1
|
Hoisington AJ, Stearns-Yoder KA, Kovacs EJ, Postolache TT, Brenner LA. Airborne Exposure to Pollutants and Mental Health: A Review with Implications for United States Veterans. Curr Environ Health Rep 2024; 11:168-183. [PMID: 38457036 PMCID: PMC12070290 DOI: 10.1007/s40572-024-00437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Inhalation of airborne pollutants in the natural and built environment is ubiquitous; yet, exposures are different across a lifespan and unique to individuals. Here, we reviewed the connections between mental health outcomes from airborne pollutant exposures, the biological inflammatory mechanisms, and provide future directions for researchers and policy makers. The current state of knowledge is discussed on associations between mental health outcomes and Clean Air Act criteria pollutants, traffic-related air pollutants, pesticides, heavy metals, jet fuel, and burn pits. RECENT FINDINGS Although associations between airborne pollutants and negative physical health outcomes have been a topic of previous investigations, work highlighting associations between exposures and psychological health is only starting to emerge. Research on criteria pollutants and mental health outcomes has the most robust results to date, followed by traffic-related air pollutants, and then pesticides. In contrast, scarce mental health research has been conducted on exposure to heavy metals, jet fuel, and burn pits. Specific cohorts of individuals, such as United States military members and in-turn, Veterans, often have unique histories of exposures, including service-related exposures to aircraft (e.g. jet fuels) and burn pits. Research focused on Veterans and other individuals with an increased likelihood of exposure and higher vulnerability to negative mental health outcomes is needed. Future research will facilitate knowledge aimed at both prevention and intervention to improve physical and mental health among military personnel, Veterans, and other at-risk individuals.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA.
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA.
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH, 45333, USA.
| | - Kelly A Stearns-Yoder
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Affairs Research Service, RMR VAMC, Aurora, CO, 80045, USA
| | - Teodor T Postolache
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Lisa A Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Departments of Psychiatry & Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
2
|
Ahmad M, Chen J, Panyametheekul S, Yu Q, Nawab A, Khan MT, Zhang Y, Ali SW, Phairuang W. Fine particulate matter from brick kilns site and roadside in Lahore, Pakistan: Insight into chemical composition, oxidative potential, and health risk assessment. Heliyon 2024; 10:e25884. [PMID: 38390149 PMCID: PMC10881335 DOI: 10.1016/j.heliyon.2024.e25884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Background Human health is seriously threatened by particulate matter (PM) pollution, which is a major environmental problem. A better indicator of biological responses to PM exposure than its mass alone is the PM "oxidative potential (OP)," or ability to oxidize target molecules. When reactive oxygen species (ROS) are generated in the OP in excess of the antioxidant capacity of body due to PM components such metals and organic species, it causes inflammation, deoxyribonucleic acid (DNA), proteins, and lipids damage. Method The samples of fine particulate matter (PM2.5) are collected from the brick kiln site and the roadside in Lahore, Pakistan. The organic carbon (OC) and elemental carbon (EC) were estimated by carbon analyzer (DRI 2001A) using the thermal/optical transmittance (TOT) protocol. The water-soluble organic carbon (WSOC) concentration was determined using a total organic carbon analyzer (Shimadzu TOC-L CPN). Ion chromatography (Dionex ICS-900) with a conductivity detector was used to analyze the water-soluble anions (Cl-, NO3-, and SO42-) and cations (NH4+, Na+, K+, Mg2+, and Ca2+). Inductively coupled plasma-mass spectrometry (iCAP TQ ICP-MS, Thermo Scientific) was used to determine the concentrations of metals in the solution. The dithiothreitol (DTT) consumption rate was calculated using a spectrophotometer at a wavelength of 412 nm. Results The mean concentrations of PM2.5 at the brick kiln site and roadside reported are 509.3 ± 32.3 μg/m3 and 467.5 ± 24.9 μg/m3, and the average OC/EC ratio is 1.9 ± 0.4 and 2.1 ± 0.1. primary organic carbon (POC) contributed more to OC than secondary organic carbon (SOC), which indicated the dominance of primary combustion sources. The anion equivalent (AE) to cation equivalent (CE) ratio indicated that PM2.5 is acidic at both sites due to the dominance of NO3- and SO42-. The DTT consumption rate normalized by PM2.5 mass (DTTm) and DTT consumption rate normalized by air volume (DTTv) of PM2.5 at the roadside samples are higher than at the brick kiln site due to the higher contribution of ionic species to the mass of PM2.5. Carbonaceous species of PM2.5 at both sampling sites are significantly correlated with DTTv of PM2.5, while metallic species behaved differently. The incremental lifetime cancer risk (ILCR) values (lung cancer) of As and Cr at both sampling sites, while the ILCR value of Cd at the roadside samples is exceeding the permissible limits for adults and children. The lifetime average daily dose (LADD) value for adults is higher than that for children, indicating that children are less vulnerable to metals. Conclusion The concentration of PM2.5 at both sampling sites were exceeding the permissible limits of Pakistan' National Environmental Quality Standard (NEQS) and posing risk to the health of the local population. The POC and SOC contribution to OC at the brick kiln site and roadside in Lahore were 84.6%, 15.4% and 84.4%, 15.6%. POC at both sampling sites were the dominant carbon species indicating the dominance of primary combustion sources. The residence of Lahore poses the lung cancer risk due to Cr, As, and Cd at both sampling sites. The results of this study provide important data and evidence for further evaluation of the potential health risks of PM2.5 from brick kiln site and road side in Pakistan and formulation of efficient air-pollution control measures.
Collapse
Affiliation(s)
- Mushtaq Ahmad
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University Bangkok, 10330, Thailand
| | - Jing Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Sirima Panyametheekul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University Bangkok, 10330, Thailand
- Thailand network centre on Air Quality Management: TAQM and Research Unit: HAUS IAQ, Bangkok, Thailand
| | - Qing Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Asim Nawab
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Taipo, New Territories, Hong Kong, China
| | - Yuepeng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Syed Weqas Ali
- Department of Environmental Sciences, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Worradorn Phairuang
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, 920-1192, Ishikawa, Japan
| |
Collapse
|
3
|
Liang D, Li Z, Vlaanderen J, Tang Z, Jones DP, Vermeulen R, Sarnat JA. A State-of-the-Science Review on High-Resolution Metabolomics Application in Air Pollution Health Research: Current Progress, Analytical Challenges, and Recommendations for Future Direction. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:56002. [PMID: 37192319 PMCID: PMC10187974 DOI: 10.1289/ehp11851] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Understanding the mechanistic basis of air pollution toxicity is dependent on accurately characterizing both exposure and biological responses. Untargeted metabolomics, an analysis of small-molecule metabolic phenotypes, may offer improved estimation of exposures and corresponding health responses to complex environmental mixtures such as air pollution. The field remains nascent, however, with questions concerning the coherence and generalizability of findings across studies, study designs and analytical platforms. OBJECTIVES We aimed to review the state of air pollution research from studies using untargeted high-resolution metabolomics (HRM), highlight the areas of concordance and dissimilarity in methodological approaches and reported findings, and discuss a path forward for future use of this analytical platform in air pollution research. METHODS We conducted a state-of-the-science review to a) summarize recent research of air pollution studies using untargeted metabolomics and b) identify gaps in the peer-reviewed literature and opportunities for addressing these gaps in future designs. We screened articles published within Pubmed and Web of Science between 1 January 2005 and 31 March 2022. Two reviewers independently screened 2,065 abstracts, with discrepancies resolved by a third reviewer. RESULTS We identified 47 articles that applied untargeted metabolomics on serum, plasma, whole blood, urine, saliva, or other biospecimens to investigate the impact of air pollution exposures on the human metabolome. Eight hundred sixteen unique features confirmed with level-1 or -2 evidence were reported to be associated with at least one or more air pollutants. Hypoxanthine, histidine, serine, aspartate, and glutamate were among the 35 metabolites consistently exhibiting associations with multiple air pollutants in at least 5 independent studies. Oxidative stress and inflammation-related pathways-including glycerophospholipid metabolism, pyrimidine metabolism, methionine and cysteine metabolism, tyrosine metabolism, and tryptophan metabolism-were the most commonly perturbed pathways reported in > 70 % of studies. More than 80% of the reported features were not chemically annotated, limiting the interpretability and generalizability of the findings. CONCLUSIONS Numerous investigations have demonstrated the feasibility of using untargeted metabolomics as a platform linking exposure to internal dose and biological response. Our review of the 47 existing untargeted HRM-air pollution studies points to an underlying coherence and consistency across a range of sample analytical quantitation methods, extraction algorithms, and statistical modeling approaches. Future directions should focus on validation of these findings via hypothesis-driven protocols and technical advances in metabolic annotation and quantification. https://doi.org/10.1289/EHP11851.
Collapse
Affiliation(s)
- Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Jelle Vlaanderen
- Department Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ziyin Tang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Dean P. Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Roel Vermeulen
- Department Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jeremy A. Sarnat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Kumar RP, Perumpully SJ, Samuel C, Gautam S. Exposure and health: A progress update by evaluation and scientometric analysis. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2022; 37:453-465. [PMID: 36212796 PMCID: PMC9526460 DOI: 10.1007/s00477-022-02313-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 05/29/2023]
Abstract
Several hands are now working worldwide to reduce exposure to air pollution, especially in developing nations. Future steps should be determined and classified as possible research solutions and gaps from the massive bulk of research output. Therefore, a scientometric approach has been applied using VOSviewer to show an accurate picture and trend in the mentioned area "Air pollution exposure and health," and its signify issues. According to the proposed study, complete 26,859 documents were retrieved from the database (ISI Web of Science) related to air pollution exposure and health effects during 2018-2022. The mapping analysis is been conducted on the country's collaboration, co-authorship, institutional collaboration, and co-occurrence of keywords. The data collected shows the information about published articles (upward trend) over the years. Based on the citations and publication database, countries like China and the USA play a prominent role in air pollution exposure and health-related research. The study clearly defines the 3 domains of research and 4 major themes that have been currently focused. The case studies related to pollution and its impact on climate and health, studies involving chemical characteristics and management practices, also Hazardous health effects, theme like association of air pollutants, chemical composition and characterization of aerosols, health impacts due to exposure and modelling and analytical approach have been the most researched topics in the past 5 years. The developing and developed countries might potentially change the research network and work structure in order to obtain advancement in the field of Air pollution and enhance measures on exposure and health. The following research attempts to provide insights to the researchers and health sectors by straightening out developments up to date and raveling the research gaps that are needed to be addressed regarding Air pollution health and exposure.
Collapse
Affiliation(s)
- Roshini Praveen Kumar
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, 641117 Coimbatore, India
| | - Steffi Joseph Perumpully
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, 641117 Coimbatore, India
| | - Cyril Samuel
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, 641117 Coimbatore, India
| | - Sneha Gautam
- Department of Civil Engineering, Karunya Institute of Technology and Sciences, 641117 Coimbatore, India
| |
Collapse
|
5
|
Kress S, Wigmann C, Zhao Q, Herder C, Abramson MJ, Schwender H, Schikowski T. Chronic air pollution-induced subclinical airway inflammation and polygenic susceptibility. Respir Res 2022; 23:265. [PMID: 36151579 PMCID: PMC9508765 DOI: 10.1186/s12931-022-02179-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Air pollutants can activate low-grade subclinical inflammation which further impairs respiratory health. We aimed to investigate the role of polygenic susceptibility to chronic air pollution-induced subclinical airway inflammation. Methods We used data from 296 women (69–79 years) enrolled in the population-based SALIA cohort (Study on the influence of Air pollution on Lung function, Inflammation and Aging). Biomarkers of airway inflammation were measured in induced-sputum samples at follow-up investigation in 2007–2010. Chronic air pollution exposures at residential addresses within 15 years prior to the biomarker assessments were used to estimate main environmental effects on subclinical airway inflammation. Furthermore, we calculated internally weighted polygenic risk scores based on genome-wide derived single nucleotide polymorphisms. Polygenic main and gene-environment interaction (GxE) effects were investigated by adjusted linear regression models. Results Higher exposures to nitrogen dioxide (NO2), nitrogen oxides (NOx), particulate matter with aerodynamic diameters of ≤ 2.5 μm, ≤ 10 μm, and 2.5–10 µm significantly increased the levels of leukotriene (LT)B4 by 19.7% (p-value = 0.005), 20.9% (p = 0.002), 22.1% (p = 0.004), 17.4% (p = 0.004), and 23.4% (p = 0.001), respectively. We found significant effects of NO2 (25.9%, p = 0.008) and NOx (25.9%, p-value = 0.004) on the total number of cells. No significant GxE effects were observed. The trends were mostly robust in sensitivity analyses. Conclusions While this study confirms that higher chronic exposures to air pollution increase the risk of subclinical airway inflammation in elderly women, we could not demonstrate a significant role of polygenic susceptibility on this pathway. Further studies are required to investigate the role of polygenic susceptibility. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02179-3.
Collapse
Affiliation(s)
- Sara Kress
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.,Medical Research School Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Claudia Wigmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Qi Zhao
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.,Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany.,Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University, Düsseldorf, Germany
| | - Tamara Schikowski
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany.
| |
Collapse
|
6
|
Gogna P, Villeneuve PJ, Borghese MM, King WD. An exposure-response meta-analysis of ambient PM 2.5 during pregnancy and preeclampsia. ENVIRONMENTAL RESEARCH 2022; 210:112934. [PMID: 35150719 DOI: 10.1016/j.envres.2022.112934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Relationships between PM2.5 exposure and preeclampsia have been the focus of four recent systematic reviews and meta-analyses. We expand on knowledge gaps in these reviews by characterizing the shape of the exposure-outcome relationship, and by assessing the heterogeneity in these associations by study characteristics. Studies of PM2.5 and preeclampsia were identified from reviews, and confounder-adjusted estimates were extracted. Estimates were derived using a random-effects model. Potential non-linearity was evaluated using a one-stage dose-response meta-analysis. Contrary to previous meta-analyses reporting stronger relationships, the overall adjusted relative risk (RR) for a 10 μg/m3 average increase in PM2.5 during pregnancy and preeclampsia was modest and not statistically significant (RR: 1.07, 95% CI: 0.99-1.15). This was mainly attributable to inclusion/exclusion decisions for studies made during this review. In addition, there was no evidence of non-linearity, and no important sub-group differences by characteristics such as region, exposure assessment, participant exclusions, and early versus late-onset preeclampsia. Overall, our analysis suggests a modest relationship between ambient PM2.5 and preeclampsia. We provide details on inclusion and exclusion decisions that were lacking in previous studies, and report novel investigations of non-linearity and heterogeneity.
Collapse
Affiliation(s)
- Priyanka Gogna
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Paul J Villeneuve
- School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada
| | - Michael M Borghese
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada; Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Cheng H, Narzo AD, Howell D, Yevdokimova K, Zhang J, Zhang X, Pan Q, Zhang Z, Rogers L, Hao K. Ambient Air Pollutants and Traffic Factors Were Associated with Blood and Urine Biomarkers and Asthma Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7298-7307. [PMID: 35239329 DOI: 10.1021/acs.est.1c06916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The UK Biobank (UKBB) is a large population-based cohort that provides a unique opportunity to study the association between environmental exposure and biomarkers and to identify biomarkers as potential instruments for assessing exposure dose, health damage, and disease risks. On 462 063 participants of European ancestry, we characterized the relationship of 38 disease-relevant biomarkers, asthma diagnosis, ambient pollution, traffic factors, and genetic background. The air pollutant exposure on the UKBB cohort was fairly low (e.g., mean PM2.5 concentration at 10.0 μg/m3). Nevertheless, 30 biomarkers were in association with at least one environmental factor; e.g., C-reactive protein levels were positively associated with NO (padj = 2.99 × 10-4), NO2 (padj = 4.15 × 10-4), and PM2.5 (padj = 1.92 × 10-6) even after multiple testing adjustment. Asthma diagnosis was associated with four pollutants (NO, NO2, PM2.5, and PM10). The largest effect size was observed in PM2.5, where a 5 μg/m3 increment of exposure was associated with a 1.52 increase in asthma diagnosis (p = 4.41 × 10-13). Further, environmental exposure and genetic predisposition influenced biomarker levels and asthma diagnosis in an additive model. The exposure-biomarker associations identified in this study could serve as potential indicators for environmental exposure induced health damages. Our results also shed light on possible mechanisms whereby environmental exposure influences disease-causing biomarkers and in turn increases disease risk.
Collapse
Affiliation(s)
- Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | | | - Daniel Howell
- Division of Pulmonary Critical Care, Woodhull Hospital, New York University, New York, New York 11206, United States
| | - Kateryna Yevdokimova
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jushan Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | | | - Qi Pan
- Sema4, Stamford, Connecticut 06902, United States
| | - Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Linda Rogers
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Sema4, Stamford, Connecticut 06902, United States
| |
Collapse
|
8
|
Young TL, Mostovenko E, Denson JL, Begay JG, Lucas SN, Herbert G, Zychowski K, Hunter R, Salazar R, Wang T, Fraser K, Erdely A, Ottens AK, Campen MJ. Pulmonary delivery of the broad-spectrum matrix metalloproteinase inhibitor marimastat diminishes multiwalled carbon nanotube-induced circulating bioactivity without reducing pulmonary inflammation. Part Fibre Toxicol 2021; 18:34. [PMID: 34496918 PMCID: PMC8424988 DOI: 10.1186/s12989-021-00427-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Multiwalled carbon nanotubes (MWCNT) are an increasingly utilized engineered nanomaterial that pose the potential for significant risk of exposure-related health outcomes. The mechanism(s) underlying MWCNT-induced toxicity to extrapulmonary sites are still being defined. MWCNT-induced serum-borne bioactivity appears to dysregulate systemic endothelial cell function. The serum compositional changes after MWCNT exposure have been identified as a surge of fragmented endogenous peptides, likely derived from matrix metalloproteinase (MMP) activity. In the present study, we utilize a broad-spectrum MMP inhibitor, Marimastat, along with a previously described oropharyngeal aspiration model of MWCNT administration to investigate the role of MMPs in MWCNT-derived serum peptide generation and endothelial bioactivity. RESULTS C57BL/6 mice were treated with Marimastat or vehicle by oropharyngeal aspiration 1 h prior to MWCNT treatment. Pulmonary neutrophil infiltration and total bronchoalveolar lavage fluid protein increased independent of MMP blockade. The lung cytokine profile similarly increased following MWCNT exposure for major inflammatory markers (IL-1β, IL-6, and TNF-α), with minimal impact from MMP inhibition. However, serum peptidomic analysis revealed differential peptide compositional profiles, with MMP blockade abrogating MWCNT-derived serum peptide fragments. The serum, in turn, exhibited differential potency in terms of inflammatory bioactivity when incubated with primary murine cerebrovascular endothelial cells. Serum from MWCNT-treated mice led to inflammatory responses in endothelial cells that were significantly blunted with serum from Marimastat-treated mice. CONCLUSIONS Thus, MWCNT exposure induced pulmonary inflammation that was largely independent of MMP activity but generated circulating bioactive peptides through predominantly MMP-dependent pathways. This MWCNT-induced lung-derived bioactivity caused pathological consequences of endothelial inflammation and barrier disruption.
Collapse
Affiliation(s)
- Tamara L Young
- Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298, USA
| | - Jesse L Denson
- Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Jessica G Begay
- Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Selita N Lucas
- Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | | | - Russell Hunter
- Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Raul Salazar
- Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - Ting Wang
- Department of Internal Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Kelly Fraser
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Aaron Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, Richmond, VA, 23298, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, MSC09 5360, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA.
| |
Collapse
|
9
|
Determinant Powers of Socioeconomic Factors and Their Interactive Impacts on Particulate Matter Pollution in North China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126261. [PMID: 34207866 PMCID: PMC8296047 DOI: 10.3390/ijerph18126261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 11/25/2022]
Abstract
Severe air pollution has significantly impacted climate and human health worldwide. In this study, global and local Moran’s I was used to examine the spatial autocorrelation of PM2.5 pollution in North China from 2000–2017, using data obtained from Atmospheric Composition Analysis Group of Dalhousie University. The determinant powers and their interactive effects of socioeconomic factors on this pollutant are then quantified using a non-linear model, GeoDetector. Our experiments show that between 2000 and 2017, PM2.5 pollution globally increased and exhibited a significant positive global and local autocorrelation. The greatest factor affecting PM2.5 pollution was population density. Population density, road density, and urbanization showed a tendency to first increase and then decrease, while the number of industries and industrial output revealed a tendency to increase continuously. From a long-term perspective, the interactive effects of road density and industrial output, road density, and the number of industries were amongst the highest. These findings can be used to develop the effective policy to reduce PM2.5 pollution, such as, due to the significant spatial autocorrelation between regions, the government should pay attention to the importance of regional joint management of PM2.5 pollution.
Collapse
|
10
|
Wang Z, Xu M, Wang Y, Wang T, Wu N, Zheng W, Duan H. Air particulate matter pollution and circulating surfactant protein: A systemic review and meta-analysis. CHEMOSPHERE 2021; 272:129564. [PMID: 33476792 DOI: 10.1016/j.chemosphere.2021.129564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Air particulate matter (PM) pollution is associated with the alterations in circulating pulmonary damage proteins. But there are not consistent results among the epidemiological studies. The aim of this study is to investigate the alteration of surfactant protein (SP) from PM exposure. METHODS We conducted a comprehensive meta-analysis by searching the databases of PubMed, Medline, EMBASE, Web of Science and CNKI before October 2020 which reported PM pollutants and surfactant protein in the population. The sources of heterogeneity were assessed by subgroup (smoking, particulate matter with different aerodynamic diameter, exposure duration) analysis. We also used the publication bias tests for the comprehensive assessment. RESULTS This meta-analysis consisted of 10 studies with 1985 subjects. The results showed that the combined standardized mean difference (SMD) value was 0.05, 95% confidence interval (CI) was -0.07 to 0.17 for serum SP-A and -0.81 (95% CI: -1.41 to -0.21) for circulating SP-D. Among smokers, the combined SMD value of SP-A were 0.29 (95% CI: 0.05 to 0.52). We did not find the correlation between publication year of SP-A and SP-D and study heterogeneity. CONCLUSIONS Circulating SP-D was significantly decreased by air particulate matter. Serum SP-A was significantly increased by PM exposure among smokers. Circulating surfactant protein may be considered as a biomarker for respiratory injury caused by air particulate matter.
Collapse
Affiliation(s)
- Zhenjie Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengmeng Xu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanhua Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ting Wang
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Nan Wu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenjing Zheng
- Office of Epidemiology, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
11
|
Li K, Yan J, Wang S, Liang X, Lin B, Tian L, Liu H, Liu X, Xi Z. Acute Exposure of Atmospheric Ultrafine Particles Induced Inflammation Response and Dysregulated TGFβ/Smads Signaling Pathway in ApoE -/- Mice. Cardiovasc Toxicol 2021; 21:410-421. [PMID: 33475962 DOI: 10.1007/s12012-021-09633-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/09/2021] [Indexed: 11/29/2022]
Abstract
Ultrafine particles (UFPs) referred to particular matters with aerosol diameter less than 100 nm. Because of the lightweight and small size, UFPs have become an occupational inhalation risk. The UFPs will be accumulated in the deep lung through inhalation, and then reach into all the organs via circulation system; some UFPs even stay in the brain. As previous study reported, UFPs exposure is usually associated with cardiovascular disease, such as atherosclerosis (AS). In our study, we tried to understand how acute UFP exposure caused the biological dysregulation in atherosclerosis. Acute exposure of UFPs were applied to mice for 6 consecutive days, mice were sacrificed after 3, 5, 7, and 10 days post-exposure. Aorta and serum were collected for histological and biomarkers analysis. Mice aortic adventitial fibroblasts (MAFs) were isolated from mice and used to further study to understand the mechanism of UFPs induced atherosclerosis. Compared to the untreated control, the inflammation responses and nitrate stress were observed after acute exposure of UFPs, with increased IL-6, MCP-1, p47phox, and 3-NT levels in the mice serum. Besides, upregulation of microRNAs: miR-301b-3p and Let-7c-1-3p, and their downstream target: Smad2, Smad3, and TGFβ1 were also observed in mouse aorta after acute exposure of UFPs. Similar results were identified in vitro as well. Acute exposure of UFPs induced the systematic nitrate stress and inflammation responses, along with the changes of vascular permeability. Dysregulated miRNAs and TGFβ/Smads signaling pathway indicated the higher risk of atherosclerosis/vasculature remodeling when exposed to UFPs.
Collapse
Affiliation(s)
- Kang Li
- Department of Toxicology, Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Jun Yan
- Department of Toxicology, Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Shumei Wang
- Binzhou Center Hospital, Yantai, 264000, China
| | - Xiaotian Liang
- Department of Toxicology, Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, China
- Binzhou Medical College, Yantai, 264000, China
| | - Bencheng Lin
- Department of Toxicology, Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Lei Tian
- Department of Toxicology, Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Huanliang Liu
- Department of Toxicology, Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, China
| | - Xiaohua Liu
- Department of Toxicology, Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| | - Zhuge Xi
- Department of Toxicology, Tianjin Institute of Environmental and Operational Medicine, No. 1, Dali Road, Heping District, Tianjin, 300050, China.
| |
Collapse
|
12
|
Aesculetin Inhibits Airway Thickening and Mucus Overproduction Induced by Urban Particulate Matter through Blocking Inflammation and Oxidative Stress Involving TLR4 and EGFR. Antioxidants (Basel) 2021; 10:antiox10030494. [PMID: 33809902 PMCID: PMC8004275 DOI: 10.3390/antiox10030494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) is a mixture of solid and liquid air pollutant particles suspended in the air, varying in composition, size, and physical features. PM is the most harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing diverse respiratory diseases. Aesculetin, a coumarin derivative present in the Sancho tree and chicory, is known to have antioxidant and anti-inflammatory effects in the vascular and immune system. However, its effect on PM-induced airway thickening and mucus hypersecretion is poorly understood. The current study examined whether naturally-occurring aesculetin inhibited airway thickening and mucus hypersecretion caused by urban PM10 (uPM10, particles less than 10 μm). Mice were orally administrated with 10 mg/kg aesculetin and exposed to 6 μg/mL uPM10 for 8 weeks. To further explore the mechanism(s) involved in inhibition of uPM10-induced mucus hypersecretion by aesculetin, bronchial epithelial BEAS-2B cells were treated with 1–20 µM aesculetin in the presence of 2 μg/mL uPM10. Oral administration of aesculetin attenuated collagen accumulation and mucus hypersecretion in the small airways inflamed by uPM10. In addition, aesculetin inhibited uPM10-evoked inflammation and oxidant production in lung tissues. Further, aesculetin accompanied the inhibition of induction of bronchial epithelial toll-like receptor 4 (TLR4) and epidermal growth factor receptor (EFGR) elevated by uPM10. The inhibition of TLR4 and EGFR accompanied bronchial mucus hypersecretion in the presence of uPM10. Oxidative stress was responsible for the epithelial induction of TLR4 and EGFR, which was disrupted by aesculetin. These results demonstrated that aesculetin ameliorated airway thickening and mucus hypersecretion by uPM10 inhalation by inhibiting pulmonary inflammation via oxidative stress-stimulated TLR4 and EGFR. Therefore, aesculetin may be a promising agent for treating airway mucosa-associated disorders elicited by urban coarse particulates.
Collapse
|
13
|
Sopian NA, Jalaludin J, Abu Bakar S, Hamedon TR, Latif MT. Exposure to Particulate PAHs on Potential Genotoxicity and Cancer Risk among School Children Living Near the Petrochemical Industry. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052575. [PMID: 33806616 PMCID: PMC7967639 DOI: 10.3390/ijerph18052575] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/19/2023]
Abstract
This study aimed to assess the association of exposure to particle-bound (PM2.5) polycyclic aromatic hydrocarbons (PAHs) with potential genotoxicity and cancer risk among children living near the petrochemical industry and comparative populations in Malaysia. PM2.5 samples were collected using a low-volume sampler for 24 h at three primary schools located within 5 km of the industrial area and three comparative schools more than 20 km away from any industrial activity. A gas chromatography-mass spectrometer was used to determine the analysis of 16 United States Environmental Protection Agency (USEPA) priority PAHs. A total of 205 children were randomly selected to assess the DNA damage in buccal cells, employing the comet assay. Total PAHs measured in exposed and comparative schools varied, respectively, from 61.60 to 64.64 ng m-3 and from 5.93 to 35.06 ng m-3. The PAH emission in exposed schools was contributed mainly by traffic and industrial emissions, dependent on the source apportionment. The 95th percentiles of the incremental lifetime cancer risk estimated using Monte Carlo simulation revealed that the inhalation risk for the exposed children and comparative populations was 2.22 × 10-6 and 2.95 × 10-7, respectively. The degree of DNA injury was substantially more severe among the exposed children relative to the comparative community. This study reveals that higher exposure to PAHs increases the risk of genotoxic effects and cancer among children.
Collapse
Affiliation(s)
- Nor Ashikin Sopian
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Juliana Jalaludin
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Correspondence: ; Tel.: +603-97692401
| | - Suhaili Abu Bakar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Titi Rahmawati Hamedon
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Mohd Talib Latif
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
14
|
Cortés S, Zúñiga-Venegas L, Pancetti F, Covarrubias A, Ramírez-Santana M, Adaros H, Muñoz L. A Positive Relationship between Exposure to Heavy Metals and Development of Chronic Diseases: A Case Study from Chile. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041419. [PMID: 33546415 PMCID: PMC7913508 DOI: 10.3390/ijerph18041419] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Chile is a mining country, where waste mining is frequently found in the vicinity of inhabited areas. To explore the association between metal exposure and alterations in glucose metabolism, inflammatory status, and oxidative stress in individuals with chronic exposure to metals, a cross-sectional study was performed with 25 volunteers, between 45–65 years old. Inductive coupled plasma mass spectrometry (ICP-MS) was used to measure urinary levels of total arsenic (As) and its metabolites, cooper, nickel, chromium, and lead. Lipid profile, glucose, and insulin were measured in blood, as well as inflammation (interleukin-6, IL-6) and oxidative stress (8-hydroxy-2′deoxyguanosine, 8-OHdG) markers. Increased levels of Low-density lipoprotein, high-density lipoproteins, cholesterol and 8-OHdG, and the index for homeostasis model assessment—insulin resistance (HOMA-IR) were observed in 72%, 60%, and 56% of the volunteers, respectively. Blood-glucose levels were correlated with dimethylarsinic acid (DMA) (R2 = 0.47, p = 0.019), inorganic As (Asi) (R2 = 0.40, p = 0.012), and Ni (R2 = 0.56; p = 0.044). The models with these compounds explained 72% of the glycemia variability (βDMA = −6.47; βAsi = 6.68; βNi = 6.87). Ni showed a significantly influence on IL-6 variability (β = 0.85: R2 = 0.36). Changes in glycemia could be related to exposure to low levels of Asi and Ni, representing risk factors for metabolic diseases. Body mass index would confuse the relation between IL-6 and Ni levels, probably due to known chronic inflammation present in obese people.
Collapse
Affiliation(s)
- Sandra Cortés
- Departamento de Salud Pública, Escuela de Medicina, Universidad Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Advanced Center for Chronic Diseases (ACCDIS), Santiago 8330077, Chile
- Centro de Desarrollo Urbano Sustentable (CEDEUS), Santiago 8330077, Chile
- Correspondence:
| | - Liliana Zúñiga-Venegas
- Laboratorio de Investigaciones Biomédicas (LIB), Departamento de Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Talca 3480005, Chile;
- Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca 3480005, Chile
| | - Floria Pancetti
- Laboratorio de Neurotoxicología Ambiental, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo No. 1281, Coquimbo 1781421, Chile; (F.P.); (A.C.)
- Centro de Investigación y Desarrollo Tecnológico en Algas y Otros Recursos Biológicos, Universidad Católica del Norte, Larrondo No. 1281, Coquimbo 1781421, Chile
| | - Alejandra Covarrubias
- Laboratorio de Neurotoxicología Ambiental, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Larrondo No. 1281, Coquimbo 1781421, Chile; (F.P.); (A.C.)
| | - Muriel Ramírez-Santana
- Departamento de Salud Pública, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile;
| | - Héctor Adaros
- Hospital Dr. Jerónimo Méndez, Chañaral, Chañaral 1490000, Chile;
| | - Luis Muñoz
- Laboratorio de Metrología Química, Comisión Chilena de Energía Nuclear, Santiago 7600713, Chile;
| |
Collapse
|
15
|
Chen H, Zhang X, Zhang T, Li X, Li J, Yue Y, Wang M, Zheng Y, Fan H, Wang J, Yao M. Ambient PM Toxicity Is Correlated with Expression Levels of Specific MicroRNAs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10227-10236. [PMID: 32660239 DOI: 10.1021/acs.est.0c03876] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Uncertainties regarding optimized air pollution control remain as the underlying mechanisms of city-specific ambient particulate matter (PM)-induced health effects are unknown. Here, water-soluble extracts of PMs collected from four global cities via automobile air-conditioning filters were consecutively injected three times by an amount of 1, 2, and 2 mg into the blood circulation of Wistar rats after filtration by a 0.45 μm pore size membrane. Acute health effects, such as immune and inflammatory responses and hemorrhage in alveoli, were observed right after the PM extraction injection. Significant differences between cities in biomarker tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) levels were detected following the second and third PM injections. Rats' inflammatory responses varied substantially with the injections of city-specific PMs. Repeated PM extract exposure rendered the rats more vulnerable to subsequent challenges, and downregulation of certain microRNAs was observed in rats. Among the studied miRNAs, miR-125b, and miR-21 were most sensitive to the PM exposure, exhibiting a negative dose-response-type relationship with a source-specific PM (oxidative potential) toxicity (r2 = 0.63 and 0.57; p-values < 0.05). The results indicated that city-specific PMs could induce different health effects by selectively regulating different miRNAs, and that certain microRNAs, e.g., miR-125b and miR-21, may be externally mediated to neutralize PM-related health damages.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ting Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jing Li
- Linde + Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| | - Yang Yue
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dubendorf 8600, Switzerland
| | - Minfei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yunhao Zheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hanqing Fan
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dubendorf 8600, Switzerland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Associations of Occupational, Socio-Demographic and Lifestyle Factors with Lung Functions in Malaysian Traffic Policemen. Ann Glob Health 2020; 86:84. [PMID: 32775216 PMCID: PMC7394205 DOI: 10.5334/aogh.2895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Apart from being exposed to various hazards, there are several other factors that contribute to the deterioration of traffic police health. Objectives: A cross-sectional study was carried out to explore the association of occupational, socio-demographic, and lifestyle factors with lung functions in traffic policemen in Kuala Lumpur (KL) and Johor Bahru (JB). Methods: A spirometer was used to measure lung function of subjects, whereas a self-administered questionnaire was used to obtain their information on background data, lifestyle, and occupational factors. The statistical test used was Spearman rho’s test and chi-square test; then, the factors were further tested using Logistic regressions. Findings: 134 male subjects were selected as respondents in this study with 83% response rate. Among all the factors tested, age (FVC: χ = 8.42(3), p = 0.04), (FEV: χ = 8.26(3), p = 0.04), rank (FVC: χ = 8.52(3), p = 0.04), (FEV: χ = 8.05(3), p = 0.04), duration of services (FVC: χ = 11.0(1), p = 0.04), (FEV: χ = 6.53(1), p = 0.01), and average working hours (with the Measured FVC (litre), r = –3.97, p < 0.001; Measured FEV1 (litre), r = –3.70, p < 0.001; Predicted FVC, r = –0.49, p < 0.001; Predicted FEV1, r = –0.47, p < 0.001; and %Ratio FEV1/FV, r = –0.47, p < 0.001) were significantly related to lung function among traffic police. Conclusions: Occupational factors play a crucial role, and hence, the authorities should take action in generating flexible working hours and the duration of services accordingly. The data from this study can help by serving as a reference to the top management of traffic police officers to develop occupational safety and health guideline for police officers to comply with the Occupational Safety and Health Act (OSHA, Act 514 1994).
Collapse
|
17
|
Kyung SY, Jeong SH. Particulate-Matter Related Respiratory Diseases. Tuberc Respir Dis (Seoul) 2020; 83:116-121. [PMID: 32185911 PMCID: PMC7105434 DOI: 10.4046/trd.2019.0025] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/10/2019] [Accepted: 01/21/2020] [Indexed: 12/05/2022] Open
Abstract
Particulate matter (PM) is suspended dust that has a diameter of <10 µm and can be inhaled by humans and deposited in the lungs, particularly the alveoli. Recent studies have shown that PM has an adverse effect on respiratory diseases. The aim of this article is to review respiratory diseases associated with PM. According to existing studies, PM is associated with chronic obstructive pulmonary disease, bronchial asthma, and several other respiratory diseases and increases the mortality rates of these diseases. Moreover, increased exposure in the high concentration of atmospheric PM is associated with the development of lung cancer. The most simple and common way to protect an individual from airborne PM is to wear a face mask that filters out PM. In areas of high concentration PM, it is recommended to wear a face mask to minimize the exposure to PM. However, the use of N95 or KF94 masks can interfere with respiration in patients with chronic respiratory diseases who exhibit low pulmonary function, leading to an increased risk of respiratory failure. Conclusionally, reduction of the total amount of PM is considered to be important factor and strengthening the national warning notification system to vulnerable patients and proper early management of exacerbated patients will be needed in the future.
Collapse
Affiliation(s)
- Sun Young Kyung
- Department of Allergy, Pulmonary and Critical Care Medicine, Gachon University Gil Medical Center, Incheon, Korea.,Gachon Particulate Matter Associated Disease Institute, Gachon University, Incheon, Korea
| | - Sung Hwan Jeong
- Department of Allergy, Pulmonary and Critical Care Medicine, Gachon University Gil Medical Center, Incheon, Korea.,Gachon Particulate Matter Associated Disease Institute, Gachon University, Incheon, Korea.
| |
Collapse
|
18
|
Xu H, Xu X, Wang H, Qimuge A, Liu S, Chen Y, Zhang C, Hu M, Song L. LKB1/p53/TIGAR/autophagy-dependent VEGF expression contributes to PM2.5-induced pulmonary inflammatory responses. Sci Rep 2019; 9:16600. [PMID: 31719630 PMCID: PMC6851103 DOI: 10.1038/s41598-019-53247-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
One of the health hazards of PM2.5 exposure is to induce pulmonary inflammatory responses. In our previous study, we demonstrated that exposing both the immortalized and primary human bronchial epithelial cells to PM2.5 results in a significant upregulation of VEGF production, a typical signaling event to trigger chronic airway inflammation. Further investigations showed that PM2.5 exposure strongly induces ATR/CHK1/p53 cascade activation, leading to the induction of DRAM1-dependent autophagy to mediate VEGF expression by activating Src/STAT3 pathway. In the current study, we further revealed that TIGAR was another transcriptional target of p53 to trigger autophagy and VEGF upregulation in Beas-2B cells after PM2.5 exposure. Furthermore, LKB1, but not ATR and CHK1, played a critical role in mediating p53/TIGAR/autophagy/VEGF pathway activation also by linking to Src/STAT3 signaling cascade. Therefore, on combination of the previous report, we have identified both ATR/CHK1/p53/DRAM1- and LKB1/p53/TIGAR- dependent autophagy in mediating VEGF production in the bronchial epithelial cells under PM2.5 exposure. Moreover, the in vivo study further confirmed VEGF induction in the airway potentially contributed to the inflammatory responses in the pulmonary vascular endothelium of PM2.5-treated rats. Therefore, blocking VEGF expression or autophagy induction might be the valuable strategies to alleviating PM2.5-induced respiratory injuries.
Collapse
Affiliation(s)
- Huan Xu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Xiuduan Xu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Hongli Wang
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, 357 Ximen Road, Kaifeng, 475004, People's Republic of China
| | - Aodeng Qimuge
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Department of New Drug Screening Center, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China
| | - Shasha Liu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Tianshui South Road, Lanzhou, 730000, People's Republic of China
| | - Yuanlian Chen
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Guiin Medical University, 1 Zhiyuan Road, Guilin, 541100, P.R. China
| | - Chongchong Zhang
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China.,Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, 357 Ximen Road, Kaifeng, 475004, People's Republic of China
| | - Meiru Hu
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Lun Song
- Institute of Military Cognitive and Brain Sciences, 27 Taiping Road, Beijing, 100850, People's Republic of China. .,Anhui Medical University, 81 Meishan Road, Hefei, 230032, People's Republic of China.
| |
Collapse
|
19
|
Morelli V, Ziegler C, Fawibe O. An Overview of Environmental Justice Issues in Primary Care – 2018. PHYSICIAN ASSISTANT CLINICS 2019. [DOI: 10.1016/j.cpha.2018.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Chen H, Li J, Zhang X, Li X, Yao M, Zheng G. Automated in Vivo Nanosensing of Breath-Borne Protein Biomarkers. NANO LETTERS 2018; 18:4716-4726. [PMID: 29995423 DOI: 10.1021/acs.nanolett.8b01070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Toxicology and bedside medical condition monitoring is often desired to be both ultrasensitive and noninvasive. However, current biomarker analyses for these purposes are mostly offline and fail to detect low marker quantities. Here, we report a system called dLABer (detection of living animal's exhaled breath biomarker) that integrates living rats, breath sampling, microfluidics, and biosensors for the automated tracking of breath-borne biomarkers. Our data show that dLABer could selectively detect (online) and report differences (of up to 103-fold) in the levels of inflammation agent interleukin-6 (IL-6) exhaled by rats injected with different ambient particulate matter (PM). The dLABer system was further shown to have an up to 104 higher signal-to-noise ratio than that of the enzyme-linked immunosorbent assay (ELISA) when analyzing the same breath samples. In addition, both blood-borne IL-6 levels analyzed via ELISA in rats injected with different PM extracts and PM toxicity determined by a dithiothreitol (DTT) assay agreed well with those determined by the dLABer system. Video recordings further verified that rats exposed to PM with higher toxicity (according to a DTT assay and as revealed by dLABer) appeared to be less physically active. All the data presented here suggest that the dLABer system is capable of real-time, noninvasive monitoring of breath-borne biomarkers with ultrasensitivity. The dLABer system is expected to revolutionize pollutant health effect studies and bedside disease diagnosis as well as physiological condition monitoring at the single-protein level.
Collapse
Affiliation(s)
- Haoxuan Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Jing Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Xiangyu Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Xinyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and State Key Laboratory of Medical Neurobiology , Fudan University , Shanghai 200438 , China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Elucidate temporomandibular joint (TMJ) development and pathophysiology relative to regeneration, degeneration, and adaption. RECENT FINDINGS The pharyngeal arch produces a highly conserved stomatognathic system that supports airway and masticatory function. An induced subperiosteal layer of fibrocartilage cushions TMJ functional and parafunctional loads. If the fibrocartilage disc is present, a fractured mandibular condyle (MC) regenerates near the eminence of the fossa via a blastema emanating from the medial periosteal surface of the ramus. TMJ degenerative joint disease (DJD) is a relatively painless osteoarthrosis, resulting in extensive sclerosis, disc destruction, and lytic lesions. Facial form and symmetry may be affected, but the residual bone is vital because distraction continues to lengthen the MC with anabolic bone modeling. Extensive TMJ adaptive, healing, and regenerative potential maintains optimal, life support functions over a lifetime. Unique aspects of TMJ development, function, and pathophysiology may be useful for innovative management of other joints.
Collapse
Affiliation(s)
- W Eugene Roberts
- School of Dentistry, Department of Orthodontics and Oral Facial Genetics, Indiana University-Purdue University (IUPUI), Indianapolis, IN, USA.
- Department of Orthodontics, Loma Linda University, Loma Linda, CA, USA.
- Advanced Dental Education, St. Louis University, St. Louis, MO, USA.
| | - David L Stocum
- School of Science, Department of Biology, Indiana University-Purdue University (IUPUI), Indianapolis, IN, USA
| |
Collapse
|
22
|
Abstract
Underserved communities suffer from environmental inequities. Gases lead to hypoxia and respiratory compromise, ozone to increased respiratory illnesses and decreased mental acuity, and mercury to prenatal cognitive disabilities and antisocial behaviors. Lead toxicity is associated with developmental delays. Cadmium is linked with cancer. The smaller sizes of air pollution particulate matter are pathogenic and are associated with cardiovascular and pulmonary disease and nervous system disorders. Bisphenol A is being studied for possible links to cancer and pregnancy risks. Physicians should be aware of these dangers, especially in underserved communities and populations. Investigating possible environmental risks and education are key.
Collapse
Affiliation(s)
- Vincent Morelli
- Sports Medicine Fellowship, Department of Family and Community Medicine, Meharry Medical College, 1005 Dr D. B. Todd Boulevard, Nashville, TN 37208, USA.
| | - Carol Ziegler
- Vanderbilt University School of Nursing, 461 21st Avenue, South, Nashville, TN 37240, USA
| | - Omotayo Fawibe
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
23
|
Kyung SY, Jeong SH. Adverse health effects of particulate matter. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2017. [DOI: 10.5124/jkma.2017.60.5.391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sun Young Kyung
- Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Sung Hwan Jeong
- Department of Internal Medicine, Gachon University Gil Hospital, Incheon, Korea
| |
Collapse
|
24
|
Xu X, Wang H, Liu S, Xing C, Liu Y, Aodengqimuge, Zhou W, Yuan X, Ma Y, Hu M, Hu Y, Zou S, Gu Y, Peng S, Yuan S, Li W, Ma Y, Song L. TP53-dependent autophagy links the ATR-CHEK1 axis activation to proinflammatory VEGFA production in human bronchial epithelial cells exposed to fine particulate matter (PM2.5). Autophagy 2016; 12:1832-1848. [PMID: 27463284 DOI: 10.1080/15548627.2016.1204496] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTARCT Epidemiological and clinical studies have increasingly shown that fine particulate matter (PM2.5) is associated with a number of pathological respiratory diseases, such as bronchitis, asthma, and chronic obstructive pulmonary disease, which share the common feature of airway inflammation induced by particle exposure. Thus, understanding how PM2.5 triggers inflammatory responses in the respiratory system is crucial for the study of PM2.5 toxicity. In the current study, we found that exposing human bronchial epithelial cells (immortalized Beas-2B cells and primary cells) to PM2.5 collected in the winter in Wuhan, a city in southern China, induced a significant upregulation of VEGFA (vascular endothelial growth factor A) production, a signaling event that typically functions to control chronic airway inflammation and vascular remodeling. Further investigations showed that macroautophagy/autophagy was induced upon PM2.5 exposure and then mediated VEGFA upregulation by activating the SRC (SRC proto-oncogene, non-receptor tyrosine kinase)-STAT3 (signal transducer and activator of transcription 3) pathway in bronchial epithelial cells. By exploring the upstream signaling events responsible for autophagy induction, we revealed a requirement for TP53 (tumor protein p53) activation and the expression of its downstream target DRAM1 (DNA damage regulated autophagy modulator 1) for the induction of autophagy. These results thus extend the role of TP53-DRAM1-dependent autophagy beyond cell fate determination under genotoxic stress and to the control of proinflammatory cytokine production. Moreover, PM2.5 exposure strongly induced the activation of the ATR (ATR serine/threonine kinase)-CHEK1/CHK1 (checkpoint kinase 1) axis, which subsequently triggered TP53-dependent autophagy and VEGFA production in Beas-2B cells. Therefore, these findings suggest a novel link between processes regulating genomic integrity and airway inflammation via autophagy induction in bronchial epithelial cells under PM2.5 exposure.
Collapse
Affiliation(s)
- Xiuduan Xu
- a Department of Stress Medicine , Beijing Institute of Basic Medical Sciences , Beijing , China.,b Anhui Medical University , Hefei , China
| | - Hongli Wang
- a Department of Stress Medicine , Beijing Institute of Basic Medical Sciences , Beijing , China.,c Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University , Kaifeng , China
| | - Shasha Liu
- a Department of Stress Medicine , Beijing Institute of Basic Medical Sciences , Beijing , China.,d Department of Pathology , School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Chen Xing
- a Department of Stress Medicine , Beijing Institute of Basic Medical Sciences , Beijing , China
| | - Yang Liu
- e Department of Thoracic Surgery, Chinese PLA General Hospital , Beijing , China
| | - Aodengqimuge
- a Department of Stress Medicine , Beijing Institute of Basic Medical Sciences , Beijing , China.,f Department of New Drug Screening Center , China Pharmaceutical University , Nanjing , China
| | - Wei Zhou
- g Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention , Beijing , China
| | - Xiaoyan Yuan
- g Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention , Beijing , China
| | - Yongfu Ma
- e Department of Thoracic Surgery, Chinese PLA General Hospital , Beijing , China
| | - Meiru Hu
- a Department of Stress Medicine , Beijing Institute of Basic Medical Sciences , Beijing , China
| | - Yongliang Hu
- a Department of Stress Medicine , Beijing Institute of Basic Medical Sciences , Beijing , China
| | - Shuxian Zou
- a Department of Stress Medicine , Beijing Institute of Basic Medical Sciences , Beijing , China
| | - Ye Gu
- a Department of Stress Medicine , Beijing Institute of Basic Medical Sciences , Beijing , China.,d Department of Pathology , School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Shuangqing Peng
- g Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention , Beijing , China
| | - Shengtao Yuan
- f Department of New Drug Screening Center , China Pharmaceutical University , Nanjing , China
| | - Weiping Li
- d Department of Pathology , School of Basic Medical Sciences, Lanzhou University , Lanzhou , China
| | - Yuanfang Ma
- c Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University , Kaifeng , China
| | - Lun Song
- a Department of Stress Medicine , Beijing Institute of Basic Medical Sciences , Beijing , China.,b Anhui Medical University , Hefei , China
| |
Collapse
|
25
|
Hagenbeek FA, Kluft C, Hankemeier T, Bartels M, Draisma HHM, Middeldorp CM, Berger R, Noto A, Lussu M, Pool R, Fanos V, Boomsma DI. Discovery of biochemical biomarkers for aggression: A role for metabolomics in psychiatry. Am J Med Genet B Neuropsychiatr Genet 2016; 171:719-32. [PMID: 26913573 DOI: 10.1002/ajmg.b.32435] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 02/09/2016] [Indexed: 12/30/2022]
Abstract
Human aggression encompasses a wide range of behaviors and is related to many psychiatric disorders. We introduce the different classification systems of aggression and related disorders as a basis for discussing biochemical biomarkers and then present an overview of studies in humans (published between 1990 and 2015) that reported statistically significant associations of biochemical biomarkers with aggression, DSM-IV disorders involving aggression, and their subtypes. The markers are of different types, including inflammation markers, neurotransmitters, lipoproteins, and hormones from various classes. Most studies focused on only a limited portfolio of biomarkers, frequently a specific class only. When integrating the data, it is clear that compounds from several biological pathways have been found to be associated with aggressive behavior, indicating complexity and the need for a broad approach. In the second part of the paper, using examples from the aggression literature and psychiatric metabolomics studies, we argue that a better understanding of aggression would benefit from a more holistic approach such as provided by metabolomics. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fiona A Hagenbeek
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,EMGO+ Institute for Health and Care Research, Amsterdam, The Netherlands
| | | | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.,The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Meike Bartels
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,EMGO+ Institute for Health and Care Research, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Harmen H M Draisma
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,EMGO+ Institute for Health and Care Research, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Christel M Middeldorp
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam, Amsterdam, The Netherlands.,Department of Child and Adolescent Psychiatry, GGZ inGeest/VU University Medical Center, Amsterdam, The Netherlands
| | - Ruud Berger
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.,The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Antonio Noto
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericultura Institute and Neonatal Section, University of Cagliari, Cagliari, Italy
| | - Milena Lussu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - René Pool
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,EMGO+ Institute for Health and Care Research, Amsterdam, The Netherlands.,BBMRINL: Infrastructure for the Application of Metabolomics Technology in Epidemiology, Leiden, The Netherlands
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, Puericultura Institute and Neonatal Section, University of Cagliari, Cagliari, Italy
| | - Dorret I Boomsma
- Department of Biological Psychology, VU Amsterdam, Amsterdam, The Netherlands.,EMGO+ Institute for Health and Care Research, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|