1
|
Pietramala K, Greco A, Garoli A, Roblin D. Effects of Extremely Low-Frequency Electromagnetic Field Treatment on ASD Symptoms in Children: A Pilot Study. Brain Sci 2024; 14:1293. [PMID: 39766492 PMCID: PMC11675033 DOI: 10.3390/brainsci14121293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Autism Spectrum Disorder (ASD) are neurodevelopmental disorders marked by challenges in social interaction, communication, and repetitive behaviors. People with ASD may exhibit repetitive behaviors, unique ways of learning, and different ways of interacting with the world. The term "spectrum" reflects the wide variability in how ASD manifests in individuals, including differences in abilities, symptoms, and support needs, and conditions characterized by difficulties in social interactions, communication, restricted interests, and repetitive behaviors. Inflammation plays a crucial role in the pathophysiology, with increased pro-inflammatory cytokines in cerebrospinal fluid. Previous studies with transcranial magnetic stimulation have shown promising results, suggesting nervous system susceptibility to electromagnetic fields, with evidence indicating that extremely low-frequency electromagnetic field (ELF-EMF) treatment may modulate inflammatory responses through multiple pathways, including the reduction of pro-inflammatory cytokines like IL-6 and TNF-α, and the enhancement of anti-inflammatory mediators. METHODS This pilot study included 20 children (ages 2-13) with a confirmed diagnosis of ASD. A 15-week protocol involved ELF-EMF treatments using the SEQEX device, with specific day and night programs. Assessment was conducted through standardized pre- and post-treatment tests: Achenbach Child Behavior Checklist, Peabody Picture Vocabulary Test-4, Expressive One Word Picture Vocabulary Test-4, and Conner's 3GI. RESULTS Statistically significant improvements were observed in receptive language (PPVT-4: from 74.07 to 90.40, p = 0.002) and expressive language (EOWPVT-4: from 84.17 to 90.50, p = 0.041). Notable reductions, with statistical significance, were found in externalizing problems across both age groups (1.5-5 years: p = 0.028; 6-18 years: p = 0.027), with particular improvement in attention and behavioral problems. The results were observed over a short period of 15 weeks, therefore excluding the possibility of coincidental age-related gains, that would typically occur during a normal developmental timeframe. Parent evaluations showed significant reduction in ASD symptoms, particularly in the 1.5-5 years group (p = 0.046). CONCLUSIONS ELF-EMF treatment demonstrated a high safety profile and efficacy in mitigating ASD-related symptoms. The observed improvements suggest both direct effects on central and autonomic nervous systems and indirect effects through inflammatory response modulation. Further studies are needed to confirm these promising results through broader demographics and randomized control designs.
Collapse
Affiliation(s)
- Kierra Pietramala
- Leaps and Bounds Exceptional Services ABA (Applied Behaviour Analysis) Program, Leaps and Bounds Clinic, 13045 Jane Street, King City, ON L7B 1A3, Canada; (K.P.)
| | - Alessandro Greco
- APSP (Public Agency for Personal Health Services) “Santa Maria”, 38023 Cles, Italy
| | - Alberto Garoli
- Departement of Morphology, Surgery and Sperimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Danielle Roblin
- Leaps and Bounds Exceptional Services ABA (Applied Behaviour Analysis) Program, Leaps and Bounds Clinic, 13045 Jane Street, King City, ON L7B 1A3, Canada; (K.P.)
| |
Collapse
|
2
|
Abtin S, Seyedaghamiri F, Aalidaeijavadi Z, Farrokhi AM, Moshrefi F, Ziveh T, Zibaii MI, Aliakbarian H, Rezaei-Tavirani M, Haghparast A. A review on the consequences of molecular and genomic alterations following exposure to electromagnetic fields: Remodeling of neuronal network and cognitive changes. Brain Res Bull 2024; 217:111090. [PMID: 39349259 DOI: 10.1016/j.brainresbull.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
The use of electromagnetic fields (EMFs) is essential in daily life. Since 1970, concerns have grown about potential health hazards from EMF. Exposure to EMF can stimulate nerves and affect the central nervous system, leading to neurological and cognitive changes. However, current research results are often vague and contradictory. These effects include changes in memory and learning through changes in neuronal plasticity in the hippocampus, synapses and hippocampal neuritis, and changes in metabolism and neurotransmitter levels. Prenatal exposure to EMFs has negative effects on memory and learning, as well as changes in hippocampal neuron density and histomorphology of hippocampus. EMF exposure also affects the structure and function of glial cells, affecting gate dynamics, ion conduction, membrane concentration, and protein expression. EMF exposure affects gene expression and may change epigenetic regulation through effects on DNA methylation, histone modification, and microRNA biogenesis, and potentially leading to biological changes. Therefore, exposure to EMFs possibly leads to changes in cellular and molecular mechanisms in central nervous system and alter cognitive function.
Collapse
Affiliation(s)
- Shima Abtin
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Seyedaghamiri
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aalidaeijavadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Farrokhi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazel Moshrefi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebeh Ziveh
- Laboratory of Biophysics and Molecular Biology, Departments of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Hadi Aliakbarian
- Faculty of Electrical Engineering, KN Toosi University of Technology, Tehran, Iran
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Shahraki J, Tabrizian K, Rezaee R, Tashakori B, Dadrezaei S, Ghorani V, Bagheri G, Jahantigh H, Hashemzaei M. Hesperidin neuroprotective effects against carbon monoxide-induced toxicity in male rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7673-7681. [PMID: 38700797 DOI: 10.1007/s00210-024-03132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/29/2024] [Indexed: 08/04/2024]
Abstract
Carbon monoxide (CO) is produced via incomplete combustion of fossil fuels and it may cause long-term neurological sequel upon exposure. Hesperidin (HES), a flavanone glycoside found in citrus plants, exerts diverse beneficial health effects. The present study mechanistically examined the neuroprotective effects of HES in CO-poisoned rats. Thirty male Wistar rats (five groups of six animals) were exposed to 3000 ppm CO for 1 h. Immediately after the exposure and on the next 4 consecutive days (totally five doses), rats intraperitoneally received either normal saline (the control group) or different doses of HES (25, 50, and 100 mg/kg). A sham group that was not exposed to CO was also considered. After evaluation of spatial learning and memory using a Morris water maze (MWM), animals were sacrificed and oxidative stress status in blood samples, and Akt, Bax, Bcl2, and brain-derived neurotrophic factor (BDNF) expression in brain samples were assessed. Western blot analysis indicated increased Akt but decreased Bax/Bcl2 levels in the HES 100 mg/kg, and induced BDNF levels in all HES-treated groups. MWM results showed that HES significantly decreased memory loss. The current findings indicate that HES could alleviate neurological impairments induced by CO in rats.
Collapse
Affiliation(s)
- Jafar Shahraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Kaveh Tabrizian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ramin Rezaee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Behnam Tashakori
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Seyedehzahra Dadrezaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Vahideh Ghorani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hosseinali Jahantigh
- Department of Pathology, Amiralmomenin Hospital, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.
| |
Collapse
|
4
|
Isaković J, Slatković F, Jagečić D, Petrović DJ, Mitrečić D. Pulsating Extremely Low-Frequency Electromagnetic Fields Influence Differentiation of Mouse Neural Stem Cells towards Astrocyte-like Phenotypes: In Vitro Pilot Study. Int J Mol Sci 2024; 25:4038. [PMID: 38612847 PMCID: PMC11012476 DOI: 10.3390/ijms25074038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Even though electromagnetic fields have been reported to assist endogenous neurogenesis, little is known about the exact mechanisms of their action. In this pilot study, we investigated the effects of pulsating extremely low-frequency electromagnetic fields on neural stem cell differentiation towards specific phenotypes, such as neurons and astrocytes. Neural stem cells isolated from the telencephalic wall of B6(Cg)-Tyrc-2J/J mouse embryos (E14.5) were randomly divided into three experimental groups and three controls. Electromagnetic field application setup included a solenoid placed within an incubator. Each of the experimental groups was exposed to 50Hz ELF-EMFs of varied strengths for 1 h. The expression of each marker (NES, GFAP, β-3 tubulin) was then assessed by immunocytochemistry. The application of high-strength ELF-EMF significantly increased and low-strength ELF-EMF decreased the expression of GFAP. A similar pattern was observed for β-3 tubulin, with high-strength ELF-EMFs significantly increasing the immunoreactivity of β-3 tubulin and medium- and low-strength ELF-EMFs decreasing it. Changes in NES expression were observed for medium-strength ELF-EMFs, with a demonstrated significant upregulation. This suggests that, even though ELF-EMFs appear to inhibit or promote the differentiation of neural stem cells into neurons or astrocytes, this effect highly depends on the strength and frequency of the fields as well as the duration of their application. While numerous studies have demonstrated the capacity of EMFs to guide the differentiation of NSCs into neuron-like cells or β-3 tubulin+ neurons, this is the first study to suggest that ELF-EMFs may also steer NSC differentiation towards astrocyte-like phenotypes.
Collapse
Affiliation(s)
| | - Filip Slatković
- Omnion Research International d.o.o., 10000 Zagreb, Croatia;
| | - Denis Jagečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Dražen Juraj Petrović
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Genos d.o.o., Laboratory for Glycobiology, 10000 Zagreb, Croatia
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Histology and Embryology, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Abkhezr H, Babri S, Farid-Habibi M, Farajdokht F, Sadigh-Eteghad S, Mohaddes G. Effect of prenatal exposure to stress and extremely low-frequency electromagnetic field on hippocampal and serum BDNF levels in male adult rat offspring. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1115-1123. [PMID: 39055879 PMCID: PMC11266742 DOI: 10.22038/ijbms.2024.75459.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/03/2024] [Indexed: 07/28/2024]
Abstract
Objectives Prenatal stress (PS) can adversely affect cognitive and psychological functions in the offspring. This study aimed to determine the effect of PS and extremely low-frequency electromagnetic field (ELF-EMF) on spatial memory, serum corticosterone, brain-derived neurotrophic factor (BDNF) concentrations, and hippocampal BDNF levels in adult male offspring. Materials and Methods Female Wistar rats were randomly divided into four groups (n=6): Control, Stress, ELF-EMF (exposure to ELF-EMF), and S+EMF (simultaneous exposure to stress and the ELF-EMF) groups. Animals received interven-tions for 21 days before and 21 days during pregnancy (a total of 42 days). On the offspring's 90th postnatal day (PND), spatial memory was tested using Morris Water Maze, serum Corticosterone and BDNF levels were measured by the ELISA method, and hippocampal BDNF levels were measured by Western blotting. Results PS did not affect spatial memory in the adult male offspring; however, it significantly (P<0.05) increased se-rum corticosterone levels compared to the control and EMF groups. Simultaneous induction of stress with ELF-EMF disrupted the memory acquisition phase. Serum and hippocampal BDNF levels increased signifi-cantly (P<0.05) in the EMF group compared to the stress group. Conclusion Based on our findings, PS can increase serum corticosterone levels without affecting spatial memory. Howev-er, induction of ELF-EMF with stress has a destructive effect on spatial memory with no change in the corti-costerone levels. Compared to stress, prenatal exposure to ELF-EMF increases serum and hippocampal BDNF levels. Further studies are needed to determine the underlying mechanisms of these findings.
Collapse
Affiliation(s)
| | - Shirin Babri
- Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biomedical Education, California Health Sciences University, College of Osteopathic Medicine, Clovis, CA, USA
| |
Collapse
|
6
|
Hosseini E, Kianifard D. Effect of prenatal stress and extremely low-frequency electromagnetic fields on anxiety-like behavior in female rats: With an emphasis on prefrontal cortex and hippocampus. Brain Behav 2023; 13:e2949. [PMID: 36942730 PMCID: PMC10097060 DOI: 10.1002/brb3.2949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/03/2022] [Accepted: 01/23/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVE Prenatal stress (PS) is a problematic situation resulting in psychological implications such as social anxiety. Ubiquitous extremely low-frequency electromagnetic fields (ELF-EMF) have been confirmed as a potential physiological stressor; however, useful neuroregenerative effect of these types of electromagnetic fields has also frequently been reported. The aim of the present study was to survey the interaction of PS and ELF-EMF on anxiety-like behavior. METHOD A total of 24 female rats 40 days of age were distributed into four groups of 6 rats each: control, stress (their mothers were exposed to stress), EMF (their mothers underwent to ELF-EMF), and EMF/stress (their mothers concurrently underwent to stress and ELF-EMF). The rats were assayed using elevated plus-maze and open field tests. RESULTS Expressions of the hippocampus GAP-43, BDNF, and caspase-3 (cas-3) were detected by immunohistochemistry in Cornu Ammonis 1 (CA1) and dentate gyrus (DG) of the hippocampus and prefrontal cortex (PFC). Anxiety-like behavior increased in all treatment groups. Rats in the EMF/stress group presented more serious anxiety-like behavior. In all treatment groups, upregulated expression of cas-3 was seen in PFC, DG, and CA1 and downregulated expression of BDNF and GAP-43 was seen in PFC and DG and the CA1. Histomorphological study showed vast neurodegenerative changes in the hippocampus and PFC. CONCLUSION The results showed ,female rats that underwent PS or/and EMF exhibited critical anxiety-like behavior and this process may be attributed to neurodegeneration in PFC and DG of the hippocampus and possibly decreased synaptic plasticity so-called areas.
Collapse
Affiliation(s)
- Ehsan Hosseini
- Faculty of Veterinary Medicine, Division of Physiology, Department of basic science, Urmia University, Urmia, Iran
| | - Davoud Kianifard
- Faculty of Veterinary Medicine, Department of Basic Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
7
|
Bayat M, Karimi N, Karami M, Haghighi AB, Bayat K, Akbari S, Haghani M. Chronic exposure to 2.45 GHz microwave radiation improves cognition and synaptic plasticity impairment in vascular dementia model. Int J Neurosci 2023; 133:111-122. [PMID: 33635159 DOI: 10.1080/00207454.2021.1896502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Purpose: In this study, we evaluated the effects of 2.45 GHz microwave radiation on cognitive dysfunction induced by vascular dementia (VaD).Methods: The VaD was induced by bilateral-common carotid occlusion (2-VO). The rats were divided into 4 groups including: control (n = 6), sham (n = 6), 2-VO (n = 8), and 2-VO + Wi-Fi (n = 10) groups. Wi-Fi modem centrally located at the distance of 25 cm from the animal's cages and the animals were continuously exposed to Wi-Fi signal while they freely moved in the cage (2 h/day for forty-five days). Therefore, the power density (PD) and specific absorption rate value (SAR) decreased at a distance of 25 to 60 cm (PD = 0.018 to 0.0032 mW/cm2, SAR = 0.0346 to 0.0060 W/Kg). The learning, memory, and hippocampal synaptic-plasticity were evaluated by radial arm maze (RAM), passive avoidance (PA), and field-potential recording respectively. The number of hippocampal CA1 cells was also assessed by giemsa staining.Results: Our results showed that VaD model led to impairment in the spatial learning and memory performance in RAM and PA that were associated with long-term potentiation (LTP) impairment, decrease of basal-synaptic transmission (BST), increase of GABA transmission, and decline of neurotransmitter release-probability as well as hippocampal cell loss. Notably, chronic Wi-Fi exposure significantly recovered the learning-memory performance, LTP induction, and cell loss without any effect on BST.Conclusions: The LTP recovery by Wi-Fi in the 2-VO rats was probably related to significant increases in the hippocampal CA1 neuronal density, partial recovery of neurotransmitter release probability, and reduction of GABA transmissiSon as evident by rescue of paired-pulse ratio 10 ms.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karimi
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Karami
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Kamjoo Bayat
- Department of Physics, K. N. Toosi University of Technology, Tehran, Iran
| | - Somayeh Akbari
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, the Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Klimek A, Kletkiewicz H, Siejka A, Wyszkowska J, Maliszewska J, Klimiuk M, Jankowska M, Seckl J, Rogalska J. New View on the Impact of the Low-Frequency Electromagnetic Field (50 Hz) on Stress Responses: Hormesis Effect. Neuroendocrinology 2022; 113:423-441. [PMID: 36323227 PMCID: PMC10906478 DOI: 10.1159/000527878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/26/2022] [Indexed: 03/24/2023]
Abstract
INTRODUCTION Low-frequency electromagnetic field (50 Hz) (EMF) can modify crucial neuronal processes. Existing data indicate that exposure to EMF may represent a mild stressor and contribute to disturbances of the hypothalamic-pituitary-adrenal (HPA) axis. The important regulatory pathways controlling HPA axis activity include two types of corticosteroid receptors: mineralocorticoid receptors (MRs) and glucocorticoid receptors. They are particularly abundant in the hippocampus, a key locus of HPA axis feedback control. The research aimed at determining whether (1) EMF exhibits hormesis, it means bidirectional action depending on EMF intensity (1 or 7 mT) and (2) repeated EMF exposure changes stress response to subsequent stress factors. METHODS The exposure (7 days, 1 h/day) of adult rats to EMF (1 mT and 7 mT) was repeated 3 times. HPA axis hormones and their receptors were analysed after each following exposure. Moreover, the impact of EMF exposure on hormonal and behavioural responses to subsequent stress factor - open-field test was evaluated. RESULTS Our data suggest that exposure to EMF can establish a new "set-point" for HPA axis activity. The direction and dynamics of this process depend on the intensity of EMF and the number of exposures. EMF of 1 mT induced an adaptive stress response, but 7 mT EMF caused sensitization. Consequently, EMF changed the vulnerability of the organism to a subsequent stress factor. We have also shown the increase in MR mRNA abundance in the hippocampus of 1 mT EMF-exposed rats, which can represent the possible neuroprotective response and suggest therapeutic properties of EMFs.
Collapse
Affiliation(s)
- Angelika Klimek
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Hanna Kletkiewicz
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Agnieszka Siejka
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Joanna Wyszkowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Justyna Maliszewska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Maciej Klimiuk
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Milena Jankowska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Jonathan Seckl
- Centre for Cardiovascular Science, QMRI, University of Edinburgh, Edinburgh, UK
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences Nicolaus Copernicus University in Torun, Toruń, Poland
| |
Collapse
|
9
|
Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med 2022; 41:201-221. [DOI: 10.1080/15368378.2022.2064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
He GL, Wang ZZ, Yu XT, Shen TT, Luo Z, Li P, Luo X, Tan YL, Gao P, Yang XS. The involvement of microglial CX3CR1 in heat acclimation-induced amelioration of adult hippocampal neurogenesis impairment in EMF-exposed mice. Brain Res Bull 2021; 177:181-193. [PMID: 34555433 DOI: 10.1016/j.brainresbull.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Microglial CX3C chemokine receptor 1 (CX3CR1) has been implicated in numerous cellular mechanisms, including signalling pathways that regulate brain homoeostasis and adult hippocampal neurogenesis. Specific environmental conditions can impair hippocampal neurogenesis-related cognition, learning and memory. However, the role of CX3CR1 in the neurogenic alterations resulting from the cross-tolerance protection conferred by heat acclimation (HA) against the effects of electromagnetic field (EMF) exposure is less well understood. Here, we investigated the role of microglial CX3CR1 signalling in adult hippocampal neurogenesis induced by HA in EMF-exposed mice. We found that EMF exposure significantly decreased the number of proliferating and differentiating cells in the dentate gyrus (DG) of the hippocampus, resulting in a reduced neurogenesis rate. Moreover, alterations in the phenotypes of activated microglia and decreased expression levels of CX3CR1, but not sirtuin 1 (SIRT1), were observed in the brains of EMF-exposed mice. Remarkably, HA treatment improved microglial phenotypes, restored the expression of CX3CR1, and ameliorated the decrease in the adult hippocampal neurogenesis rate following EMF exposure. Moreover, pharmacological inhibition of CX3CR1 and SIRT1 failed to restore CX3CR1 expression and ameliorate hippocampal neurogenesis impairment following HA plus EMF stimulation. These results indicate that microglial CX3CR1 is involved in the cross-tolerance protective effect of HA on adult hippocampal neurogenesis upon EMF exposure.
Collapse
Affiliation(s)
- Gen-Lin He
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Ze-Ze Wang
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Xue-Ting Yu
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Ting-Ting Shen
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Zhen Luo
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Ping Li
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Yu-Long Tan
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China
| | - Peng Gao
- Key Laboratory of Medical Protection for Electromagnetic Radiation Ministry of Education, Army Medical University, Chongqing, China
| | - Xue-Sen Yang
- Department of Tropical Medicine, Army Medical University, Chongqing, China; Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Army Medical University, Chongqing, China.
| |
Collapse
|
11
|
Khajei S, Mirnajafi-Zadeh J, Sheibani V, Ahmadi-Zeidabadi M, Masoumi-Ardakani Y, Rajizadeh MA, Esmaeilpour K. Electromagnetic field protects against cognitive and synaptic plasticity impairment induced by electrical kindling in rats. Brain Res Bull 2021; 171:75-83. [PMID: 33753209 DOI: 10.1016/j.brainresbull.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023]
Abstract
Kindling results in abnormal synaptic potentiation and significant impairment in learning and memory. Electromagnetic field (EMF) effects on learning and memory in kindled animals and its effects on hippocampal neural activity are largely unknown. In the current study, the effects of EMF on learning and memory, as well as hippocampal synaptic plasticity, in kindled rats were investigated. EMF (10 mT; 100 Hz) was applied to fully kindled animals one hour/day for a period of one week. The behavioral and electrophysiological studies were performed 24 h following the EMF application. The kindled rats showed spatial learning deficits during the training phase of the Morris water maze (MWM) test. Moreover, there were increments in escape latency and path length compared to the sham group. The kindled rats spent less time in the target-quadrant probe test, indicating spatial memory impairment. Applying EMF to the KEMF group (kindling + EMF) restored learning and memory, and decreased escape latency and path length significantly compared to the kindled group. EMF alone had no significant effects on the learning and memory parameters. Based on the open field (OF) test results, EMF alone in the EMF group, but not in the kindled or the KEMF groups, decreased the total traveled distance and increased the spent time in the peripheral zone, compared to the sham group. Based on electrophysiological results, applying EMF in the KEMF group returned the ability of synaptic potentiation to the hippocampal CA1 area and high-frequency stimulation induced long-term potentiation (LTP). Accordingly, EMF can be considered a potential therapy for seizure-induced deficits in learning and memory.
Collapse
Affiliation(s)
- Sina Khajei
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Meysam Ahmadi-Zeidabadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Ge W, Ren C, Xing L, Guan L, Zhang C, Sun X, Wang G, Niu H, Qun S. Ginkgo biloba extract improves cognitive function and increases neurogenesis by reducing Aβ pathology in 5×FAD mice. Am J Transl Res 2021; 13:1471-1482. [PMID: 33841671 PMCID: PMC8014356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Previous studies have indicated that the generation of newborn hippocampal neurons is impaired in the early phase of Alzheimer's disease (AD). A potential therapeutic strategy being pursued for the treatment of AD is increasing the number of newborn neurons in the adult hippocampus. Recent studies have demonstrated that ginkgo biloba extract (EGb 761) plays a neuroprotective role by preventing memory loss in many neurodegenerative diseases. However, the extent of EGb 761's protective role in the AD process is unclear. In this study, different doses of EGb 761 (0, 10, 20, and 30 mg/kg; intraperitoneal injections once every day for four months) were tested on 5×FAD mice. After consecutive 4-month injections, mice were tested in learning memory tasks, Aβ, and neurogenesis in the dentate gyrus (DG) of hippocampus and morphological characteristics of neurons in DG of hippocampus. Results indicated that EGb 761 (20 and 30 mg/kg) ameliorated memory deficits. Further analysis indicated that EGb 761 can reduce the number of Aβ positive signals in 5×FAD mice, increase the number of newborn neurons, and increase dendritic branching and density of dendritic spines in 5×FAD mice compared to nontreated 5×FAD mice. It was concluded that EGb 761 plays a protective role in the memory deficit of 5×FAD mice.
Collapse
Affiliation(s)
- Wei Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical UniversityNo. 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical UniversityNo. 99 West Huaihai Road, Xuzhou 221002, Jiangsu Province, China
| | - Chao Ren
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai 264000, Shandong Province, China
| | - Lei Xing
- Department of Genetics, Xuzhou Medical UniversityNo. 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China
| | - Lina Guan
- Neurosurgical Intensive Care Unit, Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai 264000, Shandong Province, China
| | - Caiyi Zhang
- Department of Emergency Medicine, Xuzhou Medical UniversityNo. 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China
| | - Xuwen Sun
- Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantai 264000, Shandong Province, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaNo 17 Lvjiang Road, Hefei 230001, Anhui, China
| | - Haichen Niu
- Department of Genetics, Xuzhou Medical UniversityNo. 209 Tongshan Road, Xuzhou 221004, Jiangsu Province, China
| | - Sen Qun
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaNo 17 Lvjiang Road, Hefei 230001, Anhui, China
| |
Collapse
|
13
|
Klimek A, Rogalska J. Extremely Low-Frequency Magnetic Field as a Stress Factor-Really Detrimental?-Insight into Literature from the Last Decade. Brain Sci 2021; 11:174. [PMID: 33572550 PMCID: PMC7912337 DOI: 10.3390/brainsci11020174] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Biological effects of extremely low-frequency magnetic field (ELF-MF) and its consequences on human health have become the subject of important and recurrent public debate. ELF-MF evokes cell/organism responses that are characteristic to a general stress reaction, thus it can be regarded as a stress factor. Exposure to ELF-MF "turns on" different intracellular mechanisms into both directions: compensatory or deleterious ones. ELF-MF can provoke morphological and physiological changes in stress-related systems, mainly nervous, hormonal, and immunological ones. This review summarizes the ELF-MF-mediated changes at various levels of the organism organization. Special attention is placed on the review of literature from the last decade. Most studies on ELF-MF effects concentrate on its negative influence, e.g., impairment of behavior towards depressive and anxiety disorders; however, in the last decade there was an increase in the number of research studies showing stimulating impact of ELF-MF on neuroplasticity and neurorehabilitation. In the face of numerous studies on the ELF-MF action, it is necessary to systematize the knowledge for a better understanding of the phenomenon, in order to reduce the risk associated with the exposure to this factor and to recognize the possibility of using it as a therapeutic agent.
Collapse
Affiliation(s)
| | - Justyna Rogalska
- Department of Animal Physiology and Neurobiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland;
| |
Collapse
|
14
|
Gao Q, Leung A, Yang YH, Lau BWM, Wang Q, Liao LY, Xie YJ, He CQ. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia. Neural Regen Res 2021; 16:1252-1257. [PMID: 33318402 PMCID: PMC8284293 DOI: 10.4103/1673-5374.301020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extremely low frequency electromagnetic fields (ELF-EMF) can improve the learning and memory impairment of rats with Alzheimer’s disease, however, its effect on cerebral ischemia remains poorly understood. In this study, we established rat models of middle cerebral artery occlusion/reperfusion. One day after modeling, a group of rats were treated with ELF-EMF (50 Hz, 1 mT) for 2 hours daily on 28 successive days. Our results showed that rats treated with ELF-EMF required shorter swimming distances and latencies in the Morris water maze test than those of untreated rats. The number of times the platform was crossed and the time spent in the target quadrant were greater than those of untreated rats. The number of BrdU+ /NeuN+ cells, representing newly born neurons, in the hippocampal subgranular zone increased more in the treated than in untreated rats. Up-regulation in the expressions of Notch1, Hes1, and Hes5 proteins, which are the key factors of the Notch signaling pathway, was greatest in the treated rats. These findings suggest that ELF-EMF can enhance hippocampal neurogenesis of rats with cerebral ischemia, possibly by affecting the Notch signaling pathway. The study was approved by the Institutional Ethics Committee of Sichuan University, China (approval No. 2019255A) on March 5, 2019.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Aaron Leung
- Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yong-Hong Yang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Qian Wang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yun-Juan Xie
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province, China
| |
Collapse
|
15
|
Zendehdel R, Asadi S, Alizadeh S, Ranjbarian M. Quality assessment of DNA and hemoglobin by Fourier transform infrared spectroscopy in occupational exposure to extremely low-frequency magnetic field. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45374-45380. [PMID: 32789635 DOI: 10.1007/s11356-020-09503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown the effect of extremely low-frequency (ELF) magnetic fields on the hematopoietic system. However, molecular modification and biological toxicity are not known yet. The aim of this study was to investigate the effect of occupational exposure to ELF magnetic field on the hemoglobin and DNA alteration using Fourier transform infrared (FTIR) spectroscopy. Twenty nine individuals were selected among those working as the controller in a powerhouse in order to be studied as the population exposed to ELF magnetic field. Control group comprised of 29 administrative employees voluntarily participated who were matched with the exposed subjects in terms of sex, age, work experiences, smoking habit, and socioeconomic status. DNA and hemoglobin were extracted from blood samples and then were studied by FTIR spectroscopy. The results showed the level of magnetic field exposure was between 0.38 to 50 μT in the exposed subjects while the level of magnetic field exposure was between 0.19 and 20 μT for the unexposed people. Hemoglobin level was equal to 15.67 ± 1.42 g/dL for exposed subjects which is significantly lower than that of the unexposed people (p = 0.0001). There was a significant alteration in CH content and COO structure of the hemoglobin structure. Moreover, DNA showed significant changes by functional group of organic base. This change in the structure of DNA and hemoglobin can lead to the creation of risks in human health. In conclusion, FTIR method could reveal the quality of DNA and hemoglobin structure in subjects after exposure to ELF magnetic field.
Collapse
Affiliation(s)
- Rezvan Zendehdel
- Department of Occupational Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Sareh Asadi
- Neuroscience Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Alizadeh
- Department of Occupational Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran.
| | - Mouhammad Ranjbarian
- Department of Occupational Health Engineering, School of Public Health, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| |
Collapse
|
16
|
Bagheri Hosseinabadi M, Khanjani N, Ebrahimi MH, Biganeh J. ESTIMATION OF THERMAL POWER PLANT WORKERS EXPOSURE TO MAGNETIC FIELDS AND SIMULATION OF HAZARD ZONES. RADIATION PROTECTION DOSIMETRY 2020; 190:289-296. [PMID: 32781468 DOI: 10.1093/rpd/ncaa101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Extremely low-frequency magnetic fields (ELF-MFs) have raised some concerns due to their possible effects on workers' health. In this study ELF-MFs were measured in different units of the thermal power plant based on gridding the indoor space. The exposure level was measured by spot measurement based on the IEEE Std C95.3.1 and then simulated in units with the highest magnetic field intensity by using ArcGIS software. The operators and balance of plant (BOP) technicians (12.64 ± 9.74 μT) and office workers (2.41 ± 1.22 μT) had the highest and lowest levels of both measured and estimated ELF-MFs exposure. The highest measured ELF-MFs were in the vicinity of the power transmission lines in the transformers' building (48.2 μT). Our simulation showed the high and low exposure areas and ranked exposure well; but, the actual measurements of ELF-MFs exposure were in all cases higher than the estimated values, which means we still need to improve our estimations.
Collapse
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research Centre, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hossein Ebrahimi
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Jamal Biganeh
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
17
|
Rao MS, Abd-El-Basset EM. dBcAMP Rescues the Neurons From Degeneration in Kainic Acid-Injured Hippocampus, Enhances Neurogenesis, Learning, and Memory. Front Behav Neurosci 2020; 14:18. [PMID: 32194381 PMCID: PMC7065045 DOI: 10.3389/fnbeh.2020.00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
Dibutyryl cyclic adenosine monophosphate (dBcAMP) is a cell-permeable synthetic analog of cyclic adenosine monophosphate (cAMP). Although the elevation of cAMP levels was reported to promote the functional recovery in spinal cord injury, its role in neurogenesis or functional recovery after hippocampal injury is unknown. The objective of the study was to investigate the effects of dBcAMP on learning, memory, and hippocampal neurogenesis in the excitotoxically lesioned hippocampus. An excitotoxic lesion was induced in the hippocampi of 4-month-old male BALB/c mice by injecting 0.25 μg/μl into the lateral ventricles of both sides. The lesioned mice (L) were divided into L+dBcAMP and L+phosphate-buffered saline (PBS) groups. Sham surgery (S) was done by the injection of 1 μl of sterile saline into the lateral ventricles. The sham surgery mice were divided into S+dBcAMP and S+PBS groups. Mice in the L+dBcAMP and S+dBcAMP groups were treated with dBcAMP for 1 week (i.p., 50 mg/kg), whereas mice in the L+PBS and S+PBS groups were treated with PBS. The mice in all groups were subjected to water maze and passive avoidance tests at the end of the 4th week. Cresyl violet staining and NeuN and doublecortin immunostaining were done to analyze the morphology and neurogenesis. The water maze learning sessions did not show a significant difference in escape latency between the groups, suggesting an unimpaired learning ability of mice in all groups. The L+dBcAMP mice had significantly short entry latency and higher target quadrant time/distance traveled compared to the L+PBS group, suggesting better memory retention. The L+dBcAMP group had a significantly improved memory retention compared to the L+PBS mice during the passive avoidance test. Morphological studies showed significantly greater adult neurons and increased hippocampal neurogenesis in the hippocampus of mice in the L+dBcAMP group compared to those in the L+PBS group. There was no significant difference between the S+dBcAMP and S+PBS groups in the water maze/passive avoidance tests and the number of neurons. In conclusion, dBcAMP protects the hippocampal neuron from degeneration and enhances hippocampal neurogenesis, learning, and memory.
Collapse
|
18
|
Dong L, Li G, Gao Y, Lin L, Zheng Y, Cao XB. Exploring the form- And time-dependent effect of low-frequency electromagnetic fields on maintenance of hippocampal long-term potentiation. Eur J Neurosci 2020; 52:3166-3180. [PMID: 32065697 DOI: 10.1111/ejn.14705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Low-frequency electromagnetic field (LF-EMF) stimulation is an emerging neuromodulation tool that is attracting more attention because of its non-invasive and well-controlled characteristics. However, the effect of different LF-EMF features including the forms and the time of addition on neuronal activity has not been completely understood. In this study, we used multi-electrode array (MEA) systems to develop a flexible in vitro magnetic stimulation device with plug-and-play features that allows for real-time delivery of LF-EMFs to biological tissues. Crucially, the method enables different forms of LF-EMF to be added at any time to a long-term potentiation (LTP) experiment without interrupting the process of LTP induction. We demonstrated that the slope of field excitatory postsynaptic potentials (fEPSPs) decreased significantly under post or priming uninterrupted sine LF-EMFs. The fEPSPs slope would continue to decline significantly when LF-EMFs were added two times with a 20-min interval. Paired-pulse ratio (PPR) was analyzed and the results reflected that LF-EMFs induced LTP was expressed postsynaptically. The results of pharmacological experiments indicated that AMPA receptor activity was involved in the process of LTP loss caused by post-LF-EMFs. Moreover, the effect of priming sine or Quadripulse stimulation (QPS)-patterned LF-EMFs depended on the time interval between the end of LF-EMF and the beginning of baseline recording. Interestingly, the effect of sine LF-EMFs on LTP would not disappear within 120 min, while the impact of QPS-patterned LF-EMFs on LTP might disappear after 90 min. These results indicated that LF-EMF might have a form- and time-dependent effect on LTP.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin, China
| | - Yang Gao
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin, China
| | - Yu Zheng
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, China
| | | |
Collapse
|
19
|
Cruciani S, Garroni G, Ventura C, Danani A, Nečas A, Maioli M. Stem cells and physical energies: can we really drive stem cell fate? Physiol Res 2019; 68:S375-S384. [PMID: 32118467 DOI: 10.33549/physiolres.934388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Adult stem cells are undifferentiated elements able to self-renew or differentiate to maintain tissue integrity. Within this context, stem cells are able to divide in a symmetric fashion, feature characterising all the somatic cells, or in an asymmetric way, which leads daughter cells to different fates. It is worth highlighting that cell polarity have a critical role in regulating stem cell asymmetric division and the proper control of cell division depends on different proteins involved in cell development, differentiation and maintenance of tissue homeostasis. Moreover, the interaction between cells and the extracellular matrix are crucial in influencing cell behavior, included in terms of mechanical properties as cytoskeleton plasticity and remodelling, and membrane tension. Finally, the activation of specific transcriptional program and epigenetic modifications contributes to cell fate determination, through modulation of cellular signalling cascades. It is well known that physical and mechanical stimuli are able to influence biological systems, and in this context, the effects of electromagnetic fields (EMFs) have already shown a considerable role, even though there is a lack of knowledge and much remains to be done around this topic. In this review, we summarize the historical background of EMFs applications and the main molecular mechanism involved in cellular remodelling, with particular attention to cytoskeleton elasticity and cell polarity, required for driving stem cell behavior.
Collapse
Affiliation(s)
- S Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
20
|
Lai H. Exposure to Static and Extremely-Low Frequency Electromagnetic Fields and Cellular Free Radicals. Electromagn Biol Med 2019; 38:231-248. [PMID: 31450976 DOI: 10.1080/15368378.2019.1656645] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This paper summarizes studies on changes in cellular free radical activities from exposure to static and extremely-low frequency (ELF) electromagnetic fields (EMF), particularly magnetic fields. Changes in free radical activities, including levels of cellular reactive oxygen (ROS)/nitrogen (RNS) species and endogenous antioxidant enzymes and compounds that maintain physiological free radical concentrations in cells, is one of the most consistent effects of EMF exposure. These changes have been reported to affect many physiological functions such as DNA damage; immune response; inflammatory response; cell proliferation and differentiation; wound healing; neural electrical activities; and behavior. An important consideration is the effects of EMF-induced changes in free radicals on cell proliferation and differentiation. These cellular processes could affect cancer development and proper growth and development in organisms. On the other hand, they could cause selective killing of cancer cells, for instance, via the generation of the highly cytotoxic hydroxyl free radical by the Fenton Reaction. This provides a possibility of using these electromagnetic fields as a non-invasive and low side-effect cancer therapy. Static- and ELF-EMF probably play important roles in the evolution of living organisms. They are cues used in many critical survival functions, such as foraging, migration, and reproduction. Living organisms can detect and respond immediately to low environmental levels of these fields. Free radical processes are involved in some of these mechanisms. At this time, there is no credible hypothesis or mechanism that can adequately explain all the observed effects of static- and ELF-EMF on free radical processes. We are actually at the impasse that there are more questions than answers.
Collapse
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington , Seattle , WA , USA
| |
Collapse
|
21
|
Hosseinabadi MB, Khanjani N. The Effect of Extremely Low‐Frequency Electromagnetic Fields on the Prevalence of Musculoskeletal Disorders and the Role of Oxidative Stress. Bioelectromagnetics 2019; 40:354-360. [DOI: 10.1002/bem.22198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022]
Affiliation(s)
| | - Narges Khanjani
- Environmental Health Engineering Research CentreKerman University of Medical SciencesKerman Iran
| |
Collapse
|
22
|
Téglás T, Dörnyei G, Bretz K, Nyakas C. Whole-body pulsed EMF stimulation improves cognitive and psychomotor activity in senescent rats. Behav Brain Res 2018; 349:163-168. [DOI: 10.1016/j.bbr.2018.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/03/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023]
|