1
|
Wang F, Wang X, Xiao Y, Liu R, Li X, Hu J, Song W, Feng K, Yuan Y, Yue T. Selenium-enriched Kazachstania unispora KU2 ameliorates patulin-induced intestinal injury in mice by mediating the gut microbiota and selenoprotein P synthesis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138129. [PMID: 40179778 DOI: 10.1016/j.jhazmat.2025.138129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Patulin (PAT) is a foodborne mycotoxin that causes intestinal injury. Selenium (Se)-enriched Kazachstania unispora (K. unispora) KU2 is a novel dietary Se carrier, and Se exerts important roles in intestinal homeostasis. Here, we examined the ameliorative effects of K. unispora KU2 and Se-enriched K. unispora KU2 against PAT-induced intestinal injury. Results indicated that both K. unispora KU2 and Se-enriched K. unispora KU2 alleviated PAT-induced inflammatory infiltration, disrupted gut microbiota, and associated metabolic imbalances, indicating the probiotic potential of this strain. Se-enriched K. unispora KU2 exhibited more pronounced remediation comparable to K. unispora KU2, revealing the promoting effect of Se. Furthermore, Se-enriched K. unispora KU2 restored intestinal Se homeostasis by upregulating SEPP1 levels to mitigate intestinal injury. Using pseudo germ-free mouse models, we confirmed that gut microbiota was required for the improvement in SEPP1 synthesis and intestinal transport mediated by Se-enriched K. unispora KU2. These findings elucidate a mechanism whereby the alleviation of PAT-induced intestinal injury by Se-enriched K. unispora KU2 is linked to upregulation of SEPP1 by the gut microbiota, suggesting its potential therapeutic relevance for intestinal diseases.
Collapse
Affiliation(s)
- Furong Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Xian Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Yilei Xiao
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Ruixin Liu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Xiaoben Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Jinpeng Hu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Kewei Feng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi 710069, China; Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
2
|
Anchundia M, León-Revelo G, Santacruz S, Torres F. Production of β-Glucans from Rhizopus oryzae M10A1 by Optimizing Culture Conditions Using Liquid Potato Starch Waste. Polymers (Basel) 2025; 17:1283. [PMID: 40363067 PMCID: PMC12074454 DOI: 10.3390/polym17091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 05/15/2025] Open
Abstract
β-glucans from filamentous fungi are important for human health. There is limited research on polysaccharides from filamentous fungi, and no reports have been published regarding the optimization of culture media to produce β-glucans from Rhizopus oryzae using liquid waste from potato starch processing. In this regard, the fermentation conditions to produce β-glucans from Rhizopus oryzae M10A1 were optimized using the one variable at a time (OVAT) and response surface methodology (RSM). The β-glucans were chemically characterized by determining moisture, nitrogen, protein, fat, ash, and total carbohydrates. The color, molecular weight, β-glucan content, monosaccharide composition, and structural and conformational characteristics were assessed by colorimetry, gel permeation chromatography, high-performance liquid chromatography, and Fourier transform infrared spectroscopy, respectively. The microbial indicators, mesophilic aerobes, molds, yeasts, and Escherichia coli were quantified following ISO standard protocols. Optimization indicated that supplementation with 0.8% (w/v) glucose and ammonium sulfate enhanced heteroglycan production (3254.56 mg/100 g of biomass). The β-glucans exhibited high purity, a light brown color, a molecular weight of 450 kDa, and a composition predominantly consisting of glucose and galactose. These findings suggest that β-glucans from Rhizopus oryzae M10A1 could be used for food and health applications.
Collapse
Affiliation(s)
- Miguel Anchundia
- School of Food Engineering, Carchi State Polytechnic University, Tulcán 040101, Ecuador; (G.L.-R.); (F.T.)
| | - Gualberto León-Revelo
- School of Food Engineering, Carchi State Polytechnic University, Tulcán 040101, Ecuador; (G.L.-R.); (F.T.)
| | - Stalin Santacruz
- School of Agroindustrial Engineering, Universidad Laica Eloy Alfaro de Manabí, Manta 130222, Ecuador;
| | - Freddy Torres
- School of Food Engineering, Carchi State Polytechnic University, Tulcán 040101, Ecuador; (G.L.-R.); (F.T.)
| |
Collapse
|
3
|
Kovács M, Pomázi A, Taczman-Brückner A, Kiskó G, Dobó V, Kocsis T, Mohácsi-Farkas C, Belák Á. Detection and Identification of Food-Borne Yeasts: An Overview of the Relevant Methods and Their Evolution. Microorganisms 2025; 13:981. [PMID: 40431154 DOI: 10.3390/microorganisms13050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
The presence of yeasts in food is not unexpected, as they are part of the microbiota of raw materials, employed as starter cultures in numerous fermentation processes, and also play a role in spontaneous fermentation. Nevertheless, they have the potential to induce spoilage, which can lead to significant quality issues, and certain yeasts have the ability to cause infections in humans and animals, posing a food safety risk. The detection of yeasts in food, determination of their cell number, as well as identification and typing, are therefore often tasks during the examination of certain food categories. The methods employed to achieve these objectives are diverse, encompassing both conventional culture-based techniques and more recent, genome-based studies. The objective of this study is to provide a summary article that presents the methods suitable for testing food-derived yeasts. The article will highlight the advantages, disadvantages, and potential difficulties of their applicability. Moreover, a comprehensive review of nucleic acid-based, culture-dependent and culture-independent molecular yeast identification techniques was conducted, encompassing scientific articles from the past five years (2020-2024). The search was based on the Science Direct database using the keywords "yeast and molecular identification and food".
Collapse
Affiliation(s)
- Mónika Kovács
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Andrea Pomázi
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Andrea Taczman-Brückner
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Gabriella Kiskó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Viktória Dobó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Tamás Kocsis
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Csilla Mohácsi-Farkas
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| | - Ágnes Belák
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Somlói út 14-16, H-1118 Budapest, Hungary
| |
Collapse
|
4
|
Bonzanini V, Haddad Momeni M, Olofsson K, Olsson L, Geijer C. Impact of glucose and propionic acid on even and odd chain fatty acid profiles of oleaginous yeasts. BMC Microbiol 2025; 25:79. [PMID: 39966733 PMCID: PMC11834278 DOI: 10.1186/s12866-025-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Odd chain fatty acids (OCFAs) are gaining attention for their valuable medical and nutritional applications. Microbial fermentation offers a sustainable and environmentally friendly alternative for OCFA production compared to traditional extraction or chemical synthesis methods. To achieve an economically feasible OCFA production process, it is essential to identify and develop microbial cell factories capable of producing OCFAs with high titers and yields. RESULTS We selected 19 yeast species, including both oleaginous yeasts and representatives from the Ascomycota and Basidiomycota phyla, based on their known or potential ability to produce OCFAs. These species were screened under various growth conditions to evaluate their OCFA production potential. In glucose-based, nitrogen-limited media, the strains produced fatty acids to varying extents, with OCFAs comprising 0.5-5% of the total fatty acids. When using the OCFAs precursor propionic acid as the sole carbon source, only eight strains exhibited growth, with tolerance to propionic acid concentrations between 5 and 29 g/L. The strains also displayed varying efficiencies in converting propionic acid into fatty acids, yielding between 0.16 and 1.22 g/L of fatty acids, with OCFAs constituting 37-89% of total fatty acids. Among the top performing strains, Cutaneotrichosporon oleaginosus produced the highest OCFA titers and yields (0.94 g/L, 0.07 g/g), Yarrowia lipolytica demonstrated superior growth rates even at elevated propionic acid concentrations, and Rhodotorula toruloides achieved the highest proportion of OCFAs relative to total fatty acids (89%). CONCLUSIONS Our findings highlight the diverse capacities of the selected yeast species for OCFA production, identifying several promising strains for further optimization as microbial cell factories in sustainable OCFA production processes.
Collapse
Affiliation(s)
- Veronica Bonzanini
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Chalmersplatsen 4, Gothenburg, 412 96, Sweden
- AAK AB, Pulpetgatan 20, Malmö, 215 37, Sweden
| | | | | | - Lisbeth Olsson
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Chalmersplatsen 4, Gothenburg, 412 96, Sweden
| | - Cecilia Geijer
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Chalmersplatsen 4, Gothenburg, 412 96, Sweden.
| |
Collapse
|
5
|
Bigey F, Menatong Tene X, Wessner M, Devillers H, Pradal M, Cruaud C, Aury JM, Neuvéglise C. Insights into the genomic and phenotypic diversity of Monosporozyma unispora strains isolated from anthropic environments. FEMS Yeast Res 2025; 25:foaf016. [PMID: 40121180 PMCID: PMC11974382 DOI: 10.1093/femsyr/foaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Food microorganisms have been employed for centuries for the processing of fermented foods, leading to adapted populations with phenotypic traits of interest. The yeast Monosporozyma unispora (formerly Kazachstania unispora) has been identified in a wide range of fermented foods and beverages. Here, we studied the genetic and phenotypic diversity of a collection of 53 strains primarily derived from cheese, kefir, and sourdough. The 12.7-Mb genome of the type strain CLIB 234T was sequenced and assembled into near-complete chromosomes and annotated at the structural and functional levels, with 5639 coding sequences predicted. Comparison of the pangenome and core genome revealed minimal differences. From the complete yeast collection, we gathered genetic data (diversity, phylogeny, and population structure) and phenotypic data (growth capacity on solid media). Population genomic analyses revealed a low level of nucleotide diversity and strong population structure, with the presence of two major clades corresponding to ecological origins (cheese and kefir vs. plant derivatives). A high prevalence of extensive loss of heterozygosity and a slow linkage disequilibrium decay suggested a predominantly clonal mode of reproduction. Phenotypic analyses revealed growth variation under stress conditions, including high salinity and low pH, but no definitive link between phenotypic traits and environmental adaptation was established.
Collapse
Affiliation(s)
- Frédéric Bigey
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | | | - Marc Wessner
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Hugo Devillers
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Cécile Neuvéglise
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
6
|
Papadopoulou D, Chrysikopoulou V, Rampaouni A, Plakidis C, Ofrydopoulou A, Shiels K, Saha SK, Tsoupras A. Antioxidant, Antithrombotic and Anti-Inflammatory Properties of Amphiphilic Bioactives from Water Kefir Grains and Its Apple Pomace-Based Fermented Beverage. Antioxidants (Basel) 2025; 14:164. [PMID: 40002351 PMCID: PMC11851739 DOI: 10.3390/antiox14020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Kefir-based fermentation products exhibit antioxidant and anti-inflammatory effects against oxidative stress, inflammation, platelet activation and aggregation, and other related manifestations, thereby preventing the onset and development of several chronic diseases. Specifically, water kefir, a symbiotic culture of various microorganisms used for the production of several bio-functional fermented products, has been proposed for its health-promoting properties. Thus, water kefir grains and its apple pomace-based fermentation beverage were studied for bioactive amphiphilic and lipophilic lipid compounds with antioxidant, antithrombotic, and anti-inflammatory properties. Total lipids (TL) were extracted and further separated into their total amphiphilic (TAC) and total lipophilic content (TLC), in which the total phenolic and carotenoid contents (TPC and TCC, respectively) and the fatty acid content of the polar lipids (PL) were quantified, while the antioxidant activity of both TAC and TLC were assessed in vitro, by the ABTS, DPPH, and FRAP bioassays, along with the anti-inflammatory and antithrombotic activity of TAC against human platelet aggregation induced by the thrombo-inflammatory mediator, platelet-activating factor (PAF) or standard platelet agonists like ADP.ATR-FTIR spectra facilitated the detection of specific structural, functional groups of phenolic, flavonoid, and carotenoid antioxidants, while LC-MS analysis revealed the presence of specific anti-inflammatory and antithrombotic PL bioactives bearing unsaturated fatty acids in their structures, with favorable omega-6 (n-6)/omega-3 (n-3)polyunsaturated fatty acids (PUFA), which further support the findings that the most potent antioxidant, anti-inflammatory and antithrombotic bioactivities were observed in the TAC extracts, in both water kefir grains and beverage cases. The detection of such bioactive components in both the uncultured water kefir grains and in the cultured beverage further supports the contribution of water kefir microorganisms to the bioactivity and the bio-functionality of the final fermented product. Nevertheless, the extracts of the beverage showed much stronger antioxidant, anti-inflammatory, and antithrombotic activities, which further suggests that during the culture process for producing this beverage, not only was the presence of bioactive compounds produced by kefir microflora present, but biochemical alterations during fermentation of bioactive components derived from apple pomace also seemed to have taken place, contributing to the higher bio-functionality observed in the apple pomace-water kefir-based beverage, even when compared to the unfermented apple pomace. The overall findings support further studies on the use of water kefir and/or apple pomace as viable sources of antioxidant, anti-inflammatory, and antithrombotic amphiphilic bioactive compounds for the production of novel health-promoting bio-functional fermented products.
Collapse
Affiliation(s)
- Dimitra Papadopoulou
- Hephaestus, Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, St Lukas, 65404 Kavala, Greece; (D.P.); (V.C.); (A.R.); (C.P.); (A.O.)
| | - Vasiliki Chrysikopoulou
- Hephaestus, Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, St Lukas, 65404 Kavala, Greece; (D.P.); (V.C.); (A.R.); (C.P.); (A.O.)
| | - Aikaterini Rampaouni
- Hephaestus, Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, St Lukas, 65404 Kavala, Greece; (D.P.); (V.C.); (A.R.); (C.P.); (A.O.)
| | - Christos Plakidis
- Hephaestus, Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, St Lukas, 65404 Kavala, Greece; (D.P.); (V.C.); (A.R.); (C.P.); (A.O.)
| | - Anna Ofrydopoulou
- Hephaestus, Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, St Lukas, 65404 Kavala, Greece; (D.P.); (V.C.); (A.R.); (C.P.); (A.O.)
| | - Katie Shiels
- Centre for Applied Bioscience Research, Technological University of the Shannon: Midlands Midwest, Moylish Park, V94 E8YF Limerick, Ireland; (K.S.); (S.K.S.)
| | - Sushanta Kumar Saha
- Centre for Applied Bioscience Research, Technological University of the Shannon: Midlands Midwest, Moylish Park, V94 E8YF Limerick, Ireland; (K.S.); (S.K.S.)
| | - Alexandros Tsoupras
- Hephaestus, Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, St Lukas, 65404 Kavala, Greece; (D.P.); (V.C.); (A.R.); (C.P.); (A.O.)
| |
Collapse
|
7
|
Papadopoulou D, Chrysikopoulou V, Rampaouni A, Tsoupras A. Antioxidant and anti-inflammatory properties of water kefir microbiota and its bioactive metabolites for health promoting bio-functional products and applications. AIMS Microbiol 2024; 10:756-811. [PMID: 39628717 PMCID: PMC11609422 DOI: 10.3934/microbiol.2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
Inflammation and oxidative stress are implicated in several chronic disorders, while healthy foods and especially fermented beverages and those containing probiotics can provide anti-inflammatory and antioxidant protection against such manifestations and the associated disorders. Water kefir is such a beverage that is rich in both probiotic microbiota and anti-inflammatory bioactives, with an increasing demand as an alternative to a fermented product based on non-dairy matrix with potential health properties. Within this study, the health-promoting properties of the most representative species and strains of microorganisms present in water kefir grains, as well as the health benefits attributed to the bioactive metabolites produced by each individual strain in a series of their cultures, were thoroughly reviewed. Emphasis was given to the antioxidant, antithrombotic, and anti-inflammatory bio-functionalities of both the cultured microorganisms and the bioactive metabolites produced in each case. Moreover, an extensive presentation of the antioxidant and anti-inflammatory health benefits observed from the overall water kefir cultures and classic water kefir beverages obtained were also conducted. Finally, the use of water kefir for the production of several other bio-functional products, including fermented functional foods, supplements, nutraceuticals, nutricosmetics, cosmeceuticals, and cosmetic applications with anti-inflammatory and antioxidant health promoting potential was also thoroughly discussed. Limitations and future perspectives on the use of water kefir, its microorganisms, and their bioactive metabolites are also outlined.
Collapse
Affiliation(s)
| | | | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404, Kavala, Greece
| |
Collapse
|
8
|
Anchundia M, León-Revelo G, Santacruz S, Torres F. Polyphasic identification of Rhizopus oryzae and evaluation of physical fermentation parameters in potato starch processing liquid waste for β-glucan production. Sci Rep 2024; 14:14913. [PMID: 38942961 PMCID: PMC11213850 DOI: 10.1038/s41598-024-66000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Β-glucans are polysaccharide macromolecules that can be found in the cell walls of molds, such as Rhizopus oryzae. They provide functional properties in food systems and have immunomodulatory activity, anticancer, and prebiotic effects; reduce triglycerides and cholesterol; and prevent obesity, among others benefits. Furthermore, potato starch production requires a large amount of water, which is usually discharged into the environment, creating problems in soils and bodies of water. The physical parameters to produce β-glucans were determined, liquid waste from potato starch processing was used and native Rhizopus oryzae was isolated and identified from cereal grains. The isolates grew quickly on the three types of agars used at 25 °C and 37 °C, and they did not grow at 45 °C. Rhizopus oryzae M10A1 produced the greatest amount of β-glucans after six days of culture at 30 °C, pH 6, a stirring rate of 150 rpm and a fermentation volume of 250 mL. By establishing the physical fermentation parameters and utilizing the liquid waste from potato starch, Rhizopus oryzae M10A1 yielded 397.50 mg/100 g of β-glucan was obtained.
Collapse
Affiliation(s)
- Miguel Anchundia
- School of Food Engineering, Universidad Politécnica Estatal del Carchi, 040101, Tulcán, Ecuador.
- Faculty of Sciences, Universidad de la República, 11200, Montevideo, Uruguay.
| | - Gualberto León-Revelo
- School of Food Engineering, Universidad Politécnica Estatal del Carchi, 040101, Tulcán, Ecuador
| | - Stalin Santacruz
- School of Agroindustrial Engineering, Universidad Laica Eloy Alfaro de Manabí, 130222, Manta, Ecuador
| | - Freddy Torres
- School of Food Engineering, Universidad Politécnica Estatal del Carchi, 040101, Tulcán, Ecuador
| |
Collapse
|
9
|
Ndochinwa GO, Wang QY, Okoro NO, Amadi OC, Nwagu TN, Nnamchi CI, Moneke AN, Odiba AS. New advances in protein engineering for industrial applications: Key takeaways. Open Life Sci 2024; 19:20220856. [PMID: 38911927 PMCID: PMC11193397 DOI: 10.1515/biol-2022-0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 06/25/2024] Open
Abstract
Recent advancements in protein/enzyme engineering have enabled the production of a diverse array of high-value compounds in microbial systems with the potential for industrial applications. The goal of this review is to articulate some of the most recent protein engineering advances in bacteria, yeast, and other microbial systems to produce valuable substances. These high-value substances include α-farnesene, vitamin B12, fumaric acid, linalool, glucaric acid, carminic acid, mycosporine-like amino acids, patchoulol, orcinol glucoside, d-lactic acid, keratinase, α-glucanotransferases, β-glucosidase, seleno-methylselenocysteine, fatty acids, high-efficiency β-glucosidase enzymes, cellulase, β-carotene, physcion, and glucoamylase. Additionally, recent advances in enzyme engineering for enhancing thermostability will be discussed. These findings have the potential to revolutionize various industries, including biotechnology, food, pharmaceuticals, and biofuels.
Collapse
Affiliation(s)
- Giles Obinna Ndochinwa
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
- State Key Laboratory of Biomass Enzyme Technology, Guangxi Academy of Sciences, Nanning, Nanning, 530007, China
| | - Qing-Yan Wang
- State Key Laboratory of Biomass Enzyme Technology, Guangxi Academy of Sciences, Nanning, Nanning, 530007, China
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Nanning, 530007, China
| | - Nkwachukwu Oziamara Okoro
- Department of Pharmaceutical and medicinal chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Oyetugo Chioma Amadi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Tochukwu Nwamaka Nwagu
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Chukwudi Innocent Nnamchi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Anene Nwabu Moneke
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, 410001, Nigeria
| | - Arome Solomon Odiba
- Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| |
Collapse
|
10
|
Yoo Y, Oh H, Yoon Y. Isolation of Debaryomyces hansenii and selection of an optimal strain to improve the quality of low-grade beef rump (middle gluteal) during dry aging. Anim Biosci 2023; 36:1426-1434. [PMID: 37170499 PMCID: PMC10472159 DOI: 10.5713/ab.22.0475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/12/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the effect of Debaryomyces hansenii isolated from dry-aged beef on the tenderness and flavor attributes of low-grade beef during dry aging. METHODS Five D. hansenii strains were isolated from dry-aged beef samples. The rump of low-grade beef was inoculated with individual D. hansenii isolates and subjected to dry aging for 4 weeks at 5°C and 75% relative humidity. Microbial contamination levels, meat quality attributes, and flavor attributes in the dry-aged beef were measured. RESULTS Of the five isolates, the shear force of dry-aged beef inoculated with SMFM201812-3 and SMFM201905-5 was lower than that of control samples. Meanwhile, all five isolates increased the total free amino acid, glutamic acid, serine, glycine, alanine, and leucine contents in dry-aged beef. In particular, the total fatty acid, palmitic acid, and oleic acid contents in samples inoculated with D. hansenii SMFM201905-5 were higher than those in control samples. CONCLUSION These results indicate that D. hansenii SMFM201905-5 might be used to improve the quality of beef during dry aging.
Collapse
Affiliation(s)
- Yoonjeong Yoo
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Hyemin Oh
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310,
Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310,
Korea
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310,
Korea
| |
Collapse
|
11
|
Kot AM, Błażejak S, Nosek K, Synowiec A, Chlebowska-Śmigiel A, Pobiega K. Magnesium Binding by Cyberlindnera jadinii Yeast in Media from Potato Wastewater and Glycerol. Microorganisms 2023; 11:1923. [PMID: 37630483 PMCID: PMC10459593 DOI: 10.3390/microorganisms11081923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to determine the magnesium-binding capacity of Cyberlindnera jadinii yeast in media prepared from potato wastewater and glycerol (after biodiesel production), supplemented with magnesium salt. The research was carried out in two stages. In the first, the ability to binding magnesium by yeast in media supplemented with various doses of this element was tested. In the second stage, after selecting the appropriate dose of magnesium, the culture was carried out in a bioreactor. The composition of the yeast biomass was also analysed in terms of lipids and protein content and amino acid composition. Studies have shown that this type of medium can be used as a culture medium for the growth of C. jadinii yeast. In the first stage of the study, the most magnesium (8.97 mg/gd.m.) was bound by yeast cells after 48 h of cultivation in a medium supplemented with the addition of magnesium at a dose of 2 g/L. In the second stage of the research, the highest magnesium content in the biomass (7.9 mg/gd.m.) was noted after 24 h of cultivation in the same medium. The lipid and protein contents in the biomass obtained after 24 h of cultivation in the bioreactor were 6.35 and 43.73%, respectively. The main fatty acids present in the yeast lipids were oleic acid (59.4%) and linoleic acid (8.6%). Analysis of the amino acid profile of the proteins showed the highest proportions were glutamic acid (13.7%) and aspartic acid (11%).
Collapse
Affiliation(s)
- Anna M. Kot
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159C, 02-776 Warsaw, Poland; (S.B.); (K.N.); (A.S.); (A.C.-Ś.); (K.P.)
| | | | | | | | | | | |
Collapse
|
12
|
Molecular Identification and Biochemical Characterization of Novel Marine Yeast Strains with Potential Application in Industrial Biotechnology. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cell-based agriculture is an emerging and attractive alternative to produce various food ingredients. In this study, five strains of marine yeast were isolated, molecularly identified and biochemically characterized. Molecular identification was realized by sequencing the DNA ITS1 and D1/D2 region, and sequences were registered in GenBank as Yarrowia lipolytica YlTun15, Rhodotorula mucilaginosa RmTun15, Candida tenuis CtTun15, Debaryomyces hansenii DhTun2015 and Trichosporon asahii TaTun15. Yeasts showed protein content varying from 26% (YlTun15) to 40% (CtTun15 and DhTun2015), and essential amino acids ranging from 38.1 to 64.4% of the total AAs (CtTun15-YlTun15, respectively). Lipid content varied from 11.15 to 37.57% with substantial amount of PUFA (>12% in RmTun15). All species had low levels of Na (<0.15 mg/100 g) but are a good source of Ca and K. Yeast cytotoxic effect was investigated against human embryonic kidney cells (HEK 293); results showed improved cell viability with all added strains, indicating safety of the strains used. Based on thorough literature investigation and yeast composition, the five identified strains could be classified not only as oleaginous yeasts but also as single cell protein (SCP) (DhTun2015 and CtTun15) and single cell oil (SCO) (RmTun15, YlTun15 and TaTun15) producers; and therefore, they represent a source of alternative ingredients for food, feed and other sectors.
Collapse
|
13
|
Yadav AK, Kuila A, Garlapati VK. Biodiesel Production from Brassica juncea Using Oleaginous Yeast. Appl Biochem Biotechnol 2022; 194:4066-4080. [PMID: 35593952 DOI: 10.1007/s12010-022-03974-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2022]
Abstract
The present study explores the potential of Brassica juncea as a low-cost substrate for biodiesel production through the growth of oleaginous yeast. Firstly, the selected lignocellulosic biomass, i.e., Brassica juncea, was thermochemically pretreated using dilute sodium hydroxide. Optimization of thermochemical pretreatment resulted in significant removal of lignin and hemicellulose with 8.4% increase in cellulose content. Further, the sugar hydrolysate of pretreated biomass was used as a substrate for the growth of selected oleaginous yeast (Cryptococcus sp. MTCC 5455). Lipid and biomass production was optimized using central composite design (CCD) based on response surface methodology (RSM). Maximum biomass and lipid content of 32.50 g/L and 11.05 g/L, respectively, was obtained at 30 °C temperature, pH 6.0, and after 5 days of incubation. The oleaginous yeast lipid was further transesterified using immobilized lipase. The highest fatty acid methyl ester 15% FAME yield was obtained after 10 h of enzymatic reaction. Next, the results of specific gravity, viscosity, flash points, and cloud point of obtained biodiesels were conformed to the ASTM D975 standard. Overall, the present study put forth the cost-effective approach for lignocellulosic biomass-based oleaginous lipid production toward the green synthesis of biodiesel.
Collapse
Affiliation(s)
- Ashok Kumar Yadav
- Department of Chemical Engineering, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304022, India.
| | - Vijay Kumar Garlapati
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Himachal Pradesh, India, 173234.
| |
Collapse
|
14
|
Segal-Kischinevzky C, Romero-Aguilar L, Alcaraz LD, López-Ortiz G, Martínez-Castillo B, Torres-Ramírez N, Sandoval G, González J. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications. Microorganisms 2022; 10:794. [PMID: 35456844 PMCID: PMC9028089 DOI: 10.3390/microorganisms10040794] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.
Collapse
Affiliation(s)
- Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Blanca Martínez-Castillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados (LIBBA), Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico;
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| |
Collapse
|
15
|
New eco-friendly trends to produce biofuel and bioenergy from microorganisms: An updated review. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
16
|
Abeln F, Chuck CJ. The history, state of the art and future prospects for oleaginous yeast research. Microb Cell Fact 2021; 20:221. [PMID: 34876155 PMCID: PMC8650507 DOI: 10.1186/s12934-021-01712-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.
Collapse
Affiliation(s)
- Felix Abeln
- Department of Chemical Engineering, University of Bath, Bath, BA2 7AY, UK.
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | |
Collapse
|
17
|
Al-Tohamy R, Sun J, Khalil MA, Kornaros M, Ali SS. Wood-feeding termite gut symbionts as an obscure yet promising source of novel manganese peroxidase-producing oleaginous yeasts intended for azo dye decolorization and biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:229. [PMID: 34863263 PMCID: PMC8645103 DOI: 10.1186/s13068-021-02080-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/18/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The ability of oxidative enzyme-producing micro-organisms to efficiently valorize organic pollutants is critical in this context. Yeasts are promising enzyme producers with potential applications in waste management, while lipid accumulation offers significant bioenergy production opportunities. The aim of this study was to explore manganese peroxidase-producing oleaginous yeasts inhabiting the guts of wood-feeding termites for azo dye decolorization, tolerating lignocellulose degradation inhibitors, and biodiesel production. RESULTS Out of 38 yeast isolates screened from wood-feeding termite gut symbionts, nine isolates exhibited high levels of extracellular manganese peroxidase (MnP) activity ranged between 23 and 27 U/mL after 5 days of incubation in an optimal substrate. Of these MnP-producing yeasts, four strains had lipid accumulation greater than 20% (oleaginous nature), with Meyerozyma caribbica SSA1654 having the highest lipid content (47.25%, w/w). In terms of tolerance to lignocellulose degradation inhibitors, the four MnP-producing oleaginous yeast strains could grow in the presence of furfural, 5-hydroxymethyl furfural, acetic acid, vanillin, and formic acid in the tested range. M. caribbica SSA1654 showed the highest tolerance to furfural (1.0 g/L), 5-hydroxymethyl furfural (2.5 g/L) and vanillin (2.0 g/L). Furthermore, M. caribbica SSA1654 could grow in the presence of 2.5 g/L acetic acid but grew moderately. Furfural and formic acid had a significant inhibitory effect on lipid accumulation by M. caribbica SSA1654, compared to the other lignocellulose degradation inhibitors tested. On the other hand, a new MnP-producing oleaginous yeast consortium designated as NYC-1 was constructed. This consortium demonstrated effective decolorization of all individual azo dyes tested within 24 h, up to a dye concentration of 250 mg/L. The NYC-1 consortium's decolorization performance against Acid Orange 7 (AO7) was investigated under the influence of several parameters, such as temperature, pH, salt concentration, and co-substrates (e.g., carbon, nitrogen, or agricultural wastes). The main physicochemical properties of biodiesel produced by AO7-degraded NYC-1 consortium were estimated and the results were compared to those obtained from international standards. CONCLUSION The findings of this study open up a new avenue for using peroxidase-producing oleaginous yeasts inhabiting wood-feeding termite gut symbionts, which hold great promise for the remediation of recalcitrant azo dye wastewater and lignocellulosic biomass for biofuel production.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
| | - Maha A Khalil
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, 1 Karatheodori Str, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
18
|
Martins JA, Lopes da Silva T, Marques S, Carvalheiro F, Roseiro LB, Duarte LC, Gírio F. The use of flow cytometry to assess Rhodosporidium toruloides NCYC 921 performance for lipid production using Miscanthus sp. hydrolysates. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00639. [PMID: 34141603 PMCID: PMC8187963 DOI: 10.1016/j.btre.2021.e00639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
The yeast Rhodosporidium toruloides NCYC 921 was used for lipid production, using Miscanthus biomass hydrolysate as carbon source. The hydrolysate was obtained by enzymatic hydrolysis of Miscanthus biomass (at high solids loading) previously subjected to a hydrothermal pre-treatment. Afterwards R. toruloides was grown on Miscanthus sp. hydrolysate (MH), undiluted and diluted, at the ratios of 1:4 (20 % v/v), 1:2 (33.3 % v/v) and 3:1 (75 % v/v). The best yeast performance was observed for MH 1:2 medium dilution, reaching the maximal biomass concentration of 6.3 g/L, the lipid content of 30.67 % w/w dry cell weight and the lipid concentration of 1.64 g/L. Flow cytometry demonstrated that R. toruloides cell membrane was massively damaged when the yeast was grown on undiluted MH, due to the presence of phenolic compounds; however, when the yeast was grown on diluted MH 1:2 and 1:4, the proportion of intact cells has increased during the yeast cultivation.
Collapse
Affiliation(s)
- Joana Alves Martins
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal
| | - Teresa Lopes da Silva
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal
| | - Susana Marques
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal
| | - Florbela Carvalheiro
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal
| | - Luísa B. Roseiro
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal
| | - Luís C. Duarte
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal
| | - Francisco Gírio
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar 22, 1649-038, Lisboa, Portugal
| |
Collapse
|
19
|
Physiological performance of Kazachstania unispora in sourdough environments. World J Microbiol Biotechnol 2021; 37:88. [PMID: 33881636 PMCID: PMC8060213 DOI: 10.1007/s11274-021-03027-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/02/2021] [Indexed: 10/31/2022]
Abstract
In this work we explored the potential of several strains of Kazachstania unispora to be used as non-conventional yeasts in sourdough fermentation. Properties such as carbohydrate source utilization, tolerance to different environmental factors and the performance in fermentation were evaluated. The K. unispora strains are characterized by rather restricted substrate utilization: only glucose and fructose supported the growth of the strains. However, the growth in presence of fructose was higher compared to a Saccharomyces cerevisiae commercial strain. Moreover, the inability to ferment maltose can be considered a positive characteristic in sourdoughs, where the yeasts can form a nutritional mutualism with maltose-positive Lactic Acid Bacteria. Tolerance assays showed that K. unispora strains are adapted to a sourdough environment: they were able to grow in conditions of high osmolarity, high acidity and in presence of organic acids, ethanol and salt. Finally, the performance in fermentation was comparable with the S. cerevisiae commercial strain. Moreover, the growth was more efficient, which is an advantage in obtaining the biomass in an industrial scale. Our data show that K. unispora strains have positive properties that should be explored further in bakery sector.
Collapse
|
20
|
Deka D, Sonowal S, Chikkaputtaiah C, Velmurugan N. Symbiotic Associations: Key Factors That Determine Physiology and Lipid Accumulation in Oleaginous Microorganisms. Front Microbiol 2020; 11:555312. [PMID: 33391195 PMCID: PMC7772188 DOI: 10.3389/fmicb.2020.555312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/16/2020] [Indexed: 01/14/2023] Open
Abstract
Symbiosis naturally provides an opportunity for microorganisms to live together by mutual or one-way benefit. In symbiotic relationships, the microorganisms usually overcome the limitations of being free-living. Understanding the symbiotic relationships of oleaginous microorganisms provides potential route for the sustainable production of microbial-based alternative fuels. So far, several studies have been conducted in oleaginous microorganisms for the production of alternative fuels. However, some oleaginous microorganisms require high quantity of nutrients for their growth, and high level of energy and chemicals for harvest and separation of lipid bodies. Symbiotic associations can successfully be applied to address these issues. Of symbiotic associations, lichens and selective species of oleaginous endosymbiotic mucoromycotina have received substantial interest as better models to study the evolutionary relationships as well as single-cell oil production. Construction of artificial lichen system composed of cyanobacteria and oleaginous yeast has been achieved for sustainable production of lipids with minimum energy demand. Recently, endosymbiotic mucoromycotina species have been recognized as potential sources for biofuels. Studies found that endohyphal bacterium influences lipid profiling in endosymbiotic mucoromycotina species. Studies on the genetic factors related to oleaginous characteristics of endosymbiotic mucoromycotina species are scarce. In this regard, this review summarizes the different forms of symbiotic associations of oleaginous microorganisms and how symbiotic relationships are impacting the lipid formation in microorganisms. Further, the review also highlights the importance of evolutionary relationships and benefits of co-culturing (artificial symbiosis) approaches for sustainable production of biofuels.
Collapse
Affiliation(s)
- Deepi Deka
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-North East Institute of Science and Technology, Naharlagun, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, India
| | - Shashanka Sonowal
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-North East Institute of Science and Technology, Naharlagun, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, India
| | - Channakeshavaiah Chikkaputtaiah
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, India
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, India
| | - Natarajan Velmurugan
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-North East Institute of Science and Technology, Naharlagun, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, India
| |
Collapse
|
21
|
Antimanon S, Anantayanon J, Wannawilai S, Khongto B, Laoteng K. Physiological Traits of Dihomo-γ-Linolenic Acid Production of the Engineered Aspergillus oryzae by Comparing Mathematical Models. Front Microbiol 2020; 11:546230. [PMID: 33224108 PMCID: PMC7674286 DOI: 10.3389/fmicb.2020.546230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Dihomo-γ-linolenic acid (DGLA; C20:3 n-6) is expected to dominate the functional ingredients market for its role in anti-inflammation and anti-proliferation. The DGLA production by the engineered strain of Aspergillus oryzae with overexpressing Pythium Δ6-desaturase and Δ6-elongase genes was investigated by manipulating the nutrient and fermentation regimes. Of the nitrogen sources tested, the maximum biomass and DGLA titers were obtained in the cultures using NaNO3 grown at pH 6.0. For establishing economically feasible process of DGLA production, the cost-effective medium was developed by using cassava starch hydrolysate (CSH) and NaNO3 as carbon and nitrogen sources, respectively. The supplementation with 1% (v/v) mother liquor (ML) into the CSH medium promoted the specific yield of DGLA production (Y DGLA / X ) comparable with the culture grown in the defined NaNO3 medium, and the DGLA proportion was over 22% in total fatty acid (TFA). Besides, the GLA was also generated at a similar proportion (about 25% in TFA). The mathematical models of the cultures grown in the defined NaNO3 and CSH/ML media were generated, describing that the lipid and DGLA were growth-associated metabolites corresponding to the relevant kinetic parameters of fermentations. The controlled mode of submerged fermentation of the engineered strain was explored for governing the PUFA biosynthesis and lipid-accumulating process in relation to the biomass production. This study provides an informative perspective in the n-6 fatty acid production through physiological manipulation, thus leading to a prospect in viable production of the DGLA-enriched oil by the engineered strain.
Collapse
Affiliation(s)
| | | | | | | | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| |
Collapse
|
22
|
Kot AM, Pobiega K, Piwowarek K, Kieliszek M, Błażejak S, Gniewosz M, Lipińska E. Biotechnological Methods of Management and Utilization of Potato Industry Waste—a Review. POTATO RESEARCH 2020; 63:431-447. [DOI: 10.1007/s11540-019-09449-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 12/20/2019] [Indexed: 05/14/2025]
|
23
|
Oleaginous yeasts isolated from traditional fermented foods and beverages of Manipur and Mizoram, India, as a potent source of microbial lipids for biodiesel production. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01562-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
24
|
Farag MA, Jomaa SA, Abd El-Wahed A, R. El-Seedi H. The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety. Nutrients 2020; 12:E346. [PMID: 32013044 PMCID: PMC7071183 DOI: 10.3390/nu12020346] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/23/2022] Open
Abstract
Kefir is a dairy product that can be prepared from different milk types, such as goat, buffalo, sheep, camel, or cow via microbial fermentation (inoculating milk with kefir grains). As such, kefir contains various bacteria and yeasts which influence its chemical and sensory characteristics. A mixture of two kinds of milk promotes kefir sensory and rheological properties aside from improving its nutritional value. Additives such as inulin can also enrich kefir's health qualities and organoleptic characters. Several metabolic products are generated during kefir production and account for its distinct flavour and aroma: Lactic acid, ethanol, carbon dioxide, and aroma compounds such as acetoin and acetaldehyde. During the storage process, microbiological, physicochemical, and sensory characteristics of kefir can further undergo changes, some of which improve its shelf life. Kefir exhibits many health benefits owing to its antimicrobial, anticancer, gastrointestinal tract effects, gut microbiota modulation and anti-diabetic effects. The current review presents the state of the art relating to the role of probiotics, prebiotics, additives, and different manufacturing practices in the context of kefir's physicochemical, sensory, and chemical properties. A review of kefir's many nutritional and health benefits, underlying chemistry and limitations for usage is presented.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo 11562, Egypt
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Suzan A. Jomaa
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Aida Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina 42541, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Papadaki A, Kopsahelis N, Mallouchos A, Mandala I, Koutinas AA. Bioprocess development for the production of novel oleogels from soybean and microbial oils. Food Res Int 2019; 126:108684. [PMID: 31732046 DOI: 10.1016/j.foodres.2019.108684] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022]
Abstract
This study presents the production of novel oleogels via circular valorisation of food industry side streams. Sugarcane molasses and soybean processing side streams (i.e. soybean cake) were employed as fermentation feedstocks for the production of microbial oil. Fed-batch bioreactor fermentations carried out by the oleaginous yeast Rhodosporidium toruloides led to the production of 36.9 g/L total dry weight with an intracellular oil content of 49.8% (w/w) and 89.4 μg/g carotenoids. The carotenoid-rich microbial oil and soybean oil were evaluated as base oils for the production of wax-based oleogels. The wax esters, used as oleogelators, were produced via enzymatic catalysis, using microbial oil or soybean fatty acid distillate as raw materials. All oleogels presented a gel-like behaviour (G' > G″). However, the highest G' was determined for the oleogel produced from soybean oil and microbial oil-wax esters, which indicated a stronger network. Thermal analysis showed that this oleogel had a melting temperature profile up to 35 °C, which is favorable for applications in the confectionery industry. Also, texture analysis demonstrated that soybean oil-microbial oil wax oleogel was stable (1.9-2.2 N) within 30-days storage period. This study showed the potential of novel oleogels production through the development of bioprocesses based on the valorisation of various renewable resources.
Collapse
Affiliation(s)
- Aikaterini Papadaki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli 28100, Kefalonia, Greece
| | - Athanasios Mallouchos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Ioanna Mandala
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece.
| |
Collapse
|
26
|
Thomas S, Sanya DRA, Fouchard F, Nguyen HV, Kunze G, Neuvéglise C, Crutz-Le Coq AM. Blastobotrys adeninivorans and B. raffinosifermentans, two sibling yeast species which accumulate lipids at elevated temperatures and from diverse sugars. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:154. [PMID: 31249618 PMCID: PMC6587252 DOI: 10.1186/s13068-019-1492-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/09/2019] [Indexed: 06/08/2023]
Abstract
BACKGROUND In the context of sustainable development, yeast are one class of microorganisms foreseen for the production of oil from diverse renewable feedstocks, in particular those that do not compete with the food supply. However, their use in bulk production, such as for the production of biodiesel, is still not cost effective, partly due to the possible poor use of desired substrates or poor robustness in the practical bioconversion process. We investigated the natural capacity of Blastobotrys adeninivorans, a yeast already used in biotechnology, to store lipids under different conditions. RESULTS The genotyping of seven strains showed the species to actually be composed of two different groups, one that (including the well-known strain LS3) could be reassigned to Blastobotrys raffinosifermentans. We showed that, under nitrogen limitation, strains of both species can synthesize lipids to over 20% of their dry-cell weight during shake-flask cultivation in glucose or xylose medium for 96 h. In addition, organic acids were excreted into the medium. LS3, our best lipid-producing strain, could also accumulate lipids from exogenous oleic acid, up to 38.1 ± 1.6% of its dry-cell weight, and synthesize lipids from various sugar substrates, up to 36.6 ± 0.5% when growing in cellobiose. Both species, represented by LS3 and CBS 8244T, could grow with little filamentation in the lipogenic medium from 28 to 45 °C and reached lipid titers ranging from 1.76 ± 0.28 to 3.08 ± 0.49 g/L in flasks. Under these conditions, the maximum bioconversion yield (Y FA/S = 0.093 ± 0.017) was obtained with LS3 at 37 °C. The presence of genes for predicted subunits of an ATP citrate lyase in the genome of LS3 reinforces its oleaginous character. CONCLUSIONS Blastobotrys adeninivorans and B. raffinosifermentans, which are known to be xerotolerant and genetically-tractable, are promising biotechnological yeasts of the Saccharomycotina that could be further developed through genetic engineering for the production of microbial oil. To our knowledge, this is the first report of efficient lipid storage in yeast when cultivated at a temperature above 40 °C. This paves the way to help reducing costs through consolidated bioprocessing.
Collapse
Affiliation(s)
- Stéphane Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Daniel R. A. Sanya
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Florian Fouchard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Correnstr. 3, 06466 Gatersleben, Germany
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Anne-Marie Crutz-Le Coq
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
27
|
Kot AM, Błażejak S, Kieliszek M, Gientka I, Bryś J. Simultaneous Production of Lipids and Carotenoids by the Red Yeast Rhodotorula from Waste Glycerol Fraction and Potato Wastewater. Appl Biochem Biotechnol 2019; 189:589-607. [PMID: 31073981 PMCID: PMC6754821 DOI: 10.1007/s12010-019-03023-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/22/2019] [Indexed: 02/04/2023]
Abstract
Abstract The objective of this study was to determine the possibility of simultaneous biosynthesis of lipids and carotenoids by the Rhodotorula yeast strains in media with waste glycerol and deproteinized potato wastewater and to determine the level of pollution reduction by media. On the basis of results obtained during the yeast microcultures in the Bioscreen C system, it was found that potato wastewater and glycerol can be used as components of media for Rhodotorula glutinis, Rhodotorula mucilaginosa, and Rhodotorula gracilis yeast strains. The amount of glycerol added to media higher than 10% significantly decreased the growth rate of yeast. The results of yeast culture in the laboratory shaker flasks showed a possibility of simultaneous production of lipids and carotenoids by R. glutinis, R. mucilaginosa, and R. gracilis yeast strains during cultivation in media containing only waste glycerol and deproteinized potato wastewater. A higher intracellular lipid content (approximately 15 g/100 gd.w.) was obtained for R. mucilaginosa and R. gracilis yeast biomass after cultivation in experimental media with waste glycerol and potato wastewater. In conclusion, the yeast grown in media with potato wastewater supplemented with 3% or 5% glycerol synthesized carotenoids, and their content in biomass did not exceed 230 μg/gd.w.
Collapse
Affiliation(s)
- Anna M Kot
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, ul. Nowoursynowska 159C, 02-776, Warszawa, Poland.
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, ul. Nowoursynowska 159C, 02-776, Warszawa, Poland
| | - Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, ul. Nowoursynowska 159C, 02-776, Warszawa, Poland
| | - Iwona Gientka
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences, ul. Nowoursynowska 159C, 02-776, Warszawa, Poland
| | - Joanna Bryś
- Department of Chemistry, Faculty of Food Sciences, Warsaw University of Life Sciences, ul. Nowoursynowska 159C, 02-776, Warszawa, Poland
| |
Collapse
|
28
|
Gientka I, Duda M, Bzducha-Wróbel A, Błażejak S. Deproteinated potato wastewater as a low-cost nitrogen substrate for very high yeast biomass quantities: starting point for scaled-up applications. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03231-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Kieliszek M, Błażejak S, Piwowarek K, Brzezicka K. Equilibrium modeling of selenium binding from aqueous solutions by Candida utilis ATCC 9950 yeasts. 3 Biotech 2018; 8:388. [PMID: 30175025 PMCID: PMC6111034 DOI: 10.1007/s13205-018-1415-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/21/2018] [Indexed: 11/26/2022] Open
Abstract
The study investigated the effectiveness of selenium binding from its salt solution by Candida utilis ATCC 9950 yeast biomass cultured on a medium prepared from the agro-food industry wastes, containing an available source of carbon and nitrogen. Selenium binding by C. utilis yeast strain after 48 h of culturing at 28 °C from aqueous solutions with the addition of 30 mg Se/L reached a value of 2.28 mg Se/g of yeast biomass. The kinetics of selenium binding by the yeasts showed a better fit for the pseudo-second-order kinetic model compared to the pseudo-first-order one. Accumulation stability data were analyzed using the Freundlich and Langmuir isotherm models. The presence of competing anions such as SO 4 2 - , and HPO 4 2 - at a concentration of 0.5 mM resulted in about 35% reduction of selenium binding by the examined C. utilis strain. FTIR analysis showed that sulfur compounds were involved in selenium biosorption by the yeast. Compounds containing ammonium groups appeared to be very important for selenium binding. The results of the study demonstrated that the yeast can be used to effectively bind selenium from aqueous solution. At the same time, it gives the opportunity to obtain a biomass rich in this deficient element, which can also be used in dietary supplement production.
Collapse
Affiliation(s)
- Marek Kieliszek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Stanisław Błażejak
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Kamil Piwowarek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Katarzyna Brzezicka
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences−SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| |
Collapse
|