1
|
Wang Z, Zhao X, Lu M, Wang N, Xu S, Min D, Wang L. The role of sirtuins in the regulation of reactive oxygen species in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2025; 480:3501-3520. [PMID: 39920412 DOI: 10.1007/s11010-024-05204-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/28/2024] [Indexed: 02/09/2025]
Abstract
Myocardial ischemia/reperfusion (I/R) injury has high morbidity and mortality rates, posing a significant burden on society. There is an urgent need to understand its pathogenesis and develop effective treatments. Reactive oxygen species (ROS) are crucial for the development of myocardial I/R injury, and inhibiting ROS overproduction is one of the most critical ways to delay myocardial I/R injury. Sirtuins are a group of nicotinic adenine dinucleotide ( +)-dependent histone deacetylases whose members can regulate ROS by modulating various biological processes. Numerous studies have shown that Sirtuins play an essential role in the progression of myocardial I/R injury by regulating ROS. This study focuses on the relationship between myocardial I/R injury and ROS, Sirtuins and ROS, discusses the role of Sirtuins in regulating ROS in myocardial I/R, and summarizes the therapeutic modalities aimed at targeting Sirtuins to modulate ROS in myocardial I/R injury, thereby guiding future research endeavors.
Collapse
Affiliation(s)
- Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan, 250200, China
| | - Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110102, China
| | - Mingjing Lu
- School of Medicine, Qilu Institute of Technology, Jinan, 250200, China
| | - Naiyu Wang
- School of Medicine, Qilu Institute of Technology, Jinan, 250200, China
| | - Shu Xu
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China
| | - Dongyu Min
- Experimental Center of Traditional Chinese Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
| | - Lijie Wang
- Department of Cardiology, the Fourth Affiliated Hospital of China Medical University, Shenyang, 110033, China.
| |
Collapse
|
2
|
Sun Y, Xu J, Zou L, Tan Y, Li J, Xin H, Guo Y, Kong W, Tian D, Bao X, Wan X, Li X, Zhang Z, Yang X, Deng F. Ceria nanoparticles alleviate myocardial ischemia-reperfusion injury by inhibiting cardiomyocyte apoptosis via alleviating ROS mediated excessive mitochondrial fission. Mater Today Bio 2025; 32:101770. [PMID: 40290893 PMCID: PMC12033917 DOI: 10.1016/j.mtbio.2025.101770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Reperfusion through thrombolytic therapy or primary percutaneous coronary intervention is commonly used to deal with acute myocardial infarction. However, the reperfusion procedure is accompanied by myocardial ischemia-reperfusion injury (MIRI). Currently, there is no therapeutics that can effectively deal with MIRI in clinical practice. Herein, the potential of ceria nanoparticles (CNPs) coated by different ligands in the treatment of rat MIRI is evaluated. The results demonstrate that CNPs can effectively modulate the oxidative stress in the heart tissue through the elimination of reactive oxygen species (ROS) and stimulation of endogenous antioxidant system. The inhibition of oxidative stress results in the reduction of p-Drp1 (Ser 616) which is critical in driving the fission and fragmentation of mitochondria. The improved mitochondrial dynamics saves the cardiomyocytes from apoptosis and reduces the acute injury of left ventricular wall during the MIRI. The ejection function of the left ventricle for both the short-term and long-term MIRI rats is well preserved. We therefore believe based on these results that the administration of CNPs is beneficial in the attenuation of MIRI during the acute stage. These findings provide useful information for the future fabrication of inorganic antioxidant nanomedicine for the treatment of MIRI.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Jiabao Xu
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Ling Zou
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Yan Tan
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China
| | - Jie Li
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Haoran Xin
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Weikai Kong
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Dingyuan Tian
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xinyu Bao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xiaoqin Wan
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xiaoxu Li
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China
| | - Zhihui Zhang
- Department of Cardiovascular Medicine, Center for Circadian Metabolism and Cardiovascular Disease, Southwest Hospital, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education of China, Chongqing, 400038, China
| | - Xiaochao Yang
- School of Biomedical Engineering and Medical Imaging, Army Medical University, Chongqing, 400038, China
| | - Fang Deng
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing, 400038, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, 400038, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, 400038, China
| |
Collapse
|
3
|
Asensio-Lopez MDC, Ruiz-Ballester M, Pascual-Oliver S, Bastida-Nicolas FJ, Sassi Y, Fuster JJ, Pascual-Figal D, Soler F, Lax A. AEOL-induced NRF2 activation and DWORF overexpression mitigate myocardial I/R injury. Mol Med 2025; 31:189. [PMID: 40375185 DOI: 10.1186/s10020-025-01242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 05/05/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND The causal relationship between the activation of nuclear factor erythroid 2-related factor 2 (NRF2) and the preservation of SERCA2a function in mitigating myocardial ischemia-reperfusion (mI/R) injury, along with the associated regulatory mechanisms, remains incompletely understood. This study aims to unravel how NRF2 directly or indirectly influences SERCA2a function and its regulators, phospholamban (PLN) and Dwarf Open Reading Frame (DWORF), by testing the pharmacological repositioning of AEOL-10150 (AEOL) in the context of mI/R injury. METHODS C57BL6/J, Nrf2 knockout (Nrf2-/-), and wild-type (Nrf2+/+) mice, as well as human induced pluripotent stem cell-derived cardiomyocytes (hiPSCMs) were subjected to I/R injury. Gain/loss of function techniques, RT-qPCR, western blotting, LC/MS/MS, and fluorescence spectroscopy were utilized. Cardiac dimensions and function were assessed by echocardiography. RESULTS In the early stages of mI/R injury, AEOL administration reduced mitochondrial ROS production, decreased myocardial infarct size, and improved cardiac function. These effects were due to NRF2 activation, leading to the overexpression of the micro-peptide DWORF, consequently enhancing SERCA2a activity. The cardioprotective effect induced by AEOL was diminished in Nrf2-/- mice and in Nrf2/Dworf knockdown models in hiPSCMs subjected to simulated I/R injury. Our data show that AEOL-induced NRF2-mediated upregulation of DWORF disrupts the phospholamban-SERCA2a interaction, leading to enhanced SERCA2a activation and improved cardiac function. CONCLUSIONS Taken together, our study reveals that AEOL-induced NRF2-mediated overexpression of DWORF enhances myocardial function through the activation of the SERCA2a offering promising therapeutic avenues for mI/R injury.
Collapse
Affiliation(s)
- Maria Del Carmen Asensio-Lopez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- R&D Department, Biocardio S.L, El Palmar, Murcia, Spain.
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla and University of Murcia, Ctra. Madrid-Cartagena S/N, Murcia, Spain.
| | - Miriam Ruiz-Ballester
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla and University of Murcia, Ctra. Madrid-Cartagena S/N, Murcia, Spain
| | - Silvia Pascual-Oliver
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla and University of Murcia, Ctra. Madrid-Cartagena S/N, Murcia, Spain
| | - Francisco Jose Bastida-Nicolas
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla and University of Murcia, Ctra. Madrid-Cartagena S/N, Murcia, Spain
| | - Yassine Sassi
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Jose Javier Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Domingo Pascual-Figal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Cardiology Department, Hospital Virgen de La Arrixaca, IMIB-Pascual Parrilla, University of Murcia, El Palmar, Murcia, Spain
| | - Fernando Soler
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla and University of Murcia, Ctra. Madrid-Cartagena S/N, Murcia, Spain
| | - Antonio Lax
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla and University of Murcia, Ctra. Madrid-Cartagena S/N, Murcia, Spain.
| |
Collapse
|
4
|
Bafadam S, Mokhtari B, Vafaee MS, Oscuyi ZZ, Nemati S, Badalzadeh R. Mitochondrial transplantation combined with coenzyme Q 10 induces cardioprotection and mitochondrial improvement in aged male rats with reperfusion injury. Exp Physiol 2025; 110:744-754. [PMID: 38478872 PMCID: PMC12053745 DOI: 10.1113/ep091358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/21/2024] [Indexed: 05/07/2025]
Abstract
Ischaemic heart diseases (IHD) are among the major causes of mortality in the elderly population. Although timely reperfusion is a common treatment for IHD, it causes additional damage to the ischaemic myocardium known as ischaemia-reperfusion (IR) injury. Considering the importance of preventing reperfusion injuries, we aimed to examine the combination effect of mitochondrial transplantation (MT) and coenzyme Q10 (CoQ10) in myocardial IR injury of aged male rats. Seventy-two aged male Wistar rats were randomly divided into six groups: Sham, IR, CoQ10, MT, combination therapy (MT + CoQ10) and vehicle. Myocardial IR injury was established by occlusion of the left anterior descending coronary artery followed by reopening. Young male Wistar rats were used as mitochondria donors. Isolated mitochondria were injected intraventricularly (500 µL of a respiration buffer containing 6 × 106 ± 5 × 105 mitochondria/mL) in MT-receiving groups at the onset of reperfusion. CoQ10 (10 mg/kg/day) was injected intraperitoneally for 2 weeks before IR induction. Twenty-four hours after reperfusion, haemodynamic parameters, myocardial infarct size (IS), lactate dehydrogenase (LDH) release and cardiac mitochondrial function (mitochondrial reactive oxygen species (ROS) generation and membrane potential) were measured. The combination of MT and CoQ10 improved haemodynamic index changes and reduced IS and LDH release (P < 0.05). It also decreased mitochondrial ROS generation and increased membrane potential (P < 0.05). CoQ10 also showed a significant cardioprotective effect. Combination therapy displayed greater cardioprotective effects than single treatments. This study revealed that MT and CoQ10 combination treatment can be considered as a promising cardioprotective strategy to reduce myocardial IR injury in ageing, in part by restoring mitochondrial function.
Collapse
Affiliation(s)
- Soleyman Bafadam
- Molecular Medicine Research Center, Biomedicine InstituteTabriz University of Medical SciencesTabrizIran
- Department of Physiology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Behnaz Mokhtari
- Department of Physiology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Manoucheher Seyedi Vafaee
- Psychiatry Research UnitOdenseDenmark
- Department of Nuclear MedicineOdense University HospitalOdenseDenmark
| | - Zohreh Zavvari Oscuyi
- Department of Physiology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | - Samira Nemati
- Physiology Research CenterSemnan University of Medical SciencesSemnanIran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Biomedicine InstituteTabriz University of Medical SciencesTabrizIran
- Department of Physiology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
5
|
Shi XN, Liu CY, Li L, Yao ML, Zhong Z, Jiang YM. The role and therapeutic potential of mitophagy in major depressive disorder. Front Pharmacol 2025; 16:1564276. [PMID: 40206060 PMCID: PMC11979158 DOI: 10.3389/fphar.2025.1564276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
Major depressive disorder, also known as MDD, affects more than 264 million people globally, making it a prevalent and critical health challenge. Traditional treatments show limited efficacy in many patients. Therefore, exploring new treatment methods is particularly crucial. Mitophagy, as a regulatory process, can help understand and treat MDD. This paper focuses on the molecular mechanisms of mitophagy, starting from proteins and related pathways, and its role in MDD. The study also explores the associations between mitophagy and neuroinflammation, oxidative stress, neurotransmitter synthesis, and neuroplasticity in MDD and discusses the progress of clinical research on the role of mitophagy in MDD. In addition, the article describes the current pharmaceutical and non-pharmaceutical interventions that can regulate mitophagy in MDD and unravels the potential and challenges of these therapeutic strategies in clinical settings. This article offers a deeper insight into the pathogenesis of MDD and offers a scientific basis for the development of new treatment strategies.
Collapse
Affiliation(s)
- Xin-Nuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chen-Yue Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Li
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Li Yao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Zhong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - You-Ming Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Long M, Wang L, Kang L, Liu D, Long T, Ding H, Duan Y, He H, Xu B, Gu N. Prussian Blue Nanozyme Featuring Enhanced Superoxide Dismutase-like Activity for Myocardial Ischemia Reperfusion Injury Treatment. ACS NANO 2025; 19:4561-4581. [PMID: 39835774 DOI: 10.1021/acsnano.4c14445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The blood flow, when restored clinically following a myocardial infarction (MI), disrupts the physiological and metabolic equilibrium of the ischemic myocardial area, resulting in secondary damage termed myocardial ischemia-reperfusion injury (MIRI). Reactive oxygen species (ROS) generation and inflammatory reactions stand as primary culprits behind MIRI. Current strategies focusing on ROS-scavenging and anti-inflammatory actions have limited remission of MIRI. Prussian blue nanozyme (PBNz) exhibits multiple enzyme-like activities including catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), which are beneficial for ROS clearance and fighting inflammation. Herein, a formulation of PBNz coated with polydextrose-sorbitol carboxymethyl ether (PBNz@PSC) was developed to enhance its efficacy, biocompatibility, and safety for the treatment of MIRI. PBNz@PSC not only showed enhanced SOD-like activity due to its polysaccharide attributes but also could passively target the damaged myocardium through the enhanced permeability and retention (EPR) effect. Both in vitro and in vivo studies have validated their excellent biocompatibility, safety, ROS-scavenging ability, and capacity to drive macrophage polarization from M1 toward M2, thereby diminishing the levels of IL-1β, IL-6, and TNF-α to combat inflammation. Consequently, PBNz@PSC can reverse ischemia reperfusion-induced myocardial injury, reduce coronary microvascular obstruction (MVO), and improve myocardial remodeling and cardiac function. Moreover, PBNz@PSC showed more pronounced therapeutic effects for MIRI than a clinical drug, sulfotanshinone IIA sodium. Notably, our findings revealed the possible mechanism of PBNz@PSC in treating MIRI, which mediated AMPK activation. In conclusion, this study presents a pioneering strategy for addressing MIRI, promising improved ischemia-reperfusion outcomes.
Collapse
Affiliation(s)
- Mengmeng Long
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Lintao Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, P. R. China
| | - Dongfang Liu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Medical School, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210003, P. R. China
| | - Tingting Long
- Anqing Municipal Hospital, Anqing Medical Center of Anhui Medical University, AnQing 246003, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Yifan Duan
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Hongliang He
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biomedical Sciences and Medical Engineering, Southeast University, Nanjing 210096, P. R. China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
7
|
Alotaibi K, Arulkumaran N, Dyson A, Singer M. Therapeutic strategies to ameliorate mitochondrial oxidative stress in ischaemia-reperfusion injury: A narrative review. Clin Sci (Lond) 2025; 139:CS20242074. [PMID: 39899361 DOI: 10.1042/cs20242074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Mitochondrial reactive oxygen species (mROS) play a crucial physiological role in intracellular signalling. However, high levels of ROS can overwhelm antioxidant defences and lead to detrimental modifications in protein, lipid and DNA structure and function. Ischaemia-reperfusion injury is a multifaceted pathological state characterised by excessive production of mROS. There is a significant clinical need for therapies mitigating mitochondrial oxidative stress. To date, a variety of strategies have been investigated, ranging from enhancing antioxidant reserve capacity to metabolism reduction. While success has been achieved in non-clinical models, no intervention has yet successfully transitioned into routine clinical practice. In this article, we explore the different strategies investigated and discuss the possible reasons for the lack of translation.
Collapse
Affiliation(s)
- Khalid Alotaibi
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, U.K
- King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Nishkantha Arulkumaran
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, U.K
| | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, U.K
- Centre for Pharmaceutical Medicine Research, Institute of Pharmaceutical Science, King's College London, London, U.K
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, U.K
| |
Collapse
|
8
|
Bafadam S, Mokhtari B, Alihemmati A, Badalzadeh R. Effects of combo therapy with coenzyme Q10 and mitochondrial transplantation on myocardial ischemia/reperfusion-induced arrhythmias in aged rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2025; 28:38-48. [PMID: 39877629 PMCID: PMC11771340 DOI: 10.22038/ijbms.2024.80092.17348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/11/2024] [Indexed: 01/31/2025]
Abstract
Objectives Ischemia/reperfusion (IR)-induced ventricular arrhythmia, which mainly occurs after the opening of coronary artery occlusion, poses a clinical problem. This study aims to investigate the effectiveness of pretreatment with coenzyme Q10 (CoQ10) in combination with mitochondrial transplantation on IR-induced ventricular arrhythmias in aged rats. Materials and Methods Myocardial IR induction was performed by left anterior descending coronary artery occlusion for 30 min, followed by re-opening for 24 hr. CoQ10 was administered intraperitoneally at a dosage of 10 mg/kg/day for two weeks before inducing IR. At the start of reperfusion, 500 µl of the respiration buffer containing 6×106±5×105 mitochondria/ml of respiration buffer harvested from the pectorals major muscle of young donor rats were injected intramyocardially. To investigate arrhythmias, the heart's electrical activity during ischemia and the first 30 min of reperfusion were recorded by electrocardiogram. After 24 hr of reperfusion, cardiac histopathological changes, creatine kinase-MB, nitric oxide metabolites (NOx), oxidative stress markers (malondialdehyde, total anti-oxidant, superoxide dismutase, and glutathione peroxidase), and the expression of genes regulating mitochondrial fission/fusion were measured. Results Pretreatment with CoQ10 in combination with mitochondrial transplantation reduced ventricular arrhythmias, cardiac histopathological changes, and creatine kinase-MB levels. Simultaneously, this combined therapeutic approach increased myocardial NOx levels, fostering an improved oxidative balance. It also triggered the down-regulation of mitochondrial fission genes, coupled with the up-regulation of mitochondrial fusion genes. Conclusion The combination of CoQ10 and mitochondrial transplantation demonstrated a notable anti-arrhythmic effect by elevating NOx levels, reducing oxidative stress, and improving mitochondrial fission/fusion in aged rats with myocardial IRI.
Collapse
Affiliation(s)
- Soleyman Bafadam
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mokhtari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Zou P, He Q, Xia H, Zhong W. Ferroptosis and its impact on common diseases. PeerJ 2024; 12:e18708. [PMID: 39713140 PMCID: PMC11663406 DOI: 10.7717/peerj.18708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Ferroptosis is a novel form of programmed cell death characterized by iron accumulation, lipid peroxidation, and a decline in antioxidant capacity, all of which are regulated by gene expression. The onset of numerous diseases is closely associated with ferroptosis. Common diseases affect a large population, reduce the quality of life, and impose an increased burden on the healthcare system. The role of ferroptosis in common diseases, its therapeutic potential, and even its translation into clinical drug treatments are currently significant research topics worldwide. This study preliminarily explores the theoretical basis of ferroptosis, its mechanism and treatment prospect in common diseases including ischaemia-reperfusion injury, inflammatory bowel diseases, liver fibrosis, acute kidney injury, diabetic kidney disease, stroke, Alzheimer's disease, cardiovascular disease, immune and cancer. This review provides a theoretical foundation for the further study and development of ferroptosis, as well as for the prevention and treatment of common diseases.
Collapse
Affiliation(s)
- Pengjian Zou
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Liu C, Zhang D, Long K, Qi W, Pang L, Li J, Cheng KKY, Cai Y. From exosomes to mitochondria and myocardial infarction: Molecular insight and therapeutic challenge. Pharmacol Res 2024; 209:107468. [PMID: 39426469 DOI: 10.1016/j.phrs.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Myocardial infarction (MI) remains a leading cause of mortality worldwide. Despite patients with MI benefit from timely reperfusion therapies, the rates of mortality and morbidity remain substantial, suggesting an enduring need for the development of new approaches. Molecular mechanisms underlying myocardial ischemic injury are associated with both cardiomyocytes and non-cardiomyocytes. Exosomes are nano-sized extracellular vesicles released by almost all eukaryotic cells. They facilitate the communication between various cells by transferring information via their cargo and altering different biological activities in recipient cells. Studies have created great prospects for therapeutic applications of exosomes in MI, as demonstrated through their beneficial effect on heart function and reducing ventricular remodeling in association with fibrosis, angiogenesis, apoptosis, and inflammation. Of note, myocardial ischemic injury is primarily due to restricted blood flow, reducing oxygen availability, and causing inefficient utilization of energy substrates. However, the impact of exosomes on cardiac energy metabolism has not been adequately investigated. Although exosomes have been engineered for targeted delivery to enhance clinical efficacy, challenges must be overcome to utilize them reliably in the clinic. In this review, we summarize the research progress of exosomes for MI with a focus on the known and unknown regarding the role of exosomes in energy metabolism in cardiomyocytes and non-cardiomyocytes; as well as potential research avenues of exosome-mitochondrial energy regulation as well as therapeutic challenges. We aim to help identify more efficient molecular targets that may promote the clinical application of exosomes.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Dengwen Zhang
- Department of Anesthesiology, Heyuan People's Hospital, Guangdong, China; Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wensheng Qi
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Jia Li
- Department of Neurology, Wuhan No.1 Hospital, Hubei, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
11
|
Yang J, Zhai Y, Huang C, Xiang Z, Liu H, Wu J, Huang Y, Liu L, Li W, Wang W, Yang J, Zhang J. RP105 Attenuates Ischemia/Reperfusion-Induced Oxidative Stress in the Myocardium via Activation of the Lyn/Syk/STAT3 Signaling Pathway. Inflammation 2024; 47:1371-1385. [PMID: 38568415 DOI: 10.1007/s10753-024-01982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 08/24/2024]
Abstract
Although our previous studies have established the crucial role of RP105 in myocardial ischemia/reperfusion injury (MI/RI), its involvement in regulating oxidative stress induced by MI/RI remains unclear. To investigate this, we conducted experiments using a rat model of ischemia/reperfusion (I/R) injury. Adenovirus carrying RP105 was injected apically at multiple points, and after 72 h, the left anterior descending coronary artery was ligated for 30 min followed by 2 h of reperfusion. In vitro experiments were performed on H9C2 cells, which were transfected with recombinant adenoviral vectors for 48 h, subjected to 4 h of hypoxia, and then reoxygenated for 2 h. We measured oxidative stress markers, including superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities, as well as malondialdehyde (MDA) concentration, using a microplate reader. The fluorescence intensity of reactive oxygen species (ROS) in myocardial tissue was measured using a DHE probe. We also investigated the upstream and downstream components of the signal transducer and activator of transcription 3 (STAT3). Upregulation of RP105 increased SOD and GSH-Px activities, reduced MDA concentration, and inhibited ROS production in response to I/R injury in vivo and hypoxia reoxygenation (H/R) stimulation in vitro. The overexpression of RP105 led to a decrease in the myocardial enzyme LDH in serum and cell culture supernatant, as well as a reduction in infarct size. Additionally, left ventricular fraction (LVEF) and fractional shortening (LVFS) were improved in the RP105 overexpression group compared to the control. Upregulation of RP105 promoted the expression of Lyn and Syk and further activated STAT phosphorylation, which was blocked by PP2 (a Lyn inhibitor). Our findings suggest that RP105 can inhibit MI/RI-induced oxidative stress by activating STAT3 via the Lyn/Syk signaling pathway.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Yuhong Zhai
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Cuiyuan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Zujin Xiang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Haiyin Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Jingyi Wu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Yifan Huang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Li Liu
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Wenqiang Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Wei Wang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China.
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yiling Road 183, Yichang, 443000, Hubei, China.
- Hubei Key Laboratory of Ischemic Cardiovascular Disease, Yichang, 443000, China.
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, 443000, China.
| |
Collapse
|
12
|
Liao M, He X, Zhou Y, Peng W, Zhao XM, Jiang M. Coenzyme Q10 in atherosclerosis. Eur J Pharmacol 2024; 970:176481. [PMID: 38493916 DOI: 10.1016/j.ejphar.2024.176481] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Atherosclerotic disease is a chronic disease that predominantly affects the elderly and is the most common cause of cardiovascular death worldwide. Atherosclerosis is closely related to processes such as abnormal lipid transport and metabolism, impaired endothelial function, inflammation, and oxidative stress. Coenzyme Q10 (CoQ10) is a key component of complex Ⅰ in the electron transport chain and an important endogenous antioxidant that may play a role in decelerating the progression of atherosclerosis. Here, the different forms of CoQ10 presence in the electron transport chain are reviewed, as well as its physiological role in regulating processes such as oxidative stress, inflammatory response, lipid metabolism and cellular autophagy. It was also found that CoQ10 plays beneficial effects in atherosclerosis by mitigating lipid transportation, endothelial inflammation, metabolic abnormalities, and thrombotic processes from the perspectives of molecular mechanisms, animal experiments, and clinical evidence. Besides, the combined use of CoQ10 with other drugs has better synergistic therapeutic effects. It seems reasonable to suggest that CoQ10 could be used in the treatment of atherosclerotic cardiovascular diseases while more basic and clinical studies are needed.
Collapse
Affiliation(s)
- Minjun Liao
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xueke He
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China
| | - Yangyang Zhou
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Weiqiang Peng
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiao-Mei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, PR China.
| | - Miao Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
13
|
Zheng D, Cui C, Ye C, Shao C, Zha X, Xu Y, Liu X, Wang C. Coenzyme Q10 prevents RANKL-induced osteoclastogenesis by promoting autophagy via inactivation of the PI3K/AKT/mTOR and MAPK pathways. Braz J Med Biol Res 2024; 57:e13474. [PMID: 38716985 PMCID: PMC11085036 DOI: 10.1590/1414-431x2024e13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/14/2024] [Indexed: 05/12/2024] Open
Abstract
Coenzyme Q10 (CoQ10) is a potent antioxidant that is implicated in the inhibition of osteoclastogenesis, but the underlying mechanism has not been determined. We explored the underlying molecular mechanisms involved in this process. RAW264.7 cells received receptor activator of NF-κB ligand (RANKL) and CoQ10, after which the differentiation and viability of osteoclasts were assessed. After the cells were treated with CoQ10 and/or H2O2 and RANKL, the levels of reactive oxygen species (ROS) and proteins involved in the PI3K/AKT/mTOR and MAPK pathways and autophagy were tested. Moreover, after the cells were pretreated with or without inhibitors of the two pathways or with the mitophagy agonist, the levels of autophagy-related proteins and osteoclast markers were measured. CoQ10 significantly decreased the number of TRAP-positive cells and the level of ROS but had no significant impact on cell viability. The relative phosphorylation levels of PI3K, AKT, mTOR, ERK, and p38 were significantly reduced, but the levels of FOXO3/LC3/Beclin1 were significantly augmented. Moreover, the levels of FOXO3/LC3/Beclin1 were significantly increased by the inhibitors and mitophagy agonist, while the levels of osteoclast markers showed the opposite results. Our data showed that CoQ10 prevented RANKL-induced osteoclastogenesis by promoting autophagy via inactivation of the PI3K/AKT/mTOR and MAPK pathways in RAW264.7 cells.
Collapse
Affiliation(s)
- Delu Zheng
- Department of Endocrinology, The Second Affiliated Hospital of
Bengbu Medical University, Bengbu, Anhui, China
- Hefei Institute of Technology Innovation Engineering, Chinese
Academy of Sciences, Hefei, Anhui, China
| | - Chenli Cui
- The Operative Surgery Laboratory, Bengbu Medical University,
Bengbu, Anhui, China
| | - Chengsong Ye
- Department of Endocrinology, The Second Affiliated Hospital of
Bengbu Medical University, Bengbu, Anhui, China
| | - Chen Shao
- Department of Endocrinology, The Second Affiliated Hospital of
Bengbu Medical University, Bengbu, Anhui, China
| | - Xiujing Zha
- Department of Endocrinology, The Second Affiliated Hospital of
Bengbu Medical University, Bengbu, Anhui, China
| | - Ying Xu
- Department of Endocrinology, The Second Affiliated Hospital of
Bengbu Medical University, Bengbu, Anhui, China
| | - Xu Liu
- Hefei Institute of Technology Innovation Engineering, Chinese
Academy of Sciences, Hefei, Anhui, China
- School of Electronic and Electrical Engineering, Bengbu
University, Bengbu, Anhui, China
- National Engineering Research Center of Coal Mine Water Hazard
Controlling, Suzhou University, Suzhou, Jiangsu, China
- School of Earth and Space Sciences, University of Science and
Technology of China, Hefei, Anhui, China
| | - Can Wang
- Hefei Institute of Technology Innovation Engineering, Chinese
Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
14
|
Pinilla-González V, Montecinos-Barrientos B, Martin-Kommer C, Chichiarelli S, Saso L, Rodrigo R. Exploring antioxidant strategies in the pathogenesis of ALS. Open Life Sci 2024; 19:20220842. [PMID: 38585631 PMCID: PMC10997151 DOI: 10.1515/biol-2022-0842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The central nervous system is essential for maintaining homeostasis and controlling the body's physiological functions. However, its biochemical characteristics make it highly vulnerable to oxidative damage, which is a common factor in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS). ALS is a leading cause of motor neuron disease, characterized by a rapidly progressing and incurable condition. ALS often results in death from respiratory failure within 3-5 years from the onset of the first symptoms, underscoring the urgent need to address this medical challenge. The aim of this study is to present available data supporting the role of oxidative stress in the mechanisms underlying ALS and to discuss potential antioxidant therapies currently in development. These therapies aim to improve the quality of life and life expectancy for patients affected by this devastating disease.
Collapse
Affiliation(s)
- Víctor Pinilla-González
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | | | - Clemente Martin-Kommer
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, P.le Aldo Moro 5, 00185Rome, Italy
| | - Ramón Rodrigo
- Faculty of Medicine, Institute of Biomedical Sciences, University of Chile, Santiago8380000, Chile
| |
Collapse
|
15
|
Zhang Y, Yang J, Ouyang C, Meng N. The association between ferroptosis and autophagy in cardiovascular diseases. Cell Biochem Funct 2024; 42:e3985. [PMID: 38509716 DOI: 10.1002/cbf.3985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Autophagy is a process in which cells degrade intracellular substances and play a variety of roles in cells, such as maintaining intracellular homeostasis, preventing cell overgrowth, and removing pathogens. It is highly conserved during the evolution of eukaryotic cells. So far, the study of autophagy is still a hot topic in the field of cytology. Ferroptosis is an iron-dependent form of cell death, accompanied by the accumulation of reactive oxygen species and lipid peroxides. With the deepening of research, it has been found that ferroptosis, like autophagy, is involved in the occurrence and development of cardiovascular diseases. The relationship between autophagy and ferroptosis is complex, and the association between the two in cardiovascular disease remains to be clarified. This article reviews the mechanism of autophagy and ferroptosis and their correlation, and discusses the relationship between them in cardiovascular diseases, which is expected to provide new and important treatment strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Junjun Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
16
|
Ye T, Chen C, Wang D, Huang C, Yan Z, Chen Y, Jin X, Wang X, Ding X, Shen C. Protective effects of Pt-N-C single-atom nanozymes against myocardial ischemia-reperfusion injury. Nat Commun 2024; 15:1682. [PMID: 38396113 PMCID: PMC10891101 DOI: 10.1038/s41467-024-45927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Effective therapeutic strategies for myocardial ischemia/reperfusion (I/R) injury remain elusive. Targeting reactive oxygen species (ROS) provides a practical approach to mitigate myocardial damage following reperfusion. In this study, we synthesize an antioxidant nanozyme, equipped with a single-Platinum (Pt)-atom (PtsaN-C), for protecting against I/R injury. PtsaN-C exhibits multiple enzyme-mimicking activities for ROS scavenging with high efficiency and stability. Mechanistic studies demonstrate that the excellent ROS-elimination performance of the single Pt atom center precedes that of the Pt cluster center, owing to its better synergistic effect and metallic electronic property. Systematic in vitro and in vivo studies confirm that PtsaN-C efficiently counteracts ROS, restores cellular homeostasis and prevents apoptotic progression after I/R injury. PtsaN-C also demonstrates good biocompatibility, making it a promising candidate for clinical applications. Our study expands the scope of single-atom nanozyme in combating ROS-induced damage and offers a promising therapeutic avenue for the treatment of I/R injury.
Collapse
Affiliation(s)
- Tianbao Ye
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Cheng Chen
- Tongji Hospital, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Di Wang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Chengjie Huang
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zhiwen Yan
- Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yu Chen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Xian Jin
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Xiuyuan Wang
- Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Chengxing Shen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
17
|
Ye X, Zhang S. Clinical Observation of Trimetazidine Combined With Coenzyme Q10 in the Treatment of Myocardial Damage Caused by COVID-19. Am J Ther 2024; 31:e59-e61. [PMID: 38231584 DOI: 10.1097/mjt.0000000000001488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Affiliation(s)
- Xiaochun Ye
- Department of Pharmacy, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, PR China
| | | |
Collapse
|
18
|
Ding X, Zhu C, Wang W, Li M, Ma C, Gao B. SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res 2024; 199:106957. [PMID: 37820856 DOI: 10.1016/j.phrs.2023.106957] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It is involved in the regulation of various pathophysiological processes, including cell proliferation, survival, differentiation, autophagy, and oxidative stress. Therapeutic activation of SIRT1 protects the heart and cardiomyocytes from pathology-related stress, particularly myocardial ischemia/reperfusion (I/R). Autophagy is an important metabolic pathway for cell survival during energy or nutrient deficiency, hypoxia, or oxidative stress. Autophagy is a double-edged sword in myocardial I/R injury. The activation of autophagy during the ischemic phase removes excess metabolic waste and helps ensure cardiomyocyte survival, whereas excessive autophagy during reperfusion depletes the cellular components and leads to autophagic cell death. Increasing research on I/R injury has indicated that SIRT1 is involved in the process of autophagy and regulates myocardial I/R. SIRT1 regulates autophagy through various pathways, such as the deacetylation of FOXOs, ATGs, and LC3. Recent studies have confirmed that SIRT1-mediated autophagy plays different roles at different stages of myocardial I/R injury. By targeting the mechanism of SIRT1-mediated autophagy at different stages of I/R injury, new small-molecule drugs, miRNA activators, or blockers can be developed. For example, resveratrol, sevoflurane, quercetin, and melatonin in the ischemic stage, coptisine, curcumin, berberine, and some miRNAs during reperfusion, were involved in regulating the SIRT1-autophagy axis, exerting a cardioprotective effect. Here, we summarize the possible mechanisms of autophagy regulation by SIRT1 in myocardial I/R injury and the related molecular drug applications to identify strategies for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoqing Ding
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wenhong Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Mengying Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chunwei Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Binghong Gao
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
19
|
Yazdi A, Shirmohammadi K, Parvaneh E, Entezari-Maleki T, Hosseini SK, Ranjbar A, Mehrpooya M. Effects of coenzyme Q10 supplementation on oxidative stress biomarkers following reperfusion in STEMI patients undergoing primary percutaneous coronary intervention. J Cardiovasc Thorac Res 2023; 15:250-261. [PMID: 38357568 PMCID: PMC10862029 DOI: 10.34172/jcvtr.2023.31817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/11/2023] [Indexed: 02/16/2024] Open
Abstract
Introduction It is well-established that oxidative stress is deeply involved in myocardial ischemia-reperfusion injury. Considering the potent antioxidant properties of coenzyme Q10 (CoQ10), we aimed to assess whether CoQ10 supplementation could exert beneficial effects on plasma levels of oxidative stress biomarkers in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPIC). Methods Seventy patients with the first attack of STEMI, eligible for PPCI were randomly assigned to receive either standard treatments plus CoQ10 (400 mg before PPCI and 200 mg twice daily for three days after PPCI) or standard treatments plus placebo. Plasma levels of oxidative stress biomarkers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured at 6, 24, and 72 hours after completion of PPCI. Results The changes in plasma levels of the studied biomarkers at 6 and 24 hours after PPCI were similar in the both groups (P values>0.05). This is while at 72 hours, the CoQ10- treated group exhibited significantly higher plasma levels of SOD (P value<0.001), CAT (P value=0.001), and TAC (P value<0.001), along with a lower plasma level of MDA (P value=0.002) compared to the placebo-treated group. The plasma activity of GPX showed no significant difference between the groups at all the study time points (P values>0.05). Conclusion This study showed that CoQ10 has the potential to modulate the balance between antioxidant and oxidant biomarkers after reperfusion therapy. Our results suggest that CoQ10, through its antioxidant capacity, may help reduce the reperfusion injury in ischemic myocardium.
Collapse
Affiliation(s)
- Amirhossein Yazdi
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Kimia Shirmohammadi
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Erfan Parvaneh
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kianoosh Hosseini
- Department of Cardiology, School of Medicine, Clinical Research Development Unit of Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Pharmacology Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Mehrpooya
- Department of Clinical Pharmacy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
20
|
Tan X, Yang X, Xu X, Peng Y, Li X, Deng Y, Zhang X, Qiu W, Wu D, Ruan Y, Zhi C. Investigation of anti-diabetic effect of a novel coenzyme Q10 derivative. Front Chem 2023; 11:1280999. [PMID: 37927560 PMCID: PMC10620959 DOI: 10.3389/fchem.2023.1280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction: The rising incidence of type 2 diabetes has seriously affected international public health. The search for more drugs that can effectively treat diabetes has become a cutting-edge trend in research. Coenzyme Q10 (CoQ10) has attracted much attention in the last decade due to its wide range of biological activities. Many researchers have explored the clinical effects of CoQ10 in patients with type 2 diabetes. However, CoQ10 has low bio-availability due to its high lipophilicity. Therefore, we have structurally optimized CoQ10 in an attempt to exploit the potential of its pharmacological activity. Methods: A novel coenzyme Q10 derivative (L-50) was designed and synthesized by introducing a group containing bromine atom and hydroxyl at the terminal of coenzyme Q10 (CoQ10), and the antidiabetic effect of L-50 was investigated by cellular assays and animal experiments. Results: Cytotoxicity results showed that L-50 was comparatively low toxicity to HepG2 cells. Hypoglycemic assays indicated that L-50 could increase glucose uptake in IR-HepG2 cells, with significantly enhanced hypoglycemic capacity compared to the CoQ10. In addition, L-50 improved cellular utilization of glucose through reduction of reactive oxygen species (ROS) accumulated in insulin-resistant HepG2 cells (IR-HepG2) and regulation of JNK/AKT/GSK3β signaling pathway, resulting in hypoglycemic effects. Furthermore, the animal experiments demonstrated that L-50 could restore the body weight of HFD/STZ mice. Notably, the findings suggested that L-50 could improve glycemic and lipid metabolism in HFD/STZ mice. Moreover, L-50 could increase fasting insulin levels (FINS) in HFD/STZ mice, leading to a decrease in fasting blood glucose (FBG) and hepatic glycogen. Furthermore, L-50 could recover triglycerides (TG), total cholesterol (T-CHO), lipoprotein (LDL-C) and high-density lipoprotein (HDL-C) levels in HFD/STZ mice. Discussion: The addition of a bromine atom and a hydroxyl group to CoQ10 could enhance its anti-diabetic activity. It is anticipated that L-50 could be a promising new agent for T2DM.
Collapse
Affiliation(s)
- Xiaojun Tan
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xinyi Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xun Xu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yuwei Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xin Li
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongxing Deng
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Xueyang Zhang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Wenlong Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dudu Wu
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, China
| | - Chen Zhi
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
21
|
Abu-Elfotuh K, Tolba AMA, Hussein FH, Hamdan AME, Rabeh MA, Alshahri SA, Ali AA, Mosaad SM, Mahmoud NA, Elsaeed MY, Abdelglil RM, El-Awady RR, Galal ERM, Kamal MM, Elsisi AMM, Darwish A, Gowifel AMH, Mahran YF. Anti-Alzheimer Activity of Combinations of Cocoa with Vinpocetine or Other Nutraceuticals in Rat Model: Modulation of Wnt3/β-Catenin/GSK-3β/Nrf2/HO-1 and PERK/CHOP/Bcl-2 Pathways. Pharmaceutics 2023; 15:2063. [PMID: 37631278 PMCID: PMC10457980 DOI: 10.3390/pharmaceutics15082063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating illness with limited therapeutic interventions. The aim of this study is to investigate the pathophysiological mechanisms underlying AD and explore the potential neuroprotective effects of cocoa, either alone or in combination with other nutraceuticals, in an animal model of aluminum-induced AD. Rats were divided into nine groups: control, aluminum chloride (AlCl3) alone, AlCl3 with cocoa alone, AlCl3 with vinpocetine (VIN), AlCl3 with epigallocatechin-3-gallate (EGCG), AlCl3 with coenzyme Q10 (CoQ10), AlCl3 with wheatgrass (WG), AlCl3 with vitamin (Vit) B complex, and AlCl3 with a combination of Vit C, Vit E, and selenium (Se). The animals were treated for five weeks, and we assessed behavioral, histopathological, and biochemical changes, focusing on oxidative stress, inflammation, Wnt/GSK-3β/β-catenin signaling, ER stress, autophagy, and apoptosis. AlCl3 administration induced oxidative stress, as evidenced by elevated levels of malondialdehyde (MDA) and downregulation of cellular antioxidants (Nrf2, HO-1, SOD, and TAC). AlCl3 also upregulated inflammatory biomarkers (TNF-α and IL-1β) and GSK-3β, leading to increased tau phosphorylation, decreased brain-derived neurotrophic factor (BDNF) expression, and downregulation of the Wnt/β-catenin pathway. Furthermore, AlCl3 intensified C/EBP, p-PERK, GRP-78, and CHOP, indicating sustained ER stress, and decreased Beclin-1 and anti-apoptotic B-cell lymphoma 2 (Bcl-2) expressions. These alterations contributed to the observed behavioral and histological changes in the AlCl3-induced AD model. Administration of cocoa, either alone or in combination with other nutraceuticals, particularly VIN or EGCG, demonstrated remarkable amelioration of all assessed parameters. The combination of cocoa with nutraceuticals attenuated the AD-mediated deterioration by modulating interrelated pathophysiological pathways, including inflammation, antioxidant responses, GSK-3β-Wnt/β-catenin signaling, ER stress, and apoptosis. These findings provide insights into the intricate pathogenesis of AD and highlight the neuroprotective effects of nutraceuticals through multiple signaling pathways.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Amina M. A. Tolba
- Anatomy Department, Faculty of Medicine, Girls Branch, Al-Azhar University, Cairo 11651, Egypt;
| | | | - Ahmed M. E. Hamdan
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohamed A. Rabeh
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Saad A. Alshahri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Azza A. Ali
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (A.A.A.); (M.M.K.)
| | - Sarah M. Mosaad
- Research Unit, Egypt Healthcare Authority, Ismailia Branch, Ismailia 41522, Egypt;
| | - Nihal A. Mahmoud
- Physiology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Magdy Y. Elsaeed
- Physiology Department, Faculty of Medicine (Boys), Al-Azhar University, Demietta 34517, Egypt;
| | - Ranya M. Abdelglil
- Department of Anatomy and Embryology, Faculty of Medicine (Girls), Al-Azhar University, Cairo 11651, Egypt;
| | - Rehab R. El-Awady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (R.R.E.-A.); (E.R.M.G.)
| | - Eman Reda M. Galal
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (R.R.E.-A.); (E.R.M.G.)
| | - Mona M. Kamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11651, Egypt; (A.A.A.); (M.M.K.)
| | - Ahmed M. M. Elsisi
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11651, Egypt;
- Biochemistry Department, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62521, Egypt
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Ayah M. H. Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Yasmen F. Mahran
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
22
|
Cores Á, Carmona-Zafra N, Clerigué J, Villacampa M, Menéndez JC. Quinones as Neuroprotective Agents. Antioxidants (Basel) 2023; 12:1464. [PMID: 37508002 PMCID: PMC10376830 DOI: 10.3390/antiox12071464] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Quinones can in principle be viewed as a double-edged sword in the treatment of neurodegenerative diseases, since they are often cytoprotective but can also be cytotoxic due to covalent and redox modification of biomolecules. Nevertheless, low doses of moderately electrophilic quinones are generally cytoprotective, mainly due to their ability to activate the Keap1/Nrf2 pathway and thus induce the expression of detoxifying enzymes. Some natural quinones have relevant roles in important physiological processes. One of them is coenzyme Q10, which takes part in the oxidative phosphorylation processes involved in cell energy production, as a proton and electron carrier in the mitochondrial respiratory chain, and shows neuroprotective effects relevant to Alzheimer's and Parkinson's diseases. Additional neuroprotective quinones that can be regarded as coenzyme Q10 analogues are idobenone, mitoquinone and plastoquinone. Other endogenous quinones with neuroprotective activities include tocopherol-derived quinones, most notably vatiquinone, and vitamin K. A final group of non-endogenous quinones with neuroprotective activity is discussed, comprising embelin, APX-3330, cannabinoid-derived quinones, asterriquinones and other indolylquinones, pyrroloquinolinequinone and its analogues, geldanamycin and its analogues, rifampicin quinone, memoquin and a number of hybrid structures combining quinones with amino acids, cholinesterase inhibitors and non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Noelia Carmona-Zafra
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - José Clerigué
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza de Ramón y Cajal sn, 28040 Madrid, Spain
| |
Collapse
|
23
|
Chemical chaperon 4-phenylbutric acid improves cardiac function following isoproterenol-induced myocardial infarction in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:367-373. [PMID: 36865045 PMCID: PMC9922364 DOI: 10.22038/ijbms.2023.68183.14891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/18/2022] [Indexed: 03/04/2023]
Abstract
Objectives 4-Phenyl butyric acid (4-PBA) is a chaperone-mediated autophagy (CMA) inducer, which eliminates unnecessary and damaged cellular components through lysosomal enzymes. It could reduce misfolded and unfolded proteins produced after myocardial infarction (MI) and can improve cardiac function. We aimed to investigate the effect of 4-PBA on isoproterenol-induced MI in rats. Materials and Methods Isoproterenol (100 mg/kg) was injected subcutaneously for two consecutive days simultaneous with an intraperitoneal (IP) injection of 4-PBA at 20, 40, or 80 mg/kg at 24-hr intervals for five days. On day 6, hemodynamic parameters, histopathological changes, peripheral neutrophil count, and total anti-oxidant capacity (TAC) were evaluated. The expression of autophagy proteins was measured by using western blotting. 4-PBA significantly improved post-MI changes in hemodynamic parameters. Results Histological improvement was found in 4-PBA 40 mg/kg (P<0.05). The neutrophil count in the peripheral blood significantly decreased in the treatment groups compared with isoproterenol. Furthermore, 4-PBA at 80 mg/kg significantly increased the serum TAC compared with isoproterenol (P<0.001). Western blotting showed a significant decrease in the P62 level (P<0.05) of 40 and 80 mg/kg 4-PBA treated groups. Conclusion This study demonstrated that 4-PBA could have a cardio-protective effect against isoproterenol-induced MI, which can be due to autophagy modulation and oxidative stress inhibition. Obtaining effective results in different doses shows the need for an optimum degree of cell autophagic activity.
Collapse
|
24
|
Mokhtari B, Badalzadeh R. Mitochondria-targeted combination treatment strategy counteracts myocardial reperfusion injury of aged rats by modulating autophagy and inflammatory response. Mol Biol Rep 2023; 50:3973-3983. [PMID: 36829080 DOI: 10.1007/s11033-023-08318-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023]
Abstract
BACKGROUND Aging, as a recognized risk factor for ischemic heart disease, interferes with protective mechanisms and abolishes the optimal effectiveness of cardioprotective interventions, leading to the loss of cardioprotection following myocardial ischemia/reperfusion (I/R) injury. This study was designed to explore the possible interaction of aging with cardioprotection induced by combination therapy with coenzyme Q10 (CoQ10) and mitochondrial transplantation in myocardial I/R injury of aged rats. METHODS Male Wistar rats (n = 72, 400-450 g, 22-24 months old) were randomized into groups with/without I/R and/or CoQ10 and mitochondrial transplantation, alone or in a combinational mode. An in vivo model of myocardial I/R injury was established by left anterior descending coronary artery occlusion and re-opening. Mitochondria were isolated from donor rats and injected intramyocardially (150 µl of the mitochondrial suspension containing 2 × 105±0.3 × 105 mitochondria) at the onset of reperfusion in recipient groups. CoQ10 (20 mg/kg/day) was injected intramuscularly for 7 days before I/R operation. Lastly, myocardial function, cTn-I level, expression of autophagy-associated proteins (Beclin1, p62, and LC3-II/LC3-I), and the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) were assessed. RESULTS Co-application of CoQ10 and mitotherapy concomitantly improved myocardial function and decreased cTn-I level in aged reperfused hearts (P < .001). This combination therapy also modulated autophagic activity and decreased pro-inflammatory cytokines (P < .01 to P < .001). This combinational approach induced noticeable cardioprotection in comparison with monotherapies-received groups. CONCLUSION We found that combination of CoQ10 and mitochondrial transplantation attenuated myocardial I/R injury in aged rats, in part by modulating autophagy and inflammatory response, hence, appears to restore aging-related loss of cardioprotection in aged patients.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Coenzyme Q10 ameliorates aging-induced memory deficits via modulation of apoptosis, oxidative stress, and mitophagy in aged rats. Exp Gerontol 2022; 168:111950. [PMID: 36089173 DOI: 10.1016/j.exger.2022.111950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/11/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022]
Abstract
The behavioral effects and molecular signaling mechanisms of Coenzyme Q10 (Q10) in age-related memory impairment are poorly understood. This study aimed to investigate the effects of Q10 on memory impairment, oxidative stress, apoptosis, and mitophagy in aged rats. 40 aged (24 months old) and 10 young (3 months old) male Wistar rats were randomly divided into the following groups (n = 10/group): young + vehicle, aged + vehicle, and aged + Q10 (at 100, 200, 300 mg/kg/day doses). Treatments were administrated orally by gavage for 2 weeks. The novel object recognition test was used to assess episodic memory. Oxidative stress, apoptosis, and mitophagy-related protein expressions were measured in the hippocampus. We found that Q10 reversed aging-induced memory impairment at the dose of 300 mg/kg. Moreover, aging was associated with a reduction in ATP production, decrease in mitophagy-related proteins (PINK, Parkin, and P62 levels and LC3II/I ratio), excessive generation of reactive oxygen species and lipid peroxidation, and apoptosis in the hippocampus, which were partially reversed following oral administration of Q10. These findings indicate the therapeutic potential of Q10 in aging-induced memory decline.
Collapse
|
26
|
Wu YL, Chang JC, Sun HL, Cheng WL, Yen YP, Lin YS, Chao YC, Liu KH, Huang CS, Liu KL, Liu CS. Coenzyme Q10 Supplementation Increases Removal of the ATXN3 Polyglutamine Repeat, Reducing Cerebellar Degeneration and Improving Motor Dysfunction in Murine Spinocerebellar Ataxia Type 3. Nutrients 2022; 14:nu14173593. [PMID: 36079853 PMCID: PMC9459709 DOI: 10.3390/nu14173593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Coenzyme Q10 (CoQ10), a well-known antioxidant, has been explored as a treatment in several neurodegenerative diseases, but its utility in spinocerebellar ataxia type 3 (SCA3) has not been explored. Herein, the protective effect of CoQ10 was examined using a transgenic mouse model of SCA3 onset. These results demonstrated that a diet supplemented with CoQ10 significantly improved murine locomotion, revealed by rotarod and open-field tests, compared with untreated controls. Additionally, a histological analysis showed the stratification of cerebellar layers indistinguishable from that of wild-type littermates. The increased survival of Purkinje cells was reflected by the reduced abundance of TUNEL-positive nuclei and apoptosis markers of activated p53, as well as lower levels of cleaved caspase 3 and cleaved poly-ADP-ribose polymerase. CoQ10 effects were related to the facilitation of the autophagy-mediated clearance of mutant ataxin-3 protein, as evidenced by the increased expression of heat shock protein 27 and autophagic markers p62, Beclin-1 and LC3II. The expression of antioxidant enzymes heme oxygenase 1 (HO-1), glutathione peroxidase 1 (GPx1) and superoxide dismutase 1 (SOD1) and 2 (SOD2), but not of glutathione peroxidase 2 (GPx2), were restored in 84Q SCA3 mice treated with CoQ10 to levels even higher than those measured in wild-type control mice. Furthermore, CoQ10 treatment also prevented skeletal muscle weight loss and muscle atrophy in diseased mice, revealed by significantly increased muscle fiber area and upregulated muscle protein synthesis pathways. In summary, our results demonstrated biochemical and pharmacological bases for the possible use of CoQ10 in SCA3 therapy.
Collapse
Affiliation(s)
- Yu-Ling Wu
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 50091, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Jui-Chih Chang
- Center of Regenerative Medicine and Tissue Repair, Changhua Christian Hospital, Changhua 50091, Taiwan
- General Research Laboratory of Research Department, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Hai-Lun Sun
- School of Medicine, Chung Shan Medical University, Taichung 40203, Taiwan
- Department of Pediatrics, Division of Allergy, Asthma and Rheumatology, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
| | - Wen-Ling Cheng
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Yu-Pei Yen
- Department of Nutrition, Chung Shan Medical University, Taichung 40203, Taiwan
| | - Yong-Shiou Lin
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Yi-Chun Chao
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Ko-Hung Liu
- Inflammation Research & Drug Development Center, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Ching-Shan Huang
- Center of Regenerative Medicine and Tissue Repair, Changhua Christian Hospital, Changhua 50091, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung 40203, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung 40203, Taiwan
- Correspondence: (K.-L.L.); (C.-S.L.); Tel.: +886-4-24730022 (ext. 12136) (K.-L.L.); +886-4-7238595 (ext. 4751) (C.-S.L.)
| | - Chin-San Liu
- Vascular and Genomic Center, Institute of ATP, Changhua Christian Hospital, Changhua 50091, Taiwan
- Department of Neurology, Changhua Christian Hospital, Changhua 50094, Taiwan
- Graduate Institute of Integrated Medicine College of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: (K.-L.L.); (C.-S.L.); Tel.: +886-4-24730022 (ext. 12136) (K.-L.L.); +886-4-7238595 (ext. 4751) (C.-S.L.)
| |
Collapse
|
27
|
Awad K, Sayed A, Banach M. Coenzyme Q10 Reduces Infarct Size in Animal Models of Myocardial Ischemia-Reperfusion Injury: A Meta-Analysis and Summary of Underlying Mechanisms. Front Cardiovasc Med 2022; 9:857364. [PMID: 35498032 PMCID: PMC9053645 DOI: 10.3389/fcvm.2022.857364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023] Open
Abstract
Objective Effective interventions that might limit myocardial ischemia-reperfusion (I/R) injury are still lacking. Coenzyme Q10 (CoQ10) may exert cardioprotective actions that reduce myocardial I/R injury. We conducted this meta-analysis to assess the potential cardioprotective effect of CoQ10 in animal models of myocardial I/R injury. Methods We searched PubMed and Embase databases from inception to February 2022 to identify animal studies that compared the effect of CoQ10 with vehicle treatment or no treatment on myocardial infarct size in models of myocardial I/R injury. Means and standard deviations of the infarct size measurements were pooled as the weighted mean difference with 95% confidence interval (CI) using the random-effects model. Subgroup analyses were also conducted according to animals' species, models' type, and reperfusion time. Results Six animal studies (4 in vivo and 2 ex vivo) with 116 animals were included. Pooled analysis suggested that CoQ10 significantly reduced myocardial infarct size by −11.36% (95% CI: −16.82, −5.90, p < 0.0001, I2 = 94%) compared with the control group. The significance of the pooled effect estimate was maintained in rats, Hartley guinea pigs, and Yorkshire pigs. However, it became insignificant in the subgroup of rabbits −5.29% (95% CI: −27.83, 17.26; I2 = 87%). Furthermore, CoQ10 significantly reduced the myocardial infarct size regardless of model type (either in vivo or ex vivo) and reperfusion time (either ≤ 4 h or >4 h). Conclusion Coenzyme Q10 significantly decreased myocardial infarct size by 11.36% compared with the control group in animal models of myocardial I/R injury. This beneficial action was retained regardless of model type and reperfusion time.
Collapse
Affiliation(s)
- Kamal Awad
- Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Zagazig University Hospitals, Zagazig, Egypt
- *Correspondence: Kamal Awad
| | - Ahmed Sayed
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
- Maciej Banach
| |
Collapse
|
28
|
Rakowski M, Porębski S, Grzelak A. Nutraceuticals as Modulators of Autophagy: Relevance in Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23073625. [PMID: 35408992 PMCID: PMC8998447 DOI: 10.3390/ijms23073625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022] Open
Abstract
Dietary supplements and nutraceuticals have entered the mainstream. Especially in the media, they are strongly advertised as safe and even recommended for certain diseases. Although they may support conventional therapy, sometimes these substances can have unexpected side effects. This review is particularly focused on the modulation of autophagy by selected vitamins and nutraceuticals, and their relevance in the treatment of neurodegenerative diseases, especially Parkinson’s disease (PD). Autophagy is crucial in PD; thus, the induction of autophagy may alleviate the course of the disease by reducing the so-called Lewy bodies. Hence, we believe that those substances could be used in prevention and support of conventional therapy of neurodegenerative diseases. This review will shed some light on their ability to modulate the autophagy.
Collapse
Affiliation(s)
- Michał Rakowski
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, 90-237 Lodz, Poland
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
- Correspondence:
| | - Szymon Porębski
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| | - Agnieszka Grzelak
- Cytometry Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (S.P.); (A.G.)
| |
Collapse
|
29
|
Lv Z, Luo X, Hong B, Ye Q, Liu J, Hu Y. CBL knockdown protects cardiomyocytes against hypoxia‑reoxygenation injury by downregulating GRB2 expression. Exp Ther Med 2022; 23:188. [PMID: 35069869 PMCID: PMC8764905 DOI: 10.3892/etm.2022.11111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/27/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zhengbing Lv
- Department of Cardiology, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610017, P.R. China
| | - Xiaojia Luo
- Department of Cardiology, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610017, P.R. China
| | - Biying Hong
- Department of Cardiology, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610017, P.R. China
| | - Qiran Ye
- Department of Biotechnology, College of Life Science Sichuan University, Chengdu, Sichuan 610000, P.R. China
| | - Jianxiong Liu
- Department of Cardiology, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610017, P.R. China
| | - Yongmei Hu
- Department of Cardiology, The Second People's Hospital of Chengdu, Chengdu, Sichuan 610017, P.R. China
| |
Collapse
|
30
|
Qin GW, Lu P, Peng L, Jiang W. Ginsenoside Rb1 Inhibits Cardiomyocyte Autophagy via PI3K/Akt/mTOR Signaling Pathway and Reduces Myocardial Ischemia/Reperfusion Injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1913-1927. [PMID: 34775933 DOI: 10.1142/s0192415x21500907] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the major cause of myocardial cell damage in acute myocardial infarction, and its treatment remains a clinical challenge. Ginsenoside Rb1 showed protective effects on the cardiovascular system; however, the underlying mechanism remains largely unclear. Effects of Ginsenoside Rb1 on rat MIRI-induced myocardial infarct size were evaluated through TTC staining. TUNEL assay and flow cytometry analysis were employed to estimate cell apoptosis. Apoptosis, autophagy and PI3K/Akt/mTOR pathway-related proteins were estimated via western blot. Expression of Beclin1 in myocardial tissues were examined by immunohistochemical analysis. Expression levels of IL-1[Formula: see text], TNF-[Formula: see text] and IL-6 were tested by enzyme-linked immunosorbent assay (ELISA). Here, we found that Ginsenoside Rb1 treatment not only alleviated MIRI in rats but also protected H9C2 cells against hypoxia/reoxygenation induced damage. Ginsenoside Rb1 abolished the MIRI-induced activation of autophagy. Meanwhile, we found that treatment of 3-MA (autophagy inhibitor) could enhance the protective effects of Ginsenoside Rb1 on H9C2 cells during H/R. Moreover, Ginsenoside Rb1 treatment resulted in the activation of the PI3K/Akt/mTOR pathway, and treatment of LY294002 (PI3K/Akt pathway repressor) abolished the protective effects of Ginsenoside Rb1 on myocardial in vitro and in vivo. Our results suggest that Ginsenoside Rb1 functions as a protector against MIRI by repressing cardiomyocyte autophagy through the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Guo-Wei Qin
- Department of Science and Technology, Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P. R. China
| | - Pan Lu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P. R. China
| | - Li Peng
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P. R. China
| | - Wei Jiang
- Department of Traditional Chinese Medicine, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
31
|
Effects of Lipoic Acid on Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5093216. [PMID: 34650663 PMCID: PMC8510805 DOI: 10.1155/2021/5093216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion (I/R) injury often occurred in some pathologies and surgeries. I/R injury not only harmed to physiological functions of corresponding organ and tissue but also induced multiple tissue or organ dysfunctions (even these in distant locations). Although the reperfusion of blood attenuated I/R injury to a certain degree, the risk of secondary damages was difficult to be controlled and it even caused failures of these tissues and organs. Lipoic acid (LA), as an endogenous active substance and a functional agent in food, owns better safety and effects in our body (e.g., enhancing antioxidant activity, improving cognition and dementia, controlling weight, and preventing multiple sclerosis, diabetes complication, and cancer). The literature searching was conducted in PubMed, Embase, Cochrane Library, Web of Science, and SCOPUS from inception to 20 May 2021. It had showed that endogenous LA was exhausted in the process of I/R, which further aggravated I/R injury. Thus, supplements with LA timely (especially pretreatments) may be the prospective way to prevent I/R injury. Recently, studies had demonstrated that LA supplements significantly attenuated I/R injuries of many organs, though clinic investigations were short at present. Hence, it was urgent to summarize these progresses about the effects of LA on different I/R organs as well as the potential mechanisms, which would enlighten further investigations and prepare for clinic applications in the future.
Collapse
|
32
|
Liu Y, Yao Y, Tao W, Liu F, Yang S, Zhao A, Song D, Li X. Coenzyme Q10 ameliorates BPA-induced apoptosis by regulating autophagy-related lysosomal pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112450. [PMID: 34186417 DOI: 10.1016/j.ecoenv.2021.112450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is a widely distributed environmental endocrine disruptor. The accumulation of BPA has been proved that produce various toxic effects both on human and animals. However, the strategies to reduce the damage of BPA on the body and related mechanisms remain to be studied. Coenzyme Q10 (CoQ10), as a powerful antioxidant, is ubiquitous in many eukaryotic cells, which can improve the integrity of lysosomal membrane, lysosomal degradation function and promote autophagy. Here, we examined the ability of CoQ10 to alleviate oxidative stress and apoptosis in BPA-induced damages in C2C12 cells, and how to alleviate it. Our results showed that BPA treatment significantly reduced cell viability, increased the number of cell apoptosis and ROS production, decreased mitochondrial membrane potential, and inhibited the gene expression of mitochondria biogenesis. Moreover, we demonstrated that exposure to BPA increased expression levels of autophagy protein (LC3-II, p62), inhibited autophagy flux, and disrupted the acidic pH environment of lysosomes. Importantly, CoQ10 supplementation effectively restored these abnormalities caused by BPA. CoQ10 significantly decreased the apoptotic incidence and ROS levels, improved mitochondrial membrane potential. Moreover, CoQ10 improved lysosome function and enhanced autophagy flux. Taken together, our results indicate that CoQ10 supplementation is a feasible and effective way to promote the level of autophagy by improving lysosomal function, thereby reducing the apoptosis caused by BPA accumulation. This study aims to provide evidence for the role of CoQ10 in repairing BPA-induced cell damage in clinical practice.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yaxin Yao
- Yikon Genomics Company, Ltd., Suzhou 215000, China
| | - Wenjing Tao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Feng Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China
| | - Dan Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
33
|
Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2021; 7:47-72. [PMID: 34466716 PMCID: PMC8377441 DOI: 10.1016/j.bioactmat.2021.06.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/09/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Interventional coronary reperfusion strategies are widely adopted to treat acute myocardial infarction, but morbidity and mortality of acute myocardial infarction are still high. Reperfusion injuries are inevitable due to the generation of reactive oxygen species (ROS) and apoptosis of cardiac muscle cells. However, many antioxidant and anti-inflammatory drugs are largely limited by pharmacokinetics and route of administration, such as short half-life, low stability, low bioavailability, and side effects for treatment myocardial ischemia reperfusion injury. Therefore, it is necessary to develop effective drugs and technologies to address this issue. Fortunately, nanotherapies have demonstrated great opportunities for treating myocardial ischemia reperfusion injury. Compared with traditional drugs, nanodrugs can effectively increase the therapeutic effect and reduces side effects by improving pharmacokinetic and pharmacodynamic properties due to nanodrugs’ size, shape, and material characteristics. In this review, the biology of ROS and molecular mechanisms of myocardial ischemia reperfusion injury are discussed. Furthermore, we summarized the applications of ROS-based nanoparticles, highlighting the latest achievements of nanotechnology researches for the treatment of myocardial ischemia reperfusion injury. Cardiovascular diseases are the leading cause of death worldwide. Researches of the myocardial infarction pathology and development of new treatments have very important scientific significance in the biomedical field. Many nanomaterials have shown amazing therapeutic effects to reduce myocardial damage by eliminating ROS. Nanomaterials effectively reduced myocardial damage through eliminating ROS from NOXs, M-ETC, M-Ca2+, M-mPTP, and RIRR.
Collapse
Affiliation(s)
- Tianjiao Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410087, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410087, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, 750003, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| |
Collapse
|
34
|
DEMİRHAN İ, BELGE KURUTAŞ E. Kalp İskemi-Reperfüzyonunda Vitaminlerin Rolü. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2021. [DOI: 10.38079/igusabder.856218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
35
|
The potentials of distinct functions of autophagy to be targeted for attenuation of myocardial ischemia/reperfusion injury in preclinical studies: an up-to-date review. J Physiol Biochem 2021; 77:377-404. [PMID: 34173955 DOI: 10.1007/s13105-021-00824-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
Despite remarkable advances in our knowledge about the function of autophagy in myocardial ischemia/reperfusion (I/R) injury, the debate continues over whether autophagy is protective or deleterious in cardiac I/R. Due to the complexity of autophagy signaling, autophagy can play a dual role in the pathological processes of myocardial I/R injury. Thus, more researches are needed to shed light on the complex roles of autophagy in cardioprotection for the future clinical development. Such researches can lead to the finding of new therapeutic strategies for improving cardiac I/R outcomes in patients. Several preclinical studies have targeted autophagy flux as a beneficial strategy against myocardial I/R injury. In this review, we aimed to discuss the complex contribution of autophagy in myocardial I/R injury, as well as the therapeutic agents that have been shown to be useful in reducing myocardial I/R injury by targeting autophagy. For this reason, we provided an updated summary of the data from in vivo, ex vivo, and in vitro experimental studies about the therapeutic agents that exert positive effects against myocardial I/R injury by modulating autophagy flux. By addressing these valuable studies, we try to provide a motivation for the promising hypothesis of "autophagy modulation as a therapeutic strategy against cardiac I/R" in the future clinical studies.
Collapse
|
36
|
Qin Y, Qiao Y, Wang D, Tang C, Yan G. Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed Pharmacother 2021; 141:111872. [PMID: 34246187 DOI: 10.1016/j.biopha.2021.111872] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/09/2023] Open
Abstract
Ferroptosis is a type of regulated cell death driven by iron dependent accumulation of cellular reactive oxygen species (ROS) when glutathione (GSH)-dependent lipid peroxidation repair systems are compromised. Nuclear receptor co-activator 4 (NCOA4)-mediated selective autophagy of ferritin, termed ferritinophagy, involves the regulation of ferroptosis. Emerging evidence has revealed that ferritinophagy and ferroptosis exert a significant role in the occurrence and development of cardiovascular disease. In the present review, we aimed to present a brief overview of ferritinophagy and ferroptosis focusing on the underlying mechanism and regulations involved. We summarize and discuss relevant research progress on the role of ferritinophagy and ferroptosis in cardiovascular diseases accompanied with potential applications of ferritinophagy and ferroptosis modulators in the treatment of ferroptosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Yong Qiao
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Dong Wang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Chengchun Tang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| | - Gaoliang Yan
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| |
Collapse
|
37
|
Fan Z, Cai L, Wang S, Wang J, Chen B. Baicalin Prevents Myocardial Ischemia/Reperfusion Injury Through Inhibiting ACSL4 Mediated Ferroptosis. Front Pharmacol 2021; 12:628988. [PMID: 33935719 PMCID: PMC8079950 DOI: 10.3389/fphar.2021.628988] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Baicalin is a natural flavonoid glycoside that confers protection against myocardial ischemia/reperfusion (I/R) injury. However, its mechanism has not been fully understood. This study focused on elucidating the role of ferroptosis in baicalin-generated protective effects on myocardial ischemia/reperfusion (I/R) injury by using the myocardial I/R rat model and oxygen–glucose deprivation/reoxygenation (OGD/R) H9c2 cells. Our results show that baicalin improved myocardial I/R challenge–induced ST segment elevation, coronary flow (CF), left ventricular systolic pressure , infarct area, and pathological changes and prevented OGD/R-triggered cell viability loss. In addition, enhanced lipid peroxidation and significant iron accumulation along with activated transferrin receptor protein 1 (TfR1) signal and nuclear receptor coactivator 4 (NCOA4)-medicated ferritinophagy were observed in in vivo and in vitro models, which were reversed by baicalin treatment. Furthermore, acyl-CoA synthetase long-chain family member 4 (ACSL4) overexpression compromised baicalin-generated protective effect in H9c2 cells. Taken together, our findings suggest that baicalin prevents against myocardial ischemia/reperfusion injury via suppressing ACSL4-controlled ferroptosis. This study provides a novel target for the prevention of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Zhenyu Fan
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| | - Shengnan Wang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Wang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| | - Bohua Chen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
38
|
Qiu Z, Wang Y, Liu W, Li C, Zhao R, Long X, Rong J, Deng W, Shen C, Yuan J, Chen W, Shi B. CircHIPK3 regulates the autophagy and apoptosis of hypoxia/reoxygenation-stimulated cardiomyocytes via the miR-20b-5p/ATG7 axis. Cell Death Discov 2021; 7:64. [PMID: 33824287 PMCID: PMC8024346 DOI: 10.1038/s41420-021-00448-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/08/2021] [Accepted: 03/12/2021] [Indexed: 01/02/2023] Open
Abstract
Autophagy and apoptosis are involved in myocardial ischemia/reperfusion (I/R) injury. Research indicates that circular RNA HIPK3 (circHIPK3) is crucial to cell autophagy and apoptosis in various cancer types. However, the role of circHIPK3 in the regulation of cardiomyocyte autophagy and apoptosis during I/R remains unknown. Our study aimed to examine the regulatory effect of circHIPK3 during myocardial I/R and investigate its mechanism in cardiomyocyte autophagy and apoptosis. Methods and results. The expression of circHIPK3 was upregulated during myocardial I/R injury and hypoxia/reoxygenation (H/R) injury of cardiomyocytes. To study the potential role of circHIPK3 in myocardial H/R injury, we performed gain-of-function and loss-of-function analyses of circHIPK3 in cardiomyocytes. Overexpression of circHIPK3 significantly promoted H/R-induced cardiomyocyte autophagy and cell injury (increased intracellular reactive oxygen species (ROS) and apoptosis) compared to those in the control group, while silencing of circHIPK3 showed the opposite effect. Further research found that circHIPK3 acted as an endogenous miR-20b-5p sponge to sequester and inhibit miR-20b-5p activity, resulting in increased ATG7 expression. In addition, miR-20b-5p inhibitors reversed the decrease in ATG7 induced by silencing circHIPK3. Conclusions. CircHIPK3 can accelerate cardiomyocyte autophagy and apoptosis during myocardial I/R injury through the miR-20b-5p/ATG7 axis. These data suggest that circHIPK3 may serve as a potential therapeutic target for I/R.
Collapse
Affiliation(s)
- Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jidong Rong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Wengweng Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Changyin Shen
- Department of Cardiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Jinson Yuan
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Wengming Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
39
|
Dexmedetomidine postconditioning suppresses myocardial ischemia/reperfusion injury by activating the SIRT1/mTOR axis. Biosci Rep 2021; 40:224148. [PMID: 32406910 PMCID: PMC7253405 DOI: 10.1042/bsr20194030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 02/01/2023] Open
Abstract
Myocardial ischemia/reperfusion (MI/R) triggers a complicated chain of inflammatory reactions. Dexmedetomidine (Dex) has been reported to be important in myocardial disorders. We evaluated the role of Dex in MI/R injury via the silent information regulator factor 2-related enzyme 1 (SIRT1)/mammalian target of rapamycin (mTOR) signaling pathway. First, Dex was immediately injected into rat models of MI/R injury during reperfusion. After Evans Blue-triphenyl tetrazolium chloride (TTC) and Hematoxylin-Eosin (H-E) staining, MI/R injury was observed. The extracted serum and myocardial tissues were used to detect oxidative stress and the inflammatory response. Western blot analysis was performed to evaluate MI/R autophagy and the levels of proteins associated with the SIRT1/mTOR axis. The effects of the combination of Dex and SIRT1 inhibitor EX527 on MI/R injury and autophagy were evaluated. Finally, the mechanism of Dex was tested, and autophagy levels and the levels of proteins associated with the SIRT1/mTOR signaling pathway were assessed in MI/R rats. The results of the present study suggested that Dex relieved MI/R injury, reduced cardiomyocyte apoptosis, oxidative stress and inflammatory reactions, up-regulated the SIRT1/mTOR axis and decreased overautophagy in MI/R rats. SIRT1 inhibitor EX527 attenuated the protective effects of Dex. Our study demonstrated that Dex alleviated MI/R injury by activating the SIRT1/mTOR axis. This investigation may offer new insight into the treatment of MI/R injury.
Collapse
|
40
|
Erkens R, Totzeck M, Brum A, Duse D, Bøtker HE, Rassaf T, Kelm M. Endothelium-dependent remote signaling in ischemia and reperfusion: Alterations in the cardiometabolic continuum. Free Radic Biol Med 2021; 165:265-281. [PMID: 33497796 DOI: 10.1016/j.freeradbiomed.2021.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Intact endothelial function plays a fundamental role for the maintenance of cardiovascular (CV) health. The endothelium is also involved in remote signaling pathway-mediated protection against ischemia/reperfusion (I/R) injury. However, the transfer of these protective signals into clinical practice has been hampered by the complex metabolic alterations frequently observed in the cardiometabolic continuum, which affect redox balance and inflammatory pathways. Despite recent advances in determining the distinct roles of hyperglycemia, insulin resistance (InR), hyperinsulinemia, and ultimately diabetes mellitus (DM), which define the cardiometabolic continuum, our understanding of how these conditions modulate endothelial signaling remains challenging. It is widely accepted that endothelial cells (ECs) undergo functional changes within the cardiometabolic continuum. Beyond vascular tone and platelet-endothelium interaction, endothelial dysfunction may have profound negative effects on outcome during I/R. In this review, we summarize the current knowledge of the influence of hyperglycemia, InR, hyperinsulinemia, and DM on endothelial function and redox balance, their influence on remote protective signaling pathways, and their impact on potential therapeutic strategies to optimize protective heterocellular signaling.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Dragos Duse
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hans Erik Bøtker
- Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
41
|
Coenzyme Q 10 Analogues: Benefits and Challenges for Therapeutics. Antioxidants (Basel) 2021; 10:antiox10020236. [PMID: 33557229 PMCID: PMC7913973 DOI: 10.3390/antiox10020236] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Coenzyme Q10 (CoQ10 or ubiquinone) is a mobile proton and electron carrier of the mitochondrial respiratory chain with antioxidant properties widely used as an antiaging health supplement and to relieve the symptoms of many pathological conditions associated with mitochondrial dysfunction. Even though the hegemony of CoQ10 in the context of antioxidant-based treatments is undeniable, the future primacy of this quinone is hindered by the promising features of its numerous analogues. Despite the unimpeachable performance of CoQ10 therapies, problems associated with their administration and intraorganismal delivery has led clinicians and scientists to search for alternative derivative molecules. Over the past few years, a wide variety of CoQ10 analogues with improved properties have been developed. These analogues conserve the antioxidant features of CoQ10 but present upgraded characteristics such as water solubility or enhanced mitochondrial accumulation. Moreover, recent studies have proven that some of these analogues might even outperform CoQ10 in the treatment of certain specific diseases. The aim of this review is to provide detailed information about these Coenzyme Q10 analogues, as well as their functionality and medical applications.
Collapse
|
42
|
Wu Q, Shang Y, Bai Y, Wu Y, Wang H, Shen T. Sufentanil preconditioning protects against myocardial ischemia/reperfusion injury via miR-125a/DRAM2 axis. Cell Cycle 2021. [PMID: 33475463 DOI: 10.1080/15384101.2021.1875668.pubmed:33475463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
This project aimed to investigate the protective mechanism of sufentanil pretreatment on myocardial ischemia-reperfusion injury (IRI). An in vivo rat model of myocardial IRI and an in vitro cultured cardiomyocyte model of hypoxia-reoxygenation (H/R) were used to confirm the anti-oxidation and anti-autophagy effects of sufentanil. The interaction between miR-125a and damage-regulated autophagy regulator 2 (DRAM2) was verified by luciferase reporter assay. We showed that pretreatment with sufentanil suppressed myocardial damage caused by IRI in rats by inhibiting oxidative stress and mitochondrial autophagy. Furthermore, the cardioprotective mechanism of sufentanil was mediated by miR-125a. MiR-125a targeted DRAM2 to ameliorate cardiomyocyte autophagy and oxidative injury following H/R treatment. In conclusion, our results demonstrated that sufentanil pretreatment produced a protective effect against myocardial IRI via regulating miR-125a/DRAM2 signaling axis.
Collapse
Affiliation(s)
- Qiaoling Wu
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| | - You Shang
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| | - Yanli Bai
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| | - Yuanyuan Wu
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| | - Hao Wang
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| | - Tu Shen
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| |
Collapse
|
43
|
Wu Q, Shang Y, Bai Y, Wu Y, Wang H, Shen T. Sufentanil preconditioning protects against myocardial ischemia/reperfusion injury via miR-125a/DRAM2 axis. Cell Cycle 2021; 20:383-391. [PMID: 33475463 DOI: 10.1080/15384101.2021.1875668] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This project aimed to investigate the protective mechanism of sufentanil pretreatment on myocardial ischemia-reperfusion injury (IRI). An in vivo rat model of myocardial IRI and an in vitro cultured cardiomyocyte model of hypoxia-reoxygenation (H/R) were used to confirm the anti-oxidation and anti-autophagy effects of sufentanil. The interaction between miR-125a and damage-regulated autophagy regulator 2 (DRAM2) was verified by luciferase reporter assay. We showed that pretreatment with sufentanil suppressed myocardial damage caused by IRI in rats by inhibiting oxidative stress and mitochondrial autophagy. Furthermore, the cardioprotective mechanism of sufentanil was mediated by miR-125a. MiR-125a targeted DRAM2 to ameliorate cardiomyocyte autophagy and oxidative injury following H/R treatment. In conclusion, our results demonstrated that sufentanil pretreatment produced a protective effect against myocardial IRI via regulating miR-125a/DRAM2 signaling axis.
Collapse
Affiliation(s)
- Qiaoling Wu
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| | - You Shang
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| | - Yanli Bai
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| | - Yuanyuan Wu
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| | - Hao Wang
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| | - Tu Shen
- Department of Anesthesiology, The First Hospital Affiliated to Jinzhou Medical University , Jinzhou, P.R. China
| |
Collapse
|
44
|
Protective Role of Coenzyme Q10 in Acute Sepsis-Induced Liver Injury in BALB/c Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2020:7598375. [PMID: 33381582 PMCID: PMC7762638 DOI: 10.1155/2020/7598375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022]
Abstract
Sepsis increases the risk of the liver injury development. According to the research works, coenzyme Q10 exhibits hepatoprotective properties in vivo as well as in vitro. Current work aimed at investigating the protective impacts of coenzyme Q10 against liver injury in septic BALB/c mice. The male BALB/c mice were randomly segregated into 4 groups: the control group, the coenzyme Q10 treatment group, the puncture and cecal ligation group, and the coenzyme Q10+cecal ligation and puncture group. Cecal ligation and puncture was conducted after gavagaging the mice with coenzyme Q10 during two weeks. Following 48 h postcecal ligation and puncture, we estimated hepatic biochemical parameters and histopathological changes in hepatic tissue. We evaluated the expression of factors associated with autophagy, pyroptosis, and inflammation. Findings indicated that coenzyme Q10 decreased the plasma levels in alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase in the cecal ligation and puncture group. Coenzyme Q10 significantly inhibited the elevation of sequestosome-1, interleukin-1β, oligomerization domain-like receptor 3 and nucleotide-binding, interleukin-6, and tumor necrosis factor-α expression levels; coenzyme Q10 also increased beclin 1 levels. Coenzyme Q10 might be a significant agent in the treatment of liver injury induced by sepsis.
Collapse
|
45
|
Ayengin K, Alp HH, Huyut Z, Yıldırım S, Altındag F, Avci V. The effects of CoQ10 supplement on matrix metalloproteinases, oxidative DNA damage and pro-inflammatory cytokines in testicular ischaemia/reperfusion injury in rats. Andrologia 2020; 53:e13839. [PMID: 33368479 DOI: 10.1111/and.13839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023] Open
Abstract
We aimed to study the effect of coenzyme Q10 on pro-inflammatory cytokine, matrix metalloproteinase, oxidative DNA damage, caspase 3 and caspase 8 in ischaemia/reperfusion injury led to by testicular torsion/detorsion. Our research is a controlled experimental animal research using rats. This study was conducted with fifty-six adult male Albino Wistar rats. Interleucine-1β, 2, 6, 10, tumour necrosis factor-α, matrix metalloproteinase-2, 3, 9, 13, tissue inhibitor matrix metalloproteinase-1, 2, malondialdehyde and leucocyte 8-hydroxy-2-deoxy guanosine/106 deoxyguanosine was detected in serum and tissue samples. In addition, immunohistochemical analysis of caspase 2 and caspase 8 was performed. In testicular I/R injury, especially 24 hr after detorsion, oxidative damage pro-inflammatory cytokines and matrix metalloproteinases were increased. At the coenzyme Q10 group, a meaningful decrease was observed in these parameters. In addition, a decrease in the expression of caspase3 and caspase 8 was viewed in coenzyme Q10-treated groups. The coenzyme Q10 has beneficial effects on oxidative damage, pro-inflammatory cytokine levels, remodelling of extracellular matrix and apoptosis in testicular I/R injury.
Collapse
Affiliation(s)
- Kemal Ayengin
- Department of Pediatric Surgery, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Hamit Hakan Alp
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Zübeyir Huyut
- Department of Biochemistry, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Serkan Yıldırım
- Department of Pathology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Fikret Altındag
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| | - Veli Avci
- Department of Pediatric Surgery, Faculty of Medicine, Van Yuzuncu Yıl University, Van, Turkey
| |
Collapse
|
46
|
Gunata M, Parlakpinar H. A review of myocardial ischaemia/reperfusion injury: Pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment. Cell Biochem Funct 2020; 39:190-217. [PMID: 32892450 DOI: 10.1002/cbf.3587] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are known to be the most fatal diseases worldwide. Ischaemia/reperfusion (I/R) injury is at the centre of the pathology of the most common cardiovascular diseases. According to the World Health Organization estimates, ischaemic heart disease is the leading global cause of death, causing more than 9 million deaths in 2016. After cardiovascular events, thrombolysis, percutaneous transluminal coronary angioplasty or coronary bypass surgery are applied as treatment. However, after restoring coronary blood flow, myocardial I/R injury may occur. It is known that this damage occurs due to many pathophysiological mechanisms, especially increasing reactive oxygen types. Besides causing cardiomyocyte death through multiple mechanisms, it may be an important reason for affecting other cell types such as platelets, fibroblasts, endothelial and smooth muscle cells and immune cells. Also, polymorphonuclear leukocytes are associated with myocardial I/R damage during reperfusion. This damage may be insufficient in patients with co-morbidity, as it is demonstrated that it can be prevented by various endogenous antioxidant systems. In this context, the resulting data suggest that optimal cardioprotection may require a combination of additional or synergistic multi-target treatments. In this review, we discussed the pathophysiology, experimental models, biomarkers, treatment and its relationship with genetics in myocardial I/R injury. SIGNIFICANCE OF THE STUDY: This review summarized current information on myocardial ischaemia/reperfusion injury (pathophysiology, experimental models, biomarkers, genetics and pharmacological therapy) for researchers and reveals guiding data for researchers, especially in the field of cardiovascular system and pharmacology.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
47
|
Hong L, Sun Y, An JZ, Wang C, Qiao SG. Sevoflurane Preconditioning Confers Delayed Cardioprotection by Upregulating AMP-Activated Protein Kinase Levels to Restore Autophagic Flux in Ischemia-Reperfusion Rat Hearts. Med Sci Monit 2020; 26:e922176. [PMID: 32476662 PMCID: PMC7288833 DOI: 10.12659/msm.922176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Volatile anesthetic preconditioning confers delayed cardioprotection against ischemia/reperfusion injury (I/R). AMP-activated protein kinase (AMPK) takes part in autophagy activation. Furthermore, autophagic flux is thought to be impaired after I/R. We hypothesized that delayed cardioprotection can restore autophagic flux by activating AMPK. Material/Methods All male rat hearts underwent 30-min ischemia and 120-min reperfusion with or without sevoflurane exposure. AMPK inhibitor compound C (250 μg/kg, iv) was given at the reperfusion period. Autophagic flux blocker chloroquine (10 mg/kg, ip) was administrated 1 h before the experiment. Myocardial infarction, nicotinamide adenine dinucleotide (NAD+) content, and cytochrome c were measured. To evaluate autophagic flux, the markers of microtubule-associated protein 1 light chain 3 (LC3) I and II, P62 and Beclin 1, and lysosome-associated membrane protein-2 (LAMP 2) were analyzed. Results The delayed cardioprotection enhanced post-ischemic AMPK activation, reduced infarction, CK-MB level, NAD+ content loss and cytochrome c release, and compound C blocked these effects. Sevoflurane restored impaired autophagic flux through a lower ratio of LC3II/LC3I, downregulation of P62 and Beclin 1, and higher expression in LAMP 2. Consistently, compound C inhibited these changes of autophagy flux. Moreover, chloroquine pretreatment abolished sevoflurane-induced infarct size reduction, CK-MB level, NAD+ content loss, and cytochrome c release, with concomitant increase the ratios of LC3II/LC3I and levels of P62 and Beclin 1, but p-AMPK expression was not downregulated by chloroquine. Conclusions Sevoflurane exerts a delayed cardioprotective effects against myocardial injury in rats by activation of AMPK and restoration of I/R-impaired autophagic flux.
Collapse
Affiliation(s)
- Lei Hong
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Ying Sun
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Jian-Zhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Chen Wang
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| | - Shi-Gang Qiao
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
48
|
Wang J, Zhang J, Chen L, Cai J, Li Z, Zhang Z, Zheng Q, Wang Y, Zhou S, Liu Q, Cai L. Combination of Broccoli Sprout Extract and Zinc Provides Better Protection against Intermittent Hypoxia-Induced Cardiomyopathy Than Monotherapy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2985901. [PMID: 31934264 PMCID: PMC6942874 DOI: 10.1155/2019/2985901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Nuclear factor-E2-related factor 2 (Nrf2) and metallothionein have each been reported to protect against chronic intermittent hypoxia- (IH-) induced cardiomyopathy. Sulforaphane-rich broccoli sprout extract (BSE) and zinc can effectively induce Nrf2 and metallothionein, respectively, to protect against IH-induced cardiomyopathy via antioxidative stress. However, whether the cardiac protective effects of the combination of BSE and zinc can be synergistic or the same has not been evaluated. In this study, we treated 8-week-old C57BL/6J mice with BSE and/or zinc during exposure to IH for 8 weeks. Cardiac dysfunction, as determined by echocardiography, and pathological remodeling and abnormalities, including cardiac fibrosis, inflammation, and oxidative damage, examined by histopathology and western blotting, were clearly observed in IH mice but were not significant in IH mice treated with either BSE, zinc, or zinc/BSE. Furthermore, the effects of the combined treatment with BSE and zinc were always greater than those of single treatments. Nrf2 function and metallothionein expression in the heart increased to a greater extent using the combination of BSE and zinc than using BSE or zinc alone. These findings for the first time indicate that the dual activation of Nrf2 and metallothionein by combined treatment with BSE and zinc may be more effective than monotherapy at preventing the development of IH-induced cardiomyopathy.
Collapse
Affiliation(s)
- Jiqun Wang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Jian Zhang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Liping Chen
- Department of Echocardiography, The First Hospital of Jilin University, Changchun 130021, China
| | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Zhijie Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiguo Zhang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Zheng
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202, USA
| | - Yonggang Wang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Shanshan Zhou
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Quan Liu
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Departments of Radiation Oncology, Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
49
|
Xu J, Huang B, Tang S, Sun J, Bao E. Co-enzyme Q10 protects primary chicken myocardial cells from heat stress by upregulating autophagy and suppressing the PI3K/AKT/mTOR pathway. Cell Stress Chaperones 2019; 24:1067-1078. [PMID: 31401771 PMCID: PMC6882966 DOI: 10.1007/s12192-019-01029-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
In this study, we investigated the function of co-enzyme Q10 (Q10) in autophagy of primary chicken myocardial cells during heat stress. Cells were treated with Q10 (1 μΜ, 10 μΜ, and 20 μM) before exposure to heat stress. Pretreatment of chicken myocardial cells with Q10 suppressed the decline in cell viability during heat stress and suppressed the increase in apoptosis during heat stress. Treatment with 20 μM Q10 upregulated autophagy-associated genes during heat stress. The expression of LC3-II was highest in cells treated with 20 μM Q10. Pretreatment with Q10 decreased reactive oxygen species (ROS) levels during heat stress. The number of autophagosomes was significantly increased by 20 μM Q10 treatment, as demonstrated by electron microscopy or monodansylcadaverine (MDC) fluorescence. SQSTM1 accumulation was diminished by Q10 treatment during heat stress, and the number of LC3II puncta was increased. Treatment with 20 μM Q10 also decreased the activation of the PI3K/Akt/mTOR pathway. Our results showed that co-enzyme Q10 can protect primary chicken myocardial cells by upregulating autophagy and suppressing the PI3K/Akt/mTOR pathway during heat stress.
Collapse
Affiliation(s)
- Jiao Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Bei Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jiarui Sun
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
50
|
Gao W, Wang W, Zhang J, Deng P, Hu J, Yang J, Deng Z. Allicin ameliorates obesity comorbid depressive-like behaviors: involvement of the oxidative stress, mitochondrial function, autophagy, insulin resistance and NOX/Nrf2 imbalance in mice. Metab Brain Dis 2019; 34:1267-1280. [PMID: 31201726 DOI: 10.1007/s11011-019-00443-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The increased prevalence of obesity has been a major medical and public health problem in the past decades. In obese status, insulin resistance and sustained oxidative stress damage might give rise to behavioral deficits. The anti-obesity and anti-oxidant effects of allicin have been previously reported in peripheral tissues. In the present study, the functions and mechanisms of allicin involved in the prevention of high-fat diet (HFD)-induced depressive-like behaviors were investigated to better understand the pharmacological activities of allicin. Obese mice (five weeks of age) were treated with allicin (50, 100, and 200 mg/kg) by gavage for 15 weeks and behavioral test (sucrose preference, open field, and tail suspension) were performed. Furthermore, markers of oxidative stress, mitochondrial function, autophagy, and insulin resistance were measured in the hippocampal tissue. Finally, the levels of NADPH oxidase (NOX2, NOX4) and the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway were evaluated in the hippocampus. The body weight, metabolic disorders, and depressive-like behaviors in obese mice were ameliorated by allicin. The depressive-like behaviors presented in the obese mice were accompanied by remarkably excessive reactive oxygen species (ROS) production and oxidative stress, damaged mitochondrial function, imbalanced autophagy, and enhanced insulin resistance in the hippocampus. We found that allicin improved the above undesirable effects in the obese mice. Furthermore, allicin significantly decreased NOX2 and NOX4 levels and activated the Nrf2 pathway. Allicin attenuated depressive-like behaviors triggered by long-term HFD consumption by inhibiting ROS production and oxidative stress, improving mitochondrial function, regulating autophagy, and reducing insulin resistance in the hippocampus via optimization of NOX/Nrf2 imbalance.
Collapse
Affiliation(s)
- Wenqi Gao
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University&Technology, Wuhan, Hubei, China
| | - Wei Wang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jing Zhang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Pengyi Deng
- Department of Nuclear medicine, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jun Hu
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China
| | - Jian Yang
- Department of Central Experimental Laboratory, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China.
| | - Zhifang Deng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, 443000, China.
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei, China.
| |
Collapse
|