 has been suggested to be involved in the pathogenesis of many autoimmune diseases. However, the results are contradictory or inconclusive among these findings. The aim of this study was to investigate whether serum/plasma HMGB1 levels are associated with autoimmune diseases by comparing the serum/plasma HMGB1 levels in patients with autoimmune disease and healthy controls and to further evaluate whether serum/plasma HMGB1 levels are associated with disease state. METHODS PubMed, Medline, and Web of science databases (up to October 1, 2017) were used to obtain all relative published literature. Study quality was assessed by the Newcastle-Ottawa scale (NOS). Pooled standard mean difference (SMD) with 95% confidence interval (CI) was calculated by fixed-effects or random-effect model analysis. RESULTS A total of 23 original articles of autoimmune diseases were finally included in the meta-analysis. Results revealed that the serum/plasma HMGB1 levels were increased in patients with autoimmune disease, compared to healthy controls. Subgroup analysis showed that serum/plasma HMGB1 levels in patients with active disease state were significantly higher than in those with inactive state. In addition, subgroup analysis based on disease type has indicated that the serum/plasma HMGB1 levels in patients with small vessel vasculitis, systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis and sjogren syndrome were significantly higher, compared to healthy controls. Further subgroup analyses by region showed that plasma/serum HMGB1 levels were higher in Asian and European patients with autoimmune diseases. CONCLUSIONS Serum/plasma HMGB1 levels in patients with autoimmune diseases are significantly higher than in healthy controls, and may reflect the disease activity.
Collapse
|
36
|
VanPatten S, Al-Abed Y. High Mobility Group Box-1 (HMGb1): Current Wisdom and Advancement as a Potential Drug Target. J Med Chem 2018; 61:5093-5107. [PMID: 29268019 DOI: 10.1021/acs.jmedchem.7b01136] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High mobility group box-1 (HMGb1) protein, a nuclear non-histone protein that is released or secreted from the cell in response to damage or stress, is a sentinel for the immune system that plays a critical role in cell survival/death pathways. This review highlights key features of the endogenous danger-associated molecular pattern (DAMP) protein, HMGb1 in the innate inflammatory response along with various cofactors and receptors that regulate its downstream effects. The evidence demonstrating increased levels of HMGb1 in human inflammatory diseases and conditions is presented, along with a summary of current small molecule or peptide-like antagonists proven to specifically target HMGb1. Additionally, we delineate the measures needed toward validating this protein as a clinically relevant biomarker or bioindicator and as a relevant drug target.
Collapse
Affiliation(s)
- Sonya VanPatten
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| | - Yousef Al-Abed
- Center for Molecular Innovation , The Feinstein Institute for Medical Research , 350 Community Drive , Manhasset , New York 11030 , United States
| |
Collapse
|
37
|
Resveratrol treatment reveals a novel role for HMGB1 in regulation of the type 1 interferon response in dengue virus infection. Sci Rep 2017; 7:42998. [PMID: 28216632 PMCID: PMC5316936 DOI: 10.1038/srep42998] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/17/2017] [Indexed: 11/09/2022] Open
Abstract
Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.
Collapse
|
38
|
Lin YC, Wu CY, Chang LY, Chen CC, Chen HH, Lai YL, Hung SL. Levels of high-mobility group box-1 in gingival crevicular fluid in nonsmokers and smokers with chronic periodontitis. J Formos Med Assoc 2017; 116:933-939. [PMID: 28209360 DOI: 10.1016/j.jfma.2017.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND/PURPOSE High-mobility group box-1 (HMGB1), a proinflammatory cytokine, plays a role in inflammatory disorders. Smoking is a well-established risk factor for periodontal disease. The aim of this study was to compare the levels of HMGB1 in the gingival crevicular fluid from periodontally healthy nonsmokers, chronic periodontitis nonsmokers, and chronic periodontitis smokers. Furthermore, the relationship between levels of HMGB1 and periodontal parameters was examined. METHODS Periodontal parameters of 17 nonsmokers with chronic periodontitis, nine smokers with chronic periodontitis, and nine periodontally healthy nonsmokers were examined. Gingival crevicular fluid samples were collected, and the levels of HMGB1 were analyzed using the enzyme-linked immunosorbent assay. RESULTS The median level of HMGB1 was statistically significantly higher in chronic periodontitis nonsmokers (37.5 ng/mL) than in chronic periodontitis smokers (9.5 ng/mL) and periodontally healthy nonsmokers (3.7 ng/mL). There was no significant difference in the levels of HMGB1 between chronic periodontitis smokers and periodontally healthy nonsmokers. Levels of HMGB1 were positively correlated with plaque index, gingival index, probing depth, and clinical attachment level of nonsmokers. However, no significant correlations were found between levels of HMGB1 and all periodontal parameters examined in chronic periodontitis smokers. CONCLUSION Chronic periodontitis nonsmokers had elevated levels of HMGB1 in gingival crevicular fluid. Moreover, the levels of HMGB1 were correlated with severity of periodontitis. Chronic periodontitis smokers exhibited lower levels of HMGB1 than chronic periodontitis nonsmokers. Further research is needed for understanding the role of HMGB1 in smoking and pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Yi-Chun Lin
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Yi Wu
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Lien-Yu Chang
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Chu Chen
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsuan-Hung Chen
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Lin Lai
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Shan-Ling Hung
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
39
|
Jessop F, Hamilton RF, Rhoderick JF, Fletcher P, Holian A. Phagolysosome acidification is required for silica and engineered nanoparticle-induced lysosome membrane permeabilization and resultant NLRP3 inflammasome activity. Toxicol Appl Pharmacol 2017; 318:58-68. [PMID: 28126413 DOI: 10.1016/j.taap.2017.01.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 01/03/2023]
Abstract
NLRP3 inflammasome activation occurs in response to hazardous particle exposures and is critical for the development of particle-induced lung disease. Mechanisms of Lysosome Membrane Permeabilization (LMP), a central pathway for activation of the NLRP3 inflammasome by inhaled particles, are not fully understood. We demonstrate that the lysosomal vATPases inhibitor Bafilomycin A1 blocked LMP in vitro and ex vivo in primary murine macrophages following exposure to silica, multi-walled carbon nanotubes, and titanium nanobelts. Bafilomycin A1 treatment of particle-exposed macrophages also resulted in decreased active cathepsin L in the cytosol, a surrogate measure for leaked cathepsin B, which was associated with less NLRP3 inflammasome activity. Silica-induced LMP was partially dependent upon lysosomal cathepsins B and L, whereas nanoparticle-induced LMP occurred independent of cathepsin activity. Furthermore, inhibition of lysosomal cathepsin activity with CA-074-Me decreased the release of High Mobility Group Box 1. Together, these data support the notion that lysosome acidification is a prerequisite for particle-induced LMP, and the resultant leak of lysosome cathepsins is a primary regulator of ongoing NLRP3 inflammasome activity and release of HMGB1.
Collapse
Affiliation(s)
- Forrest Jessop
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Raymond F Hamilton
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Joseph F Rhoderick
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Paige Fletcher
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Andrij Holian
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States.
| |
Collapse
|
40
|
Ding J, Cui X, Liu Q. Emerging role of HMGB1 in lung diseases: friend or foe. J Cell Mol Med 2016; 21:1046-1057. [PMID: 28039939 PMCID: PMC5431121 DOI: 10.1111/jcmm.13048] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/30/2016] [Indexed: 12/11/2022] Open
Abstract
Lung diseases remain a serious problem for public health. The immune status of the body is considered to be the main influencing factor for the progression of lung diseases. HMGB1 (high‐mobility group box 1) emerges as an important molecule of the body immune network. Accumulating data have demonstrated that HMGB1 is crucially implicated in lung diseases and acts as independent biomarker and therapeutic target for related lung diseases. This review provides an overview of updated understanding of HMGB1 structure, release styles, receptors and function. Furthermore, we discuss the potential role of HMGB1 in a variety of lung diseases. Further exploration of molecular mechanisms underlying the function of HMGB1 in lung diseases will provide novel preventive and therapeutic strategies for lung diseases.
Collapse
Affiliation(s)
- Junying Ding
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| | - Xuran Cui
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| | - Qingquan Liu
- Beijing Key Lab of Basic Study on Traditional Chinese Medicine (TCM) Infectious Diseases, Beijing Research Institute of TCM, Beijing Hospital of TCM affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Wu H, Fu S, Zhao M, Lu L, Lu Q. Dysregulation of Cell Death and Its Epigenetic Mechanisms in Systemic Lupus Erythematosus. Molecules 2016; 22:E30. [PMID: 28035990 PMCID: PMC6155917 DOI: 10.3390/molecules22010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease involving multiple organs and tissues, which is characterized by the presence of excessive anti-nuclear autoantibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. Increasing evidence has shown that the genetic susceptibilities and environmental factors-induced abnormalities in immune cells, dysregulation of apoptosis, and defects in the clearance of apoptotic materials contribute to the development of SLE. As the main source of auto-antigens, aberrant cell death may play a critical role in the pathogenesis of SLE. In this review, we summarize up-to-date research progress on different levels of cell death-including increasing rate of apoptosis, necrosis, autophagy and defects in clearance of dying cells-and discuss the possible underlying mechanisms, especially epigenetic modifications, which may provide new insight in the potential development of therapeutic strategies for SLE.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Siqi Fu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Liwei Lu
- Department of Pathology and Center for Infection and Immunology, the University of Hong Kong, Hong Kong, China.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| |
Collapse
|
42
|
C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 2016; 128:2218-2228. [PMID: 27683415 DOI: 10.1182/blood-2016-05-719757] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/20/2016] [Indexed: 01/26/2023] Open
Abstract
A healthy immune system results from a balance of stimulatory and inhibitory pathways that allow effective responses to acute insults, without descending into chronic inflammation. Failed homeostasis is characteristic of autoimmune diseases such as systemic lupus erythematosus. Although HMGB1 induces proinflammatory M1-like macrophage differentiation, we describe a mechanism by which C1q modulates this activity and collaborates with HMGB1 to induce the differentiation of monocytes to anti-inflammatory M2-like macrophages. These anti-inflammatory macrophages are unresponsive to dendritic cell induction factors, effectively removing them from participation in an adaptive immune response. This pathway is mediated through a complex with RAGE and LAIR-1 and depends on relative levels of C1q and HMGB1. Importantly, these data provide insight into a homeostatic mechanism in which C1q and HMGB1 can cooperate to terminate inflammation, and which may be impaired in C1q-deficient patients with autoimmune disease.
Collapse
|
43
|
Jessop F, Hamilton RF, Rhoderick JF, Shaw PK, Holian A. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure. Toxicol Appl Pharmacol 2016; 309:101-10. [PMID: 27594529 DOI: 10.1016/j.taap.2016.08.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 01/12/2023]
Abstract
Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5(fl/fl)LysM-Cre(+) mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5(fl/fl)LysM-Cre(+) mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis.
Collapse
Affiliation(s)
- Forrest Jessop
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, United States
| | - Raymond F Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, United States
| | - Joseph F Rhoderick
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, United States
| | - Pamela K Shaw
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, United States
| | - Andrij Holian
- Center for Environmental Health Sciences, University of Montana, Missoula, Montana, United States.
| |
Collapse
|
44
|
Lu M, Xu W, Gao B, Xiong S. Blunting Autoantigen-induced FOXO3a Protein Phosphorylation and Degradation Is a Novel Pathway of Glucocorticoids for the Treatment of Systemic Lupus Erythematosus. J Biol Chem 2016; 291:19900-12. [PMID: 27481940 DOI: 10.1074/jbc.m116.728840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease affecting multiple organs. Glucocorticoids (GCs), the potent anti-inflammatory drugs, remain as a cornerstone in the treatment for SLE; nevertheless, their clinical efficacy is compromised by the side effects of long term treatment and resistance. To improve the therapeutic efficacy of GCs in SLE, it is important to further decipher the molecular mechanisms of how GCs exert their anti-inflammatory effects. In this investigation, FOXO3a was identified as a molecule that was down-regulated in the course of SLE. Of interest, GC treatment was found to rescue FOXO3a expression both in SLE mice and in SLE patients. Gain- and loss-of-function studies demonstrated that FOXO3a played a crucial role in GC treatment of SLE via inhibiting inflammatory responses. Further studies showed that the up-regulation of FOXO3a by GCs relied on the suppression of pI3K/AKT-mediated FOXO3a phosphorylation and the arrest of FOXO3a in the nucleus. Finally, our data revealed that FOXO3a was critical for GC-mediated inhibition of NF-κB activity, which might involve its interaction with NF-κB p65 protein. Collectively, these data indicated that FOXO3a played an important role in GC treatment of SLE by suppressing pro-inflammatory response, and targeting FOXO3a might provide a novel therapeutic strategy against SLE.
Collapse
Affiliation(s)
- Mudan Lu
- From the Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032 and
| | - Wei Xu
- the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China
| | - Bo Gao
- From the Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032 and
| | - Sidong Xiong
- From the Institute for Immunobiology, Department of Immunology, Shanghai Medical College of Fudan University, Shanghai 200032 and the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215006, China
| |
Collapse
|
45
|
A Systems Biology-Based Investigation into the Pharmacological Mechanisms of Sheng-ma-bie-jia-tang Acting on Systemic Lupus Erythematosus by Multi-Level Data Integration. Sci Rep 2015; 5:16401. [PMID: 26560501 PMCID: PMC4642335 DOI: 10.1038/srep16401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022] Open
Abstract
Sheng-ma-bie-jia-tang (SMBJT) is a Traditional Chinese Medicine (TCM) formula that is widely used for the treatment of Systemic Lupus Erythematosus (SLE) in China. However, molecular mechanism behind this formula remains unknown. Here, we systematically analyzed targets of the ingredients in SMBJT to evaluate its potential molecular mechanism. First, we collected 1,267 targets from our previously published database, the Traditional Chinese Medicine Integrated Database (TCMID). Next, we conducted gene ontology and pathway enrichment analyses for these targets and determined that they were enriched in metabolism (amino acids, fatty acids, etc.) and signaling pathways (chemokines, Toll-like receptors, adipocytokines, etc.). 96 targets, which are known SLE disease proteins, were identified as essential targets and the rest 1,171 targets were defined as common targets of this formula. The essential targets directly interacted with SLE disease proteins. Besides, some common targets also had essential connections to both key targets and SLE disease proteins in enriched signaling pathway, e.g. toll-like receptor signaling pathway. We also found distinct function of essential and common targets in immune system processes. This multi-level approach to deciphering the underlying mechanism of SMBJT treatment of SLE details a new perspective that will further our understanding of TCM formulas.
Collapse
|
46
|
Mackern-Oberti JP, Llanos C, Riedel CA, Bueno SM, Kalergis AM. Contribution of dendritic cells to the autoimmune pathology of systemic lupus erythematosus. Immunology 2015; 146:497-507. [PMID: 26173489 DOI: 10.1111/imm.12504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 07/03/2015] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease in which excessive inflammation, autoantibodies and complement activation lead to multisystem tissue damage. The contribution of the individual genetic composition has been extensively studied, and several susceptibility genes related to immune pathways that participate in SLE pathogenesis have been identified. It has been proposed that SLE takes place when susceptibility factors interact with environmental stimuli leading to a deregulated immune response. Experimental evidence suggests that such events are related to the failure of T-cell and B-cell suppression mediated by defects in cell signalling, immune tolerance and apoptotic mechanism promoting autoimmunity. In addition, it has been reported that dendritic cells (DCs) from SLE patients, which are crucial in the modulation of peripheral tolerance to self-antigens, show an increased ratio of activating/inhibitory receptors on their surfaces. This phenotype and an augmented expression of co-stimulatory molecules is thought to be critical for disease pathogenesis. Accordingly, tolerogenic DCs can be a potential strategy for developing antigen-specific therapies to reduce detrimental inflammation without causing systemic immunosuppression. In this review article we discuss the most relevant data relative to the contribution of DCs to the triggering of SLE.
Collapse
Affiliation(s)
- Juan P Mackern-Oberti
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Medicine and Experimental Biology of Cuyo (IMBECU), Science and Technology Center (CCT) of Mendoza, National Council of Scientific and Technical Research (CONICET), Mendoza, Argentina.,Institute of Physiology, School of Medicine, National University of Cuyo, Mendoza, Argentina
| | - Carolina Llanos
- Millennium Institute on Immunology and Immunotherapy, Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Inmunología Clínica y Reumatología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,INSERM U1064, Nantes, France
| |
Collapse
|