1
|
Andrade VS, Ale A, Rossi AS, Cazenave J, Antezana PE, Magni FV, Repetti MR, Desimone MF, Gutierrez MF. Nanopesticides ecotoxicity towards traditional ones: A case of study with Daphnia magna and λ-cyhalothrin. CHEMOSPHERE 2025; 377:144371. [PMID: 40179704 DOI: 10.1016/j.chemosphere.2025.144371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Nanotechnology has contributed to agriculture industry with novel products to improve the targeted delivery of active ingredients (a.i.), enable gradual release, avoid premature degradation, and increase efficacy. The properties of nanopesticides make their drift and environmental behavior more unpredictable than traditional formulations. Our aim was to compare the ecotoxicity of two insecticides with λ-cyhalothrin as a.i.: a nano-based one and a traditional emulsified, considering the incidence of temperature according to climate change prospections (20 and 24 °C). We evaluated their effects on Daphnia magna survival, body stores, and butyrylcholinesterase (BChE) activity. Although after 24 h the traditional formulation had greater lethality than the nanopesticide, after 48 h this pattern was reversed. At 24 °C the lethality of both pesticides increased. BChE activity was inhibited at 24 °C by both pesticides. In general, the increase in temperature negatively affected protein and glycogen content. The traditional formulation reduced glycogen content at 24 °C. A decrease in lipid content and the whole energy budget was observed in organisms exposed to the traditional formulation at both temperatures. Although the nano-based pesticide developed a delayed toxicity, it was more lethal than the traditional one in the long term. The temperature rise worsened the pesticides effects in terms of decreased survival, BChE activity inhibition, and energy reserves depletion. The development and regulation of new eco-safer nanopesticides needs to be complemented by their ecotoxicological assessment. It is imperative to analyze their impact in the context of climate change in order to develop mitigation and adaptation strategies.
Collapse
Affiliation(s)
| | - Analía Ale
- Cátedra de Toxicología, Farmacología y Bioquímica Legal (FBCB-UNL), CONICET, Santa Fe, Argentina.
| | - Andrea Silvana Rossi
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina; Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina.
| | - Jimena Cazenave
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina; Departamento de Ciencias Naturales, Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina.
| | - Pablo Edmundo Antezana
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET-UBA), Facultad de Farmacia y Bioquímica, Cátedra de Química Analítica Instrumental, Buenos Aires, Argentina.
| | - Florencia Valentina Magni
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química (FIQ), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
| | - María Rosa Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química (FIQ), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
| | - Martín Federico Desimone
- Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA, CONICET-UBA), Facultad de Farmacia y Bioquímica, Cátedra de Química Analítica Instrumental, Buenos Aires, Argentina; Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, 96203-900, Brazil.
| | - María Florencia Gutierrez
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina; Escuela Superior de Sanidad "Dr. Ramon Carrillo" (FBCB-UNL), Santa Fe, Argentina.
| |
Collapse
|
2
|
Di Cicco M, Tabilio Di Camillo A, Di Marzio W, Sáenz ME, Galassi DMP, Pieraccini G, Galante A, Di Censo D, Di Lorenzo T. Subchronic Effects of Tetrachloroethylene on Two Freshwater Copepod Species: Implications for Groundwater Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2515-2527. [PMID: 39185674 PMCID: PMC11619749 DOI: 10.1002/etc.5977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024]
Abstract
Aliphatic chlorinated hydrocarbons, notably tetrachloroethylene (also known as perchloroethylene [PCE]), are persistent, mobile, and toxic (PMT) and/or very persistent, mobile, and toxic (vPMT) groundwater pollutants, often exceeding safe drinking water thresholds. The present study delves into the groundwater risk assessment of PCE with a novel focus on the sensitivity of stygobitic species-organisms uniquely adapted to groundwater environments. Through a comparative analysis of the subchronic effects of PCE on the locomotion behavior of two copepod species, the stygobitic Moraria sp. and the nonstygobitic Bryocamptus zschokkei, we highlighted the inadequacy of the current European predicted-no-effect concentration of PCE for groundwater ecosystems. Our findings indicate significant behavioral impairments in both species at a concentration (32 ng/L PCE) well below the threshold deemed safe, suggesting that the current European guidelines for groundwater risk assessment may not adequately protect the unique biodiversity of groundwater habitats. Importantly, B. zschokkei demonstrated sensitivity to PCE comparable to or greater than that of the target stygobitic species, suggesting its utility as a substitute species in groundwater risk assessment. The present study adds to the limited research on the ecotoxicological sensitivity of groundwater species to PMT/vPMT chemicals and highlights the need for refined groundwater risk-assessment methodologies that consider the susceptibilities of stygobitic species. Environ Toxicol Chem 2024;43:2515-2527. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mattia Di Cicco
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
| | - Agostina Tabilio Di Camillo
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
- National Research Council–Research Institute on Terrestrial Ecosystems (CNR‐IRET)FlorenceItaly
| | - Walter Di Marzio
- Department of Basic Sciences, Program Research in EcotoxicologyNational University of Luján, National Scientific and Technical Research Council (PRIET‐UNLU‐CONICET)LujánArgentina
| | - Maria Elena Sáenz
- Department of Basic Sciences, Program Research in EcotoxicologyNational University of Luján, National Scientific and Technical Research Council (PRIET‐UNLU‐CONICET)LujánArgentina
| | | | | | - Angelo Galante
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaL'AquilaItaly
- Gran Sasso National Laboratory, INFNL'AquilaItaly
- CNR‐SPIN, c/o Department of Physical and Chemical ScienceUniversity of L'AquilaL'AquilaItaly
| | - Davide Di Censo
- Department of Neuroscience, Imaging, and Clinical Sciences“G. D'Annunzio” University of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical Technologies“G. D'Annunzio” University of Chieti‐PescaraChietiItaly
| | - Tiziana Di Lorenzo
- National Research Council–Research Institute on Terrestrial Ecosystems (CNR‐IRET)FlorenceItaly
- National Biodiversity Future CenterPalermoItaly
- “Emil Racovita” Institute of SpeleologyCluj‐NapocaRomania
- Centre for Ecology, Evolution and Environmental Changes & CHANGE–Global Change and Sustainability Institute, and Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| |
Collapse
|
3
|
Pinto A, Macário IPE, Marques SM, Lourenço J, Domingues I, Botelho MJ, Asselman J, Pereira P, Pereira JL. A short-term exposure to saxitoxin triggers a multitude of deleterious effects in Daphnia magna at levels deemed safe for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175431. [PMID: 39128511 DOI: 10.1016/j.scitotenv.2024.175431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Harmful algal blooms and the toxins produced during these events are a human and environmental health concern worldwide. Saxitoxin and its derivatives are potent natural aquatic neurotoxins produced by certain freshwater cyanobacteria and marine algae species during these bloom events. Saxitoxins effects on human health are well studied, however its effects on aquatic biota are still largely unexplored. This work aims at evaluating the effects of a pulse acute exposure (24 h) of the model cladoceran Daphnia magna to 30 μg saxitoxin L-1, which corresponds to the safety guideline established by the World Health Organization (WHO) for these toxins in recreational freshwaters. Saxitoxin effects were assessed through a comprehensive array of biochemical (antioxidant enzymes activity and lipid peroxidation), genotoxicity (alkaline comet assay), neurotoxicity (total cholinesterases activity), behavioral (swimming patterns), physiological (feeding rate and heart rate), and epigenetic (total 5-mC DNA methylation) biomarkers. Exposure resulted in decreased feeding rate, heart rate, total cholinesterases activity and catalase activity. Contrarily, other antioxidant enzymes, namely glutathione-S-transferases and selenium-dependent Glutathione peroxidase had their activity increased, together with lipid peroxidation levels. The enhancement of the antioxidant enzymes was not sufficient to prevent oxidative damage, as underpinned by lipid peroxidation enhancement. Accordingly, average DNA damage level was significantly increased in STX-exposed daphnids. Total DNA 5-mC level was significantly decreased in exposed organisms. Results showed that even a short-term exposure to saxitoxin causes significant effects on critical molecular and cellular pathways and modulates swimming patterns in D. magna individuals. This study highlights sub-lethal effects caused by saxitoxin in D. magna, suggesting that these toxins may represent a marked challenge to their thriving even at a concentration deemed safe for humans by the WHO.
Collapse
Affiliation(s)
- Albano Pinto
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Inês P E Macário
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sérgio M Marques
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Lourenço
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Inês Domingues
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Maria João Botelho
- IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, 8400 Ostend, Belgium
| | - Patrícia Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana L Pereira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
de Araujo GS, Ferreira ALG, da Maia Soares AMV, Abessa DMDS, Loureiro S. Multi-generation effects of lead (Pb) on two Daphnia species. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:801-817. [PMID: 39003411 DOI: 10.1007/s10646-024-02779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Two monophyletic Daphnia species (Daphnia magna and D. similis) were exposed to a sub-lethal concentration of Pb (50 µg/L) for nine generations under two food regimes (usual and restricted) and analyzed for acetylcholinesterase (AChE) activity, first reproduction delay, lifespan, and net reproductive rate (R0) at the subcellular, individual, and population levels, respectively. In the sixth generation, Pb-acclimated neonates were moved to clean media for three more generations to check for recovery. The net reproductive rate (R0) of D. magna was not affected by Pb. However, Pb stimulated reproduction, reduced lifespan, and decreased AChE activity. First reproduction delay and lifespan did not improve during the recovery process, suggesting a possible genetic adaptation. Food restriction reduced R0, lifespan, delayed hatching, and increased AChE activity; the opposite outcomes were observed for D. similis. The full recovery shown by R0 suggests the physiological acclimation of D. similis. Under food restriction, the animals exhibited a reduction of R0 and lifespan, delayed first reproduction, and increased AChE activity; however, there was no effect of Pb. The recovery process under food restriction showed that D. similis might not cope with Pb exposure, indicating a failed recovery. Such outcomes indicate that one model species' sensitivity may not represent another's sensitivity.
Collapse
Affiliation(s)
- Giuliana Seraphim de Araujo
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Abel Luís Gonçalves Ferreira
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | - Susana Loureiro
- CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
da Costa MLL, de Oliveira AC, Roque RA. Oxidative stress induction by essential oil from Piper alatipetiolatum (Piperaceae) triggers lethality in the larvae of Culex quinquefasciatus (Diptera: Culicidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105809. [PMID: 38582581 DOI: 10.1016/j.pestbp.2024.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 04/08/2024]
Abstract
Culex quinquefasciatus is the main vector of lymphatic filariasis in Brazil, which present resistance to commercial insecticides. Nowadays, essential oils (EOs) exhibiting larvicidal activity, such as those derived from Piper alatipetiolatum, provide a promising alternative for vector control, including Culex species. This study aimed to investigate the larvicidal activity and the oxidative stress indicators of the EO from P. alatipetiolatum in Cx. quinquefasciatus larvae. The EO was extracted from P. alatipetiolatum leaves using the hydrodistillation method, resulting in a yield of 7.2 ± 0.1%, analysed by gas chromatography coupled with spectrometry and gas chromatography coupled with flame ionization detector (GC-MS and GC-FID), and evaluated against Cx. quinquefasciatus larvae. Reactive Oxygen and Nitrogen Species (RONS), Catalase (CAT), glutathione-S-transferase (GST), acetylcholinesterase (AChE), and Thiol levels were used as oxidative stress indicators. Analysis by CG-MS and CG-FID revealed that the main compound in the EO was the oxygenated sesquiterpene ishwarone, constituting 78.6% of the composition. Furthermore, the EO exhibited larvicidal activity, ranging from 26 to 100%, with an LC50 of 4.53 μg/mL and LC90 of 15.37 μg/mL. This activity was accompanied by a significant increase in RONS production, alterations in CAT, GST, AChE activity, and thiol levels compared to the control groups (p < 0.05). To the best of our knowledge, this is the first report describing the larvicidal activity and oxidative stress induced by the EO from P. alatipetiolatum against Cx. quinquefasciatus larvae. Therefore, we propose that this EO shows promise as larvicidal agent for the effective control of Cx. quinquefasciatus larvae.
Collapse
Affiliation(s)
- Maria Luiza L da Costa
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Coordenação Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia,Manaus 69067-375, Amazonas, Brazil.
| | - André C de Oliveira
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Coordenação Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia,Manaus 69067-375, Amazonas, Brazil; Central Analítica, Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus 69080-900, Amazonas, Brazil
| | - Rosemary A Roque
- Laboratório de Controle Biológico e Biotecnologia da Malária e da Dengue, Coordenação Sociedade, Ambiente e Saúde, Instituto Nacional de Pesquisas da Amazônia,Manaus 69067-375, Amazonas, Brazil
| |
Collapse
|
6
|
Meng SL, Li MX, Lu Y, Chen X, Wang WP, Song C, Fan LM, Qiu LP, Li DD, Xu HM, Xu P. Effect of environmental level of methomyl on hatching, morphology, immunity and development related genes expression in zebrafish (Danio rerio) embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115684. [PMID: 37976935 DOI: 10.1016/j.ecoenv.2023.115684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The extensive use of carbamate pesticides has led to a range of environmental and health problems, such as surface and groundwater contamination, and endocrine disorders in organisms. In this study, we focused on examining the effects of toxic exposure to the carbamate pesticide methomyl on the hatching, morphology, immunity and developmental gene expression levels in zebrafish embryos. Four concentrations of methomyl (0, 2, 20, and 200 μg/L) were administered to zebrafish embryos for a period of 96 h. The study found that exposure to methomyl accelerated the hatching process of zebrafish embryos, with the strongest effect recorded at the concentration of 2 μg/L. Methomyl exposure also trigged significantly reductions in heart rate and caused abnormalities in larvae morphology, and it also stimulated the synthesis and release of several inflammatory factors such as IL-1β, IL-6, TNF-α and INF-α, lowered the IgM contents, ultimately enhancing inflammatory response and interfering with immune function. All of these showed the significant effects on exposure time, concentration and their interaction (Time × Concentration). Furthermore, the body length of zebrafish exposed to methomyl for 96 h was significantly shorter, particularly at higher concentrations (200 μg/L). Methomyl also affected the expression levels of genes associated with development (down-regulated igf1, bmp2b, vasa, dazl and piwi genes), demonstrating strong developmental toxicity and disruption of the endocrine system, with the most observed at the concentration of 200 μg/L and 96 h exposure to methomyl. The results of this study provide valuable reference information on the potential damage of methomyl concentrations in the environment on fish embryo development, while also supplementing present research on the immunotoxicity of methomyl.
Collapse
Affiliation(s)
- Shun Long Meng
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China.
| | - Ming Xiao Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Yan Lu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China
| | - Xi Chen
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Wei Ping Wang
- Jiangxi Provincial Aquatic Biology Protection and Rescue Center, Nangchang 330029, China
| | - Chao Song
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Li Min Fan
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Li Ping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Dan Dan Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Hui Min Xu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, China.
| |
Collapse
|
7
|
González MP, Cordero-de-Castro A, Salvatierra D, Kholssi R, Fernandes MN, Blasco J, Araújo CVM, Pereira CDS. Multi-level biological responses of Daphnia magna exposed to settleable atmospheric particulate matter from metallurgical industries. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106692. [PMID: 37722152 DOI: 10.1016/j.aquatox.2023.106692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/20/2023]
Abstract
Metallurgical industries are a continuous source of air pollution due to the amount of settleable particulate matter (SePM) they release. This SePM is a complex mixture formed by metallic nanoparticles and metals, which reach terrestrial and aquatic ecosystems and can be a significant source of contamination. The aim of this study was to evaluate the adverse effects of SePM at different levels of biological organization in order to estimate its ecological impacts on aquatic ecosystems. For this purpose, the crustacean Daphnia magna was exposed to different concentrations of SePM (0.01, 0.1, 1, 5, 10 g/L) using a multi-level response approach. The endpoints studied were: avoidance throughout 24 h in a non-forced exposure system, reproduction (total number of neonates per female after 21 days of exposure), acetylcholinesterase activity (AChE) after 48 h, and finally, the feeding rates during a short-term exposure (48 h) and a long-term exposure (21 day + 48 h). There was a negative effect of SePM on all responses measured at high concentrations. The avoidance was concentration-dependent and represented 88 % and 100 % at the two highest concentrations. The AChE activity was significantly inhibited at 5 and 10 g/L. The total number of neonates increased from 1 g/L of SePM and the first brood occurred earlier as of 5 g/L compared to control. The post-exposure feeding rates were lower during long-term exposure at the highest concentration. Chemical analyses were performed to characterize the metals present in this SePM, but this study did not report any direct relationship with toxicity, due to the chemical heterogeneity of the particles. The emission of compounds caused by anthropogenic activity may have significant ecological consequences, so it is important to consider these possible effects on aquatic biota generated by the mixture of metals present in SePM originated from metallurgical activities. Environmental and sectorial regulations are needed to prevent contamination and ecological disturbances.
Collapse
Affiliation(s)
- María Pilar González
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain.
| | - Andrea Cordero-de-Castro
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain
| | - David Salvatierra
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain
| | - Rajaa Kholssi
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain
| | - Marisa Narciso Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), 13565-905 São Carlos, São Paulo, Brazil
| | - Julián Blasco
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain
| | - Cristiano V M Araújo
- Department of Ecology and Coastal, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), 11519 Puerto Real, Spain
| | - Camilo Dias Seabra Pereira
- Departamento de Ciências do Mar, Universidade Federal de São Paulo, Campus Baixada Santista, 11030-100 Santos, São Paulo, Brazil
| |
Collapse
|
8
|
Egan N, Stinson SA, Deng X, Lawler SP, Connon RE. Swimming Behavior of Daphnia magna Is Altered by Pesticides of Concern, as Components of Agricultural Surface Water and in Acute Exposures. BIOLOGY 2023; 12:biology12030425. [PMID: 36979117 PMCID: PMC10045752 DOI: 10.3390/biology12030425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Pesticides with novel modes of action including neonicotinoids and anthranilic diamides are increasingly detected in global surface waters. Little is known about how these pesticides of concern interact in mixtures at environmentally relevant concentrations, a common exposure scenario in waterways impacted by pesticide pollution. We examined effects of chlorantraniliprole (CHL) and imidacloprid (IMI) on the sensitive invertebrate, Daphnia magna. Exposures were first performed using surface waters known to be contaminated by agricultural runoff. To evaluate the seasonal variation in chemical concentration and composition of surface waters, we tested surface water samples taken at two time points: during an extended dry period and after a first flush storm event. In surface waters, the concentrations of CHL, IMI, and other pesticides of concern increased after first flush, resulting in hypoactivity and dose-dependent photomotor responses. We then examined mortality and behavior following single and binary chemical mixtures of CHL and IMI. We detected inverse photomotor responses and some evidence of synergistic effects in binary mixture exposures. Taken together, this research demonstrates that CHL, IMI, and contaminated surface waters all cause abnormal swimming behavior in D. magna. Invertebrate swimming behavior is a sensitive endpoint for measuring the biological effects of environmental pesticides of concern.
Collapse
Affiliation(s)
- Nicole Egan
- School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
| | - Sarah A. Stinson
- School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
- Correspondence:
| | - Xin Deng
- California Department of Pesticide Regulation, Sacramento, CA 95812, USA
| | - Sharon P. Lawler
- Department of Entomology and Nematology, University of California at Davis, Davis, CA 95616, USA
| | - Richard E. Connon
- School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Dash MK, Rahman MS. Molecular and biochemical responses to tributyltin (TBT) exposure in the American oyster: Triggers of stress-induced oxidative DNA damage and prooxidant-antioxidant imbalance in tissues by TBT. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109523. [PMID: 36427667 DOI: 10.1016/j.cbpc.2022.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Environmental pollution increases due to anthropogenic activities. Toxic chemicals in the environment affect the health of aquatic organisms. Tributyltin (TBT) is a toxic chemical widely used as an antifouling paint on boats, hulls, and ships. The toxic effect of TBT is well documented in aquatic organisms; however, little is known about the effects of TBT on DNA lesions in shellfish. The American oyster (Crassostrea virginica, an edible and commercially important species) is an ideal marine mollusk to examine the effects of TBT exposure on DNA lesions and oxidative/nitrative stress. In this study, we investigated the effects of TBT on 8'-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), dinitrophenyl protein (DNP, a biomarker on reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, a biomarker of reactive nitrogen species, RNS), catalase (CAT, an antioxidant), and acetylcholinesterase (AChE, a cholinergic enzyme) expressions in the gills and digestive glands of oysters. We also analyzed extrapallial (EF) fluid conditions. Immunohistochemical and qRT-PCR results showed that TBT exposure significantly increased 8-OHdG, dsDNA, DNP, NTP, and CAT mRNA and/or protein expressions in the gills and digestive glands. However, AChE mRNA and protein expressions, and EP fluid pH and protein concentrations were decreased in TBT-exposed oysters. Taken together, these results suggest that antifouling biocide-induced production of ROS/RNS results in DNA damage, which may lead to decreased cellular functions in oysters. To the best of our knowledge, the present study provides the first molecular/biochemical evidence that TBT exposure results in oxidative/nitrative stress and DNA lesions in oysters.
Collapse
Affiliation(s)
- Mohan Kumar Dash
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
10
|
Bastawrous M, Ghosh Biswas R, Soong R, Jouda M, MacKinnon N, Mager D, Korvink JG, Simpson AJ. Lenz Lenses in a Cryoprobe: Boosting NMR Sensitivity Toward Environmental Monitoring of Mass-Limited Samples. Anal Chem 2023; 95:1327-1334. [PMID: 36576271 DOI: 10.1021/acs.analchem.2c04203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is commonly employed in a wide range of metabolomic research. Unfortunately, due to its relatively low sensitivity, smaller samples become challenging to study by NMR. Cryoprobes can be used to increase sensitivity by cooling the coil and preamplifier, offering sensitivity improvements of ∼3 to 4x. Alternatively, microcoils can be used to increase mass sensitivity by improving sample filling and proximity, along with decreased electrical resistance. Unfortunately, combining the two approaches is not just technically challenging, but as the coil decreases, so does its thermal fingerprint, reducing the advantage of cryogenic cooling. Here, an alternative solution is proposed in the form of a Lenz lens inside a cryoprobe. Rather than replacing the detection coil, Lenz lenses allow the B1 field from a larger coil to be refocused onto a much smaller sample area. In turn, the stronger B1 field at the sample provides strong coupling to the cryocoil, improving the signal. By combining a 530 I.D. Lenz lens with a cryoprobe, sensitivity was further improved by 2.8x and 3.5x for 1H and 13C, respectively, over the cryoprobe alone for small samples. Additionally, the broadband nature of the Lenz lenses allowed multiple nuclei to be studied and heteronuclear two-dimensional (2D) NMR approaches to be employed. The sensitivity improvements and 2D capabilities are demonstrated on 430 nL of hemolymph and eight eggs (∼350 μm O.D.) from the model organismDaphnia magna. In summary, combining Lenz lenses with cryoprobes offers a relatively simple approach to boost sensitivity for tiny samples while retaining cryoprobe advantages.
Collapse
Affiliation(s)
- Monica Bastawrous
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Rajshree Ghosh Biswas
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Mazin Jouda
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
11
|
Nagel AH, Robinson ASR, Goss GG, Glover CN. Effect of thallium on phototactic behaviour in Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:81740-81748. [PMID: 35732894 DOI: 10.1007/s11356-022-21571-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Thallium (Tl) is a trace metal enriched in wastewaters associated with mining and smelting of base metals. The toxicity of Tl to aquatic biota is poorly understood, particularly with respect to its sublethal effects. In this study, phototactic behavioural responses of naïve (i.e. no previous exposure to Tl) Daphnia magna, a key regulatory freshwater crustacean species, were examined in waters containing Tl. Fed and fasted neonate daphnids (< 24 h old) and fed adults (10-15 days old) showed no significant response at any tested water Tl concentration. However, in fasted adults, an increase in the positive phototactic response (measured as a greater number of daphnids closer to the light source after a 5-min exposure) was seen at Tl concentrations of 917 and 2099 µg L-1, values representative of extreme environmental Tl concentrations. The presence of Tl also decreased the swimming speed of adult Daphnia towards a light source. In the presence of cimetidine, a histamine receptor blocker, the increase in positive phototaxis induced by Tl disappeared, suggesting that Tl acts to perturb the phototaxis response through sensory inhibition. Conversely, although there was a trend towards enhanced activity, Tl had no significant effect on acetylcholinesterase, a marker of locomotor capacity.
Collapse
Affiliation(s)
- Andrew H Nagel
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | | | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Chris N Glover
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, 1 University Drive, Athabasca, AB, T9S 3A3, Canada.
| |
Collapse
|
12
|
Vera-Herrera L, Araújo CVM, Cordero-de-Castro A, Blasco J, Picó Y. Assessing the colonization by Daphnia magna of pesticide-disturbed habitats (chlorpyrifos, terbuthylazine and their mixtures) and the behavioral and neurotoxic effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119983. [PMID: 35988674 DOI: 10.1016/j.envpol.2022.119983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The spread of pesticides in water bodies integrated into agricultural landscapes may prevent some areas from being colonized. In this study, the effects on the colonization responses of D. magna exerted by gradients of realistic environmental concentrations of the pesticides chlorpyrifos, terbuthylazine and their mixtures were tested in a novel multicompartment non-forced exposure system. Furthermore, the effects of both pesticides and their mixtures on the swimming behavior and the neurotransmission activity of D. magna were analyzed using a traditional forced exposure system. The synthesis and concentration of the main environmental metabolites of terbuthylazine were also analyzed. Results confirmed that D. magna exposed to mixture gradients were able to detect the pollutants and their colonization dynamics were drastically inhibited. The swimming behavior increased in D. magna exposed to the highest concentration of the mixture treatment. AChE activity was only significantly inhibited in the D. magna exposed to the highest concentration of chlorpyrifos. Changes in swimming behavior could not be directly related to the effects on AChE. Furthermore, the synthesis of the metabolite terbuthylazine 2-hydroxy during the course of the experiments was confirmed. These results demonstrate the importance of integrating pesticide mixtures in both non-forced and forced exposure systems during ecotoxicological assays.
Collapse
Affiliation(s)
- Lucía Vera-Herrera
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-UV-GV, Moncada-Naquera Road, Km 4.5, 46113, Valencia, Spain.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cádiz, 11510, Spain.
| | - Andrea Cordero-de-Castro
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cádiz, 11510, Spain.
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN - CSIC), Puerto Real, Cádiz, 11510, Spain.
| | - Yolanda Picó
- Food and Environmental Safety Research Group of the University of Valencia (SAMA-UV), Desertification Research Centre (CIDE), CSIC-UV-GV, Moncada-Naquera Road, Km 4.5, 46113, Valencia, Spain.
| |
Collapse
|
13
|
Mear SJ, Lucas T, Ahlqvist GP, Robey JMS, Dietz J, Khairnar PV, Maity S, Williams CL, Snead DR, Nelson RC, Opatz T, Jamison TF. Diastereoselectivity is in the Details: Minor Changes Yield Major Improvements to the Synthesis of Bedaquiline**. Chemistry 2022; 28:e202201311. [PMID: 35675114 PMCID: PMC9545417 DOI: 10.1002/chem.202201311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/23/2022]
Abstract
Bedaquiline is a crucial medicine in the global fight against tuberculosis, yet its high price places it out of reach for many patients. Herein, we describe improvements to the key industrial lithiation‐addition sequence that enable a higher yielding and therefore more economical synthesis of bedaquiline. Prioritization of mechanistic understanding and multi‐lab reproducibility led to optimized reaction conditions that feature an unusual base‐salt pairing and afford a doubling of the yield of racemic bedaquiline. We anticipate that implementation of these improvements on manufacturing scale will be facile, thereby substantially increasing the accessibility of this essential medication.
Collapse
Affiliation(s)
- Sarah Jane Mear
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Tobias Lucas
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Grace P. Ahlqvist
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Juliana M. S. Robey
- Medicines for All Institute Department of Chemistry and Life Sciences Engineering Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Jule‐Philipp Dietz
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Pankaj V. Khairnar
- Medicines for All Institute Department of Chemistry and Life Sciences Engineering Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Sanjay Maity
- Medicines for All Institute Department of Chemistry and Life Sciences Engineering Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Corshai L. Williams
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - David R. Snead
- Medicines for All Institute Department of Chemistry and Life Sciences Engineering Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Ryan C. Nelson
- Medicines for All Institute Department of Chemistry and Life Sciences Engineering Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Till Opatz
- Department of Chemistry Johannes Gutenberg University Duesbergweg 10–14 55128 Mainz Germany
| | - Timothy F. Jamison
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
14
|
Bacillus spp. isolated from soil in Lebanon can simultaneously degrade methomyl in contaminated soils and enhance plant growth. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Peltzer PM, Cuzziol Boccioni AP, Attademo AM, Martinuzzi CS, Colussi CL, Lajmanovich RC. Risk of chlorine dioxide as emerging contaminant during SARS-CoV-2 pandemic: enzyme, cardiac, and behavior effects on amphibian tadpoles. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2022. [PMCID: PMC8564275 DOI: 10.1007/s13530-021-00116-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Objective The use of chlorine dioxide (ClO2) increased in the last year to prevent SARS-CoV-2 infection due to its use as disinfectant and therapeutic human treatments against viral infections. The absence of toxicological studies and sanitary regulation of this contaminant represents a serious threat to human and environmental health worldwide. The aim of this study was to evaluate the acute toxicity and sublethal effects of ClO2 on tadpoles of Trachycephalus typhonius, which is a common bioindicator species of contamination from aquatic ecosystems. Materials and methods Median lethal concentration (LC50), the lowest-observed effect concentration (LOEC), and the no-observed effect concentration (NOEC) were performed. Acetylcholinesterase (AChE) and glutathione-S-transferase (GST) activities, swimming behavior parameters, and cardiac rhythm were estimated on tadpoles of concentrations ≤ LOEC exposed at 24 and 96 h. ANOVA and Dunnett’s post-hoc comparisons were performed to define treatments significance (p ≤ 0.05). Results The LC50 of ClO2 was 4.17 mg L−1 (confidence limits: 3.73–4.66). In addition, NOEC and LOEC values were 1.56 and 3.12 mg L−1 ClO2, respectively, at 48 h. AChE and GST activities, swimming parameters, and heart rates increased in sublethal exposure of ClO2 (0.78–1.56 mg L−1) at 24 h. However, both enzyme activities and swimming parameters decreased, whereas heart rates increased at 96 h. Conclusion Overall, this study determined that sublethal concentrations of ClO2 produced alterations on antioxidant systems, neurotoxicity reflected on swimming performances, and variations in cardiac rhythm on treated tadpoles. Thus, our findings highlighted the need for urgent monitoring of this chemical in the aquatic ecosystems. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s13530-021-00116-3.
Collapse
Affiliation(s)
- Paola M. Peltzer
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ana P. Cuzziol Boccioni
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés M. Attademo
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Candela S. Martinuzzi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carlina L. Colussi
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Rafael C. Lajmanovich
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Dyomin V, Morgalev Y, Polovtsev I, Davydova A, Morgalev S, Kirillov N, Morgaleva T, Olshukov A. Phototropic response features for different systematic groups of mesoplankton under adverse environmental conditions. Ecol Evol 2021; 11:16487-16498. [PMID: 34938451 PMCID: PMC8668779 DOI: 10.1002/ece3.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/08/2022] Open
Abstract
Current trends in the application of bioindication methods are related to the use of submersible tools that perform real-time measurements directly in the studied aquatic environment. The methods based on the registration of changes in the behavioral responses of zooplankton, in particular Crustaceans, which make up the vast majority of the biomass in water areas, seem quite promising. However, the multispecies composition of natural planktonic biocenoses poses the need to consider the potential difference in the sensitivity of organisms to pollutants. This paper describes laboratory studies of the phototropic response of plankton to attracting light. The studies were carried out on a model natural community that in equal amounts includes Daphnia magna, Daphnia pulex, and Cyclops vicinus, as well as on the monoculture groups of these species. The phototropic response was initiated by the attracting light with a wavelength of 532 nm close to the local maximum of the reflection spectrum of chlorella microalgae. Standard potassium bichromate was used as the model pollutant. The largest phototropic response value is registered in the assemblage. The concentration growth rate of crustaceans in the illuminated volume was 4.5 ± 0.3 ind (L min)-1. Of the studied species, the phototropic response was mostly expressed in Daphnia magna (3.7 ± 0.4 ind (L min)-1), while in Daphnia pulex, it was reduced to 2.4 ± 0.2 ind (L min)-1, and in Cyclops vicinus, it was very small-0.16 ± 0.02 ind (L min)-1. This is caused by peculiar trophic behavior of phyto- and zoophages. The addition of a pollutant, namely potassium bichromate, caused a decrease in the concentration rate of crustaceans in the attracting light zone, while a dose-dependent change in phototropic responses was observed in a group of species and the Daphnia magna assemblage. The results of laboratory studies showed high potential of using the phototropic response of zooplankton to monitor the quality of its habitat thus ensuring the early diagnostics of water pollution. Besides, the paper shows the possibility of quantifying the phototropic response of zooplankton using submersible digital holographic cameras (DHC).
Collapse
Affiliation(s)
- Victor Dyomin
- Laboratory for Radiophysical and Optical Methods of Environmental ResearchNational Research Tomsk State UniversityTomskRussia
| | - Yuri Morgalev
- Biotest‐Nano CenterNational Research Tomsk State UniversityTomskRussia
| | - Igor Polovtsev
- Laboratory for Radiophysical and Optical Methods of Environmental ResearchNational Research Tomsk State UniversityTomskRussia
| | - Alexandra Davydova
- Laboratory for Radiophysical and Optical Methods of Environmental ResearchNational Research Tomsk State UniversityTomskRussia
- Laboratory of Environmental Remote SensingV.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of ScienceTomskRussia
| | - Sergey Morgalev
- Biotest‐Nano CenterNational Research Tomsk State UniversityTomskRussia
| | - Nikolay Kirillov
- Laboratory for Radiophysical and Optical Methods of Environmental ResearchNational Research Tomsk State UniversityTomskRussia
| | - Tamara Morgaleva
- Biotest‐Nano CenterNational Research Tomsk State UniversityTomskRussia
| | - Alexey Olshukov
- Laboratory for Radiophysical and Optical Methods of Environmental ResearchNational Research Tomsk State UniversityTomskRussia
- Laboratory of Environmental Remote SensingV.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of ScienceTomskRussia
| |
Collapse
|
17
|
Hong Y, Huang Y, Yan G, Yin H, Huang Z. DNA damage, immunotoxicity, and neurotoxicity induced by deltamethrin on the freshwater crayfish, Procambarus clarkii. ENVIRONMENTAL TOXICOLOGY 2021; 36:16-23. [PMID: 32757256 DOI: 10.1002/tox.23006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/18/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Pyrethroid pesticides are applied to both agricultural and aquacultural industries for pest control. However, information of their impact on the commercial important freshwater crayfish, Procambarus clarkii is scarce. Therefore, the present study aimed to characterize to effects of a commonly used pyrethroid pesticide, deltamethrin on DNA damage, immune response, and neurotoxicity in P. clarkii. Animals were exposed to 7, 14, and 28 ng/L of deltamethrin, which correspond to 1/8, 1/4, and 1/2 of the LC50 (96 hours) of this pyrethroid to P. clarkii. Significant increase of olive tail moment (OTM) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) was found after deltamethrin exposure in a dose-dependent way. Total hemocyte counts (THC) and activities of immune-related enzymes including acid phosphatase (ACP), lysozyme (LZM), and phenoloxidase (PO) were all decreased and significantly lower than control at concentration of 28 ng/L after 96 hours exposure. Acetylcholinesterase (AChE) activity, an indicator of neurotoxic effect was investigated and it was decreased significantly in muscles at 14 and 28 ng/L after 24 hours exposure. The level of intracellular reactive oxygen species (ROS) in hemocytes was also measured and the significant increase of ROS was found at 14 and 28 ng/L concentrations. The results revealed that deltamethrin induced DNA damage, immunotoxicity, and neurotoxicity in P. clarkii by excessive generation of ROS. Because of the dose-dependent responses of all parameters under exposure of deltamethrin at environmentally realistic concentrations, these parameters could be used as sensitive biomarkers for risk assessment of deltamethrin in aquaculture area.
Collapse
Affiliation(s)
- Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan, China
| | - Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan, China
| | - Guangwen Yan
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan, China
| | - Hongmei Yin
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang, Sichuan, China
| |
Collapse
|
18
|
Lin Z, Zhang W, Pang S, Huang Y, Mishra S, Bhatt P, Chen S. Current Approaches to and Future Perspectives on Methomyl Degradation in Contaminated Soil/Water Environments. Molecules 2020; 25:E738. [PMID: 32046287 PMCID: PMC7036768 DOI: 10.3390/molecules25030738] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023] Open
Abstract
Methomyl is a broad-spectrum oxime carbamate commonly used to control arthropods, nematodes, flies, and crop pests. However, extensive use of this pesticide in agricultural practices has led to environmental toxicity and human health issues. Oxidation, incineration, adsorption, and microbial degradation methods have been developed to remove insecticidal residues from soil/water environments. Compared with physicochemical methods, biodegradation is considered to be a cost-effective and ecofriendly approach to the removal of pesticide residues. Therefore, micro-organisms have become a key component of the degradation and detoxification of methomyl through catabolic pathways and genetic determinants. Several species of methomyl-degrading bacteria have been isolated and characterized, including Paracoccus, Pseudomonas, Aminobacter, Flavobacterium, Alcaligenes, Bacillus, Serratia, Novosphingobium, and Trametes. The degradation pathways of methomyl and the fate of several metabolites have been investigated. Further in-depth studies based on molecular biology and genetics are needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of methomyl. In this review, we highlight the mechanism of microbial degradation of methomyl along with metabolic pathways and genes/enzymes of different genera.
Collapse
Affiliation(s)
- Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.L.); (W.Z.); (S.P.); (Y.H.); (S.M.); (P.B.)
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
19
|
Dionísio R, Daniel D, Alkimin GDD, Nunes B. Multi-parametric analysis of ciprofloxacin toxicity at ecologically relevant levels: Short- and long-term effects on Daphnia magna. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103295. [PMID: 31786495 DOI: 10.1016/j.etap.2019.103295] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/09/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
The increased presence of emergent compounds, such as pharmaceuticals drugs, in the aquatic compartment has been acknowledged as an evolving environmental issue whose consequences are not yet fully characterized. Specific classes of pharmaceutical drugs, such as fluoroquinolone antibiotics, can exert toxic effects to non-target species with ecological significance, since these compounds are environmentally stable and persistent, and may interact with some of the key physiologic processes of organisms. Despite such characteristics, knowledge about the effects of these drugs is still scarce, especially to non-target organisms. The present study aimed to evaluate the effects of chronic and acute exposures of the cladoceran Daphnia magna to the fluoroquinolone antibiotic ciprofloxacin. Putative toxic effects were assessed, following acute and chronic exposures to ecologically relevant concentrations of ciprofloxacin, through enzymatic (cholinesterase - ChEs, catalase - CAT, glutathione S-transferases - GSTs) and non-enzymatic (thiobarbituric acid reactive substances - TBARS, glycogen - Gly) biomarkers. In addition, we also determined behavioural (swimming distance - SD) and morphological (body length of the first brood - BL1B) endpoints in animals exposed to this drug. Ciprofloxacin acute exposure resulted in increased CAT and ChEs activities, and inhibited GSTs activity. After chronic exposure, ChEs activity was significantly inhibited, while GSTs activity was significantly enhanced. TBARS levels were only increased at higher concentrations of ciprofloxacin. CAT activity and Gly content did not evidence a clear and significant pattern of variation. SD was slightly inhibited during dark cycles. BL1B presented a significant decrease for animals subjected to an intermediate concentration. Results showed that even ecologically relevant concentrations of ciprofloxacin may cause oxidative stress in individuals of D. magna. The present study showed important data that corroborate the occurrence of significant biochemical alterations in key features of an aquatic organism when exposed to relevant levels of a widely used antibiotic, establishing essential links between environmental exposure to this specific drug and putative toxic challenges that may result in irreversible changes and damages, especially at the individual level. However, changes in the size of neonates suggest that population alterations are likely to occur under real scenarios of chronic contamination by this drug.
Collapse
Affiliation(s)
- Ricardo Dionísio
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - David Daniel
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Gilberto Dias de Alkimin
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
20
|
Simão FCP, Martínez-Jerónimo F, Blasco V, Moreno F, Porta JM, Pestana JLT, Soares AMVM, Raldúa D, Barata C. Using a new high-throughput video-tracking platform to assess behavioural changes in Daphnia magna exposed to neuro-active drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:160-167. [PMID: 30690351 DOI: 10.1016/j.scitotenv.2019.01.187] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Recent advances in imaging allow to monitor in real time the behaviour of individuals under a given stress. Light is a common stressor that alters the behaviour of fish larvae and many aquatic invertebrate species. The water flea Daphnia magna exhibits a vertical negative phototaxis, swimming against light trying to avoid fish predation. The aim of this study was to develop a high-throughput image analysis system to study changes in the vertical negative phototaxis of D. magna first reproductive adult females exposed to 0.1 and 1 μg/L of four neuro-active drugs: diazepam, fluoxetine, propranolol and carbamazepine. Experiments were conducted using a custom designed experimental chamber containing four independent arenas and infrared illumination. The apical-located visible light and the GigE camera located in front of the arenas were controlled by the Ethovision XT 11.5 sofware (Noldus Information Technology, Leesburg, VA). Total distance moved, time spent per zone (bottom vs upper zones) and distance among individuals were analyzed in dark and light conditions, and the effect of different intensities of the apical-located visible light was also investigated. Results indicated that light intensity increased the locomotor activity and low light intensities allowed to better discriminate individual responses to the studied drugs. The four tested drugs decreased the response of exposed organisms to light: individuals moved less, were closer to the bottom and at low light intensities were closer each other. At high light intensities, however, exposed individuals were less aggregated. Propranolol, carbamazepine and fluoxetine induced the most severe behavioural effects. The tested drugs at environmental relevant concentrations altered locomotor activity, geotaxis, phototaxis and aggregation in D. magna individuals in the lab. Therefore the new image analysis system presented here was proven to be sensitive and versatile enough to detect changes in diel vertical migration across light intensities and low concentration levels of neuro-active drugs.
Collapse
Affiliation(s)
- Fátima C P Simão
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Portugal; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Fernando Martínez-Jerónimo
- Instituto Politecnico Nacional, Escuela Nacional de Ciencias Biológicas,-Lab. de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Victor Blasco
- Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
| | - Francesc Moreno
- Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
| | - Josep M Porta
- Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain
| | - João L T Pestana
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine studies (CESAM), Department of Biology, University of Aveiro, Portugal
| | - Demetrio Raldúa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (IDAEA, CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
21
|
Khan K, Kar S, Sanderson H, Roy K, Leszczynski J. Ecotoxicological Modeling, Ranking and Prioritization of Pharmaceuticals Using QSTR and i‐QSTTR Approaches: Application of 2D and Fragment Based Descriptors. Mol Inform 2018; 38:e1800078. [DOI: 10.1002/minf.201800078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/01/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Kabiruddin Khan
- Drug Theoretics and Cheminformatics Laboratory Department of Pharmaceutical Technology Jadavpur University Kolkata 700032 India
| | - Supratik Kar
- Interdisciplinary Center for Nanotoxicity Department of Chemistry, Physics and Atmospheric Sciences Jackson State University Jackson MS-39217 USA
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry Aarhus University Frederiksborgvej 399 DK-4000 Roskilde Denmark
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory Department of Pharmaceutical Technology Jadavpur University Kolkata 700032 India
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity Department of Chemistry, Physics and Atmospheric Sciences Jackson State University Jackson MS-39217 USA
| |
Collapse
|
22
|
Ferrario C, Parolini M, De Felice B, Villa S, Finizio A. Linking sub-individual and supra-individual effects in Daphnia magna exposed to sub-lethal concentration of chlorpyrifos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:411-418. [PMID: 29310084 DOI: 10.1016/j.envpol.2017.12.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/15/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
The main objective of the present study was to investigate possible links between sub-individual and supra-individual levels (i.e. population level) biomarkers in D. magna exposed to sublethal concentrations of the insecticide chlorpyrifos (CPF). To achieve the aim, 8-day old individuals were exposed for 96 h to two environmentally relevant concentrations of CPF (50 and 250 ng/L). Sub-individual level effects were investigated by measuring the activity of antioxidant (SOD, CAT, and GPx) and detoxifying (GST) enzymes, as well as by measuring the acetylcholinesterase (AChE) inhibition. In addition, the effects at supra-individual level were assessed by using a video-tracking system and analyzing changes in swimming capabilities (i.e. percentage of activity time, distance moved, and velocity). Our data have shown that daphnids exposed to both CPF concentrations were in a condition of stress which was highlighted by changes in both sub- and supra-individual biomarkers. Moreover, our results highlighted that the lowest tested CPF concentration did not modulate the antioxidant and detoxifying enzymes, whereas, an inhibition of AChE and a decrease of some parameters related to swimming behaviour (distance moved and velocity) were noted. On the contrary, significant changes in all the sub-individual biomarkers were measured at the highest tested concentration. In addition, organisms recovered the movement capability (distance moved) and also activate a mechanism of avoidance (increased swimming velocity). On the other hand, a reduction in the percent of active time was measured and this was attributed to the energy spent by organisms to activate antioxidant and detoxifying enzymes and the mechanism of avoidance. Based on these results, our study suggests the existence of a link between sub- and supra-individual levels, as the activation or non-activation in the antioxidant and detoxifying enzymes activities can led to different modifications of the swimming behaviour in D. magna.
Collapse
Affiliation(s)
- Claudia Ferrario
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, I-20133 Milano, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, I-20133 Milano, Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Antonio Finizio
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|