1
|
Sullivan JP, Jones MK. The Multifaceted Impact of Bioactive Lipids on Gut Health and Disease. Int J Mol Sci 2024; 25:13638. [PMID: 39769399 PMCID: PMC11728145 DOI: 10.3390/ijms252413638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Bioactive lipids have a multifaceted role in health and disease and are recognized to play an important part in gut immunity and disease conditions such as inflammatory bowel disease and colon cancer. Advancements in lipidomics, enabled by mass spectrometry and chromatographic techniques, have enhanced our understanding of lipid diversity and functionality. Bioactive lipids, including short-chain fatty acids, saturated fatty acids, omega-3 fatty acids, and sphingolipids, exhibit diverse effects on inflammation and immune regulation. Short-chain fatty acids like butyrate demonstrate anti-inflammatory properties, enhancing regulatory T cell function, gut barrier integrity, and epigenetic regulation, making them promising therapeutic targets for inflammatory bowel disease and colon cancer. Conversely, saturated fatty acids promote inflammation by disrupting gut homeostasis, triggering oxidative stress, and impairing immune regulation. Omega-3 lipids counteract these effects, reducing inflammation and supporting immune balance. Sphingolipids exhibit complex roles, modulating immune cell trafficking and inflammation. They can exert protective effects or exacerbate colitis depending on their source and context. Additionally, eicosanoids can also prevent pathology through prostaglandin defense against damage to epithelial barriers. This review underscores the importance of dietary lipids in shaping gut health and immunity and also highlights the potential use of lipids as therapeutic strategies for managing inflammatory conditions and cancer.
Collapse
Affiliation(s)
| | - Melissa K. Jones
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
2
|
Tang HP, Zhu EL, Bai QX, Wang S, Wang ZB, Wang M, Kuang HX. Polygala japonica Houtt.: A comprehensive review on its botany, traditional uses, phytochemistry, pharmacology, and pharmacokinetics. Fitoterapia 2024; 179:106233. [PMID: 39326795 DOI: 10.1016/j.fitote.2024.106233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Polygala japonica Houtt. (P. japonica), a member of the Polygala genus in the Polygalaceae family, has been historically utilized in traditional folk medicine as an expectorant, anti-inflammatory, anti-bacterial, and anti-depressant agent. This paper systematically reviews the latest research in botany, traditional uses, phytochemistry, pharmacology, and pharmacokinetics, aiming to provide a scientific foundation for the future development and application of P. japonica and to explore its potential value comprehensively. Approximately 86 compounds have been isolated from P. japonica, with triterpenoid saponins being the most prevalent and bioactive components. Extensive pharmacological activities of P. japonica extracts or compounds have been confirmed in vivo and in vitro, including anti-inflammatory, anti-depressant, neuroprotective, anti-obesity, anti-apoptotic, and skin-protective effects. Additionally, P. japonica has demonstrated significant curative effects and relatively clear pharmacological mechanisms in treating inflammatory and nervous system diseases. Specific components of its primary triterpenoid saponins are rapidly absorbed in the body. This review advocates for deeper scientific research on P. japonica, noting that most current research remains in its early stages and many reported biological activities require further clinical validation. Despite this, the traditional medical use of P. japonica across various cultures attests to its broad application value. Presently, the pharmacological activities of P. japonica extracts and compounds provide a scientific basis for its traditional uses. Future research must ensure the safety and effectiveness of P. japonica through in-depth pharmacokinetic studies, and the establishment of a refined and standardized quality evaluation system is essential for its clinical development and application.
Collapse
Affiliation(s)
- Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - En-Lin Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
3
|
Chero-Sandoval L, Martínez-Urbistondo M, Cuevas-Sierra A, Higuera-Gómez A, Martin-Domenech E, Castejón R, Mellor-Pita S, Moreno-Torres V, Ramos-Lopez O, de Luis D, Vargas JA, Martínez JA. Comparison of Metabolic Syndrome, Autoimmune and Viral Distinctive Inflammatory Related Conditions as Affected by Body Mass Index. J Clin Med 2024; 13:6298. [PMID: 39518437 PMCID: PMC11547109 DOI: 10.3390/jcm13216298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Metabolic inflammation (MI), long COVID (LC) and systemic lupus erythematosus (SLE) share some metabolic common manifestations and inflammatory pathophysiological similarities. Health-related quality of life (HRQoL) and metabolic age are indicators of health status. The "METAINFLAMMATION-CM Y2020/BIO-6600" project, a prospective controlled study, aimed to identify differential diagnostic tools and clinical features among three inflammatory conditions by comparing obesity status (low BMI vs. high BMI). Methods: A total of 272 adults of both Caucasian and Hispanic descent, diagnosed with MI, LC or SLE, and a range of BMI, were recruited. Clinical and phenotypic traits were measured to analyze body composition, metabolic and inflammatory markers, HRQoL data, metabolic age and lifestyle habits using a 3 × 2 (disease × BMI) factorial design. Results: Some inflammatory related variables, such as fibrinogen, RDW (red cell blood distribution width), ESR (erythrocyte sedimentation rate) and NLR (neutrophil/lymphocyte ratio), showed effect modifications depending on the BMI and disease type. In relation to HRQoL, the Physical Component Summary (PCS12) showed no relevant changes, while the Mental Component Summary (MCS12) showed a significant effect modification according to the disease type and BMI (p < 0.05). Furthermore, a significant interaction was identified between the disease type and BMI in relation to metabolic age (p = 0.02). Conclusions: Assessing the impact of BMI on these three inflammatory diseases may help to prevent clinical complications and to design personalized treatments, especially for patients with SLE, who have a worse prognosis with an increased BMI compared to the other two inflammatory diseases.
Collapse
Affiliation(s)
- Lourdes Chero-Sandoval
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain; (L.C.-S.); (A.H.-G.); (E.M.-D.); (J.A.M.)
- Endocrinology and Nutrition Department, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain;
| | - María Martínez-Urbistondo
- Internal Medicine Service of the Puerta de Hierro Majadahonda University Hospital, 28222 Madrid, Spain; (M.M.-U.); (S.M.-P.); (V.M.-T.); (J.A.V.)
| | - Amanda Cuevas-Sierra
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain; (L.C.-S.); (A.H.-G.); (E.M.-D.); (J.A.M.)
- UNIR Health Sciences School and Medical Center, Universidad Internacional de la Rioja, 26004 Madrid, Spain
| | - Andrea Higuera-Gómez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain; (L.C.-S.); (A.H.-G.); (E.M.-D.); (J.A.M.)
| | - Eva Martin-Domenech
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain; (L.C.-S.); (A.H.-G.); (E.M.-D.); (J.A.M.)
| | - Raquel Castejón
- Internal Medicine Service of the Puerta de Hierro Majadahonda University Hospital, 28222 Madrid, Spain; (M.M.-U.); (S.M.-P.); (V.M.-T.); (J.A.V.)
| | - Susana Mellor-Pita
- Internal Medicine Service of the Puerta de Hierro Majadahonda University Hospital, 28222 Madrid, Spain; (M.M.-U.); (S.M.-P.); (V.M.-T.); (J.A.V.)
| | - Víctor Moreno-Torres
- Internal Medicine Service of the Puerta de Hierro Majadahonda University Hospital, 28222 Madrid, Spain; (M.M.-U.); (S.M.-P.); (V.M.-T.); (J.A.V.)
- UNIR Health Sciences School and Medical Center, Universidad Internacional de la Rioja, 26004 Madrid, Spain
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Mexico;
| | - Daniel de Luis
- Endocrinology and Nutrition Department, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain;
| | - Juan Antonio Vargas
- Internal Medicine Service of the Puerta de Hierro Majadahonda University Hospital, 28222 Madrid, Spain; (M.M.-U.); (S.M.-P.); (V.M.-T.); (J.A.V.)
| | - J. Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain; (L.C.-S.); (A.H.-G.); (E.M.-D.); (J.A.M.)
| |
Collapse
|
4
|
Seok JK, Yang G, Jee JI, Kang HC, Cho YY, Lee HS, Lee JY. Hepatocyte-specific RIG-I loss attenuates metabolic dysfunction-associated steatotic liver disease in mice via changes in mitochondrial respiration and metabolite profiles. Toxicol Res 2024; 40:683-695. [PMID: 39345739 PMCID: PMC11436585 DOI: 10.1007/s43188-024-00264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
Pattern recognition receptor (PRR)-mediated inflammation is an important determinant of the initiation and progression of metabolic diseases such as metabolic dysfunction-associated steatotic liver disease (MASLD). In this study, we investigated whether RIG-I is involved in hepatic metabolic reprogramming in a high-fat diet (HFD)-induced MASLD model in hepatocyte-specific RIG-I-KO (RIG-I∆hep) mice. Our study revealed that hepatic deficiency of RIG-I improved HFD-induced metabolic imbalances, including glucose impairment and insulin resistance. Hepatic steatosis and liver triglyceride levels were reduced in RIG-I-deficient hepatocytes in HFD-induced MASLD mice, and this was accompanied by the reduced expression of lipogenesis genes, such as PPARγ, Dga2, and Pck1. Hepatic RIG-I deficiency alters whole-body metabolic rates in the HFD-induced MASLD model; there is higher energy consumption in RIG-I∆hep mice. Deletion of RIG-I activated glycolysis and tricarboxylic acid (TCA) cycle-related metabolites in hepatocytes from both HFD-induced MASLD mice and methionine-choline-deficient diet (MCD)-fed mice. RIG-I deficiency enhanced AMPK activation and mitochondrial function in hepatocytes from HFD-induced MASLD mice. These findings indicate that deletion of RIG-I can activate cellular metabolism in hepatocytes by switching on both glycolysis and mitochondrial respiration, resulting in metabolic changes induced by a HFD and stimulation of mitochondrial activity. In summary, RIG-I may be a key regulator of cellular metabolism that influences the development of metabolic diseases such as MASLD. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-024-00264-x.
Collapse
Affiliation(s)
- Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Gabsik Yang
- Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonbuk, 55338 Republic of Korea
| | - Jung In Jee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| |
Collapse
|
5
|
Cheng L, Wu Q, Wang S. Association between cardiometabolic index and hepatic steatosis and liver fibrosis: a population-based study. Hormones (Athens) 2024; 23:477-486. [PMID: 38861108 DOI: 10.1007/s42000-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND The cardiometabolic index (CMI) is a new type of obesity index that is based on a combination of lipid levels and abdominal obesity indicators. It is closely correlated with the occurrence of diabetes mellitus, atherosclerosis, hypertension, and other diseases, thus playing an important role in the screening of metabolic diseases. This is coupled with hepatic steatosis and fibrosis which are characterized by excessive liver fat deposition. The aim of this study was to investigate the possible association between CMI and hepatic steatosis and liver fibrosis. METHODS A cross-sectional investigation was conducted using the 2017-2020 National Health and Nutrition Examination Survey (NHANES) dataset to probe the relationship between CMI and hepatic steatosis and liver fibrosis, while multiple linear regression models were used to test the linear association between CMI and controlled attenuation parameter (CAP) and liver stiffness measurement (LSM). Smooth-fit curves and threshold effects analysis were used to describe the nonlinear relationships. Subgroup analyses were performed according to gender, age, body mass index (BMI), hypertension, diabetes, cardiovascular disease, and smoking status. RESULTS A total of 3084 adults aged 18-80 years were included in this analysis, and after controlling for a variety of variables, there was a significant positive correlation between CMI and CAP [20.38 (16.27,24.49)]. When subgroups were analyzed, this positive correlation was found to be stronger in the female population than in the male (P for interaction = 0.0303). Furthermore, the association between CMI and CAP was nonlinear. Using multiple regression analysis, it was shown that the linear relationship between CMI and liver fibrosis was not significant [-0.09 (-0.47,0.29)]. CONCLUSIONS The findings suggest that elevated CMI levels are associated with hepatic steatosis, but that CMI is not linked to liver fibrosis. Larger prospective investigations are needed to confirm our findings.
Collapse
Affiliation(s)
- Lulu Cheng
- College of Acupuncture-Moxibustion and Tuina, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Graduate School, Wuhan Sports University, Wuhan, 430079, China.
| | - Qinggang Wu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Siyu Wang
- Graduate School, Wuhan Sports University, Wuhan, 430079, China
| |
Collapse
|
6
|
Yan K. Recent advances in the effect of adipose tissue inflammation on insulin resistance. Cell Signal 2024; 120:111229. [PMID: 38763181 DOI: 10.1016/j.cellsig.2024.111229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Obesity is one of the major risk factors for diabetes. Excessive accumulation of fat leads to inflammation of adipose tissue, which can increase the risk of developing diabetes. Obesity-related chronic inflammation can result in anomalies in glucose-lipid metabolism and insulin resistance, and it is a major cause of β-cell dysfunction in diabetes mellitus. Thus, a long-term tissue inflammatory response is crucial for metabolic diseases, particularly type 2 diabetes. Chronic inflammation associated with obesity increases oxidative stress, secretes inflammatory factors, modifies endocrine variables, and interferes with insulin signalling pathways, all of which contribute to insulin resistance and glucose tolerance. Insulin resistance and diabetes are ultimately caused by chronic inflammation in the stomach, pancreas, liver, muscle, and fat tissues. In this article, we systematically summarize the latest research progress on the mechanisms of adipose tissue inflammation and insulin resistance, as well as the mechanisms of cross-talk between adipose tissue inflammation and insulin resistance, with a view to providing some meaningful therapeutic strategies for the treatment of insulin resistance by controlling adipose tissue inflammation.
Collapse
Affiliation(s)
- Kaiyi Yan
- The Second Clinical College of China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
7
|
Liqiang S, Fang-Hui L, Minghui Q, Yanan Y, Haichun C. Free fatty acids and peripheral blood mononuclear cells (PBMC) are correlated with chronic inflammation in obesity. Lipids Health Dis 2023; 22:93. [PMID: 37403139 DOI: 10.1186/s12944-023-01842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/03/2023] [Indexed: 07/06/2023] Open
Abstract
Obesity-related chronic inflammation is closely related to the ability of immune cells to adapt to the body's needs, research has shown that excess FAs can further activate pro-inflammatory transcription factors in the nucleus by interacting with various receptors such as CD36 and TLR4, thereby affecting the inflammatory state of cells. However, how the profile of various fatty acids in the blood of obese individuals is associated with chronic inflammation remains unclear. OBJECTIVE The biomarkers associated with obesity were identified from 40 fatty acids (FAs) in the blood, and analyze the relationship between the biomarkers and chronic inflammation. Furthermore, by analyzing the difference in the expression of CD36, TLR4 and NF-κB p65 in peripheral blood mononuclear cells (PBMC) between obese and standard weight people, understand that immunophenotype PBMC is associated with chronic inflammation. METHODS This study is a cross-sectional study. Participants were recruited from the Yangzhou Lipan weight loss training camp from May 2020 to July 2020. The sample size was 52 individuals, including 25 in the normal weight group and 27 in the obesity group. Individuals with obesity and controls of normal weight were recruited to identify biomarkers associated with obesity from 40 fatty acids in the blood; correlation analysis was conducted between the screened potential biomarkers FAs and the chronic inflammation index hs-CRP to identify FA biomarkers associated with chronic inflammation. Changes in the fatty acid receptor CD36, inflammatory receptor TLR4, and inflammatory nuclear transcription factor NF-κB p65 in PBMC subsets were used to further test the relationship between fatty acids and the inflammatory state in individuals with obesity. RESULTS 23 potential FA biomarkers for obesity were screened, eleven of the potential obesity biomarkers were also significantly related to hs-CRP. Compared to the control group, in monocytes the obesity group expressed higher TLR4, CD36, and NF-κB p65 in lymphocytes, the obesity group expressed higher TLR4 and CD36; and in granulocytes the obesity group expressed higher CD36. CONCLUSION Blood FAs are associated with obesity and are associated with chronic inflammation through increased CD36, TLR4, and NF-κB p65 in monocytes.
Collapse
Affiliation(s)
- Su Liqiang
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Li Fang-Hui
- School of Sport Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Quan Minghui
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Yang Yanan
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, Physical Education College, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Chen Haichun
- Key Lab of Aquatic Sports Training Monitoring and Intervention of General Administration of Sport of China, School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
8
|
Liu J, Cai J, Fan P, Dong X, Zhang N, Tai J, Cao Y. Salidroside protects mice from high-fat diet-induced obesity by modulating the gut microbiota. Int Immunopharmacol 2023; 120:110278. [PMID: 37192552 DOI: 10.1016/j.intimp.2023.110278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/18/2023]
Abstract
Obesity is a systemic disease with multisystem inflammation associated with gut dysbiosis. Salidroside (SAL) which is a major glycoside extracted from Rhodiola rosea L. has a wide range of pharmacological effects, but the role of gut microbiota in the protective effects of SAL on obesity has not been studied. Herein, we aim to explore whether SAL could ameliorate high-fat diet (HFD)-induced obesity in mice by modulating microbiota. Results showed that oral treatment with SAL alleviated HFD-induced obesity in mice as evidenced by body weight and fat weight. SAL supplementation effectively attenuated fat accumulation, lipid synthesis genes expression, liver inflammation, and metabolic endotoxemia. In addition, SAL treatment alleviated intestinal damage and increased the expression of mucin protein (Mucin-2) and tight junction (TJ) proteins (Occludin and Zonula Occludens-1). 16S rRNA sequencing analysis revealed that the gut microbiota of obese mice was also partly improved by SAL via restoring the microbial community structure and diversity. A fecal microbiota transplantation (FMT) study was designed to verify the causality. Compared with fecal transplantation (FM) from the HFD-treated mice, FM from the SAL-treated mice significantly mitigate the symptoms of obese mice, including decreasing body weight, fat accumulation, and attenuating pathological damage in the gut. Thus, SAL could be a remarkable candidate to prevent obesity.
Collapse
Affiliation(s)
- Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Jiapei Cai
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Peng Fan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Xue Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun 130021, People's Republic of China.
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China; Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China.
| |
Collapse
|
9
|
Li L, Dong Y, Liu X, Wang M. Mangiferin for the Management of Liver Diseases: A Review. Foods 2023; 12:2469. [PMID: 37444207 DOI: 10.3390/foods12132469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The liver is a digestive and metabolic organ, and several factors can induce liver damage, which is a severe threat to human health. As a natural polyphenolic compound, mangiferin belongs to xanthone glucoside and mainly exists in many plants, such as mango. It is notorious that mangiferin has remarkable pharmacological activities such as anti-inflammatory, anti-tumor, antioxidative stress, antiviral and so on. Emerging evidence indicates the therapeutic benefits of mangiferin against liver disease, including liver injury, nonalcoholic fatty liver disease, alcoholic liver disease, liver fibrosis, and hepatocellular carcinoma. This review aims to summarize the possible underlying signaling mediated by mangiferin in liver disease treatment and the available findings of mangiferin, which can be used to treat different liver diseases and may contribute to mangiferin as a therapeutic agent for liver disease in humans.
Collapse
Affiliation(s)
- Lisi Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yujia Dong
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Xifu Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Meng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Anti-Tumor Molecular Target Technology Innovation Center, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
- Key Laboratory of Ethnomedicine, Minzu University of China, Ministry of Education, Beijing 100086, China
| |
Collapse
|
10
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
11
|
Yan BF, Wang Y, Wang WB, Ding XJ, Wei B, Liu SJ, Fu TM, Chen L, Zhang JZ, Liu J, Zheng X. Huangqin decoction mitigates hepatic inflammation in high-fat diet-challenged rats by inhibiting TLR4/NF-κB/NLRP3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115999. [PMID: 36509260 DOI: 10.1016/j.jep.2022.115999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic hepatopathy worldwide, in which ectopic steatosis (5%) and inflammatory infiltration in the liver are the principal clinical characteristics. Huangqin decoction (HQD), a Chinese medicine formula used in the clinic for thousands of years, presents appreciable anti-inflammatory effects. Nevertheless, the role and mechanism of HQD against inflammation in NAFLD are still undefined. AIM OF THE STUDY The objective of this study was to evaluate the curative efficacy and unravel the involved mechanism of HQD on a high-fat diet (HFD)-induced NAFLD. MATERIALS AND METHODS First, HPLC was utilized to analyze the main chemical components of HQD. Then, NAFLD model was introduced by subjecting the rats to HFD for 16 weeks, and HQD (400 and 800 mg/kg) or polyene lecithin choline (PLC, 8 mg/kg) was given orally from week 8-16. Pharmacodynamic indicators including body weight, liver weight, liver index, as well as biochemical and histological parameters were assessed. As to mechanism exploration, the expressions of TLR4/NF-κB/NLRP3 pathway and molecular docking between major phytochemicals of HQD and key targets of TLR4/NF-κB/NLRP3 pathway were investigated. RESULTS Seven main monomeric constituents of HQD were revealed by HPLC analysis. Of note, HQD could effectively attenuate the body weight, liver weight, and liver index, rescue disorders in serum transaminases and lipid profile, correct hepatic histological abnormalities, and reduce phagocytes infiltration into the liver and pro-inflammatory cytokines release in NAFLD rats. Mechanism investigation discovered that HQD harbored inhibitory effects on TLR4/NF-κB/NLRP3 pathway-regulated liver inflammation. Further exploration found that seven phytochemicals in HQD exhibited better binding modes with TLR4/NF-κB/NLRP3 pathway, in which baicalein, baicalin and liquiritin presented the highest affinity and docking score for protein TLR4, NF-κB, and NLRP3, respectively. CONCLUSIONS These findings confirmed that HQD ameliorated hepatic inflammation in NAFLD rats by blocking the TLR4/NF-κB/NLRP3 pathway, with multi-components and multi-targets action pattern.
Collapse
Affiliation(s)
- Bao-Fei Yan
- Jiangsu Health Vocational College, Nanjing, 211800, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yun Wang
- Department of Dermatology, Affiliated Huai'an Hospital of Xuzhou Medical University, the Second People's Hospital of Huai'an, Huai'an, 223002, PR China
| | - Wen-Bo Wang
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Xiao-Jun Ding
- Department of Otolaryngology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Bin Wei
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China
| | - Sheng-Jin Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ting-Ming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Ling Chen
- Jiangsu Health Vocational College, Nanjing, 211800, PR China
| | | | - Jia Liu
- Jiangsu Health Vocational College, Nanjing, 211800, PR China.
| | - Xian Zheng
- Department of Pharmacy, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, PR China.
| |
Collapse
|
12
|
Liu C, Liu Y, Wang C, Guo Y, Cheng Y, Qian H, Zhao Y. Lycopene-Loaded Bilosomes Ameliorate High-Fat Diet-Induced Chronic Nephritis in Mice through the TLR4/MyD88 Inflammatory Pathway. Foods 2022; 11:foods11193042. [PMID: 36230117 PMCID: PMC9564075 DOI: 10.3390/foods11193042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/27/2022] Open
Abstract
Chronic kidney disease caused by a high-fat diet (HFD)-induced metabolic syndrome has received widespread attention. Lycopene has a wide range of biological activities and can improve a variety of chronic diseases through anti-inflammatory effects. In this study, HFD-fed mice were used as a metabolic syndrome model to evaluate the protective effect of lycopene in a sustained-release vehicle (bilosomes) in the small intestine against renal injury and to determine whether the TLR4/MyD88 pathway and related metabolic pathways are involved in this process. The results showed that lycopene bilosomes alleviated HFD-induced kidney damage, as evidenced by lower serum urea nitrogen, creatinine, and uric acid levels. Histopathology studies showed that lycopene bilosomes attenuated HFD-induced tubular cell and glomerular injury. In addition, Elisa, RT-PCR, and Western blotting results showed that lycopene bilosomes also reduced the expression of inflammatory factors such as TLR4, MyD88, NF-kB, TNF-a, and IL-6 in mouse kidneys. The mechanism was to attenuate renal inflammatory response by inhibiting the TLR4/MyD88 inflammatory pathway. These findings suggested that lycopene can alleviate nephritis and metabolic disorders caused by HFD, inhibiting the TLR4/MyD88 inflammatory pathway and its downstream pro-inflammatory cytokines and further regulating the vitamin K metabolism, beta-alanine metabolism, and glutathione metabolism pathways to relieve chronic nephritis.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Liu
- Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi 214122, China
| | - Ciwan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, China
| | - Yong Zhao
- Thoracic and Cardiac Surgery, Affiliated Hospital of Jiangnan University, No.1000, He Feng Road, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
13
|
Aburto S, Cisterna M, Acuña J, Ruíz C, Viscardi S, Márquez JL, Villano I, Letelier P, Guzmán N. Obesity as a Risk Factor for Severe COVID-19 in Hospitalized Patients: Epidemiology and Potential Mechanisms. Healthcare (Basel) 2022; 10:1838. [PMID: 36292285 PMCID: PMC9601462 DOI: 10.3390/healthcare10101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection is a global public health problem, causing significant morbidity and mortality. Evidence shows that obesity is a recognized risk factor for hospitalization, admission to critical care units, and the development of serious complications from COVID-19. This review analyzes the available epidemiological evidence that relates obesity to a higher risk of severity and mortality from COVID-19, examining the possible pathophysiological mechanisms that explain this phenomenon on a cellular and molecular level.
Collapse
Affiliation(s)
- Scarleth Aburto
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Mischka Cisterna
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Javiera Acuña
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Camila Ruíz
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Sharon Viscardi
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile
- Núcleo de Investigación en Producción Alimentaria, Universidad Católica de Temuco, Temuco 4780000, Chile
- Biotechnology of Functional Foods Laboratory, Camino Sanquilco, Parcela 18, Padre Las Casas 4850000, Chile
| | - José Luis Márquez
- Escuela de Kinesiología, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Ines Villano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Pablo Letelier
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Neftalí Guzmán
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4780000, Chile
| |
Collapse
|
14
|
Su L, Pan Y, Chen H. The Harm of Metabolically Healthy Obese and the Effect of Exercise on Their Health Promotion. Front Physiol 2022; 13:924649. [PMID: 35910571 PMCID: PMC9329531 DOI: 10.3389/fphys.2022.924649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity and obesity-related diseases [type 2 diabetes, cardiovascular disease (CVD), and cancer] are becoming more common, which is a major public health concern. Metabolically healthy obesity (MHO) has become a type of obesity, accounting for a large proportion of obese people. MHO is still harmful to health. It was discovered that MHO screening criteria could not well reflect health hazards, whereas visceral fat, adiponectin pathway, oxidative stress, chronic inflammation, and histological indicators at the microlevel could clearly distinguish MHO from health control, and the biological pathways involved in these micro indicators were related to MHO pathogenesis. This review reveals that MHO’s micro metabolic abnormality is the initial cause of the increase of disease risk in the future. Exploring the biological pathway of MHO is important in order to develop an effective mechanism-based preventive and treatment intervention strategy. Exercise can correct the abnormal micro metabolic pathway of MHO, regulate metabolic homeostasis, and enhance metabolic flexibility. It is a supplementary or possible alternative to the traditional healthcare prevention/treatment strategy as well as an important strategy for reducing MHO-related health hazards.
Collapse
Affiliation(s)
- Liqiang Su
- Physical Education of College, Jiangxi Normal University, Nanchang, China
| | - Yihe Pan
- Physical Education of College, Jiangxi Normal University, Nanchang, China
| | - Haichun Chen
- School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China
- *Correspondence: Haichun Chen,
| |
Collapse
|
15
|
Yu L, Zhang X, Ye S, Lian H, Wang H, Ye J. Obesity and COVID-19: Mechanistic Insights From Adipose Tissue. J Clin Endocrinol Metab 2022; 107:1799-1811. [PMID: 35262698 PMCID: PMC8992328 DOI: 10.1210/clinem/dgac137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 02/08/2023]
Abstract
Obesity is associated with an increase in morbidity and mortality from coronavirus disease 2019 (COVID-19). The risk is related to the cytokine storm, a major contributor to multiorgan failure and a pathological character of COVID-19 patients with obesity. While the exact cause of the cytokine storm remains elusive, disorders in energy metabolism has provided insights into the mechanism. Emerging data suggest that adipose tissue in obesity contributes to the disorders in several ways. First, adipose tissue restricts the pulmonary function by generation of mechanical pressures to promote systemic hypoxia. Second, adipose tissue supplies a base for severe acute respiratory syndrome coronavirus 2 entry by overexpression of viral receptors [angiotensin-converting enzyme 2 and dipeptidyl peptidase 4]. Third, impaired antiviral responses of adipocytes and immune cells result in dysfunction of immunologic surveillance as well as the viral clearance systems. Fourth, chronic inflammation in obesity contributes to the cytokine storm by secreting more proinflammatory cytokines. Fifth, abnormal levels of adipokines increase the risk of a hyperimmune response to the virus in the lungs and other organs to enhance the cytokine storm. Mitochondrial dysfunction in adipocytes, immune cells, and other cell types (endothelial cells and platelets, etc) is a common cellular mechanism for the development of cytokine storm, which leads to the progression of mild COVID-19 to severe cases with multiorgan failure and high mortality. Correction of energy surplus through various approaches is recommended in the prevention and treatment of COVID-19 in the obese patients.
Collapse
Affiliation(s)
- Lili Yu
- Department of Immunology, Institute of Precision Medicine, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoying Zhang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Sarah Ye
- Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Hongkai Lian
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
- Corresponding author:
| |
Collapse
|
16
|
Ren G, Ma X, Jiao P. Effect of liraglutide combined with metformin or acarbose on glucose control in type 2 diabetes mellitus and risk factors of gastrointestinal adverse reactions. Am J Transl Res 2022; 14:3207-3215. [PMID: 35702127 PMCID: PMC9185051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the effect of liraglutide combined with metformin or acarbose on glucose control in patients with type 2 diabetes mellitus (T2DM) and to analyze the risk factors of gastrointestinal adverse reactions. METHODS This retrospective study was conducted on 88 T2DM patients who were treated in our hospital from February 2019 to August 2021. The patients were divided into Group A (n=40) and Group B (n=48) according to different treatment methods. Group A was treated with liraglutide and metformin, while Group B was given liraglutide and acarbose. The effects of glucose control (FPG, 2hPG, HbA1c), inflammatory indexes (IL-6, CRP, SAA), fasting C-peptide, 2-h postprandial C-peptide levels and adverse reactions were compared. Afterwards, The risk factors of gastrointestinal adverse reactions were assessed via logistics regression. RESULTS It was found that the FPG, 2hPG and HbA1c levels after treatment were lower than those before treatment (P<0.05), and the levels in group A were lower than those in group B (P<0.05). The serum IL-6, CRP and SAA levels after treatment were lower than those before treatment (P<0.05), but there was no marked difference between the two groups after treatment (P>0.05). The fasting C-peptide and 2-h postprandial C-peptide levels in group A after treatment were higher than those in group B (P<0.05). Logistics regression analysis revealed that complicated digestive system diseases and combined use of acarbose were independent risk factors. CONCLUSION Compared with liraglutide and acarbose, liraglutide and metformin has better glucose control effect in T2DM. Although there is no obvious difference in eliminating inflammation, liraglutide combined with acarbose will increase the incidence of gastrointestinal adverse reactions in patients. So, liraglutide combined with metformin is recommended for T2DM treatment.
Collapse
Affiliation(s)
- Gaofei Ren
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Xiaojun Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Pengfei Jiao
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
17
|
Zhou Y, Wang R, Han F, Zhang J. Efficacy of epalrestat combined with alprostadil for diabetic nephropathy and its impacts on renal fibrosis and related factors of inflammation and oxidative stress. Am J Transl Res 2022; 14:3172-3179. [PMID: 35702110 PMCID: PMC9185026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To explore the efficacy of epalrestat (Ep) combined with alprostadil (Alp) in the treatment of diabetic nephropathy (DN) and its impacts on renal fibrosis (RF) and inflammation and oxidative stress (OS)-related factors. METHODS In this retrospective study, 120 patients with DN treated in the Cangzhou Central Hospital from January 2020 to January 2021 were selected as the research subjects. Among them, 80 cases treated with Ep combined with Alp were assigned to group A, and the rest 40 patients treated with Alp only were assigned to group B. The two groups were compared with respect to the following items: serum OS indexes (malondialdehyde, MDA; superoxide dismutase, SOD; total antioxidant capacity, TAOC), inflammatory factors (tumor necrosis factor-α, TNF-α; interleukin-2, IL-2), RF index transforming growth factor-β1 (TGF-β1), urinary protein indexes (urinary albumin excretion, UAE; serum albumin, ALB), blood glucose (fasting blood glucose, FBG), fasting C-peptide, postprandial 2hC peptide levels, overall response rate (ORR) and incidence of adverse reactions. RESULTS Compared with group B, the levels of MDA, TNF-α, IL-2 and TGF-β1 were lower, while SOD and TAOC were higher in group A. In addition, ALB was higher, while UAE and FBG were lower in group A as compared with group B. Moreover, group A had a higher ORR and fewer adverse reactions as compared with group B. CONCLUSION The combined therapy of Ep and Alp is more effective in the treatment of DN. This combination can effectively reduce RF and better alleviate inflammation and OS.
Collapse
Affiliation(s)
- Yanan Zhou
- Endocrinology and Diabetes Department, Cangzhou Central HospitalCangzhou 061001, Hebei, China
| | - Rongrong Wang
- Endocrinology and Diabetes Department, Cangzhou Central HospitalCangzhou 061001, Hebei, China
| | - Fengmei Han
- Ophthalmology Department, Cangzhou Central HospitalCangzhou 061001, Hebei, China
| | - Jincheng Zhang
- Endocrinology and Diabetes Department, Cangzhou Central HospitalCangzhou 061001, Hebei, China
| |
Collapse
|
18
|
Divella R, Gadaleta Caldarola G, Mazzocca A. Chronic Inflammation in Obesity and Cancer Cachexia. J Clin Med 2022; 11:2191. [PMID: 35456284 PMCID: PMC9027625 DOI: 10.3390/jcm11082191] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation has long been linked to obesity and related conditions such as type 2 diabetes and metabolic syndrome. According to current research, the increased risk of cancer in people with certain metabolic diseases may be due to chronic inflammation. Adipocytokines, which are pro-inflammatory cytokines secreted in excess, are elevated in many chronic metabolic diseases. Cytokines and inflammatory mediators, which are not directly linked to DNA, are important in tumorigenesis. Cachexia, a type of metabolic syndrome linked to the disease, is associated with a dysregulation of metabolic pathways. Obesity and cachexia have distinct metabolic characteristics, such as insulin resistance, increased lipolysis, elevated free fatty acids (FFA), and ceramide levels, which are discussed in this section. The goal of this research project is to create a framework for bringing together our knowledge of inflammation-mediated insulin resistance.
Collapse
Affiliation(s)
- Rosa Divella
- ASD Nordic Walking Apulia Lifestyle, Corso Giuseppe Di Vittorio 14, 70024 Gravina in Puglia, Italy
| | | | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
19
|
Yu L, Hong W, Lu S, Li Y, Guan Y, Weng X, Feng Z. The NLRP3 Inflammasome in Non-Alcoholic Fatty Liver Disease and Steatohepatitis: Therapeutic Targets and Treatment. Front Pharmacol 2022; 13:780496. [PMID: 35350750 PMCID: PMC8957978 DOI: 10.3389/fphar.2022.780496] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is among the most prevalent primary liver diseases worldwide and can develop into various conditions, ranging from simple steatosis, through non-alcoholic steatohepatitis (NASH), to fibrosis, and eventually cirrhosis and hepatocellular carcinoma. Nevertheless, there is no effective treatment for NAFLD due to the complicated etiology. Recently, activation of the NLPR3 inflammasome has been demonstrated to be a contributing factor in the development of NAFLD, particularly as a modulator of progression from initial hepatic steatosis to NASH. NLRP3 inflammasome, as a caspase-1 activation platform, is critical for processing key pro-inflammatory cytokines and pyroptosis. Various stimuli involved in NAFLD can activate the NLRP3 inflammasome, depending on the diverse cellular stresses that they cause. NLRP3 inflammasome-related inhibitors and agents for NAFLD treatment have been tested and demonstrated positive effects in experimental models. Meanwhile, some drugs have been applied in clinical studies, supporting this therapeutic approach. In this review, we discuss the activation, biological functions, and treatment targeting the NLRP3 inflammasome in the context of NAFLD progression. Specifically, we focus on the different types of therapeutic agents that can inhibit the NLRP3 inflammasome and summarize their pharmacological effectiveness for NAFLD treatment.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,The Third Clinical College of Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| | - Wei Hong
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Shen Lu
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Yanrong Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yaya Guan
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Xiaogang Weng
- The Third Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,Institute of Precision Medicine, Xinxiang Medical University, Xinxiang, China.,Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
20
|
Mechanism of protection from insulin resistance by toll-like receptor 2 deficiency in high-fat diet fed mice: involvement in macrophage polarization. Mol Biol Rep 2022; 49:2591-2599. [PMID: 35034283 DOI: 10.1007/s11033-021-07061-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Toll-like receptor 2 (TLR2) deficiency can increase insulin sensitivity and improves glucose tolerance. However, it is not yet fully understood about its underlying mechanism. The regulation of M1/M2 macrophage polarization has been verified to involve in insulin resistance. Here, we evaluated whether the beneficial effect of TLR2 deficiency is mediated by TLR2-associated macrophage polarization in mice fed with high-fat diet (HFD). METHODS AND RESULTS Wild-type and TLR2 knockout (TLR2-/-) mice received HFD for two months. Following intraperitoneal glucose tolerance and insulin resistance tests, peripheral monocytes were isolated, and in vitro induced for differentiation into M1 and M2 macrophages, respectively. Macrophages polarization was evaluated using flow cytometry. The expression of macrophage polarization marker genes and cytokine production in visceral adipose tissue were measured by qRT-PCR and ELISA. Compared to wild-type mice, TLR2-/- mice showed higher glucose tolerance and insulin sensitivity, along with significantly reduced the population of M1 and increased M2 count in vitro. Additionally, TLR2-/- mice demonstrated higher expression of M2 marker iNOS mRNA and interleukin-10 level in adipose tissues. CONCLUSIONS Our results reveal that TLR2 knockout-mediated macrophages M2 polarization is a crucial factor for preventing against diet-induced insulin resistance in mice. These findings deepen our knowledge about the mechanism underlying HFD-induced insulin resistance.
Collapse
|
21
|
Ballan R, Saad SMI. Characteristics of the Gut Microbiota and Potential Effects of Probiotic Supplements in Individuals with Type 2 Diabetes mellitus. Foods 2021; 10:foods10112528. [PMID: 34828808 PMCID: PMC8622611 DOI: 10.3390/foods10112528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of type 2 diabetes mellitus (T2DM) worldwide has become a burden to healthcare systems. In 2019, around 463 million adults were living with diabetes mellitus, and T2DM accounted for 90 to 95% of cases. The relationship between the gut microbiota and T2DM has been explored with the advent of metagenomic techniques. Genome-wide association studies evaluating the microbiota of these individuals have pointed to taxonomic, functional, and microbial metabolite imbalances and represent a potential intervention in T2DM management. Several microbial metabolites and components, such as imidazole propionate, trimethylamine, and lipopolysaccharides, appear to impair insulin signaling, while short-chain fatty acids, secondary bile acids, and tryptophan metabolites may improve it. In addition, the use of probiotics with the aim of transiently restoring the microbial balance or reducing the effects of microbial metabolites that impair insulin sensitivity has been explored. Herein, we critically review the available literature on the changes in the gut microbiota in T2DM together with potential adjuvant therapies that may improve the health status of this population.
Collapse
Affiliation(s)
- Rafael Ballan
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center, University of São Paulo, São Paulo 05508-080, SP, Brazil
| | - Susana Marta Isay Saad
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil;
- Food Research Center, University of São Paulo, São Paulo 05508-080, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-2378
| |
Collapse
|
22
|
Gonzalez I, Araya P, Schneider I, Lindner C, Rojas A. Pattern recognition receptors and their roles in the host response to Helicobacter pylori infection. Future Microbiol 2021; 16:1229-1238. [PMID: 34615380 DOI: 10.2217/fmb-2021-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent, affecting 4.4 billion people globally. This pathogen is a risk factor in the pathogenesis of more than 75% of worldwide cases of gastric cancer. Pattern recognition receptors are essential in the innate immune response to H. pylori infection. They recognize conserved pathogen structures and myriad alarmins released by host cells in response to microbial components, cytokines or cellular stress, thus triggering a robust proinflammatory response, which is crucial in H. pylori-induced gastric carcinogenesis. In this review, we intend to highlight the main pattern recognition receptors involved in the recognition and host response to H. pylori, as well as the main structures recognized and the subsequent inflammatory response.
Collapse
Affiliation(s)
- Ileana Gonzalez
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Paulina Araya
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Ivan Schneider
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Cristian Lindner
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| | - Armando Rojas
- Biomedical Research Labs, Medicine Faculty, Catholic University of Maule, Talca, 3460000, Chile
| |
Collapse
|
23
|
Kowalczyk P, Majewska-Szczepanik M, Strzępa A, Biała D, Szczepanik M. Diet-induced obesity aggravates NK cell-mediated contact hypersensitivity reaction in Rag1 -/- mice. Contact Dermatitis 2021; 85:307-316. [PMID: 33899952 DOI: 10.1111/cod.13871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous studies showed that natural killer (NK) cells mediate contact hypersensitivity (CHS) reaction. Many reports are showing that obesity promotes several inflammatory diseases. It was shown that diet-induced obesity (DIO) aggravates classical T cell-mediated CHS in mice. OBJECTIVES To determine whether the high-fat diet (HFD)-induced obesity modulates antigen-specific NK cell-mediated response. METHODS We evaluated the effect of DIO on NK cell-mediated CHS reaction using a model of dinitrofluorobenzene (DNFB)-induced CHS in Rag1-/- mice. RESULTS Rag1-/- mice fed HFD for 8 but not for 4 weeks developed aggravated CHS reaction determined by ear swelling measurement when compared to animals kept on normal diet (ND) prior to DNFB sensitization. The obese Rag1-/- mice presented the adipose tissue inflammation. Furthermore, in vitro analysis showed that feeding with HFD significantly increases interferon γ (IFN-γ) and interleukin (IL)-12p70 and decreases adiponectin concentration in liver mononuclear cell (LMNC) culture supernatants. The flow cytometry analysis of LMNC revealed that HFD treatment prior to DNFB sensitization increases the percentage of NK1.1+ IFN-γ+ cell population and affects the development and maturation of NK1.1+ cells. CONCLUSIONS In summary, current results suggest that the DIO significantly modulates the local and systemic inflammatory response, contributing to exacerbation of the CHS response mediated by liver NK cells.
Collapse
Affiliation(s)
- Paulina Kowalczyk
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Majewska-Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Strzępa
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Dominika Biała
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Marian Szczepanik
- Department of Medical Biology, Faculty of Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
24
|
Zhang CH, Sheng JQ, Xie WH, Luo XQ, Xue YN, Xu GL, Chen C. Mechanism and Basis of Traditional Chinese Medicine Against Obesity: Prevention and Treatment Strategies. Front Pharmacol 2021; 12:615895. [PMID: 33762940 PMCID: PMC7982543 DOI: 10.3389/fphar.2021.615895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, the incidences of obesity and related metabolic disorders worldwide have increased dramatically. Major pathophysiology of obesity is termed "lipotoxicity" in modern western medicine (MWM) or "dampness-heat" in traditional Chinese medicine (TCM). "Dampness-heat" is a very common and critically important syndrome to guild clinical treatment in TCM. However, the pathogenesis of obesity in TCM is not fully clarified, especially by MWM theories compared to TCM. In this review, the mechanism underlying the action of TCM in the treatment of obesity and related metabolic disorders was thoroughly discussed, and prevention and treatment strategies were proposed accordingly. Hypoxia and inflammation caused by lipotoxicity exist in obesity and are key pathophysiological characteristics of "dampness-heat" syndrome in TCM. "Dampness-heat" is prevalent in chronic low-grade systemic inflammation, prone to insulin resistance (IR), and causes variant metabolic disorders. In particular, the MWM theories of hypoxia and inflammation were applied to explain the "dampness-heat" syndrome of TCM, and we summarized and proposed the pathological path of obesity: lipotoxicity, hypoxia or chronic low-grade inflammation, IR, and metabolic disorders. This provides significant enrichment to the scientific connotation of TCM theories and promotes the modernization of TCM.
Collapse
Affiliation(s)
- Chang-Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jun-Qing Sheng
- College of Life Science, Nanchang University, Nanchang, China
| | - Wei-Hua Xie
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiao-Quan Luo
- Experimental Animal Science and Technology Center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ya-Nan Xue
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guo-Liang Xu
- Research Center for Differentiation and Development of Basic Theory of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Neves JAJ, De Matos MR, Ramalho T, Santos-Bezerra DP, Cavalcante CDGD, Alpino Peixoto RD, Queiroz MS, Jancar S, Correa-Giannella ML. Increased leukotriene B4 plasma concentration in type 2 diabetes individuals with cardiovascular autonomic neuropathy. Diabetol Metab Syndr 2020; 12:99. [PMID: 33292560 PMCID: PMC7663893 DOI: 10.1186/s13098-020-00606-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND AIM A low-grade inflammation is associated with cardiac autonomic neuropathy (CAN) and increased concentration of leukotriene B4 (LTB4) was found in individuals with type 1 diabetes and definitive CAN. This cross-sectional study evaluated plasma concentration of LTB4 and of other inflammatory mediators, namely, tumor necrosis factor (TNF), interleukin (IL)1B, and IL10 in individuals with type 2 diabetes (T2D) and different degrees of CAN, and correlated these inflammatory mediators with the degree of glycemic control and with a surrogate marker of insulin resistance. METHODS TNF, IL1B, IL10 and LTB4 plasma concentrations were measured in 129 T2D subjects (62% women with [median] age of 63 years, disease duration of 8 years and HbA1c of 7.3%) with or without CAN. The Lipid accumulation product index was used as a surrogate marker of insulin resistance. RESULTS LTB4 concentration was significantly higher in those presenting incipient CAN (69.7 ± 16.6 pg mL-1) and definitive CAN (71.5 ± 15.7 pg mL-1) versus those without CAN (57.0 ± 13.9 pg mL-1). The groups without CAN and with incipient CAN were pooled (group without definitive CAN) and compared to those with definitive CAN. LTB4 concentration was higher in the latter group, as well as TNF concentration, while IL10 concentration was lower in this group. After adjustment for confounding variables, only LTB4 concentration remained significantly different between the groups with and without definitive CAN. Plasma concentration of LTB4 did not correlate with the degree of glycemic control. After sorting the participants by sex, a borderline weak correlation was found between LTB4 and the Lipid accumulation product index in women. CONCLUSION In the T2D setting, circulating LTB4 concentration seems to be associated with cardiovascular dysautonomia.
Collapse
Affiliation(s)
- Jose Antonio Januario Neves
- Programa de Pos-Graduação Em Medicina, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, 2° subsolo, Pos-graduação, Sao Paulo, CEP: 01504-001, Brazil
| | - Mozânia Reis De Matos
- Programa de Pos-Graduação Em Medicina, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, 2° subsolo, Pos-graduação, Sao Paulo, CEP: 01504-001, Brazil
- Unidade Básica de Saúde Dra. Ilza Weltman Hutzler. Rua Coronel Walfrido de Carvalho, Sao Paulo, CEP: 02472-180, Brazil
| | - Theresa Ramalho
- Laboratório de Imunofarmacologia, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Sao Paulo, CEP: 05508-900, Brazil
| | - Daniele Pereira Santos-Bezerra
- Laboratório de Carboidratos E Radioimunoensaio (LIM-18) Do Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr. Arnaldo, 455, Sala 3321, Sao Paulo, CEP: 01246-903, Brazil
| | | | - Renata D' Alpino Peixoto
- Programa de Pos-Graduação Em Medicina, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, 2° subsolo, Pos-graduação, Sao Paulo, CEP: 01504-001, Brazil
| | - Márcia Silva Queiroz
- Programa de Pos-Graduação Em Medicina, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, 2° subsolo, Pos-graduação, Sao Paulo, CEP: 01504-001, Brazil
| | - Sonia Jancar
- Laboratório de Imunofarmacologia, Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1730, Sao Paulo, CEP: 05508-900, Brazil
| | - Maria Lucia Correa-Giannella
- Programa de Pos-Graduação Em Medicina, Universidade Nove de Julho (UNINOVE), Rua Vergueiro 235, 2° subsolo, Pos-graduação, Sao Paulo, CEP: 01504-001, Brazil.
- Laboratório de Carboidratos E Radioimunoensaio (LIM-18) Do Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr. Arnaldo, 455, Sala 3321, Sao Paulo, CEP: 01246-903, Brazil.
| |
Collapse
|
26
|
Lefkopoulos S, Polyzou A, Derecka M, Bergo V, Clapes T, Cauchy P, Jerez-Longres C, Onishi-Seebacher M, Yin N, Martagon-Calderón NA, Potts KS, Klaeylé L, Liu F, Bowman TV, Jenuwein T, Mione MC, Trompouki E. Repetitive Elements Trigger RIG-I-like Receptor Signaling that Regulates the Emergence of Hematopoietic Stem and Progenitor Cells. Immunity 2020; 53:934-951.e9. [DOI: 10.1016/j.immuni.2020.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/23/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
|
27
|
Enkhtur A, Yoon JS, Lee CW. Factors increasing the risk of mortality and morbidity due to coronavirus infection in patients with metabolic syndrome. PRECISION AND FUTURE MEDICINE 2020. [DOI: 10.23838/pfm.2020.00121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
28
|
Groot HE, van de Vegte YJ, Verweij N, Lipsic E, Karper JC, van der Harst P. Human genetic determinants of the gut microbiome and their associations with health and disease: a phenome-wide association study. Sci Rep 2020; 10:14771. [PMID: 32901066 PMCID: PMC7479141 DOI: 10.1038/s41598-020-70724-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Small-scale studies have suggested a link between the human gut microbiome and highly prevalent diseases. However, the extent to which the human gut microbiome can be considered a determinant of disease and healthy aging remains unknown. We aimed to determine the spectrum of diseases that are linked to the human gut microbiome through the utilization of its genetic determinants as a proxy for its composition. 180 single nucleotide polymorphisms (SNPs) known to influence the human gut microbiome were used to assess the association with health and disease outcomes in 422,417 UK Biobank participants. Potential causal estimates were obtained using a Mendelian randomization (MR) approach. From the total sample analysed (mean age was 57 ± 8 years), 194,567 (46%) subjects were male. Median exposure was 66-person years (interquartile range 59-72). Eleven SNPs were significantly associated with 28 outcomes (Bonferroni corrected P value < 4.63·10-6) including food intake, hypertension, atopy, COPD, BMI, and lipids. Multiple SNP MR pointed to a possible causal link between Ruminococcus flavefaciens and hypertension, and Clostridium and platelet count. Microbiota and their metabolites might be of importance in the interplay between overlapping pathophysiological processes, although challenges remain in establishing causal relationships.
Collapse
Affiliation(s)
- Hilde E Groot
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Yordi J van de Vegte
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Erik Lipsic
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Jacco C Karper
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
29
|
San-Juan R, Barbero P, Fernández-Ruiz M, López-Medrano F, Lizasoáin M, Hernández-Jiménez P, Silva JT, Ruiz-Ruigómez M, Corbella L, Rodríguez-Goncer I, Folgueira MD, Lalueza A, Batllori E, Mejía I, Forcén L, Lumbreras C, García-Burguillo A, Galindo A, Aguado JM. Incidence and clinical profiles of COVID-19 pneumonia in pregnant women: A single-centre cohort study from Spain. EClinicalMedicine 2020; 23:100407. [PMID: 32632417 PMCID: PMC7295514 DOI: 10.1016/j.eclinm.2020.100407] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/19/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Information regarding the incidence and characteristics of COVID-19 pneumonia amongst pregnant women is scarce. METHODS Single-centre experience with 32 pregnant women diagnosed with COVID-19 between March 5 to April 5, 2020 at Madrid, Spain. FINDINGS COVID-19 pneumonia was diagnosed in 61·5% (32/52) women. Only 18·7% (6/32) had some underlying condition (mostly asthma). Supplemental oxygen therapy was required in 18 patients (56·3%), with high-flow requirements in six (18·7%). Eight patients (25·0%) fulfilled the criteria for acute distress respiratory syndrome. Invasive mechanical ventilation was required in two patients (6·2%). Tocilizumab was administered in five patients (15·6%). Delivery was precipitated due to COVID-19 in three women (9·4%). All the newborns had a favourable outcome, with no cases of neonatal SARS-CoV-2 transmission. Severe cases of pneumonia requiring supplemental oxygen were more likely to exhibit bilateral alveolar or interstitial infiltrates on chest X-ray (55·6% vs. 0·0%; P-value = 0·003) and serum C-reactive protein (CRP) levels >10 mg/dL (33·0% vs. 0·0%; P-value = 0·05) at admission than those with no oxygen requirements. INTERPRETATION Pregnant women with COVID-19 have a high risk of developing pneumonia, with a severe course in more than half of cases. The presence of bilateral kung infiltrates and elevated serum CRP at admission may identify women at-risk of severe COVID-19 pneumonia. FUNDING Instituto de Salud Carlos III (COV20/00,181), Spanish Ministry of Science and Innovation.
Collapse
Key Words
- ALT, alanine aminotransferase
- ARDS, acute respiratory distress syndrome
- AST, aspartate aminotransferase
- COVID-19
- COVID-19, coronavirus disease 2019
- CRP, C-reactive protein
- CT, computerized tomography
- Coronavirus
- HCQ, hydroxychloroquine
- ICU, intensive care unit
- IFN-β, interferon-β
- IMV, invasive mechanical ventilation
- IQR, interquartile range
- IV, intravenous
- LPV/r, lopinavir/ritonavir
- Pneumonia
- Pregnancy
- RT-PCR, reverse transcription polymerase chain reaction
- Risk stratification
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- TCZ, tocilizumab
- URTI, upper respiratory tract infection
- ePaO2/FiO2, estimated arterial oxygen/fraction of inspired oxygen ratio
Collapse
Affiliation(s)
- Rafael San-Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, 2ª planta, bloque D. Avda. de Córdoba, s/n. Madrid, Spain
| | - Patricia Barbero
- Unit of Perinatal Medicine, Obstetrics and Gynaecology Department, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, 2ª planta, bloque D. Avda. de Córdoba, s/n. Madrid, Spain
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, 2ª planta, bloque D. Avda. de Córdoba, s/n. Madrid, Spain
| | - Manuel Lizasoáin
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, 2ª planta, bloque D. Avda. de Córdoba, s/n. Madrid, Spain
| | - Pilar Hernández-Jiménez
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, 2ª planta, bloque D. Avda. de Córdoba, s/n. Madrid, Spain
| | - José Tiago Silva
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, 2ª planta, bloque D. Avda. de Córdoba, s/n. Madrid, Spain
| | - María Ruiz-Ruigómez
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, 2ª planta, bloque D. Avda. de Córdoba, s/n. Madrid, Spain
| | - Laura Corbella
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, 2ª planta, bloque D. Avda. de Córdoba, s/n. Madrid, Spain
| | - Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, 2ª planta, bloque D. Avda. de Córdoba, s/n. Madrid, Spain
| | - María Dolores Folgueira
- Department of Microbiology, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, Madrid, Spain
| | - Antonio Lalueza
- Department of Internal Medicine, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, Madrid, Spain
| | - Emma Batllori
- Unit of Perinatal Medicine, Obstetrics and Gynaecology Department, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, Madrid, Spain
| | - Inma Mejía
- Unit of Perinatal Medicine, Obstetrics and Gynaecology Department, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, Madrid, Spain
| | - Laura Forcén
- Unit of Perinatal Medicine, Obstetrics and Gynaecology Department, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, Madrid, Spain
| | - Carlos Lumbreras
- Department of Internal Medicine, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, Madrid, Spain
| | - Antonio García-Burguillo
- Unit of Perinatal Medicine, Obstetrics and Gynaecology Department, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, Madrid, Spain
| | - Alberto Galindo
- Unit of Perinatal Medicine, Obstetrics and Gynaecology Department, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Sanitaria Hospital "12 de Octubre" (imas12), Complutense University, 2ª planta, bloque D. Avda. de Córdoba, s/n. Madrid, Spain
| |
Collapse
|
30
|
Prins FM, Said MA, van de Vegte YJ, Verweij N, Groot HE, van der Harst P. Genetically Determined Physical Activity and Its Association with Circulating Blood Cells. Genes (Basel) 2019; 10:genes10110908. [PMID: 31703460 PMCID: PMC6895919 DOI: 10.3390/genes10110908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
Lower levels of physical activity (PA) have been associated with increased risk of cardiovascular disease. Worldwide, there is a shift towards a lifestyle with less PA, posing a serious threat to public health. One of the suggested mechanisms behind the association between PA and disease development is through systemic inflammation, in which circulating blood cells play a pivotal role. In this study we investigated the relationship between genetically determined PA and circulating blood cells. We used 68 single nucleotide polymorphisms associated with objectively measured PA levels to perform a Mendelian randomization analysis on circulating blood cells in 222,645 participants of the UK Biobank. For inverse variance fixed effects Mendelian randomization analyses, p < 1.85 × 10−3 (Bonferroni-adjusted p-value of 0.05/27 tests) was considered statistically significant. Genetically determined increased PA was associated with decreased lymphocytes (β = –0.03, SE = 0.008, p = 1.35 × 10−3) and decreased eosinophils (β = –0.008, SE = 0.002, p = 1.36 × 10−3). Although further mechanistic studies are warranted, these findings suggest increased physical activity is associated with an improved inflammatory state with fewer lymphocytes and eosinophils.
Collapse
|