1
|
Abdelrahman RS, Elnfarawy AA, Nashy AE, Abdelsalam RA, Zaghloul MS. Targeting angiogenic and proliferative mediators by montelukast & trimetazidine Ameliorates thioacetamide-induced liver fibrosis in rats. Toxicol Appl Pharmacol 2025; 495:117208. [PMID: 39716576 DOI: 10.1016/j.taap.2024.117208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Liver fibrosis is a significant health complication with the potential to result in serious mortality and morbidity. However, there is no standard treatment due to its complex pathogenesis. The drug montelukast reversibly and selectively antagonizes the cysteinyl-leukotrienes-1 receptor and reduces inflammation; thus, it is used in the treatment of asthma. Trimetazidine, an anti-anginal agent, selectively inhibits the activity of mitochondrial long-chain 3-ketoacyl-CoA thiolase, inhibition of free fatty acid (FFA) oxidation. This study explores the efficacy of montelukast (5 and 10 mg/kg) and trimetazidine (10-20 mg/kg) against liver fibrosis induced by thioacetamide (TAA) in rats. Impaired liver function tests were significantly improved by montelukast and trimetazidine. The antioxidant and anti-inflammatory effects of montelukast and trimetazidine were proved by the inhibition of malondialdehyde (MDA) and nitric oxide (NO) accumulation, with elevation of glutathione (GSH) and superoxide dismutase activity, decreased heat shock protein (HSP-70) expression, and a decline in interleukin-6 (IL-6) and tumor necrosis factor (TNF-α) levels in liver tissue. Also, the antifibrotic effects were explored by reducing levels of hydroxyproline and alpha-smooth muscle actin (α-SMA) expression in liver tissue and attenuating hepatic expression of hepatic expression of angiogenic mediator vascular endothelium growth factor (VEGF) and proliferative mediator Antigen Kiel 67 (Ki-67).
Collapse
Affiliation(s)
- Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia.
| | - Ahmed A Elnfarawy
- Biotechnology Lab, Central Administration of Biological and Innovative Products and Clinical Studies, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - Ramy A Abdelsalam
- Lecturer of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| |
Collapse
|
2
|
Seetharaman ATM, Owens CE, Gangaraju R. Cysteinyl Leukotriene Receptor Antagonism by Montelukast to Treat Visual Deficits. J Ocul Pharmacol Ther 2024; 40:617-628. [PMID: 39358316 DOI: 10.1089/jop.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Montelukast, a Food and Drug Administration-approved drug for asthma and allergic rhinitis modulates leukotriene (LT) receptors and serves as a critical anti-inflammatory agent. Recent research suggests that the LT signaling pathway targeted by montelukast has broader implications for diseases such as fibrosis, cardiovascular diseases, cancer, cerebrovascular disease, and immune defense. This expanded understanding highlights montelukast's potential for repurposing in conditions involving aberrant stress mechanisms, including ocular diseases marked by inflammation, oxidative stress, ER stress, and apoptosis, among several others. This review delves into montelukast's therapeutic mechanisms across various diseases, draws parallels to ocular conditions, and examines clinical trials and associated adverse effects to underscore the unmet need for cysteinyl LT receptor antagonism by montelukast as an effective therapy for visual deficits.
Collapse
Affiliation(s)
- Amritha T M Seetharaman
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Caroline E Owens
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, Anatomy & Neurobiology, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
3
|
Liu T, Zheng F, Liu L, Zhou H, Shen T, Li Y, Zhang W. Paraquat disrupts the blood-brain barrier by increasing IL-6 expression and oxidative stress through the activation of PI3K/AKT signaling pathway. Open Med (Wars) 2024; 19:20241020. [PMID: 39291284 PMCID: PMC11406143 DOI: 10.1515/med-2024-1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Background Paraquat (PQ) is a frequently used herbicide with neurotoxic effects after acute or chronic exposure. Although in vitro evidence supports the PQ toxicity to dopamine cells, its in vivo effects (especially the chronic exposure) remain ambiguous. In this study, we investigated the effect of chronic PQ exposure on the blood-brain barrier (BBB) damage and the underlying mechanisms. Methods Adult male Sprague Dawley rats and primary human brain microvascular endothelial (PHBME) cells were exposed to PQ as the animal and cell models. Evans Blue staining and hematoxylin & eosin staining were conducted to examine the BBB and brain tissue damages. The inflammatory cytokines were quantified via enzyme linked immunosorbent assay. The changes of PI3K/AKT signaling pathway were detected by western blot. Results PQ exposure can cause significant pathological lesions in the brain tissues and the BBB. IL-6 and reactive oxygen species levels were found to be significantly upregulated after PQ exposure in both the animal and cell models. PQ treatment could arrest the cell proliferation and migration in PHBME cells. PQ treatment promoted the phosphorylation of PI3K and AKT, and the application of PI3K inhibitor could attenuate PQ-induced IL-6 production, oxidative stress, BBB disruption, and brain tissue damage. Conclusion Our study demonstrated that chronic PQ exposure could impair the BBB function and induce brain tissue damage. The overactivation of the PI3K/AKT pathway, consequent upregulation of IL-6 production, and increased oxidative stress appear to mediate the inflammatory damage resulting from PQ exposure.
Collapse
Affiliation(s)
- Tao Liu
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, 650000, Yunnan, China
| | - Fenshuang Zheng
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, 650000, Yunnan, China
| | - Lin Liu
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, Kunming, 650000, Yunnan, China
| | - Hua Zhou
- Department of Emergency Medicine, People's Hospital of Yuxi City, Yuxi, 653100, Yunnan, China
| | - Tao Shen
- Department of Emergency Medicine, People's Hospital of Gejiu City, Gejiu, 661000, Yunnan, China
| | - Yanping Li
- Department of Emergency Medicine, People's Hospital of Gejiu City, Gejiu, 661000, Yunnan, China
| | - Wei Zhang
- Department of Emergency Medicine, Affiliated Hospital of Yunnan University, No. 176, Youth Road, Kunming, 650000, Yunnan, China
| |
Collapse
|
4
|
Lee KI, Fang KM, Kuo CY, Huang CF, Liu SH, Liu JM, Lai WC, Chang KC, Su CC, Chen YW. Roles of oxidative stress/JNK/ERK signals in paraquat-triggered hepatic apoptosis. Curr Res Toxicol 2024; 6:100155. [PMID: 38379848 PMCID: PMC10877118 DOI: 10.1016/j.crtox.2024.100155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Paraquat (PQ), a toxic and nonselective bipyridyl herbicide, is one of the most extensively used pesticides in agricultural countries. In addition to pneumotoxicity, the liver is an important target organ for PQ poisoning in humans. However, the mechanism of PQ in hepatotoxicity remains unclear. In this study, we found that exposure of rat hepatic H4IIE cells to PQ (0.1-2 mM) induced significant cytotoxicity and apoptosis, which was accompanied by mitochondria-dependent apoptotic signals, including loss of mitochondrial membrane potential (MMP), cytosolic cytochrome c release, and changes in the Bcl-2/Bax mRNA ratio. Moreover, PQ (0.5 mM) exposure markedly induced JNK and ERK1/2 activation, but not p38-MAPK. Blockade of JNK and ERK1/2 signaling by pretreatment with the specific pharmacological inhibitors SP600125 and PD98059, respectively, effectively prevented PQ-induced cytotoxicity, mitochondrial dysfunction, and apoptotic events. Additionally, PQ exposure stimulated significant oxidative stress-related signals, including reactive oxygen species (ROS) generation and intracellular glutathione (GSH) depletion, which could be reversed by the antioxidant N-Acetylcysteine (NAC). Buffering the oxidative stress response with NAC also effectively abrogated PQ-induced hepatotoxicity, MMP loss, apoptosis, and phosphorylation of JNK and ERK1/2 protein, however, the JNK or ERK inhibitors did not suppress ROS generation in PQ-treated cells. Collectively, these results demonstrate that PQ exposure induces hepatic cell toxicity and death via an oxidative stress-dependent JNK/ERK activation-mediated downstream mitochondria-regulated apoptotic pathway.
Collapse
Affiliation(s)
- Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Nursing, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jui-Ming Liu
- Department of Urology, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Wei-Cheng Lai
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Kai-Chih Chang
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ya-Wen Chen
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
5
|
Muluhie M, Castiglioni L, Rzemieniec J, Mercuriali B, Gelosa P, Sironi L. Montelukast, an available and safe anti-asthmatic drug, prevents maladaptive remodelling and maintains cardiac functionality following myocardial infarction. Sci Rep 2024; 14:3371. [PMID: 38337010 PMCID: PMC10858037 DOI: 10.1038/s41598-024-53936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Preclinical and clinical data indicate that the 5-lipoxygenase pathway becomes activated in cardiovascular diseases suggesting an important role of CysLTs in atherosclerosis and in its ischemic complications. This study aims to investigate the effects of montelukast, a CysLTR-1 antagonist, in a mouse model of myocardial infarction (MI). C57BL/6N female mice were subjected to coronary artery ligation and received montelukast (10 mg/kg/day, intraperitoneal) or vehicle. Montelukast exerted beneficial effects in the infarcted area, decreasing mRNA expression of inflammatory genes, such Il1β and Ccl2 (p < 0.05), at 48 h after MI, and reducing infarct size and preventing ischemic wall thinning (p < 0.05) at 4 weeks. Furthermore, montelukast counteracted maladaptive remodelling of whole heart. Indeed, montelukast reduced LV mass (p < 0.05) and remote wall thickening (p < 0.05), and improved cardiac pumping function, as evidenced by increased global ejection fraction (p < 0.01), and regional contractility in infarcted (p < 0.05) and in remote non-infarcted (p < 0.05) myocardium. Finally, montelukast prevented cardiomyocytes hypertrophy (p < 0.05) in remote myocardium, reducing the phosphorylation of GSK3β, a regulator of hypertrophic pathway (p < 0.05). Our data strongly demonstrate the ability of montelukast to contrast the MI-induced maladaptive conditions, thus sustaining cardiac contractility. The results provide evidences for montelukast "repurposing" in cardiovascular diseases and in particular in myocardial infarction.
Collapse
Affiliation(s)
- Majeda Muluhie
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Joanna Rzemieniec
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Benedetta Mercuriali
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, Via G. Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
6
|
Tavvabi-Kashani N, Hasanpour M, Baradaran Rahimi V, Vahdati-Mashhadian N, Askari VR. Pharmacodynamic, pharmacokinetic, toxicity, and recent advances in Eugenol's potential benefits against natural and chemical noxious agents: A mechanistic review. Toxicon 2024; 238:107607. [PMID: 38191032 DOI: 10.1016/j.toxicon.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The active biological phytochemicals, crucial compounds employed in creating hundreds of medications, are derived from valuable and medicinally significant plants. These phytochemicals offer excellent protection from various illnesses, including inflammatory disorders and chronic conditions caused by oxidative stress. A phenolic monoterpenoid known as eugenol (EUG), it is typically found in the essential oils of many plant species from the Myristicaceae, Myrtaceae, Lamiaceae, and Lauraceae families. One of the main ingredients of clove oil (Syzygium aromaticum (L.), Myrtaceae), it has several applications in industry, including flavoring food, pharmaceutics, dentistry, agriculture, and cosmeceuticals. Due to its excellent potential for avoiding many chronic illnesses, it has lately attracted attention. EUG has been classified as a nonmutant, generally acknowledged as a safe (GRAS) chemical by the World Health Organization (WHO). According to the existing research, EUG possesses notable anti-inflammatory, antioxidant, analgesic, antibacterial, antispasmodic, and apoptosis-promoting properties, which have lately gained attention for its ability to control chronic inflammation, oxidative stress, and mitochondrial malfunction and dramatically impact human wellness. The purpose of this review is to evaluate the scientific evidence from the most significant research studies that have been published regarding the protective role and detoxifying effects of EUG against a wide range of toxins, including biological and chemical toxins, as well as different drugs and pesticides that produce a variety of toxicities, throughout view of the possible advantages of EUG.
Collapse
Affiliation(s)
- Negin Tavvabi-Kashani
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vafa Baradaran Rahimi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Naser Vahdati-Mashhadian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Ribeiro KHC, da Silva RBP, Roseno ACB, Barreto AJM, Bacelar ACZ, Ervolino E, Duarte MAH, Fakhouri WD, Chaves-Neto AH, Biguetti CC, Matsumoto MA. Dose-response effect of Montelukast on post-extraction dental socket repair and skeletal phenotype of mice. Odontology 2023; 111:891-903. [PMID: 36920595 DOI: 10.1007/s10266-023-00800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
Bone metabolism and repair are directly regulated by arachidonic acid metabolites. At present, we analyzed the dose-response effects of a selective cysteinyl leukotriene receptor type-1 antagonist during bone repair after tooth extraction and on non-injured skeleton. Sixty-three 129 Sv/Ev male mice composed the groups: C-Control (saline solution); MTK2-2 mg/Kg of Montelukast (MTK) and MTK4-4 mg/Kg of MTK, daily administered by mouth throughout all experimental periods set at 7, 14, and 21 days post-operative. Dental sockets were analyzed by computed microtomography (microCT), histopathology, and immunohistochemistry. Femurs, L5 vertebra and organs were also removed for observation. Blood was collected for plasma bone and liver markers. Histopathology and microCT analysis revealed early socket repair of MTK2 and MTK4 animals, with significant increased BV/TV at days 14 and 21 compared to C. Higher plasma calcium was detected at days 7 and 21 in MTK4 in comparison to C, while phosphate was significantly increased in MTK2 in the same periods in comparison to C and MTK4. No significant differences were found regarding plasma ALP and TRAP, neither for local TRAP and Runx2 immunolabeling at the healing sockets. Organs did not present histological abnormalities. Increased AST levels have been detected in distinct groups and periods. In general, femur phenotype was improved in MTK treated animals. Collectively, MTK promoted early bone formation after tooth extraction and increased bone quality of femurs and vertebra in a time-dose-dependent manner, and should be considered as an alternative therapy when improved post-extraction socket repair or skeleton preservation is required.
Collapse
Affiliation(s)
- Kim Henderson Carmo Ribeiro
- Department of Oral Surgery and Dental Clinics, Araçatuba School of Dentistry, São Paulo State University-Unesp, Rua José Bonifácio 1192, Araçatuba, São Paulo, CEP 160188-05, Brazil
| | - Raquel Barroso Parra da Silva
- Department of Oral Surgery and Dental Clinics, Araçatuba School of Dentistry, São Paulo State University-Unesp, Rua José Bonifácio 1192, Araçatuba, São Paulo, CEP 160188-05, Brazil
| | - Ana Carolyna Becher Roseno
- Department of Basic Sciences, Araçatuba School of Dentistry, SãoPauloStateUniversity-Unesp, Rua José Bonifácio 1192, CEP 160188-05, Araçatuba, São Paulo, Brasil
| | - Ana Julia Moreno Barreto
- Department of Basic Sciences, Araçatuba School of Dentistry, SãoPauloStateUniversity-Unesp, Rua José Bonifácio 1192, CEP 160188-05, Araçatuba, São Paulo, Brasil
| | - Ana Carolina Zucon Bacelar
- Department of Oral Surgery and Dental Clinics, Araçatuba School of Dentistry, São Paulo State University-Unesp, Rua José Bonifácio 1192, Araçatuba, São Paulo, CEP 160188-05, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, Araçatuba School of Dentistry, SãoPauloStateUniversity-Unesp, Rua José Bonifácio 1192, CEP 160188-05, Araçatuba, São Paulo, Brasil
| | - Marco Antônio Húngaro Duarte
- Department of DentistryEndodontics and Dental MaterialsSchool of Dentistry, University of São Paulo, Alameda Otávio Pinheiro Brisola, 9-20, BauruBauru, São Paulo, CEP 7012-901, Brazil
| | - Walid D Fakhouri
- School of Dentistry, The University of Texas at Health Science Center at Houston (UTH), 1941 East Road, Houston, TX, 77054, USA
| | - Antonio Hernandes Chaves-Neto
- Department of Basic Sciences, Araçatuba School of Dentistry, SãoPauloStateUniversity-Unesp, Rua José Bonifácio 1192, CEP 160188-05, Araçatuba, São Paulo, Brasil
| | - Cláudia Cristina Biguetti
- School of Podiatric Medicine, The University of Texas at Rio Grande Valley (UTRGV), 2120 Treasure Hills Blvd. Harlingen, Harlingen, TX, 78550, USA
| | - Mariza Akemi Matsumoto
- Department of Basic Sciences, Araçatuba School of Dentistry, SãoPauloStateUniversity-Unesp, Rua José Bonifácio 1192, CEP 160188-05, Araçatuba, São Paulo, Brasil.
| |
Collapse
|
8
|
Feng Z, Wang T, Sun Y, Chen S, Hao H, Du W, Zou H, Yu D, Zhu H, Pang Y. Sulforaphane suppresses paraquat-induced oxidative damage in bovine in vitro-matured oocytes through Nrf2 transduction pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114747. [PMID: 36907095 DOI: 10.1016/j.ecoenv.2023.114747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Sulforaphane (SFN), a bioactive phytocompound extracted from cruciferous plants, has received increasing attention due to its vital cytoprotective role in eliminating oxidative free radical through activation of nuclear factor erythroid 2-related factor (Nrf2)-mediated signal transduction pathway. This study aims at a better insight into the protective benefit of SFN in attenuating paraquat (PQ)-caused impairment in bovine in vitro-matured oocytes and the possible mechanisms involved therein. Results showed that addition of 1 μM SFN during oocyte maturation obtained higher proportions of matured oocytes and in vitro-fertilized embryos. SFN application attenuated the toxicological effects of PQ on bovine oocytes, as manifested by enhanced extending capability of cumulus cell and increased extrusion proportion of first polar body. Following incubation with SFN, oocytes exposed to PQ exhibited reduced intracellular ROS and lipid accumulation levels, and elevated T-SOD and GSH contents. SFN also effectively inhibited PQ-mediated increase in BAX and CASPASE-3 protein expressions. Besides, SFN promoted the transcription of NRF2 and its downstream antioxidative-related genes GCLC, GCLM, HO-1, NQO-1, and TXN1 in a PQ-exposed environment, indicating that SFN prevents PQ-caused cytotoxicity through activation of Nrf2 signal transduction pathway. The mechanisms underlying the role of SFN against PQ-induced injury included the inhibition of TXNIP protein and restoration of the global O-GlcNAc level. Collectively, these findings provide novel evidence for the protective role of SFN in alleviating PQ-caused injury, and suggest that SFN application may be an efficacious intervention strategy against PQ cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tengfei Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Reproductive Medicine Center, Huzhou Maternity & Child Health Care Hospital, Huzhou, Zhejiang Province 313000, China
| | - Yawen Sun
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Siying Chen
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haisheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weihua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Yu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
9
|
Elnoury HA, Elgendy SA, Baloza SH, Ghamry HI, Soliman M, Abdel-Aziz EAM. Synergistic impacts of Montelukast and Klotho against doxorubicin-induced cardiac toxicity in Rats. Toxicol Res (Camb) 2022; 11:592-604. [DOI: 10.1093/toxres/tfac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/24/2022] [Accepted: 04/02/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Doxorubicin (DOX) is a powerful antitumor agent with a well-known cardiaotoxic side effects. In the current study, the ameliorative combined impacts of montelukast (Mont) and Klotho against doxorubicin-induced cardiac toxicity were examined. Fifty-six adult male rats (2 months age and weighting 150–200 g) were grouped into 7 groups (8 rats per group). Animals received doxorubicin alone or in combination with either Mont or Klotho. After 2 weeks of treatments, serum samples were examined to assess the changes in cardiac activity biomarkers such as LDH, CK-MB, cardiac troponin-I (cTn-I), and heart fatty acid binding protein (H-FABP). Serum changes of IL-6, inducible nitric oxide synthase (iNOS), and caspase-3 levels were assayed. The oxidative stress biomarkers such as total antioxidant capacity (TAC) and inflammatory (rat IL-1β and rat TNF-α,) and anti-inflammatory (rat IL-10) cytokines were examined. Heart histology and transforming growth factor-β1 (TGF-β1) immunoreactivity were measured. DOX induced cardiomyopathy, which was reflected by the increases in all examined cardiac parameters. Real-time PCR confirmed that DOX upregulated the expression of TNF-α and IL-1β and decreased the expression of IL-10. Moreover, DOX showed marked elevation in the ST segment T wave complex, causing profound tachycardia. Heart histology assessments showed cardiac cell necrosis, inflammatory cell infiltration, interstitial congestion, and increased TGF-β1 immunoreactivity. Montelukast and Klotho administration ameliorated all the altered parameters when administered alone or in combination to DOX-intoxicated rats. Klotho was more effective compared with montelukast in terms of reductions in heart rate, ST segment T wave complex elevation, cardiac enzymes (lactate dehydrogenase; LDH, creatine kinase-MB; CK-MB, cardiac troponin I; cTn-I, heart fatty acid binding protein; H-FABP) cardiac histology, and caspase-3 levels and increases in TAC activity. Montelukast was more effective in reducing serum levels of IL6 and iNOS, expression of TNF-α and IL-1β, and the upregulation of IL-10 expression. The co-administration of both drugs led to significantly more synergistic results in terms of reducing cardiac toxicity. In conclusion, montelukast and Klotho either alone or in combination were confirmed to be effective in suppressing DOX-induced cardiac toxicity in rats.
Collapse
Affiliation(s)
- Heba A Elnoury
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Salwa A Elgendy
- Department of Pharmacology , Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Samar H Baloza
- Genetic and Genetic Engineering , Animal Wealth Development Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Heba I Ghamry
- Department of Home Economics , College of Home Economics, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Mohamed Soliman
- Clinical Laboratory Sciences Department , Turabah University College, Taif University, 21995, Saudi Arabia
| | | |
Collapse
|
10
|
El-Kashef DH, Zaghloul RA. Ameliorative effect of montelukast against carbon tetrachloride-induced hepatotoxicity: Targeting NLRP3 inflammasome pathway. Life Sci 2022; 304:120707. [PMID: 35690106 DOI: 10.1016/j.lfs.2022.120707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 12/16/2022]
Abstract
AIMS Montelukast, a selective antagonist of type 1 cysteinyl-leukotriene receptors, has antioxidant and anti-inflammatory abilities. This study aimed to explore its hepatoprotective impact against CCl4-induced hepatotoxicity compared to a standard hepatoprotective agent, silymarin. MAIN METHODS Twenty-four albino mice were used in this study, CCl4 (1 mL/kg of 1:1 v/v CCl4:olive oil) was singly injected in mice, and montelukast was administered in a dose of 10 mg/kg. KEY FINDINGS Results revealed that montelukast significantly improved CCl4-induced alterations in both structure and function of the liver, verified respectively through histopathology and by the reduced levels of ALT, AST, ALP, and GGT upon comparison with CCl4. Also, montelukast prevented the induction of oxidative stress via decreasing hepatic MDA content and enhancing GSH levels. Moreover, montelukast produced a profound decrease in the levels of hepatic NLRP3 and its adaptor protein, ASC, and a reduction in the pro-inflammatory markers, NF-κB, IL-1β, TNF-α, and IL-6. In addition, montelukast markedly reduced liver fibrosis, as illustrated by Masson Trichrome, and the decreased hepatic levels of TGF-β and α-SMA. Furthermore, montelukast efficiently decreased apoptosis as manifested by the decreased hepatic level of Caspase 3. SIGNIFICANCE Montelukast protected against CCl4-induced hepatotoxicity via exerting antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
11
|
Onur B, Çavuşoğlu K, Yalçin E, Acar A. Paraquat toxicity in different cell types of Swiss albino mice. Sci Rep 2022; 12:4818. [PMID: 35314741 PMCID: PMC8938524 DOI: 10.1038/s41598-022-08961-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, toxicity caused by 50, 100 and 200 mg/kg b.w doses of Paraquat herbicide in Swiss albino mice was investigated. Body weight, liver and kidney organ weights, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) enzyme activities, blood urea nitrogen (BUN) and creatinine levels, malondialdehyde (MDA) and glutathione (GSH) levels in liver and kidney, micronucleus (MN) formation in buccal mucosal epithelium, erythrocyte and leukocyte cells and chromosomal aberrations (CAs) in bone marrow cells, viability of liver and kidney cells were investigated. Four groups were randomly formed from male Swiss albino mice (one control and three treatment groups). The control group mice were provided tap water and the mice in the treatment groups were treated orally with three different doses of Paraquat (50, 100 and 200 mg/kg b.w) in the drinking water for 28 days. At the end of the application, all mice were sacrificed and routine preparation procedures were carried out to examine physiological, biochemical, oxidative stress and genetic parameters. Paraquat administration decreased physiological parameters (body, liver and kidney organ weights), and increased biochemical parameters (AST, ALT, BUN, creatinine and MDA). GSH levels were decreased depending on the dose. Kidney and liver damage were confirmed by the trypan blue test. Paraquat administration promoted MN formation in buccal mucosal epithelium, erythrocyte and leukocyte cells depending on the dose. The highest MN frequency was observed in leukocyte cells exposed to a dose of 200 mg/kg b.w of Paraquat. Deteriorations in DNA integrity as a result of MN formations were supported by the comet assay. In addition, Paraquat promoted CAs such as break, fragment, acentric, dicentric, gap and ring in bone marrow cells. Break damage was the most common among these damages. These observed genotoxic effects occured as a result of the interaction of DNA and DNA-related proteins with Paraquat. Molecular docking studies showed that Paraquat binds to histone H4 protein with high affinity and has a high intercalation potential. As a result, Paraquat herbicide caused a significant toxicity by changing physiological, biochemical, oxidative stress and genetic parameters of Swiss albino mice depending on the application dose.
Collapse
Affiliation(s)
- Bilal Onur
- Department of Biology, Graduate School of Natural and Applied Sciences, Giresun University, 28200, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey.
| | - Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey
| |
Collapse
|
12
|
Fei Z, Zhang L, Wang L, Jiang H, Peng A. Montelukast ameliorated pemetrexed-induced cytotoxicity in hepatocytes by mitigating endoplasmic reticulum (ER) stress and nucleotide oligomerization domain-like receptor protein 3 (NLRP3) activation. Bioengineered 2022; 13:7894-7903. [PMID: 35291928 PMCID: PMC9208499 DOI: 10.1080/21655979.2022.2051689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pemetrexed (PEM) is an effective chemotherapeutic drug used for the treatment of clinical non-small-cell lung cancer (NSCLC) and is reported to induce severe hepatotoxicity. Exploring potential drugs which could counteract the side effects of PEM is of great clinical interest. Here, we aim to examine the beneficial effects of Montelukast, a novel anti-asthma drug, against PEM-induced cytotoxicity in hepatocytes, and to explore the underlying mechanism. We found that Montelukast reduces cytotoxicity of PEM in hepatocytes, confirmed by its increasing cell viability and reducing lactate dehydrogenase (LDH) release. In addition, Montelukast attenuated PEM-induced oxidative stress by reducing mitochondrial reactive oxygen species (ROS), increasing reduced glutathione (GSH), and downregulating NADPH oxidase 4 (NOX-4) expression. Importantly, Montelukast suppressed PEM-induced activation of the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome and mitigated endoplasmic reticulum (ER) stress by reducing NLRP3, growth arrest, and DNA damage-inducible protein 34 (GADD34), CEBP-homologous protein (CHOP), and also blocking the eukaryotic initiation factor 2 (eIF-2α)/activating transcription factor 4 (ATF4) signaling pathway. Lastly, we found that Montelukast inhibited the transcriptional activity of nuclear factor kappa-B (NF-κB). Montelukast exerted a protective action against PEM-induced cytotoxicity in hepatocytes by mitigating ER stress and NLRP3 activation.
Collapse
Affiliation(s)
- Zhengdong Fei
- Department of Ultrasound, Shuyang Hospital, the Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Lu Zhang
- Department of Ultrasound, Shuyang Hospital, the Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Lei Wang
- Department of Ultrasound, Shuyang Hospital, the Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Hui Jiang
- Department of Ultrasound, Shuyang Hospital, the Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Aiqin Peng
- Department of Radiology, Shuyang Hospital, the Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| |
Collapse
|
13
|
Qi M, Wang N, Xiao Y, Deng Y, Zha A, Tan B, Wang J, Yin Y, Liao P. Ellagic acid ameliorates paraquat-induced liver injury associated with improved gut microbial profile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118572. [PMID: 34838710 DOI: 10.1016/j.envpol.2021.118572] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Paraquat, a widely used herbicide, causes environmental pollution, and liver injury in humans and animals. As a natural compound in fruits, ellagic acid (EA) shows anti-inflammatory and antioxidant effects. This study examines the beneficial effects of dietary EA against the paraquat-induced hepatic injury and further explores the underlying molecular mechanisms using a piglet model. Post-weaning piglets are fed basal diet supplemented with 50 mg/kg, 100 mg/kg, or 200 mg/kg EA for 3 weeks. At week 2, hepatic injury is induced by 4 mg/kg paraquat followed by 7 days recovery. EA supplementation significantly mitigates paraquat-induced hepatic fibrosis, steatosis, and high apoptotic rate. In agreement, EA supplementation reduces serum pro-inflammatory levels, ameliorates inflammatory cells infiltration into hepatic tissue, which are associated with suppressed NF-κB signaling during paraquat exposure. In addition, EA supplementation significantly improves activities of antioxidative enzymes which were correlated with activated Nrf2/Keap 1 signaling during paraquat exposure. Furthermore, EA supplementation restores cecal microbial community during paraquat exposure. The protective effect of EA is strongly linked with increased relative abundance of Lactobacillus reuteri and Lactobacillus amylovorus. Taken together, EA supplementation effectively reduced the occurrence of hepatic oxidative damage and inflammation induced by paraquat through modulating cecal microbial communities, which provides a novel nutritional therapeutic strategy for hepatic injury.
Collapse
Affiliation(s)
- Ming Qi
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Nan Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Yuxin Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Yuankun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Andong Zha
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China
| | - Jing Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China.
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410000, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| | - Peng Liao
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, Hunan, China; University of Chinese Academy of Sciences, Beijing, 100008, China
| |
Collapse
|
14
|
Aledani TW, Al-Hayder M, Mohammed S, Al-Mayyahi R. Investigation of montelukast effect on rosuvastatin induced late puberty in rats. J Hum Reprod Sci 2022; 15:228-232. [PMID: 36341010 PMCID: PMC9635377 DOI: 10.4103/jhrs.jhrs_56_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Puberty is a critical process for the development of sexual organs and reproductive ability. It is triggered and regulated by the hormones. Rosuvastatin can delay the onset of puberty through the inhibition of cholesterol and androgen biosynthesis. On the other hand, montelukast has protective effects against various diseases and against reproductive toxicity induced by other medications, but its effects on puberty have not been studied. Aims: Assessment of the protective effect of montelukast against rosuvastatin-induced delayed puberty. Settings and Design: At the university. Materials and Methods: Eighteen male Wistar rats aged 30 days and weighted 50–60 g were distributed to three groups (six rats per group) and intraperitoneally administered every day for 5 days with 0.2 ml of distilled water as control, 10 mg/kg of rosuvastatin and with rosuvastatin + montelukast (10 mg/kg for each drug). These animals’ groups were euthanised on day 50 of age to assess the effect of rosuvastatin alone and with montelukast on the serum levels of the reproductive hormones and histological manifestations and morphometric measurements of the testes. Statistical Analysis Used: One-way analysis of variance and Bonferroni multiple tests were performed to analyse the findings using the GraphPad Prism software. Results: Treatment of rats with rosuvastatin showed a significantly decreased level of testosterone and luteinising hormone as well as histopathological and morphometric alterations in the testicular tissues in comparison with the control. Interestingly, co-treatment of rosuvastatin with montelukast could not reverse or mitigate these changes induced late puberty. Conclusion: There is no protective effect of montelukast against rosuvastatin-induced delayed puberty.
Collapse
|
15
|
Chupradit S, Bokov D, Zamanian MY, Heidari M, Hakimizadeh E. Hepatoprotective and therapeutic effects of resveratrol: A focus on anti-inflammatory and anti- oxidative activities. Fundam Clin Pharmacol 2021; 36:468-485. [PMID: 34935193 DOI: 10.1111/fcp.12746] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
Abstract
Being the most essential organ in the body, the liver performs critical functions. Hepatic disorders, such as alcoholic liver disease, hepatic steatosis, liver fibrosis, non-alcoholic fatty liver disease, hepatocellular carcinoma and hepatic failure, have an impact on the biochemical and physiological functions of the body. The main representative of the flavonoid subgroup of flavones, Resveratrol (RES), exhibits suitable pharmacological activities for treating various liver diseases, such as fatty hepatitis, liver steatosis, liver cancer and liver fibrosis. According to various studies, grapes and red wine are good sources of RES. RES has various health properties; it is anti-inflammatory, anti-apoptotic, anti-oxidative and hepatoprotective against several hepatic diseases and hepatoxicity. Therefore, we performed a thorough research and created a summary of the distinct targets of RES in various stages of liver diseases. We concluded that RES inhibited liver inflammation essentially by causing a significant decrease in the expression of various pro-inflammatory cytokines like TNF-α, IL-1α, IL-1β, and IL-6. It also inhibits the transcription factor nuclear NF-κB that brings about the inflammatory cascade. RES also inhibits the PI3K/Akt/mTOR pathway to induce apoptosis. Additionally, it reduces oxidative stress in hepatic tissue by markedly reducing MDA and NO contents, and significantly increasing the levels of CAT, SOD and reduced GSH, in addition to AST and ALT, against toxic chemicals like CC14, As2O3 and TTA. Due to its anti-oxidant, anti-inflammatory and anti-fibrotic properties, RES reduces liver injury markers. RES is safe natural antioxidant that provides pharmacological rectification of the hepatoxicity of toxic chemicals.
Collapse
Affiliation(s)
- Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Dmitry Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr, Moscow, Russian Federation
| | - Mohammad Yassin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,School of Nahavand Paramedical, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Elham Hakimizadeh
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
16
|
Wang X, Wang X, Zhu Y, Chen X. ADME/T-based strategies for paraquat detoxification: Transporters and enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118137. [PMID: 34536650 DOI: 10.1016/j.envpol.2021.118137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a toxic, organic herbicide for which there is no specific antidote. Although banned in some countries, it is still used as an irreplaceable weed killer in others. The lack of understanding of the precise mechanism of its toxicity has hindered the development of treatments for PQ exposure. While toxicity is thought to be related to PQ-induced oxidative stress, antioxidants are limited in their ability to ameliorate the untoward biological responses to this agent. Summarized in this review are data on the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of PQ, focusing on the essential roles of individual transporters and enzymes in these processes. Based on these findings, strategies are proposed to design and test specific and effective antidotes for the clinical management of PQ poisoning.
Collapse
Affiliation(s)
- Xianzhe Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yanyan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
17
|
Quesada-Vázquez S, Colom-Pellicer M, Navarro-Masip È, Aragonès G, Del Bas JM, Caimari A, Escoté X. Supplementation with a Specific Combination of Metabolic Cofactors Ameliorates Non-Alcoholic Fatty Liver Disease, Hepatic Fibrosis, and Insulin Resistance in Mice. Nutrients 2021; 13:3532. [PMID: 34684533 PMCID: PMC8541294 DOI: 10.3390/nu13103532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) have emerged as the leading causes of chronic liver disease in the world. Obesity, insulin resistance, and dyslipidemia are multifactorial risk factors strongly associated with NAFLD/NASH. Here, a specific combination of metabolic cofactors (a multi-ingredient; MI) containing precursors of glutathione (GSH) and nicotinamide adenine dinucleotide (NAD+) (betaine, N-acetyl-cysteine, L-carnitine and nicotinamide riboside) was evaluated as effective treatment for the NAFLD/NASH pathophysiology. Six-week-old male mice were randomly divided into control diet animals and animals exposed to a high fat and high fructose/sucrose diet to induce NAFLD. After 16 weeks, diet-induced NAFLD mice were distributed into two groups, treated with the vehicle (HFHFr group) or with a combination of metabolic cofactors (MI group) for 4 additional weeks, and blood and liver were obtained from all animals for biochemical, histological, and molecular analysis. The MI treatment reduced liver steatosis, decreasing liver weight and hepatic lipid content, and liver injury, as evidenced by a pronounced decrease in serum levels of liver transaminases. Moreover, animals supplemented with the MI cocktail showed a reduction in the gene expression of some proinflammatory cytokines when compared with their HFHFr counterparts. In addition, MI supplementation was effective in decreasing hepatic fibrosis and improving insulin sensitivity, as observed by histological analysis, as well as a reduction in fibrotic gene expression (Col1α1) and improved Akt activation, respectively. Taken together, supplementation with this specific combination of metabolic cofactors ameliorates several features of NAFLD, highlighting this treatment as a potential efficient therapy against this disease in humans.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Marina Colom-Pellicer
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Èlia Navarro-Masip
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (M.C.-P.); (È.N.-M.); (G.A.)
| | - Josep M. Del Bas
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain;
| | - Xavier Escoté
- Eurecat, Technology Centre of Catalunya, Nutrition and Health Unit, 43204 Reus, Spain; (S.Q.-V.); (J.M.D.B.)
| |
Collapse
|
18
|
Chen J, Su Y, Lin F, Iqbal M, Mehmood K, Zhang H, Shi D. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112711. [PMID: 34455184 DOI: 10.1016/j.ecoenv.2021.112711] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/07/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a cheap and an effective herbicide, which is widely being used worldwide to remove weeds in cultivated crop fields. However, it can cause soil and water pollution, and pose serious harm to the environment and organisms. Several countries have started to limit or prohibit the use of PQ because of the increasing number of human deaths. Its toxicity can damage the organisms with a multi-target mechanism, which has not been fully understood yet. That is why it is hard to treat as well. The current research on PQ focuses on its targeted organ, the lungs, in which PQ mostly trigger pulmonary fibrosis. While there is a lack of systematic research, there are few studies published discussing its toxic effects at systematic level. This review summarizes the major damages caused by PQ in different organisms and partial mechanisms by which it causes these damages. For this purpose, we consulted several research articles that studied the toxicity of PQ in various tissues. We also listed some drugs that can be used to alleviate the toxicity of PQ. However, at present, the effectiveness of these drugs is still being explored in animal experiments and the study of their mechanism will also help in understanding the poisoning mechanism of PQ, which will ultimately lead to effective treatment in future.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Fei Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mujahid Iqbal
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Dayou Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Elrashidy RA, Hasan RA. Modulation of autophagy and transient receptor potential vanilloid 4 channels by montelukast in a rat model of hemorrhagic cystitis. Life Sci 2021; 278:119507. [PMID: 33864816 DOI: 10.1016/j.lfs.2021.119507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
AIMS Hemorrhagic cystitis (HC) is a major urotoxic complication of cyclophosphamide (CPA) therapy. This study investigated the uroprotective effect of montelukast on CPA-induced HC, compared to the efficacy of 2-mercaptoethane sulfonate sodium (MESNA). MAIN METHODS Male albino rats were pretreated with MESNA (40 mg/kg/day, IP) or montelukast (10 mg/kg/day, orally) for three days then received a single dose of CPA (200 mg/kg, IP), 1 h after the last dose, and compared to CPA-treated rats receiving drug vehicle. Age-matched rats were used as controls. Bladders of rats were assessed biochemically, macroscopically and microscopically by light and electron microscope 24 h later. KEY FINDINGS CPA injection contributed to increased bladder weight, urothelial ulceration, vascular congestion, hemorrhage, increased collagen deposition and mast cell infiltration, compared to control rats. Montelukast preconditioning suppressed mast cell infiltration and inflammatory mediators to greater extent than MESNA. Also, montelukast enhanced autophagosomes formation in detrusor myocytes and up-regulated the autophagy-related proteins (beclin-1 & LC3-II), likely through inhibition of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway. Montelukast preconditioning offset the up-regulation of transient receptor potential vanilloid 4 (TRPV4) in urothelial tissue of CPA-treated rats, to greater extent than MESNA. SIGNIFICANCE These results demonstrate the uroprotective effect of montelukast on CPA-induced HC, which appears to be more superior to MESNA. These findings suggest that montelukast can emerge as a novel strategy to protect against CPA-induced urotoxicity.
Collapse
Affiliation(s)
- Rania A Elrashidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Rehab A Hasan
- Histology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
20
|
Chen Y, Zhang H, Chen Y, Jia P, Ji S, Zhang Y, Wang T. Resveratrol and its derivative pterostilbene ameliorate intestine injury in intrauterine growth-retarded weanling piglets by modulating redox status and gut microbiota. J Anim Sci Biotechnol 2021; 12:70. [PMID: 34108035 PMCID: PMC8191009 DOI: 10.1186/s40104-021-00589-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Intestinal disorder is an important factor contributing to growth lag and high rates of morbidity and mortality of piglets with intrauterine growth retardation (IUGR). Resveratrol (RSV) and its derivative pterostilbene (PT) are natural stilbenes possessing various bioactivities, such as antioxidative and anti-inflammatory effects. This study compared the protective potential of RSV and PT on the intestinal redox status and gut microbiota in weanling piglets with IUGR. Methods Eighteen male piglets of normal body weight (NBW) and 54 same-sex IUGR piglets were chosen according to their birth and weaning weights. The NBW piglets accepted a basal diet, while the IUGR piglets were allotted to one of three groups according to their body weight at weaning and received a basal diet, an RSV-supplemented diet (300 mg/kg), or a PT-supplemented diet (300 mg/kg), respectively. Results Compared with IUGR piglets, both RSV and PT improved the IUGR-associated decrease in jejunal villus height and increases in plasma diamine oxidase activity and D-lactate level and jejunal apoptosis of piglets (P < 0.05). Administering RSV and PT also enhanced jejunal superoxide dismutase activity and the mRNA and protein expression of superoxide dismutase 2 of IUGR piglets by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation (P < 0.05). Comparatively, PT was more effective than RSV in elevating the villus height/crypt depth ratio and occludin mRNA and protein levels in the jejunum of IUGR piglets (P < 0.05). PT was also superior to RSV in increasing Nrf2 nuclear translocation and inhibiting malondialdehyde accumulation in the jejunum of IUGR piglets (P < 0.05). Additionally, RSV modulated the composition of cecal microbiota of IUGR piglets, as evidenced by increasing the prevalence of the phylum Bacteroidetes and the genera Prevotella, Faecalibacterium, and Parabacteroides and inhibiting the growth of the phylum Proteobacteria and its genera Escherichia and Actinobacillus (P < 0.05). Moreover, RSV significantly increased the butyrate concentration in the cecum of IUGR piglets (P < 0.05). Conclusion PT is more potent than RSV to prevent intestinal oxidative stress, while RSV has a stronger capacity to regulate gut microbiota compared to PT. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00589-9.
Collapse
Affiliation(s)
- Yanan Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yueping Chen
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yuying Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Street, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
21
|
Gao Y, Hou L, Wang Y, Zhang Y, Zhang S, Li Y, Jiang Y, Zhu C, Sun T, Duan G, Yuan D. Comparison of Pancreatic Damage in Rats for Two Methods of Paraquat Administration. Front Pharmacol 2021; 12:611433. [PMID: 33967752 PMCID: PMC8099104 DOI: 10.3389/fphar.2021.611433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/01/2021] [Indexed: 01/09/2023] Open
Abstract
It is noted that elevated serum amylase levels suggesting pancreatic damage has an association with prognosis in PQ patients. This study aimed to determine whether PQ can cause pancreatic damage. The two conventional models (intragastric infusion (iG) and intraperitoneal injection (iP)) may exhibit different effects on the pancreas depending on whether or not they pass through the digestive tract. In this study, the rats were divided into four groups: the intragastric infusion group (PQ-iG, n = 45), intraperitoneal injection group (PQ-iP, n = 53), normal control group 1 (NC-iG, n = 6) and normal control group 2 (NC-iP, n = 6). Pancreatic damage was compared between groups using serum amylase activity assay, hematoxylin and eosin (H&E) staining, TUNEL assay, and transmission electron microscopy (TEM). Serum amylase levels in group PQ-iG were significantly higher than in group PQ-iP (p < 0.05). Examination of the H&E sections showed damage to the pancreas. Both experimental groups were displayed inflammatory infiltration within 9 h of PQ treatment. After 9 h, patchy necrosis was observed in group PQ-iP, when inflammatory infiltration was still the dominant pathology. Necrosis appeared and gradually worsened in group PQ-iG, in which necrosis was the dominant pathology. The TUNEL assay showed significantly higher numbers of apoptotic cells in the pancreas of PQ-groups than in the control NC- groups (p < 0.05). TEM showed expansive endoplasmic reticulum lumens and mitochondria swelling in the pancreas of the PQ-groups. It is concluded that both methods of modeling could cause pancreatic damage and the type and degree of damage would change over time. Note that pancreatic damage in group PQ-iG was more severe than that in group PQ-iP. Therefore, clinical practitioners should pay close attention to pancreatic damage caused by PQ, especially when the route of PQ administration was oral.
Collapse
Affiliation(s)
- Yanxia Gao
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Hou
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yibo Wang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shoutao Zhang
- Henan Key Laboratory of Bioactive Macromolecules, School of Life Sciences, Zhengzhou, China
| | - Yi Li
- Emergency Department, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Changju Zhu
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoyu Duan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Yuan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Moro MG, Oliveira MDS, Santana MM, de Jesus FN, Feitosa K, Teixeira SA, Franco GCN, Spolidorio LC, Muscará MN, Holzhausen M. Leukotriene receptor antagonist reduces inflammation and alveolar bone loss in a rat model of experimental periodontitis. J Periodontol 2021; 92:e84-e93. [PMID: 33491771 DOI: 10.1002/jper.20-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Leukotrienes (LTs) participate in the process of tissue damage in periodontal disease by leukocyte chemotaxis and osteoclastic activation. The activation of Cysteinyl-LT receptor is associated with increased expression of proinflammatory molecules and osteoclastogenesis. However, its implications on periodontal disease progression have not been studied. The present study evaluated the effect of the cysteinyl-LT receptor antagonist (montelukast [MT]) on ligature-induced experimental periodontitis (EP) in rats. METHODS Adult male Wistar rats were subjected to bilateral ligature-induced periodontitis and orally treated with MT (at doses of 10 or 30 mg/kg/d, MT10, and MT30, respectively). Sham animals had the ligatures immediately removed and received placebo treatment. Sets of animals were euthanized 7, 14, or 21 days after ligature placement and the mandibles were removed for macroscopic evaluation of alveolar bone loss (ABL). In addition, histological analysis of periodontal tissues, myeloperoxidase (MPO) activity of gingival tissues, and periodontal tissue expression of collagen type I, RUNX2, RANK, RANKL, OPG, BLT1, Cys-LTR1, LTA4H, and LTC4S were also analyzed. RESULTS MT significantly reduced ABL at 14 (MT10 and MT30) and 21 days (MT10) (P < 0.05), gingival MPO at 7 (MT10) and 14 days (MT30) (P < 0.05), LTA4H, BLT1 and LTC4S gene expression on day 14 day (MT30, P < 0.05) and increased RUNX2 expression on day 14 (MT30, P < 0.05). CONCLUSION Systemic therapy with MT decreases periodontal inflammation and ABL in ligature-induced periodontitis in rats.
Collapse
Affiliation(s)
- Marcella G Moro
- Department of Stomatology, Discipline of Periodontology, School of Dentistry, University of São Paulo (FOUSP), São Paulo, São Paulo, Brazil
| | - Marilia D S Oliveira
- Department of Stomatology, Discipline of Periodontology, School of Dentistry, University of São Paulo (FOUSP), São Paulo, São Paulo, Brazil
| | - Maria M Santana
- Department of Stomatology, Discipline of Periodontology, School of Dentistry, University of São Paulo (FOUSP), São Paulo, São Paulo, Brazil
| | - Flavia N de Jesus
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Karla Feitosa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Simone A Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Gilson C N Franco
- Department of Dentistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Luis Carlos Spolidorio
- Department of Oral Pathology, Dental School of Araraquara, State University of São Paulo (UNESP) Araraquara, São Paulo, Brazil
| | - Marcelo N Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, São Paulo, Brazil
| | - Marinella Holzhausen
- Department of Stomatology, Discipline of Periodontology, School of Dentistry, University of São Paulo (FOUSP), São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Kheiripour N, Plarak A, Heshmati A, Asl SS, Mehri F, Ebadollahi-Natanzi A, Ranjbar A, Hosseini A. Evaluation of the hepatoprotective effects of curcumin and nanocurcumin against paraquat-induced liver injury in rats: Modulation of oxidative stress and Nrf2 pathway. J Biochem Mol Toxicol 2021; 35:e22739. [PMID: 33544450 DOI: 10.1002/jbt.22739] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/12/2020] [Accepted: 01/28/2021] [Indexed: 12/27/2022]
Abstract
Paraquat (PQ) is a widely used herbicide all over the world, which is highly toxic for animals and humans. Its cytotoxicity is based on reactive radical generation. The aim of this study is to evaluate and compare the hepatoprotective effects of curcumin and nanocurcumin against liver damage caused by sub-acute exposure with PQ via modulation of oxidative stress and genes expression of nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Rats were exposed to PQ (5 mg/kg/day, orally) + curcumin or nanocurcumin (100 mg/kg/day, orally) for 7 days. Then rats were anesthetized and serum and liver samples were collected. Next, serum enzymatic activities, liver histopathology, oxidative stress, and expression of genes involved in Nrf2 signaling pathway were assessed by biochemical and enzyme-linked immunosorbent assay methods, hematoxylin and eosin staining, and real-time polymerase chain reaction analysis. PQ significantly increased malondialdehyde, alanine transaminase, aspartate aminotransferase, alkaline phosphatase levels, and Kelch-like ECH-associated protein 1 gene expression and also decreased total antioxidant capacity, total thiol group levels, Glutathione S-transferases, heme oxygenase 1, Nrf2, and NAD(P)H:quinone oxidoreductase 1 genes expression, causing histological damages to liver tissue. These changes were significantly modulated by curcumin and nanocurcumin treatments. Our findings showed that nanocurcumin had better hepatoprotective effect than curcumin in liver damage after PQ exposure most likely through modulation of oxidative stress and genes expression of Nrf2 pathway.
Collapse
Affiliation(s)
- Nejat Kheiripour
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Plarak
- Department of Pharmacology and Toxicology, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Heshmati
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Ebadollahi-Natanzi
- Medicinal plants Department, Imam Khomeini Higher Education Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Ranjbar
- Department of Pharmacology and Toxicology, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Asieh Hosseini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Zhang ZD, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. The Protective Effect of Aspirin Eugenol Ester on Paraquat-Induced Acute Liver Injury Rats. Front Med (Lausanne) 2020; 7:589011. [PMID: 33392217 PMCID: PMC7773779 DOI: 10.3389/fmed.2020.589011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022] Open
Abstract
Aspirin eugenol ester (AEE) possesses anti-inflammatory and anti-oxidative effects. The study was conducted to evaluate the protective effect of AEE on paraquat-induced acute liver injury (ALI) in rats. AEE was against ALI by decreasing alanine transaminase and aspartate transaminase levels in blood, increasing superoxide dismutase, catalase, and glutathione peroxidase levels, and decreasing malondialdehyde levels in blood and liver. A total of 32 metabolites were identified as biomarkers by using metabolite analysis of liver homogenate based on ultra-performance liquid chromatography-tandem mass spectrometry, which belonged to purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glycerophospholipid metabolism, primary bile acid biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, histidine metabolism, pantothenate, and CoA biosynthesis, ether lipid metabolism, beta-Alanine metabolism, lysine degradation, cysteine, and methionine metabolism. Western blotting analyses showed that Bax, cytochrome C, caspase-3, caspase-9, and apoptosis-inducing factor expression levels were obviously decreased, whereas Bcl-2 expression levels obviously increased after AEE treatment. AEE exhibited protective effects on PQ-induced ALI, and the underlying mechanism is correlated with antioxidants that regulate amino acid, phospholipid and energy metabolism metabolic pathway disorders and alleviate liver mitochondria apoptosis.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
25
|
Gao Y, Hou L, Wang Y, Guo S, Yuan D, Jiang Y, Duan G, Zhang Y, Xu Z, Che L, Sun C, Li S, Zhang S, Sun T, Li Y. Octreotide alleviates pancreatic damage caused by paraquat in rats by reducing inflammatory responses and oxidative stress. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103456. [PMID: 32673753 DOI: 10.1016/j.etap.2020.103456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/23/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
This study explores the efficacy and mechanism by which octreotide (OCT) alleviates paraquat (PQ)-induced pancreatic injury. Twenty-four adult male rats were randomly divided into three groups: the normal control (NC), PQ poisoning, and OCT treatment groups. The PQ-induced pancreatic injury rat model was established by administering PQ (120 mg/kg). Treatment group rats received OCT (8 μg/kg body weight) every 8 h by subcutaneous injection, 1 h after PQ administration. Rats were euthanized 24 h after PQ injection. Serum amylase, lipase, tumor necrosis factor-α, and interleukin-6 levels were markedly increased in the PQ group versus the NC group. In pancreatic tissue, PQ poisoning drastically induced necrosis and increased inflammatory cytokine and oxidative stress marker levels. Compared with the PQ group, OCT reduced pancreatic damage and histological scores, serum amylase, lipase, and inflammatory cytokine levels, as well as oxidative stress. OCT demonstrates protective effects against PQ-induced pancreatic damage through anti-inflammatory and antioxidant actions.
Collapse
Affiliation(s)
- Yanxia Gao
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Linlin Hou
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yibo Wang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shigong Guo
- Caversham Rehabilitation Ward, Royal Berkshire Hospital, Reading, UK
| | - Ding Yuan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Ya'nan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guoyu Duan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan Zhang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhigao Xu
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lu Che
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Changhua Sun
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sujuan Li
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shoutao Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tongwen Sun
- General Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yi Li
- Emergency Department, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing 100730, China.
| |
Collapse
|
26
|
Zhang ZD, Huang MZ, Yang YJ, Liu XW, Qin Z, Li SH, Li JY. Aspirin Eugenol Ester Attenuates Paraquat-Induced Hepatotoxicity by Inhibiting Oxidative Stress. Front Physiol 2020; 11:582801. [PMID: 33192594 PMCID: PMC7642976 DOI: 10.3389/fphys.2020.582801] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Aspirin eugenol ester (AEE) is a new potential drug with anti-inflammatory and antioxidant stress pharmacological activity. Paraquat (PQ) is an effective and commercially important herbicide that is widely used worldwide. However, paraquat is highly toxic and can cause various complications and acute organ damage, such as liver, kidney and lung damage. The purpose of this study was to investigate whether AEE has a protective effect on hepatotoxicity induced by PQ in vivo and in vitro. Cell viability, apoptosis rate, mitochondrial function and intracellular oxidative stress were detected to evaluate the protective effect of AEE on PQ-induced BRL-3A (normal rat hepatocytes) cytotoxicity in vitro. In vivo, AEE pretreatment could attenuate oxidative stress and histopathological changes in rat liver induced by PQ. The results showed that AEE could reduce the hepatotoxicity induced by PQ in vivo and in vitro. AEE reduced PQ-induced hepatotoxicity by inhibitingoxidative stress and maintaining mitochondrial function. This study proved that AEE is an effective antioxidant and can reduce the hepatotoxicity of PQ.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Mei-Zhou Huang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Shi-Hong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
27
|
El-Kashef DH, Abdelrahman RS. Montelukast ameliorates Concanavalin A-induced autoimmune hepatitis in mice via inhibiting TNF-α/JNK signaling pathway. Toxicol Appl Pharmacol 2020; 393:114931. [PMID: 32109511 DOI: 10.1016/j.taap.2020.114931] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Concanavalin A (ConA) is a well-established model to induce autoimmune hepatitis (AIH) in mice which mimics pathological alterations that occur in human. The pathogenesis of ConA-induced AIH involves many signaling pathways. Montelukast is a leukotriene receptor antagonist that is mainly used in the management of asthma. The antioxidant, anti-inflammatory and anti-apoptotic effects of montelukast have been reported in previous studies. Lately, montelukast has been documented to confer protection against various inflammatory diseases. Up to date, no study has explored the effect of montelukast on AIH induced by ConA. AIM AND METHOD This study aims to detect the protective effects of montelukast (10 mg/kg) on ConA (20 mg/kg)- induced AIH in mice and to demonstrate its hepatoprotective mechanisms. Hepatic function, histological changes, oxidative stress, inflammation, autophagy, and apoptotic markers were investigated. RESULTS Hepatic function and histological data revealed that treatment with montelukast significantly attenuated ConA-induced hepatic damage. Montelukast significantly reduced JNK level and NFκB p65 expression, and inhibited proinflammatory cytokines (TNF-α and IL-6) as well as oxidative stress (MDA, NO, and GSH). Moreover, inflammatory cells (CD4+ infiltration and the levels of apoptotic markers (Bax and caspase-3) besides autophagy biomarkers (Beclin1 and LC3) were reduced. CONCLUSION Our results suggest that montelukast could be a potential therapeutic drug against the ConA-induced AIH through its anti-oxidant, anti-inflammatory, anti- autophagy as well as anti-apoptotic properties.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rehab S Abdelrahman
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Al-Madina Al-Munawwarah, 30001, Saudi Arabia. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
28
|
Eftekhari A, Hasanzadeh A, Khalilov R, Hosainzadegan H, Ahmadian E, Eghbal MA. Hepatoprotective role of berberine against paraquat-induced liver toxicity in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:4969-4975. [PMID: 31845254 DOI: 10.1007/s11356-019-07232-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Paraquat (PQ) is a herbicide agent commonly used in agricultural applications. Hepatotoxicity is among clinical complications associated with PQ intoxication. Oxidative stress and its subsequent events are major mechanisms identified in PQ-induced liver toxicity. Berberine (BBR) is a natural antioxidant widely investigated for its hepatoprotective effects. The present study designed to evaluate the potential cytoprotective properties of BBR against PQ-induced cytotoxicity in primary cultured rat hepatocytes and in vivo test of liver function enzymes. Cellular and biochemical parameters including lactate dehydrogenase (LDH), cell viability, ROS formation, glutathione (GSH) content, and mitochondrial membrane potential in the PQ-treated hepatocytes were measured, and the mentioned markers were evaluated in the presence of BBR. BBR treatment caused significant decrease in PQ-induced cell death, ROS formation, and LDH release. On the other hand, it was found that BBR inhibits cellular glutathione depletion in PQ-treated hepatocytes. Also, BBR treatment significantly diminished PQ-induced the liver function enzyme elevation. These data mention the potential hepatoprotective effect of BBR with therapeutic capability against PQ-induced liver damage.
Collapse
Affiliation(s)
| | | | - Rovshan Khalilov
- Russian Institute for Advanced Study, Moscow State Pedagogical University, 1/1, Malaya Pirogovskaya St, Moscow, Russian Federation, 119991
- Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine & Baku, Azerbaijan
| | | | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Ali Eghbal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Qian JY, Deng P, Liang YD, Pang L, Wu LC, Yang LL, Zhou Z, Yu ZP. 8-Formylophiopogonanone B Antagonizes Paraquat-Induced Hepatotoxicity by Suppressing Oxidative Stress. Front Pharmacol 2019; 10:1283. [PMID: 31708790 PMCID: PMC6821879 DOI: 10.3389/fphar.2019.01283] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/07/2019] [Indexed: 01/15/2023] Open
Abstract
Flavonoids are some of the most important natural products with a variety of physiological activities. 8-Formylophiopogonanone B (8-FOB) is a naturally existing homoisoflavonoid in Ophiopogon japonicus. Paraquat (PQ) has been widely used as a potent herbicide and has high toxicity in humans. The goal of the present study was to investigate whether 8-FOB could protect against PQ-induced hepatotoxicity in vitro and in vivo. We first tested the protective effects of 8-FOB on PQ-induced cytotoxicity in L02 cells by determining cell viability, intracellular oxidative stress levels, mitochondrial function, and apoptosis in vitro. To verify the protective effects of 8-FOB, we pretreated mice with 8-FOB and assessed liver function, hepatic oxidative stress, and histopathological changes after PQ administration. Our results revealed that 8-FOB could antagonize PQ-induced hepatotoxicity in vitro and in vivo. The antagonistic effects could be attributed to suppressing oxidative stress, preserving mitochondrial function, and inhibiting apoptosis. The present study is the first to document that 8-FOB, a homoisoflavonoid compound, is an effective antioxidant for antagonizing PQ-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jing-Yu Qian
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yi-Dan Liang
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Li Pang
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Li-Chuan Wu
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Ling-Ling Yang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhouv Zhou
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| | - Zheng-Ping Yu
- Department of Cell Biology, School of Life Sciences and School of Medicine, Guangxi University, Nanning, China
| |
Collapse
|
30
|
Pu S, Liu Q, Li Y, Li R, Wu T, Zhang Z, Huang C, Yang X, He J. Montelukast Prevents Mice Against Acetaminophen-Induced Liver Injury. Front Pharmacol 2019; 10:1070. [PMID: 31620001 PMCID: PMC6759817 DOI: 10.3389/fphar.2019.01070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/22/2019] [Indexed: 02/05/2023] Open
Abstract
Acetaminophen (APAP) is a widely used over-the-counter antipyretic and analgesic drug. Overdose of APAP is the leading cause of hospital admission for acute liver failure. Montelukast is an antagonist of cysteinyl leukotriene receptor 1 (Cysltr1), which protects from inflammation and oxidative stress. However, the function of montelukast in APAP-induced hepatotoxicity remains unknown. In this study, we examined whether pharmacological inhibition of Cystlr1 could protect mice against APAP-induced hepatic damage. We found that APAP treatment upregulated messenger RNA and protein levels of Cysltr1 both in vitro and in vivo. Pharmacological inhibition of Cysltr1 by montelukast ameliorated APAP-induced acute liver failure. The hepatoprotective effect of montelukast was associated with upregulation of hepatic glutathione/glutathione disulfide level, reduction in c-Jun-NH2-terminal kinase activation and oxidative stress. In mouse primary hepatocytes, inhibition of Cysltr1 by montelukast ameliorated the expression of inflammatory-related genes and APAP-induced cytotoxicity. We conclude that montelukast may be used to treat APAP-induced acute hepatic injury.
Collapse
Affiliation(s)
- Shiyun Pu
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rui Li
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tong Wu
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Zijing Zhang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Cuiyuan Huang
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xuping Yang
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jinhan He
- Department of Pharmacy, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
31
|
Hareedy MS, Ahmed EA, Ali MF. Montelukast modifies simvastatin-induced myopathy and hepatotoxicity. Drug Dev Res 2019; 80:1000-1009. [PMID: 31389048 DOI: 10.1002/ddr.21581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/07/2019] [Accepted: 07/22/2019] [Indexed: 12/17/2022]
Abstract
Montelukast (MNK) has prominent anti-inflammatory and antioxidant activities. It can protect the liver in different hepatotoxic models in animals. Simvastatin (SMV) is one of commonly used lipid lowering drugs for treatment of dyslipidemia in order to reduce cardiovascular disease. It has severe side effects such as myopathy and hepatotoxicity. The aim of the present study is to investigate the possible effect of MNK on SMV-induced myopathy and hepatotoxicity. Four groups of male rats: control group which received saline via stomach tube, MNK treated group (received 10 mg/kg/day MNK via stomach tube), SMV treated group (received 30 mg/kg/day SMV via stomach tube), and MNK + SMV (combination) group which received both MNK and SMV. All animals were treated for 14 days before obtaining blood and tissue samples. SMV has both hepatotoxic effects and myopathy. SMV caused a significant increase in myoglobin, creatinine kinase, ALT, AST, ALP, and bilirubin but, it decreased total proteins, globulin and albumin levels. Co-treatment of SMV and MNK increased the antioxidant activity significantly. MNK modifies partially the myopathic changes and hepatotoxic effect of SMV. Co-administration of MNK and SMV decreased their toxic potentials on the liver, skeletal muscles, and kidney. They have antioxidant activities when given together that produce muscle and hepatic protective effects.
Collapse
Affiliation(s)
- Mohammad S Hareedy
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Esraa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa F Ali
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
32
|
Yao J, Zhang J, Tai W, Deng S, Li T, Wu W, Pu L, Fan D, Lei W, Zhang T, Dong Z. High-Dose Paraquat Induces Human Bronchial 16HBE Cell Death and Aggravates Acute Lung Intoxication in Mice by Regulating Keap1/p65/Nrf2 Signal Pathway. Inflammation 2019; 42:471-484. [PMID: 30734183 PMCID: PMC6449493 DOI: 10.1007/s10753-018-00956-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Paraquat (PQ) intoxication seriously endangers human beings’ health, however, the underlying mechanisms are still unclear. Here we found that PQ inhibits human bronchial 16HBE cell proliferation and promotes cell apoptosis, necrosis as well as ROS generation in a dose dependent manner. Of note, low-dose PQ (50 μM) induces cell autophagy, increases Nrf2 as well as p65 levels and has little impacts on Keap1, while high-dose PQ (500 μM) inhibits autophagy, upregulates Keap1 as well as downregulates p65 and Nrf2. In addition, we verified that p65 overexpression increases Nrf2 and its downstream targets in 16HBE cells, which are reversed by synergistically knocking down Nrf2. Our further results showed that high-dose PQ’s effects on cell proliferation, apoptosis, ROS levels and autophagy are reversed by p65 overexpression. Besides, the protective effects of overexpressed p65 on high-dose PQ (500 μM) treated 16HBE cells are abrogated by synergistically knocking down Nrf2. In vivo experiments also showed that high-dose PQ promotes inflammatory cytokines secretion, lung fibrosis and cell apoptosis, inhibits cell proliferation in mice models by regulating Keap1/p65/Nrf2 signal pathway. Therefore, we concluded that high-dose PQ (500 μM) inhibits 16HBE cell proliferation and autophagy, promotes cell death and mice lung fibrosis by regulating Keap1/p65/Nrf2 signal pathway.
Collapse
Affiliation(s)
- Jiexiong Yao
- Department of Internal Medicine Ward 5, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou Medical University, Guangzhou, Guangdong, 510507, People's Republic of China
| | - Jihua Zhang
- Department of Pulmonary and Critical Care Medicine, The People Hospital of Yuxi City, Yuxi, China
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road, Kunming, Yunnan, China
| | - Shuhao Deng
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan, China
| | - Ting Li
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan, China
| | - Wenjuan Wu
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan, China
| | - Lin Pu
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan, China
| | - Du Fan
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan, China
| | - Wen Lei
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan, China
| | - Tao Zhang
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan, China
| | - Zhaoxing Dong
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Dianmian Road 374, Kunming, 650101, Yunnan, China.
| |
Collapse
|
33
|
Tian Y, Wu B, Li X, Jin X, Zhang F, Jiang C, Xu W, Li H, Wang H. The Resveratrol Alleviates the Hepatic Toxicity of CuSO 4 in the Rat. Biol Trace Elem Res 2019; 187:464-471. [PMID: 29980948 DOI: 10.1007/s12011-018-1398-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023]
Abstract
Cu is toxic to humans and other animals. Oxidative stress is an important mechanism involved in Cu toxicity. Resveratrol (RSV) is an antioxidative compound, so could counteract Cu toxicity. The aim of this study was to determine whether RSV protects the liver from the effects of CuSO4. Forty male Sprague-Dawley rats (5 weeks old, 110-120 g) were divided into four groups (n = 10 per group), a control group and groups treated with CuSO4 at a dose of 200 mg/kg body weight (BW), RSV at a dose of 15 mg/kg BW, and CuSO4 at a dose of 200 mg/kg BW and RSV at a dose of 15 mg/kg BW. The treatments were orally administered for 30 days. The livers were removed from the rats at the end of the study, and the cytochrome P450, cytochrome b5, Cu, Fe, Zn, glutathione peroxidase, superoxide dismutase, reactive oxygen species, aspartate aminotransferase, and alanine aminotransferase concentrations in the livers were determined. CuSO4 decreased the BW, liver weight, and cytochrome P450, cytochrome b5, Fe, Zn, glutathione peroxidase, and superoxide dismutase concentrations but increased the Cu, aspartate aminotransferase, alanine aminotransferase, and reactive oxygen species concentrations relative to the control group. RSV alleviated the toxic effects of CuSO4 on the liver, indicating that RSV attenuates CuSO4-induced liver injury by decreasing the liver transaminase concentration and oxidative stress, promoting antioxidative activity and cytochrome P450 enzymes, and maintaining balance in the trace element concentrations. The results indicate that RSV could be used to treat CuSO4 toxicity.
Collapse
Affiliation(s)
- Yaping Tian
- Department of Dermatology and Venerology of the First Hospital, Jilin University, Changchun, 130021, China
| | - Bing Wu
- Department of Neurosurgery of China-Japan Union Hospital, Jilin University, Changchun, 130033, China
- Key Laboratory of Radiobiology (Ministry of Health) of Public Health, Jilin University, Changchun, 130033, China
| | - Xiaoping Li
- Department of Pediatric Endocrinology of the First Hospital, Jilin University, Changchun, 130021, China
| | - Xuefei Jin
- Department of Urology of China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Fuqiang Zhang
- Science and Research Center of China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Chunyan Jiang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Wenzhou Xu
- Department of Stomatology, Stomatological Hospital, Jilin University, Changchun, 130021, China
| | - Hang Li
- Department of Hepatobiliary and pancreatic surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism of the First Hospital, Jilin University, Changchun, 130021, China.
- Department of Immunology in College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
34
|
Hegab II, El-Horany HES, Elbatsh MM, Helal DS. Montelukast abrogates prednisolone-induced hepatic injury in rats: Modulation of mitochondrial dysfunction, oxidative/nitrosative stress, and apoptosis. J Biochem Mol Toxicol 2018; 33:e22231. [PMID: 30276927 DOI: 10.1002/jbt.22231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 02/28/2024]
Abstract
The aim of this study was to investigate the protective effect of montelukast (MTK) against prednisolone-induced hepatic injury in rats. Twenty-eight male albino rats were categorized into four equal groups. Group I served as the control group; group II: rats orally received prednisolone (5 mg·kg-1 ·d-1 ) for 30 days; groups III and IV: rats orally received MTK at 10 and 20 mg·kg-1 ·d-1 , respectively, simultaneously with prednisolone for 30 days. Serum liver enzymes, hepatic mitochondrial function, oxidative/nitrosative stress, and inflammatory and apoptotic markers were evaluated, and the results were confirmed by histopathological examination. MTK showed significant hepatic protection evidenced by alleviated histological lesion and improvement of mitochondrial function, oxidative/nitrosative stress, and inflammatory and apoptotic changes induced by prednisolone, with more profound protection in higher MTK dose (20 mg·kg-1 ). In view of these findings, we can conclude that MTK may have hepatoprotective potential, beyond its therapeutic value for asthmatic patients during their course of corticosteroid therapy.
Collapse
Affiliation(s)
| | | | - Maha M Elbatsh
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Tanta, Egypt
| | - Duaa S Helal
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
35
|
Gao C, Huang Q, Lan Q, Feng Y, Tang F, Hoi MPM, Zhang J, Lee SMY, Wang R. A user-friendly herbicide derived from photo-responsive supramolecular vesicles. Nat Commun 2018; 9:2967. [PMID: 30054483 PMCID: PMC6063903 DOI: 10.1038/s41467-018-05437-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022] Open
Abstract
Paraquat, as one of the most widely used herbicides globally, is highly toxic to humans, and chronic exposure and acute ingestion leads to high morbidity and mortality rates. Here, we report user-friendly, photo-responsive paraquat-loaded supramolecular vesicles, prepared via one-pot self-assembly of amphiphilic, ternary host-guest complexes between cucurbit[8]uril, paraquat, and an azobenzene derivative. In this vesicle formulation, paraquat is only released upon UV or sunlight irradiation that converts the azobenzene derivative from its trans- to its cis- form, which in turn dissociates the ternary host-guest complexations and the vesicles. The cytotoxicity evaluation of this vesicle formulation of paraquat on in vitro cell models, in vivo zebrafish models, and mouse models demonstrates an enhanced safety profile. Additionally, the PQ-loaded vesicles' herbicidal activity against a model of invasive weed is nearly identical to that of free paraquat under natural sunlight. This study provides a safe yet effective herbicide formulation.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qingping Lan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yu Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Maggie P M Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Jianxiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| |
Collapse
|