1
|
George F, Chaudhary E, Dey S, Thomas T, Sachdev HS, Kurpad A, Ghosh S. The role of antioxidant nutrients in mitigating PM 2.5-related health risks in young Indian children. Front Public Health 2025; 13:1575950. [PMID: 40416676 PMCID: PMC12098110 DOI: 10.3389/fpubh.2025.1575950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/22/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Pollution (PM2.5) exposure can result in acute respiratory illness (ARI) and anaemia in children. We aimed to investigate if antioxidant nutrient intakes could mitigate the impact of PM2.5 on child health outcomes on a national scale in India. Methods We triangulated satellite-derived PM2.5 exposure data at the primary sampling unit level, with ARI and anaemia prevalence data from national district-level survey, and antioxidant nutrient intakes from household food expenditure survey. Logistic mixed effects regression model was used to estimate the effect of PM2.5 at different levels of nutrient intake. Results This study included 208,782 children with valid ARI and 197,289 children with valid hemoglobin measurements. The prevalence of ARI and anaemia were 2.8% (95% CI: 2.3, 3.2) and 57.6% (95% CI: 57.2, 57.9) respectively. The intake of selected antioxidant nutrients such as vitamin C, D, and selenium, when higher than their estimated average requirement (EAR), lowered the risk of ARI associated with high PM2.5 exposure, while intakes higher than the EAR of vitamins A, C, D, zinc, and selenium similarly lowered the risk of anaemia. In terms of foods, similar benefits were observed with daily consumption of small amounts of fruits and vegetables. Conclusion The result of this study highlights the importance of antioxidant rich balance diet for neutralizing adverse health effects of air pollution exposure to some extent till the environmental policy of the country could reduce emission of hazardous pollutants below safe level for human health.
Collapse
Affiliation(s)
- Franciosalgeo George
- Centre for Doctoral Studies, Manipal Academy of Higher Education, Manipal, India
- Division of Epidemiology, Biostatistics, and Population Health, St. John’s Research Institute, Bengaluru, India
| | - Ekta Chaudhary
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
- Faculty of Adjunct, Department of Health, Policy and Management, Korea University, Seoul, Republic of Korea
| | - Tinku Thomas
- Department of Biostatistics, St. John’s Medical College, Bengaluru, India
| | - Harshpal Singh Sachdev
- Department of Pediatrics and Clinical Epidemiology, Sitaram Bhartia Institute of Science and Research, New Delhi, India
| | - Anura Kurpad
- Department of Physiology, St. John’s Medical College, Bengaluru, India
| | - Santu Ghosh
- Department of Biostatistics, St. John’s Medical College, Bengaluru, India
| |
Collapse
|
2
|
Espinoza-Guillen JA, Alderete-Malpartida MB, Roncal-Romero FD, Vilcanqui-Sarmiento JC. Identification of particulate matter (PM 10 and PM 2.5) sources using bivariate polar plots and k-means clustering in a South American megacity: Metropolitan Area of Lima-Callao, Peru. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:226. [PMID: 39899165 DOI: 10.1007/s10661-025-13696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
The identification of different air pollution sources is essential to effectively control atmospheric pollution, particularly in megacities of emerging countries with rapid economic development, such as the Metropolitan Area of Lima-Callao (MALC). The objective of this research was to identify the main sources of particulate matter pollution by applying bivariate polar plots and the k-means clustering algorithm. These statistical techniques were applied to hourly in situ data of four variables collected over a 5-year period (2015-2019) by the Automatic Air Quality Monitoring Network of the MALC: wind direction, wind speed, PM10, and PM2.5 concentrations. Average PM10 concentrations ranged from 34 μg m-3 (CDM station) to 126.7 μg m-3 (VMT station), while average PM2.5 concentrations ranged from 16.8 μg m-3 (CDM station) to 41.2 μg m-3 (ATE station). The diurnal variation of PM presented two peaks, one in the morning (from 0800 to 1000 h) and the other at night (from 1900 to 2300 h), with the highest concentrations of PM10 recorded at the ATE (0800 h: 155.8 μg m-3) and VMT (2100 h: 154.6 μg m-3) stations, and PM2.5 at the ATE station (0800 h: 60.3 μg m-3 and 2300 h: 37.5 μg m-3). The results showed that the contributions of PM10 are directly related to emissions from industrial activities, automotive fleet, construction, demolition, wind erosion, and the suspension and resuspension of particulates from unpaved roads. Meanwhile, high concentrations of PM2.5 are mainly attributed to vehicle exhaust emissions, industrial emissions, secondary particulate formation, and drag by the action of the winds. The major source of particulate matter contamination is the vehicle fleet, and within this, automobiles, station wagons, combi vans, and 2 and 3-wheel motorcycles are those that have the greatest contribution. These results were supported by non-parametric statistical tests such as Kruskal-Wallis and Mann-Whitney U and validated by the conditional bivariate probability function. The findings of this work may help to implement pollution prevention and control strategies in the future within this South American megacity.
Collapse
Affiliation(s)
- José Abel Espinoza-Guillen
- Programa de Maestría en Ciencias Ambientales, Universidad Nacional Agraria La Molina, Av. La Molina S/N, Lima, Perú.
- Departamento Académico de Ingeniería Ambiental, Universidad Nacional Agraria La Molina, Av. La Molina S/N, Lima, Perú.
| | | | | | | |
Collapse
|
3
|
Tong J, Tong M, Kang N, Liu F, Zhang K, Liang W, Peng S, Li Z, Xue T, Xiang H, Zhu T. Estimating the Risk of Women Anemia Associated with Ozone Exposure Across 123 Low- and Middle-Income Countries: A Multicenter Epidemiological Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:132-141. [PMID: 39745190 DOI: 10.1021/acs.est.4c07787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Anemia in women of reproductive age (WRA) presents a pressing global public health issue, particularly in low- and middle-income countries (LMICs). Yet, the potential impact of ozone (O3) exposure on anemia remains uncertain. The study included 1,467,887 eligible women from 83 surveys of 45 LMICs between 2004 to 2020. Monthly O3 exposure was estimated using machine learning, with the year preceding the survey as the primary exposure window. Fixed-effects models evaluated the association between O3 and anemia. An exposure-response function (ERF) was constructed using a varying-coefficient regression model, and then extrapolated to estimate the anemia burden in relation to O3 in 123 LMICs. In the fully adjusted regression model, each 10 ppb increase in annual O3 concentration was associated with an 8% elevation in anemia risk. The nonlinear ERF indicated a threshold effect of O3 on anemia at approximately 47.2 ppb. In 2020, more than 7.6 million anemic WRA (1.58%) in 123 LMICs were associated with O3 exposure. The potentially attributable burden has generally decreased from 2004 to 2020, notably in South Asia. Our findings highlight the importance of air pollution mitigation in LMICs to address anemia disparities among women.
Collapse
Affiliation(s)
- Jiahui Tong
- Department of Global Health School of Public Health Wuhan University, Wuhan 430071, China
- Global Health Institute School of Public Health Wuhan University, Wuhan 430071, China
| | - Mingkun Tong
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Ning Kang
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Feifei Liu
- Department of Global Health School of Public Health Wuhan University, Wuhan 430071, China
- Global Health Institute School of Public Health Wuhan University, Wuhan 430071, China
| | - Ke Zhang
- Department of Global Health School of Public Health Wuhan University, Wuhan 430071, China
- Global Health Institute School of Public Health Wuhan University, Wuhan 430071, China
| | - Wei Liang
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Shouxin Peng
- Department of Global Health School of Public Health Wuhan University, Wuhan 430071, China
- Global Health Institute School of Public Health Wuhan University, Wuhan 430071, China
| | - Zhaoyuan Li
- Department of Global Health School of Public Health Wuhan University, Wuhan 430071, China
- Global Health Institute School of Public Health Wuhan University, Wuhan 430071, China
| | - Tao Xue
- Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Advanced Institute of Information Technology, Peking University, Hangzhou, Zhejiang 10087, China
- State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Hao Xiang
- Department of Global Health School of Public Health Wuhan University, Wuhan 430071, China
- Global Health Institute School of Public Health Wuhan University, Wuhan 430071, China
| | - Tong Zhu
- SKL-ESPC and SEPKL-AERM, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
4
|
Khan Y, Banerjee R. Exposure to air pollution as a risk factor for anaemia: a global scoping review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3847-3859. [PMID: 38461370 DOI: 10.1080/09603123.2024.2327532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Anaemia is an important global health issue with various factors responsible for its occurrence. Though nutritional deficiency is one of the main causes of the disease, evidence suggests a potential link between long-term exposure to ambient air pollution and an increased risk of developing anaemia. Our scoping review evaluates studies conducted across the world to examine possible associations between anaemia and ambient air pollution. Six databases were searched, 153 sources were identified, and 21 articles were included in the review. Apart from one article which showed no significant effect, studies reported positive associations between anaemia and air pollution. This was true for both indoor and outdoor air pollution, various types of particulate matter exposure, and across demographic groups. The review highlights the importance of recognizing exposure to air pollution as a potential risk factor for anaemia and emphasizes the imperative for focused interventions and policy measures to mitigate air pollution.
Collapse
Affiliation(s)
- Yasmin Khan
- Department of Health Management, International Institute of Health Management Research, Dwarka, New Delhi, India
| | - Rupsa Banerjee
- Department of Health Management, International Institute of Health Management Research, Dwarka, New Delhi, India
| |
Collapse
|
5
|
Kang N, Wang R, Lu H, Onyai F, Tang M, Tong M, Ni X, Zhong M, Deng J, Dong Y, Li P, Zhu T, Xue T. Burden of Child Anemia Attributable to Fine Particulate Matters Brought by Sand Dusts in Low- and Middle-Income Countries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12954-12965. [PMID: 38995993 DOI: 10.1021/acs.est.4c05305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Addressing environmental factors has recently been recommended to curb the growing trend of anemia in low- and middle-income countries (LMICs). Fine particulate matter (PM2.5) generated by dust storms were concentrated in place with a high prevalence of anemia. In a multicounty, multicenter study, we analyzed the association between anemia and life-course averaged exposure to dust PM2.5 among children aged <5 years based on 0.65 million records from 47 LMICs. In the fully adjusted mixed effects model, each 10 μg/m3 increase in life-course averaged exposure to dust PM2.5 was associated with a 9.3% increase in the odds of anemia. The estimated exposure-response association was nonlinear, with a greater effect of dust PM2.5 exposure seen at low concentrations. Applying this association, we found that, in 2017, among all children aged <5 years in the 125 LMICs, dust PM2.5 contributed to 37.98 million cases of anemia. Results indicated that dust PM2.5 contributed a heavier burden than all of the well-identified risk factors did, except for iron deficiency. Our study revealed that long-term exposure to dust PM2.5 can be a novel risk factor, pronouncedly contributed to the burden of child anemia in LMICs, affected by land degradations or arid climate.
Collapse
Affiliation(s)
- Ning Kang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing 100083, China
| | - Ruohan Wang
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing 100083, China
| | - Hong Lu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing 100083, China
| | - Fred Onyai
- National Environment Management Authority, Kampala 22255, Uganda
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Mingkun Tong
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing 100083, China
| | - Xueqiu Ni
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing 100083, China
| | - Meiling Zhong
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing 100083, China
| | - Jianyu Deng
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing 100083, China
| | - Yanjun Dong
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing 100083, China
| | - Pengfei Li
- Institute of Medical Technology, Peking University Health Science Centre, Beijing100083, China
- Advanced Institute of Information Technology, Peking University, Hangzhou 100871, China
| | - Tong Zhu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management, Center for Environment and Health, Peking University, Beijing 100871, China
| | - Tao Xue
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics/Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing 100083, China
- Advanced Institute of Information Technology, Peking University, Hangzhou 100871, China
- State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management, Center for Environment and Health, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Li L, Ran Y, Zhuang Y, Wang L, Chen J, Sun Y, Lu S, Ye F, Mei L, Ning Y, Dai F. Risk analysis of air pollutants and types of anemia: a UK Biobank prospective cohort study. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1343-1356. [PMID: 38607561 DOI: 10.1007/s00484-024-02670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/01/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Previous studies have suggested that exposure to air pollutants may be associated with specific blood indicators or anemia in certain populations. However, there is insufficient epidemiological data and prospective evidence to evaluate the relationship between environmental air pollution and specific types of anemia. We conducted a large-scale prospective cohort study based on the UK Biobank. Annual average concentrations of NO2, PM2.5, PM2.5-10, and PM10 were obtained from the ESCAPE study using the Land Use Regression (LUR) model. The association between atmospheric pollutants and different types of anemia was investigated using the Cox proportional hazards model. Furthermore, restricted cubic splines were used to explore exposure-response relationships for positive associations, followed by stratification and effect modification analyses by gender and age. After adjusting for demographic characteristics, 3-4 of the four types of air pollution were significantly associated with an increased risk of iron deficiency, vitamin B12 deficiency and folate deficiency anemia, while there was no significant association with other defined types of anemia. After full adjustment, we estimated that the hazard ratios (HRs) of iron deficiency anemia associated with each 10 μg/m3 increase in NO2, PM2.5, and PM10 were 1.04 (95%CI: 1.02, 1.07), 2.00 (95%CI: 1.71, 2.33), and 1.10 (95%CI: 1.02, 1.20) respectively. The HRs of folate deficiency anemia with each 10 μg/m3 increase in NO2, PM2.5, PM2.5-10, and PM10 were 1.25 (95%CI: 1.12, 1.40), 4.61 (95%CI: 2.03, 10.47), 2.81 (95%CI: 1.11, 7.08), and 1.99 (95%CI: 1.25, 3.15) respectively. For vitamin B12 deficiency anemia, no significant association with atmospheric pollution was found. Additionally, we estimated almost linear exposure-response curves between air pollution and anemia, and interaction analyses suggested that gender and age did not modify the association between air pollution and anemia. Our research provided reliable evidence for the association between long-term exposure to PM10, PM2.5, PM2.5-10, NO2, and several types of anemia. NO2, PM2.5, and PM10 significantly increased the risk of iron deficiency anemia and folate deficiency anemia. Additionally, we found that the smaller the PM diameter, the higher the risk, and folate deficiency anemia was more susceptible to air pollution than iron deficiency anemia. No association was observed between the four types of air pollution and hemolytic anemia, aplastic anemia, and other types of anemia. Although the mechanisms are not well understood, we emphasize the need to limit the levels of PM and NO2 in the environment to reduce the potential impact of air pollution on folate and iron deficiency anemia.
Collapse
Affiliation(s)
- Laifu Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yan Ran
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yan Zhuang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Lianli Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Jiamiao Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yating Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Shiwei Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Fangchen Ye
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Lin Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Yu Ning
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China
| | - Fei Dai
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Province Key Laboratory of Gastrointestinal Motility Disorders, Xi'an, China.
| |
Collapse
|
7
|
Espinoza-Guillen JA, Alderete-Malpartida MB, Navarro-Abarca UF, Gómez-Muñoz HK. Temporal variation of the PM 2.5/PM 10 ratio and its association with meteorological factors in a South American megacity: Metropolitan Area of Lima-Callao, Peru. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:452. [PMID: 38613696 DOI: 10.1007/s10661-024-12611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
The Metropolitan Area of Lima-Callao (MALC) is a South American megacity that has suffered a serious deterioration in air quality due to high levels of particulate matter (PM2.5 and PM10). Studies on the behavior of the PM2.5/PM10 ratio and its temporal variability in relation to meteorological parameters are still very limited. The objective of this study was to analyze the temporal trends of the PM2.5/PM10 ratio, its temporal variability, and its association with meteorological variables over a period of 5 years (2015-2019). For this, the Theil-Sen estimator, bivariate polar plots, and correlation analysis were used. The regions of highest mean concentrations of PM2.5 and PM10 were identified at eastern Lima (ATE station-41.2 µg/m3) and southern Lima (VMT station-126.7 µg/m3), respectively. The lowest concentrations were recorded in downtown Lima (CDM station-16.8 µg/m3 and 34.0 µg/m3, respectively). The highest average PM2.5/PM10 ratio was found at the CDM station (0.55) and the lowest at the VMT station (0.27), indicating a predominance of emissions from the vehicular fleet within central Lima and a greater emission of coarse particles by resuspension in southern Lima. The temporal progression of the ratio of PM2.5/PM10 showed positive and highly significant trends in northern and central Lima with values of 0.03 and 0.1 units of PM2.5/PM10 per year, respectively. In the southern region of Lima, the trend was also significant, showcasing a value of 0.02 units of PM2.5/PM10 per year. At the hourly and monthly level, the PM2.5/PM10 ratio presented a negative and significant correlation with wind speed and air temperature, and a positive and significant correlation with relative humidity. These findings offer insights into identifying the sources of PM pollution and are useful for implementing regulations to reduce air emissions considering both anthropogenic sources and meteorological dispersion patterns.
Collapse
Affiliation(s)
- José Abel Espinoza-Guillen
- Programa de Maestría en Ciencias Ambientales, Universidad Nacional Agraria La Molina, Av. La Molina S/N, Lima, Perú.
| | | | - Ursula Fiorela Navarro-Abarca
- Departamento Académico de Ingeniería Ambiental, Universidad Nacional Agraria La Molina, Av. La Molina S/N, Lima, Perú
| | - Hanns Kevin Gómez-Muñoz
- Departamento Académico de Física y Meteorología, Universidad Nacional Agraria La Molina, Av. La Molina S/N, Lima, Perú
| |
Collapse
|
8
|
Hwang J, Kim HJ. Association of ambient air pollution with hemoglobin levels and anemia in the general population of Korean adults. BMC Public Health 2024; 24:988. [PMID: 38594672 PMCID: PMC11003135 DOI: 10.1186/s12889-024-18492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/31/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Emerging evidence has suggested significant associations between ambient air pollution and changes in hemoglobin levels or anemia in specific vulnerable groups, but few studies have assessed this relationship in the general population. This study aimed to evaluate the association between long-term exposure to air pollution and hemoglobin concentrations or anemia in general adults in South Korea. METHODS A total of 69,830 Korean adults from a large-scale nationwide survey were selected for our final analysis. Air pollutants included particulate matter with an aerodynamic diameter less than or equal to 10 micrometers (PM10), particulate matter with an aerodynamic diameter less than or equal to 2.5 micrometers, nitrogen dioxide, sulfur dioxide (SO2), and carbon monoxide (CO). We measured the serum hemoglobin concentration to assess anemia for each participant. RESULTS In the fully adjusted model, exposure levels to PM10, SO2, and CO for one and two years were significantly associated with decreased hemoglobin concentrations (all p < 0.05), with effects ranging from 0.15 to 0.62% per increase in interquartile range (IQR) for each air pollutant. We also showed a significant association of annual exposure to PM10 with anemia (p = 0.0426); the odds ratio (OR) [95% confidence interval (CI)] for anemia per each increase in IQR in PM10 was estimated to be 1.039 (1.001-1.079). This association was also found in the 2-year duration of exposure (OR = 1.046; 95% CI = 1.009-1.083; adjusted Model 2). In addition, CO exposure during two years was closely related to anemia (OR = 1.046; 95% CI = 1.004-1.091; adjusted Model 2). CONCLUSIONS This study provides the first evidence that long-term exposure to air pollution, especially PM10, is significantly associated with reduced hemoglobin levels and anemia in the general adult population.
Collapse
Affiliation(s)
- Juyeon Hwang
- Cancer Big Data Center, National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, 10408, Goyang-si Gyeonggi-do, South Korea
| | - Hyun-Jin Kim
- Cancer Big Data Center, National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, 10408, Goyang-si Gyeonggi-do, South Korea.
| |
Collapse
|
9
|
Ahn TG, Kim YJ, Lee G, You YA, Kim SM, Chae R, Hur YM, Park MH, Bae JG, Lee SJ, Kim YH, Na S. Association Between Individual Air Pollution (PM 10, PM 2.5) Exposure and Adverse Pregnancy Outcomes in Korea: A Multicenter Prospective Cohort, Air Pollution on Pregnancy Outcome (APPO) Study. J Korean Med Sci 2024; 39:e131. [PMID: 38599601 PMCID: PMC11004777 DOI: 10.3346/jkms.2024.39.e131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Prenatal exposure to ambient air pollution is linked to a higher risk of unfavorable pregnancy outcomes. However, the association between pregnancy complications and exposure to indoor air pollution remains unclear. The Air Pollution on Pregnancy Outcomes research is a hospital-based prospective cohort research created to look into the effects of aerodynamically exposed particulate matter (PM)10 and PM2.5 on pregnancy outcomes. METHODS This prospective multicenter observational cohort study was conducted from January 2021 to June 2023. A total of 662 women with singleton pregnancies enrolled in this study. An AirguardK® air sensor was installed inside the homes of the participants to measure the individual PM10 and PM2.5 levels in the living environment. The time-activity patterns and PM10 and PM2.5, determined as concentrations from the time-weighted average model, were applied to determine the anticipated exposure levels to air pollution of each pregnant woman. The relationship between air pollution exposure and pregnancy outcomes was assessed using logistic and linear regression analyses. RESULTS Exposure to elevated levels of PM10 throughout the first, second, and third trimesters as well as throughout pregnancy was strongly correlated with the risk of pregnancy problems according to multiple logistic regression models adjusted for variables. Except for in the third trimester of pregnancy, women exposed to high levels of PM2.5 had a high risk of pregnancy complications. During the second trimester and entire pregnancy, the risk of preterm birth (PTB) increased by 24% and 27%, respectively, for each 10 μg/m3 increase in PM10. Exposure to high PM10 levels during the second trimester increased the risk of gestational diabetes mellitus (GDM) by 30%. The risk of GDM increased by 15% for each 5 μg/m3 increase in PM2.5 during the second trimester and overall pregnancy, respectively. Exposure to high PM10 and PM2.5 during the first trimester of pregnancy increased the risk of delivering small for gestational age (SGA) infants by 96% and 26%, respectively. CONCLUSION Exposure to high concentrations of PM10 and PM2.5 is strongly correlated with the risk of adverse pregnancy outcomes. Exposure to high levels of PM10 and PM2.5 during the second trimester and entire pregnancy, respectively, significantly increased the risk of PTB and GDM. Exposure to high levels of PM10 and PM2.5 during the first trimester of pregnancy considerably increased the risk of having SGA infants. Our findings highlight the need to measure individual particulate levels during pregnancy and the importance of managing air quality in residential environment.
Collapse
Affiliation(s)
- Tae Gyu Ahn
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital, Ewha Medical Research Institute College of Medicine, Seoul, Korea
| | - Gain Lee
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Soo Min Kim
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Rin Chae
- Division of Artificial Intelligence and Software/Artificial Intelligence Convergence, Ewha Womans University, Seoul, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Mi Hye Park
- Department of Obstetrics and Gynecology, Ewha Womans University Seoul Hospital, Seoul, Korea
| | - Jin-Gon Bae
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Dongsan Medical Center, Daegu, Korea
| | - Soo-Jeong Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Severance Hospital, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Korea.
| |
Collapse
|
10
|
Appiah-Dwomoh C, Tettey P, Akyeampong E, Amegbor P, Okello G, Botwe PK, Quansah R. Smoke exposure, hemoglobin levels and the prevalence of anemia: a cross-sectional study in urban informal settlement in Southern Ghana. BMC Public Health 2024; 24:854. [PMID: 38504235 PMCID: PMC10953235 DOI: 10.1186/s12889-024-18304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND In sub-Saharan African cities, more than half of the population lives in informal settlements. These settlements are close to smoky dumpsites, industrial plants, and polluted roads. Furthermore, polluting fuels remain their primary sources of energy for cooking and heating. Despite evidence linking smoke and its components to anaemia, none of these studies were conducted on populations living in urban informal settlements. This study investigated the risks of anemia/mean Haemoglobin (HB) levels in an informal settlement in Accra, Ghana. Exposure to smoke was examined across various sources, encompassing residences, neighborhoods, and workplaces. METHODS The study was a facility-based cross-sectional design among residents at Chorkor, an informal settlement in the Greater Accra region of Ghana. A questionnaire was administered at a community hospital during an interview to gather data on sources of smoke exposure in the household, in the neighbourhood, and in the workplace. A phlebotomist collected blood samples from the participants after the interview to assess their anaemia status. RESULTS The population (n = 320) had a high prevalence of anemia, with 49.1% of people fitting the WHO's definition of anemia, while the average HB level was 12.6 ± 2.1 g/dL. Anemia was associated with the number of different types of waste burnt simultaneously [(1 or 2: prevalence ratio (PR): 95% confidence interval (CI), 1.14, 0.99-1.28: 3+: 1.16, 1.01-1.63, p-for-trend = 0.0082)], fuel stacking [(mixed stacking: 1.27, 1.07-1.20: dirty stacking:1.65, 1.19-2.25, p-for-trend = 0.0062)], and involvement in fish smoking (1.22, 0.99-1.06). However, the lower limit of the CIs for number of different forms of garbage burned simultaneously and engagement in fish smoking included unity. Reduced mean HB levels were associated with the number of different types of waste burnt simultaneously [(1 or 2: regression coefficient (β): 95% confidence interval (CI), -0.01, -0.97- -0.99: 3+: -0.14, -0.77- -0.05)], current smoker [(yes, almost daily: -1.40, -2.01- -0.79: yes, at least once a month: -1.14, -1.79- -0.48)], Second-Hand-Smoking (SHS) (yes, almost daily: -0.77, -1.30- -0.21), fuel stacking [(mixed stacking-0.93, -1.33-0.21: dirty stacking-1.04, -1.60- -0.48)], any smoke exposure indicator in the neighbourhood (-0.84, -1.43- -0.25), living close to a major road (-0.62, -1.09- -0.49), and fish smoking (-0.41,-0.93- -0.12). CONCLUSION Although the cross-sectional design precludes causality, smoke exposure was associated with mean HB levels and anaemia among populations living in informal settlements.
Collapse
Affiliation(s)
- Cyril Appiah-Dwomoh
- School of Public Health, University of Ghana, P.O. Box LG 30, Legon, Accra, Ghana
| | - Prudence Tettey
- School of Public Health, University of Ghana, P.O. Box LG 30, Legon, Accra, Ghana
| | - Enoch Akyeampong
- School of Public Health, University of Ghana, P.O. Box LG 30, Legon, Accra, Ghana
| | - Prince Amegbor
- School of Global Public Health, New York University, New York, USA
| | - Gabriel Okello
- Institute for Sustainability Leadership, University of Cambridge, Cambridge, UK
- African Centre for Clean Air, Kampala, Uganda
| | - Paul K Botwe
- School of Public Health, University of Ghana, P.O. Box LG 30, Legon, Accra, Ghana
| | - Reginald Quansah
- School of Public Health, University of Ghana, P.O. Box LG 30, Legon, Accra, Ghana.
| |
Collapse
|
11
|
Bhattarai G, Shrestha SK, Sim HJ, Lee JC, Kook SH. Effects of fine particulate matter on bone marrow-conserved hematopoietic and mesenchymal stem cells: a systematic review. Exp Mol Med 2024; 56:118-128. [PMID: 38200155 PMCID: PMC10834576 DOI: 10.1038/s12276-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024] Open
Abstract
The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
12
|
Li P, Wu J, Ni X, Tong M, Lu H, Liu H, Xue T, Zhu T. Associations between hemoglobin levels and source-specific exposure to ambient fine particles among children aged <5 years in low- and middle-income countries. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132061. [PMID: 37467606 DOI: 10.1016/j.jhazmat.2023.132061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
OBJECTIVE We investigated associations between source-specific fine particulate matter (PM2.5) exposure and hemoglobin levels among children in low- and middle-income countries (LMICs). METHOD 36,675 children aged < 5 years were collected in 11 LMICs during 2017. We associated child hemoglobin with 20 source-specific PM2.5, and calculated changes in hemoglobin that could be attributed to different PM2.5-mixture scenarios, established using real-world data from 88 Asian and African LMICs (AA-LMICs). RESULTS Multiple-source analysis revealed PM2.5 produced by solvents (change in hemoglobin for 1-μg/m3 increment in PM2.5: -10.34 g/L, 95% CI -14.88 to -5.91), industrial coal combustion (-0.51 g/L, 95% CI -9.25 to -0.08), road transportation (-0.50 g/L, 95% CI -6.96 to -0.29), or waste handling and disposal (-0.34 g/L, 95% CI -4.38 to -0.23) was significantly associated with a decrease in hemoglobin level. Decreases in hemoglobin attributable to the PM2.5 mixtures were co-determined by the concentrations and their source profiles. The largest PM2.5-related change in hemoglobin was -10.25 g/L (95% CI -15.54 to -5.27) for a mean exposure of 61.01 μg/m3 in India. CONCLUSION Association between PM2.5 and a decrease in hemoglobin was affected by variations in PM2.5 source profiles. Source-oriented interventions are warranted to protect children in LMICs from air pollution.
Collapse
Affiliation(s)
- Pengfei Li
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics / Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China; National Institute of Health Data Science, Peking University, Beijing 100191, China
| | - Jingyi Wu
- Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China
| | - Xueqiu Ni
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics / Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Mingkun Tong
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics / Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Hong Lu
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics / Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Hengyi Liu
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics / Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics / Ministry of Education Key Laboratory of Epidemiology of Major Diseases (PKU), School of Public Health, Peking University Health Science Centre, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou 311215, China; State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management and Center for Environment and Health, Peking University, Beijing, China.
| | - Tong Zhu
- State Environmental Protection Key Laboratory of Atmospheric Exposure and Health Risk Management and Center for Environment and Health, Peking University, Beijing, China; College of Environmental Sciences and Engineering, Peking University, Beijing, 100084, China
| |
Collapse
|
13
|
He C, Xie L, Gu L, Yan H, Feng S, Zeng C, Danzhen W, Zhang X, Han M, Li Z, Duoji Z, Guo B, Zhang J, Hong F, Zhao X. Anemia is associated with long-term exposure to PM 2.5 and its components: a large population-based study in Southwest China. Ther Adv Hematol 2023; 14:20406207231189922. [PMID: 37654523 PMCID: PMC10467225 DOI: 10.1177/20406207231189922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Background Anemia is linked to PM2.5 (particulate matter with aerodynamic diameters of ⩽2.5 μm) exposure, which can increase the risk of various negative health outcomes. It remains unclear which PM2.5 components are associated with anemia and the respective contribution of each component to this association. Objective This study aimed at investigating the association between PM2.5 and anemia in the general population and to identify the most critical PM2.5 toxic components in this association. Design Cross-sectional study. Methods Our study involved a large cohort of 73,511 individuals aged 30-79 from China's multi-ethnic population. We employed satellite observations and the chemical transport model (GEOS-Chem)to estimate the long-term exposure to PM2.5 and its components. Anemia was defined, according to WHO guidelines, as Hb levels below 130 g/L for men and below 120 g/L for women. Through logistic regression, we investigated the association between PM2.5 components and anemia. By utilizing weighted quantile sum (WQS) analysis, we identified key components and gained insights into their combined impact on anemia. Overall, our study sheds light on the relationship between PM2.5 exposure, its constituents, and the risk of anemia in a large cohort. Results PM2.5 and three components, nitrate (NIT), organic matter (OM), and soil particles (SOIL), were associated with anemia. Per-standard deviation increase in the 3-year average concentrations of PM2.5 [odds ratio (OR): 1.14, 95% confidence interval (CI): 1.01, 1.28], NIT (1.20, 1.06, 1.35), OM (1.17, 1.04, 1.32), and SOIL (1.22, 1.11, 1.33) were associated with higher odds of anemia. In WQS regression analysis, the WQS index was associated with anemia (OR: 1.29, 95% CI: 1.13, 1.47). SOIL has the highest weight among all PM2.5 components. Conclusions Long-term exposure to PM2.5 and its constituents is associated with anemia. Moreover, SOIL might be the most critical component of the relationship between PM2.5 and anemia. Our research increases the evidence of the association between PM2.5 and anemia in the general population, and targeted emission control measures should be taken into consideration to mitigate the adverse effects of PM2.5-related anemia.
Collapse
Affiliation(s)
- Congyuan He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingxi Gu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wangjiu Danzhen
- Tibet Center for Disease Control and Prevention CN, Lhasa, Tibet, China
| | - Xuehui Zhang
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Mingming Han
- Chengdu Center for Disease Control & Prevention, Chengdu, Sichuan, China
| | - Zhifeng Li
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | | | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China
| | - Feng Hong
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, University Town, Guian New Area, Guiyang, Guizhou 550025, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Renmin South Road, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Anita WM, Ueda K, Uttajug A, Seposo XT, Takano H. Association between Long-Term Ambient PM2.5 Exposure and under-5 Mortality: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3270. [PMID: 36833969 PMCID: PMC9961703 DOI: 10.3390/ijerph20043270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Studies have established a link between exposure to fine particles (PM2.5) and mortality in infants and children. However, few studies have explored the association between post-birth exposure to PM2.5 and under-5 mortality. We conducted a scoping review to identify relevant epidemiological evidence on the association between post-birth ambient PM2.5 exposure and under-5 mortality. We searched PubMed and Web of Science for articles published between 1970 and the end of January 2022 that explicitly linked ambient PM2.5 and under-5 mortality by considering the study area, study design, exposure window, and child age. Information was extracted on the study characteristics, exposure assessment and duration, outcomes, and effect estimates/findings. Ultimately, 13 studies on infant and child mortality were selected. Only four studies measured the effect of post-birth exposure to PM2.5 on under-5 mortality. Only one cohort study mentioned a positive association between post-birth ambient PM2.5 exposure and under-5 mortality. The results of this scoping review highlight the need for extensive research in this field, given that long-term exposure to ambient PM2.5 is a major global health risk and child mortality remains high in some countries.
Collapse
Affiliation(s)
- Wahida Musarrat Anita
- Graduate School of Global Environmental Studies (GSGES), Kyoto University, Kyoto 615-8540, Japan
| | - Kayo Ueda
- Graduate School of Global Environmental Studies (GSGES), Kyoto University, Kyoto 615-8540, Japan
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido 060-8638, Japan
| | - Athicha Uttajug
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido 060-8638, Japan
| | - Xerxes Tesoro Seposo
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Hokkaido 060-8638, Japan
| | - Hirohisa Takano
- Graduate School of Global Environmental Studies (GSGES), Kyoto University, Kyoto 615-8540, Japan
- Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
15
|
Pace A, Villamediana P, Rezamand P, Skibiel AL. Effects of wildfire smoke PM2.5 on indicators of inflammation, health, and metabolism of preweaned Holstein heifers. J Anim Sci 2023; 101:skad246. [PMID: 37465977 PMCID: PMC10449420 DOI: 10.1093/jas/skad246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/15/2023] [Indexed: 07/20/2023] Open
Abstract
Wildfires are a growing concern as large, catastrophic fires are becoming more commonplace. Wildfire smoke consists of fine particulate matter (PM2.5), which can cause immune responses and disease in humans. However, the present knowledge of the effects of wildfire PM2.5 on dairy cattle is sparse. The present study aimed to elucidate the effects of wildfire-PM2.5 exposure on dairy calf health and performance. Preweaned Holstein heifers (N = 15) were assessed from birth through weaning, coinciding with the 2021 wildfire season. Respiratory rate, heart rate, rectal temperatures, and health scores were recorded and blood samples were collected weekly or twice a week for analysis of hematology, blood metabolites, and acute phase proteins. Hourly PM2.5 concentrations and meteorological data were obtained, and temperature-humidity index (THI) was calculated. Contribution of wildfires to PM2.5 fluxes were determined utilizing AirNowTech Navigator and HYSPLIT modeling. Mixed models were used for data analysis, with separate models for lags of up to 7 d, and fixed effects of daily average PM2.5, THI, and PM2.5 × THI, and calf as a random effect. THI ranged from 48 to 73, while PM2.5 reached concentrations up to 118.8 µg/m3 during active wildfires. PM2.5 and THI positively interacted to elevate respiratory rate, heart rate, rectal temperature, and eosinophils on lag day 0 (day of exposure; all P < 0.05). There was a negative interactive effect of PM2.5 and THI on lymphocytes after a 2-d lag (P = 0.03), and total white blood cells, neutrophils, hemoglobin, and hematocrit after a 3-d lag (all P < 0.02), whereas there was a positive interactive effect on cough scores and eye scores on lag day 3 (all P < 0.02). Glucose and NEFA were increased as a result of combined elevated PM2.5 and THI on lag day 1, whereas BHB was decreased (all P < 0.05). Contrarily, on lag day 3 and 6, there was a negative interactive effect of PM2.5 and THI on glucose and NEFA, but a positive interactive effect on BHB (all P < 0.03). Serum amyloid A was decreased whereas haptoglobin was increased with elevated PM2.5 and THI together on lag days 0 to 4 (all P < 0.05). These findings indicate that exposure to wildfire-derived PM2.5, along with increased THI during the summer months, elicits negative effects on preweaned calf health and performance both during and following exposure.
Collapse
Affiliation(s)
- Alexandra Pace
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Patricia Villamediana
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Pedram Rezamand
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Amy L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
16
|
Paz-Aparicio VM, Tapia V, Vasquez-Apestegui BV, Steenland K, Gonzales GF. Intrauterine and Extrauterine Environmental PM 2.5 Exposure Is Associated with Overweight/Obesity (O/O) in Children Aged 6 to 59 Months from Lima, Peru: A Case-Control Study. TOXICS 2022; 10:487. [PMID: 36006166 PMCID: PMC9416618 DOI: 10.3390/toxics10080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
There is evidence that PM2.5 could be obesogenic. Lima is one of the most polluted cities in South America, with an increasing prevalence of childhood obesity. This study aimed to determine the association between PM2.5 exposure of children aged 6 to 59 months and being overweight or obese (O/O) in a significant dataset survey. Cases were defined when weight for height Z-score (WHZ) was >2 standard deviations (SD) from the mean, for each sex. A control was defined when WHZ was between ±2 SD. We used a conditional logistic regression model to calculate the odds ratio (OR) between extrauterine and intrauterine PM2.5 exposure and O/O. Extrauterine PM2.5 exposure was evaluated as a 6-month PM2.5 mean prior to the survey. We found a significant association between O/O and extrauterine (OR: 1.57, 1.51−1.63) and intrauterine (OR: 1.99, 1.88−2.12) PM2.5 exposure for an increment of 10 μg/m3. The ORs increased as the quartile increased in both exposures. We observed a higher association in children aged 6−11 months (OR: 3.07, 2.84−3.31). In conclusion, higher levels of PM2.5 in Lima and Callao were associated with cases of O/O in children from 6 to 59 months, with the association higher for prenatal exposure.
Collapse
Affiliation(s)
- Valeria M. Paz-Aparicio
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Vilma Tapia
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Bertha Vanessa Vasquez-Apestegui
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Kyle Steenland
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gustavo F. Gonzales
- Laboratorio de Endocrinología y Reproducción, Laboratorios de Investigación y Desarrollo (LID), Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
- Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| |
Collapse
|
17
|
Szyszkowicz M, Lukina A, Dinu T. Urban Air Pollution and Emergency Department Visits for Neoplasms and Outcomes of Blood Forming and Metabolic Systems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095603. [PMID: 35564996 PMCID: PMC9105125 DOI: 10.3390/ijerph19095603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
This study focused on investigating possible associations between exposure to urban air pollution and the number of emergency department (ED) visits for various health outcomes. The outcomes were grouped into four chapters of the International Classification of Diseases Tenth Revision (ICD-10) system (i.e., Chapter II-IV: “Neoplasms”, “Diseases of the blood”, “Endocrine, nutritional and metabolic diseases”, and XVIII: “Symptoms, signs and abnormal clinical and laboratory findings“). The data were collected for the city of Toronto, Canada, (2004–2015, 4292 days). Four gaseous air pollutants (carbon monoxide (CO), nitrogen dioxide (NO2), ground level ozone (O3), and sulfur dioxide (SO2)) and fine particulate matter (PM2.5), and two calculated air quality health indexes (AQHI) based on Toronto were used. The statistical models were constructed by applying the conditional Poisson regression. The exposure was assessed over a maximum of 15 days (time lags 0–14 days). An analysis was performed with the following strata: sex, age, and seasons. Relative risks (RR) and their 95% confidence intervals (95%CI) were estimated for an increase in concentration by a one interquartile range (IQR). For the AQHI (composed of NO2, O3, and PM2.5), IQR = 1, the estimations for lag 1 and all patients, are RR = 1.023 (95%CI: 1.008, 1.038), 1.026 (1.012, 1.040), 1.013 (1.003, 1.024), and 1.007 (1.003, 1.010) for Chapters II–IV and XVIII, respectively. The results show that in the four large, analyzed health groups, the impact of air quality mainly occurs over a short period (from current day to a maximum of 3 days after exposure).
Collapse
Affiliation(s)
- Mieczysław Szyszkowicz
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
- Correspondence: or
| | - Anna Lukina
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Tatiana Dinu
- Water and Air Quality Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| |
Collapse
|
18
|
Su HJ, Jung CC, Wang JH, Chen NT, Chang WH. Estimations of infiltration factors of diurnal PM 2.5 and heavy metals in children's bedrooms. INDOOR AIR 2022; 32:e13037. [PMID: 35622721 DOI: 10.1111/ina.13037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Children are the sensitive population to fine particulate matter (PM2.5 ) exposure and spend most of their time in bedroom. Infiltration factor (Finf ) can be used to calculate the fraction of total indoor PM2.5 with outdoor origin to increase the accuracy of exposure assessment. However, studies have ignored the diurnal variations of PM2.5 Finf values, and a few studies have estimated Finf values for heavy metals in PM2.5 in children's bedrooms. To calculate the PM2.5 Finf , real-time indoor and outdoor PM2.5 concentrations and occupants' activities were collected in 56 study bedrooms. At 22 of the 56 study bedrooms, PM2.5 samples were also collected for heavy metals analysis. We noted the PM2.5 Finf was higher during the daytime (0.70 ± 0.23) than nighttime (0.54 ± 0.27) during the hot season, and the time of air conditioner use was longer at nighttime. The largest Finf value of heavy metal was V (0.88 ± 0.25), followed by Pb (0.85 ± 0.28), Mn (0.72 ± 0.26), Cr (0.69 ± 0.35), and Zn (0.61 ± 0.32), with a larger variation. Our findings suggest that the estimations of diurnal PM2.5 and heavy metals Finf values are necessary to increase the accuracy of exposure assessment.
Collapse
Affiliation(s)
- Huey-Jen Su
- Department of Environmental and Occupational Health, National Cheng-Kung University, Tainan City, Taiwan
| | - Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung City, Taiwan
| | - Jui-Hsin Wang
- Department of Environmental and Occupational Health, National Cheng-Kung University, Tainan City, Taiwan
| | - Nai-Tzu Chen
- Department of Environmental and Occupational Health, National Cheng-Kung University, Tainan City, Taiwan
| | - Wei-Hsiang Chang
- Department of Food Safety/Hygiene and Risk Management, National Cheng-Kung University, Tainan City, Taiwan
| |
Collapse
|
19
|
Xie G, Yue J, Yang W, Yang L, Xu M, Sun L, Zhang B, Guo L, Chung MC. Effects of PM 2.5 and its constituents on hemoglobin during the third trimester in pregnant women. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35193-35203. [PMID: 35060058 PMCID: PMC9076737 DOI: 10.1007/s11356-022-18693-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Anemia has been a public health issue evoking global concern, and the low hemoglobin (Hb) concentration links to adverse pregnancy outcomes. However, the associations of PM2.5 and its constituents with Hb and anemia in pregnant women remain unclear. In this retrospective birth cohort study, 7932 pregnant women who delivered in the First Affiliated Hospital of Xi'an Jiaotong University from 2015 to 2018 were included. The Hb during the third trimester in pregnant women was assessed before delivery. PM2.5 and its constituents (BC, NH4+, NO3-, OM, SO42-, and Dust) during pregnancy were retrieved from the V4.CH.03 product constructed by the Atmospheric Composition Analysis Group. Generalized linear regression model was applied to investigate the effects of PM2.5 and its constituents on Hb and anemia during the third trimester in pregnant women. The means and standard deviations of PM2.5, BC, NH4+, NO3-, OM, SO42-, and Dust were 69.56 (15.24), 10.02 (2.72), 8.11 (1.77), 14.96 (5.42), 15.36 (4.11), 10.08 (1.20), and 10.98 (1.85) μg/m3, respectively. Per IQR increase (μg/m3) of PM2.5, BC, NO3-, and OM linked to - 0.75 (- 1.50, - 0.01), - 0.85 (- 1.65, - 0.04), - 0.79 (- 1.56, - 0.03), and - 0.73 (- 1.44, - 0.03) g/L decrease of Hb during the third trimester in multiparous pregnant women, but not for NH4+, SO42-, Dust, and primiparous pregnant women. PM2.5 and its constituents had no significant association with anemia, except for Dust (OR: 0.90, 95% CI: 0.82, 0.99, per IQR increase) in primiparous pregnant women. Besides, SO42- was of lag effects on Hb and anemia in multiparous pregnant women. Moreover, non-linear associations were found among PM2.5 and its constituents, Hb, and anemia. Therefore, exposure to PM2.5 and some constituents of PM2.5 was associated with reduced Hb level during the third trimester in multiparous pregnant women. Related departments and pregnant women should take targeted actions to eliminate the detrimental effects of PM2.5 and its constituents on pregnancy outcomes.
Collapse
Affiliation(s)
- Guilan Xie
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Jie Yue
- Department of Pediatrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, People's Republic of China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China.
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Mengmeng Xu
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
| | - Landi Sun
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Boxing Zhang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, People's Republic of China
| | - Leqian Guo
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Shaanxi Province, 710061, Xi'an, People's Republic of China
| | - Mei Chun Chung
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Kwag Y, Ye S, Oh J, Lee DW, Yang W, Kim Y, Ha E. Direct and Indirect Effects of Indoor Particulate Matter on Blood Indicators Related to Anemia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412890. [PMID: 34948498 PMCID: PMC8701383 DOI: 10.3390/ijerph182412890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
Exposure to indoor particulate matter (PM) is a potential risk factor that increases systemic inflammation and affects erythropoiesis. This study investigated the association between exposure to indoor PM and blood indicators related to anemia (BIRA) in housewives. Indoor PM and blood folate status are important factors in the risk of anemia. This was a housewife cohort study; we recruited 284 housewives in Seoul and Ulsan, Republic of Korea. Indoor exposure to PM2.5 and PM10 was measured by gravimetric analysis and sensors. We investigated the BIRA, such as hemoglobin (Hb), hematocrit, mean corpuscular volume (MCV), mean corpuscular Hb (MCH), and mean corpuscular Hb concentration (MCHC). Statistical analysis was performed by multiple linear regression model and mediation analysis. The association between BIRA and PM was assessed by multiple linear regression models fitted by mediation analyses. The increase in the level of indoor PM2.5 was associated with a decrease in MCV (Beta coefficient (B): −0.069, Standard error (SE): 0.022) and MCH (B: −0.019, SE: 0.009) in gravimetric measurements. The increase in the level of indoor PM2.5 was associated with a decrease in Hb (B: −0.024, SE: 0.011), hematocrit (B: −0.059, SE: 0.033), and MCV (B: −0.081, SE: 0.037) and MCH (B: −0.037, SE: 0.012) in sensor measurements (PM2.5-Lag10). Further, we identified a serum folate-mediated PM effect. The indoor PM exposure was significantly associated with decreased Hb, MCV, and MCH in housewives. Taken together, our data show that exposure to indoor PM is a risk factor for anemia in housewives. Blood folate concentration can be a mediating factor in the effect of indoor PM on BIRA. Therefore, folate intake should be recommended to prevent anemia in housewives. Moreover, indoor PM exposure should be managed.
Collapse
Affiliation(s)
- Youngrin Kwag
- Department of Environmental Medicine, School of Medicine, Ewha Womans University, Seoul KS013, Korea; (Y.K.); (J.O.)
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul KS013, Korea
| | - Shinhee Ye
- Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Incheon KS006, Korea;
| | - Jongmin Oh
- Department of Environmental Medicine, School of Medicine, Ewha Womans University, Seoul KS013, Korea; (Y.K.); (J.O.)
| | - Dong-Wook Lee
- Department of Preventive Medicine, College of Medicine, Seoul National University, Seoul KS013, Korea;
| | - Wonho Yang
- Department of Occupational Health, Daegu Catholic University, Gyeongsan-si KS002, Korea;
| | - Yangho Kim
- Department of Occupational and Environmental Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan KS016, Korea
- Correspondence: (Y.K.); (E.H.)
| | - Eunhee Ha
- Department of Environmental Medicine, School of Medicine, Ewha Womans University, Seoul KS013, Korea; (Y.K.); (J.O.)
- Correspondence: (Y.K.); (E.H.)
| |
Collapse
|
21
|
Zhao T, Qi W, Yang P, Yang L, Shi Y, Zhou L, Ye L. Mechanisms of cardiovascular toxicity induced by PM 2.5: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65033-65051. [PMID: 34617228 DOI: 10.1007/s11356-021-16735-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
An increasing number of studies have shown that exposure to particulate matter with a diameter ≤ 2.5 μm (PM2.5) could affect the onset and development of cardiovascular diseases. To explore the underlying mechanisms, the studies conducted in vitro investigations using different cell lines. In this review, we examined recently published reports cited by PubMed or Web of Science on the topic of cardiovascular toxicity induced by PM2.5 that carried the term in vitro. Here, we summarized the suggested mechanisms of PM2.5 leading to adverse effects and cardiovascular toxicity including oxidative stress; the increase of vascular endothelial permeability; the injury of vasomotor function and vascular reparative capacity in vascular endothelial cell lines; macrophage polarization and apoptosis in macrophage cell lines; and hypermethylation and apoptosis in the AC16 cell line and the related signaling pathways, which provided a new research direction of cardiovascular toxicity of PM2.5.
Collapse
Affiliation(s)
- Tianyang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
- Jilin Provincial Center for Disease Control and Prevention (Jilin Provincial Institute of Public Health), Changchun, China
| | - Liwei Yang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, 1163 Xin Min Street, Changchun, China.
| |
Collapse
|
22
|
Bora K. Air Pollution as a Determinant of Undernutrition Prevalence among Under-Five Children in India: An Exploratory Study. J Trop Pediatr 2021; 67:6406826. [PMID: 34672348 DOI: 10.1093/tropej/fmab089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AIM The association of air pollution with prevalence of undernutrition indices (namely, anaemia, stunting, wasting and underweight) among under-five children in India was investigated. METHODS Estimates of population weighted annual average gridded PM2.5 concentrations and proportion of households using solid cooking fuel (HSCF usage percent) during 2017 in India, reflecting the magnitude of ambient and household air pollution respectively, were extracted in a state-wise manner from India State Level Disease Burden Initiative (ISLDBI) reports. Their relationships with the corresponding prevalence of anaemia, underweight, wasting and stunting in under-five children were analysed. RESULTS The state-level PM2.5 concentrations (mean: 65.5 µg/m3; median: 49.2 µg/m3; range: 17.3-209.0 µg/m3) correlated significantly (P < 0.01) with anaemia (r = 0.65), stunting (r = 0.58) and underweight (r = 0.50) prevalence; while HSCF usage (mean: 49.3%; median: 46.0%; range: 1.9-81.5%) correlated significantly (P < 0.01) with stunting (r = 0.69) and underweight (r = 0.58) prevalence. When examined across median cut-offs and after adjusting for socio-demographic index, the association of anaemia prevalence with PM2.5 concentrations persisted. This association was maintained even after controlling for the coverage of anaemia-specific interventions (namely, iron supplements and deworming medications). The mean difference in PM2.5 concentrations between the high and low PM2.5 states was 58.6 µg/m3, which accounted for 11.8% higher anaemia prevalence in the former as compared to the latter. CONCLUSION The burden of childhood undernutrition, particularly anaemia, in India may be linked to PM2.5 levels. To mitigate this burden, it may be necessary to complement the ongoing nutritional interventions with air pollution control measures.
Collapse
Affiliation(s)
- Kaustubh Bora
- Department of Health Research, Ministry of Health & Family Welfare, Government of India, ICMR-Regional Medical Research Centre, North East Region, Dibrugarh 786010, Assam, India
| |
Collapse
|
23
|
Armo-Annor D, Colecraft EK, Adu-Afarwuah S, Christian AK, Jones AD. Risk of anaemia among women engaged in biomass-based fish smoking as their primary livelihood in the central region of Ghana: a comparative cross-sectional study. BMC Nutr 2021; 7:50. [PMID: 34482822 PMCID: PMC8420040 DOI: 10.1186/s40795-021-00456-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Fish smoking using biomass fuel is an important livelihood for women living in the coastal regions of Ghana and may contribute to anaemia risk. We assessed whether women who smoke fish as their primary livelihood are at increased risk of anaemia compared to women in other livelihoods in the Central Region of Ghana. METHODS We conducted a comparative cross-sectional study of 330 randomly selected adult women (18-49 years) whose primary livelihood was either fish smoking (FSL) involving the burning of biomass fuel (n = 175) or other livelihoods (OL) not involving burning of firewood (n = 155). Data on participants' recent diet were collected from a single, quantitative 24-h dietary recall and qualitative 7-day food frequency questionnaire of animal-source food (ASF) consumption. We further assessed participants' haemoglobin concentration using the Urit 12 Hemocue system. We compared total iron intakes, the proportion of dietary iron from animal and plant sources, mean haemoglobin concentrations, and anaemia prevalence between FSL and OL women. RESULTS Fish was the most frequently consumed ASF by both groups of women. Although OL women consumed more diverse ASFs in the past week compared with the FSL women (3.4 ± 1.2 vs. 2.7 ± 1.3; p < 0.001), the contribution of ASFs to total iron intake in the past day was greater for the FSL women (49.5% vs. 44.0%; p = 0.030). Estimated total dietary iron intake in the past day was generally low (5.2 ± 4.7 mg) and did not differ by group. The unadjusted prevalence of anaemia was 32 and 27.1% among the FSL and OL women, respectively (p = 0.33). After covariates adjustment, the FSL women had statistically higher anaemia prevalence (36.4% vs. 20.5%; p = 0.032) and 80% greater risk of being anemic (RR: 1.8; 95% CI: 1.1, 3.0) than the OL women. CONCLUSION Women who use biomass fuel to smoke fish as their primary livelihood had an increased risk of anaemia. Furthermore, the average 24-h dietary iron intake among both the FSL and OL women was below their daily iron requirement. Interventions to enhance women's dietary iron intake and reduce their livelihood related biomass smoke exposure may be warranted in this population.
Collapse
Affiliation(s)
- Daniel Armo-Annor
- Department of Nutrition and Food Science, University of Ghana, P.O. Box LG 134, Accra, Ghana
| | - Esi K Colecraft
- Department of Nutrition and Food Science, University of Ghana, P.O. Box LG 134, Accra, Ghana.
| | - Seth Adu-Afarwuah
- Department of Nutrition and Food Science, University of Ghana, P.O. Box LG 134, Accra, Ghana
| | - Aaron Kobina Christian
- Regional Institute for Population Studies, University of Ghana, P.O. Box LG 96, Accra, Ghana
| | - Andrew D Jones
- School of Public Health, University of Michigan, Ann Arbor, MI, 48109-2029, USA
| |
Collapse
|
24
|
Fongsodsri K, Chamnanchanunt S, Desakorn V, Thanachartwet V, Sahassananda D, Rojnuckarin P, Umemura T. Particulate Matter 2.5 and Hematological Disorders From Dust to Diseases: A Systematic Review of Available Evidence. Front Med (Lausanne) 2021; 8:692008. [PMID: 34336895 PMCID: PMC8316685 DOI: 10.3389/fmed.2021.692008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Particulate matter 2.5 (PM2.5) in the air enters the human body by diffusion into the blood. Therefore, hematological abnormalities might occur because of these toxic particles, but few studies on this issue have been reported. According to Cochrane guidance, we performed a systematic review on the relationship between exposure to PM2.5 and the risk of hematological disorders. Ten articles were included in this review. Anemia was found among children and elderly populations with 2- to 5-year PM2.5 exposure. Young children from mothers exposed to air pollution during pregnancy had a higher incidence of leukemia similar to the elderly. Supporting these data, outdoor workers also showed abnormal epigenetic modifications after exposure to very high PM2.5 levels. Adults living in high PM2.5 areas for 2 years were more likely to develop thrombocytosis. Finally, elderly populations with 7- to 8-year PM2.5 exposure showed increased risks of venous thromboembolism. In conclusion, the associations between PM2.5 and hematological aberrations among high-risk people with long-term exposure were reported.
Collapse
Affiliation(s)
- Kamonpan Fongsodsri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supat Chamnanchanunt
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Varunee Desakorn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vipa Thanachartwet
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Duangjai Sahassananda
- Information Technology Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Tsukuru Umemura
- Department of Medical Technology and Sciences, International University of Health and Welfare, Ohkawa, Japan
| |
Collapse
|
25
|
Montag D, Delgado CA, Quispe C, Wareham D, Gallo V, Sanchez-Choy J, Sánchez V, Anaya R, Flores E, Roca L, Mamani V, Rivera Medina J, Velasquez P, Del Aguila C, Prendergast A, Palomino J. Launching of the Anaemia Research Peruvian Cohort (ARPEC): a multicentre birth cohort project to explore the iron adaptive homeostasis, infant growth and development in three Peruvian regions. BMJ Open 2021; 11:e045609. [PMID: 33986056 PMCID: PMC8126292 DOI: 10.1136/bmjopen-2020-045609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Preventing infantile anaemia and ensuring optimal growth and development during early childhood, particularly in resource-constrained settings, represent an ongoing public health challenge. Current responses are aligned to treatment-based solutions, instead of determining the roles of its inter-related causes. This project aims to assess and understand the complex interplay of eco-bio-social-political factors that determine infantile anaemia to inform policy, research design and prevention practices. METHODS This is a longitudinal birth cohort study including four components: (1) biological, will assess known blood markers of iron homeostasis and anaemia and stool microbiota to identify and genetically analyse the participants' flora; (2) ecological, will assess and map pollutants in air, water and soil and evaluate features of nutrition and perceived food security; (3) social, which will use different qualitative research methodologies to explore key stakeholders and informants' perceptions related to nutritional, environmental and anaemia topics, participant observations and a participatory approach and (4) a political analysis, to identify and assess the impact of policies, guidelines and programmes at all levels for infantile anaemia in the three regions. Finally, we will also explore the role of social determinants and demographic variables longitudinally for all study participants. This project aims to contribute to the evidence of the inter-related causal factors of infantile anaemia, addressing the complexity of influencing factors from diverse methodological angles. We will assess infantile anaemia in three regions of Peru, including newborns and their mothers as participants, from childbirth until their first year of age. ETHICS AND DISSEMINATION Ethical approval was obtained from the Institutional Research Ethics Committee of the Instituto Nacional de Salud del Niño (Lima, Peru), CIEI-043-2019. An additional opinion has been granted by the Ethical Committee of Queen Mary University of London (London, UK). Dissemination across stakeholders is taking part as a continues part of the research process.
Collapse
Affiliation(s)
- Doreen Montag
- Centre for Global Public Health, Queen Mary University of London, London, UK
| | - Carlos A Delgado
- Department of Medicine, Neonatal Intensive Care Unit, Instituto Nacional de Salud del Niño, Lima, Peru
- Department of Paediatrics, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Consuelo Quispe
- School of Nursing, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Peru
| | - David Wareham
- Blizard Institute, Queen Mary University of London, London, UK
| | - Valentina Gallo
- Centre for Global Public Health, Queen Mary University of London, London, UK
- Campus Fryslan, University of Groningen, Leeuwarden, The Netherlands
| | - Jose Sanchez-Choy
- Department of Aquaculture and Agroforestry, Universidad Nacional Intercultural de la Amazonia, Pucallpa, Peru
| | - Víctor Sánchez
- Department of Medicine, Neonatal Intensive Care Unit, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Ruth Anaya
- School of Nursing, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Peru
| | - Elaine Flores
- Centre for Global Public Health, Queen Mary University of London, London, UK
| | - Lorena Roca
- School of Nursing, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Peru
| | - Víctor Mamani
- Executive Office for Research Support and Specialized Teaching, Instituto Nacional de Salud del Niño, Lima, Peru
- School of Nutrition and Dietetics, Universidad Científica del Sur, Lima, Peru
| | - Juan Rivera Medina
- Department of Paediatrics, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
- Department of Medicine, Gastroenterology, Hepatology and Nutrition Unit, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Pablo Velasquez
- Department of Medicine, Neonatal Intensive Care Unit, Instituto Nacional de Salud del Niño, Lima, Peru
- Department of Neonatal Medicine, Instituto Nacional Materno Perinatal, Lima, Peru
| | - Carlos Del Aguila
- Department of Medicine, Endocrinology and Metabolism Unit, Instituto Nacional de Salud del Niño, Lima, Peru
- Faculty of Medicine, Universidad Nacional Federico Villarreal, Lima, Peru
| | | | - Julio Palomino
- Faculty of Environmental Sciences, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz, Peru
| |
Collapse
|
26
|
Mehta U, Dey S, Chowdhury S, Ghosh S, Hart JE, Kurpad A. The Association Between Ambient PM 2.5 Exposure and Anemia Outcomes Among Children Under Five Years of Age in India. Environ Epidemiol 2021; 5:e125. [PMID: 33778358 PMCID: PMC7939416 DOI: 10.1097/ee9.0000000000000125] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Anemia is highly prevalent in India, especially in children. Exposure to ambient fine particulate matter (PM2.5) is a potential risk factor for anemia via. systemic inflammation. Using health data from the National Family and Health Survey 2015-2016, we examined the association between ambient PM2.5 exposure and anemia in children under five across India through district-level ecological and individual-level analyses. METHODS The ecological analysis assessed average hemoglobin levels and anemia prevalence (hemoglobin < 11 g/dL considered anemic) by district using multiple linear regression models. The individual-level analysis assessed average individual hemoglobin level and anemia status (yes/no) using generalized linear mixed models to account for clustering by district. Ambient PM2.5 exposure data were derived from the Multiangle Imaging SpectroRadiometer (MISR) level 2 aerosol optical depth (AOD) data and averaged from birth date to date of interview. RESULTS The district-level ecological analysis found that, for every 10 μg m-3 increase in ambient PM2.5 exposure, average anemia prevalence increased by 1.90% (95% CI = 1.43, 2.36) and average hemoglobin decreased by 0.07 g/dL (95% CI = 0.09, 0.05). At the individual level, for every 10 μg m-3 increase in ambient PM2.5 exposure, average hemoglobin decreased by 0.14 g/dL (95% CI = 0.12, 0.16). The odds ratio associated with a 10-μg m-3 increase in ambient PM2.5 exposure was 1.09 (95% CI = 1.06, 1.11). There was evidence of effect modification by wealth index, maternal anemia status, and child BMI. CONCLUSION Our results suggest that ambient PM2.5 exposure could be linked to anemia in Indian children, although additional research on the underlying biologic mechanisms is needed. Future studies on this association should specifically consider interactions with dietary iron deficiency, maternal anemia status, and child BMI.Keywords: Anemia; Children; Ambient PM2.5 exposure; India; Association.
Collapse
Affiliation(s)
- Unnati Mehta
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
- Harvard University T. H. Chan School of Public Health, Boston, Massachusetts
| | - Sagnik Dey
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
- Centre of Excellence for Research on Clean Air, IIT Delhi, New Delhi, India
- School of Public Policy, IIT Delhi, New Delhi, India
| | - Sourangsu Chowdhury
- Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Santu Ghosh
- St. John’s Medical College, Bengaluru, India
| | - Jaime E Hart
- Harvard University T. H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
27
|
Yu EX, Addo OY, Williams AM, Engle-Stone R, Ou J, Huang W, Guo J, Suchdev PS, Young MF. Association between anemia and household water source or sanitation in preschool children: the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr 2020; 112:488S-497S. [PMID: 32743647 PMCID: PMC7396266 DOI: 10.1093/ajcn/nqaa148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The associations between anemia and household water source and sanitation remain unclear. OBJECTIVES We aimed to assess the associations between anemia and household water source or sanitation in preschool children (PSC; age 6-59 mo) using population-based surveys from the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. METHODS We analyzed national and subnational data from 21 surveys, representing 19 countries (n = 35,963). Observations with hemoglobin (Hb) and ≥1 variable reflecting household water source or sanitation were included. Anemia was defined as an altitude-adjusted Hb concentration <110 g/L. Household water source and sanitation variables were dichotomized as "improved" or "unimproved." Poisson regressions with robust variance estimates were conducted for each survey, adjusting for child sex, age, household socioeconomic status, maternal education, and type of residence. RESULTS Access to an improved water source and improved sanitation ranged from 29.9% (Burkina Faso) to 98.4% (Bangladesh, 2012), and from 0.2% (Kenya, 2007) to 97.4% (Philippines), respectively. Prevalence of anemia ranged from 20.1% (Nicaragua) to 83.5% (Bangladesh, 2010). Seven surveys showed negative associations between anemia and improved sanitation. Three surveys showed association between anemia and improved water, with mixed directions. Meta-analyses suggested a protective association between improved household sanitation and anemia [adjusted prevalence ratio (aPR) = 0.88; 95% CI: 0.79, 0.98], and no association between improved household water and anemia (aPR = 1.00; 95% CI: 0.91, 1.10). There was heterogeneity across surveys for sanitation (P < 0.01; I2 = 66.3%) and water (P < 0.01; I2 = 55.8%). CONCLUSIONS Although improved household sanitation was associated with reduced anemia prevalence in PSC in some surveys, this association was not consistent. Access to an improved water source in general had no association with anemia across surveys. Additional research could help clarify the heterogeneity between these conditions across countries to inform anemia reduction programs.
Collapse
Affiliation(s)
- Emma X Yu
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - O Yaw Addo
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA,Nutrition Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA,McKing Consultation Corporation, Atlanta, GA, USA
| | - Anne M Williams
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA,Nutrition Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA,McKing Consultation Corporation, Atlanta, GA, USA
| | | | - Jiangda Ou
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Weixing Huang
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Junjie Guo
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parminder S Suchdev
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA,Nutrition Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA,Department of Pediatrics, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
28
|
Tapia VL, Vasquez BV, Vu B, Liu Y, Steenland K, Gonzales GF. Association between maternal exposure to particulate matter (PM 2.5) and adverse pregnancy outcomes in Lima, Peru. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:689-697. [PMID: 32355212 PMCID: PMC7853153 DOI: 10.1038/s41370-020-0223-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 05/27/2023]
Abstract
The literature shows associations between maternal exposures to PM2.5 and adverse pregnancy outcomes. There are few data from Latin America. We have examined PM2.5 and pregnancy outcomes in Lima. The study included 123,034 births from 2012 to 2016, at three public hospitals. We used estimated daily PM2.5 from a newly created model developed using ground measurements, satellite data, and a chemical transport model. Exposure was assigned based on district of residence (n = 39). Linear and logistic regression analyzes were used to estimate the associations between air pollution exposure and pregnancy outcomes. Increased exposure to PM2.5 during the entire pregnancy and in the first trimester was inversely associated with birth weight. We found a decrease of 8.13 g (-14.0; -1.84) overall and 18.6 g (-24.4, -12.8) in the first trimester, for an interquartile range (IQR) increase (9.2 µg/m3) in PM2.5. PM2.5 exposure was positively associated with low birth weight at term (TLBW) during entire pregnancy (OR: 1.11; 95% CI: 1.03-1.20), and at the first (OR: 1.11; 95% CI: 1.03-1.20), second (OR: 1.09; 95% CI: 1.01-1.17), and third trimester (OR: 1.10; 95% CI: 1.02-1.18) per IQR (9.2 µg/m3) increase. Higher exposure to PM2.5 was also associated with increased risk of small for gestational age (SGA). There were no statistically significant associations between PM2.5 exposure and preterm births (PTB). Exposure to higher concentrations of PM2.5 in Lima may decrease birth weight and increase the frequency of TLBW and SGA. Our study was inconsistent with the literature in finding no associations with preterm birth.
Collapse
Affiliation(s)
- V L Tapia
- Laboratorio de Reproducción y Endocrinología, LID, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - B V Vasquez
- Laboratorio de Reproducción y Endocrinología, LID, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - B Vu
- Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Y Liu
- Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - K Steenland
- Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - G F Gonzales
- Laboratorio de Reproducción y Endocrinología, LID, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
29
|
Elbarbary M, Honda T, Morgan G, Guo Y, Guo Y, Kowal P, Negin J. Ambient Air Pollution Exposure Association with Anaemia Prevalence and Haemoglobin Levels in Chinese Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17093209. [PMID: 32380747 PMCID: PMC7246731 DOI: 10.3390/ijerph17093209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Health effects of air pollution on anaemia have been scarcely studied worldwide. We aimed to explore the associations of long-term exposure to ambient air pollutants with anaemia prevalence and haemoglobin levels in Chinese older adults. METHODS We used two-level linear regression models and modified Poisson regression with robust error variance to examine the associations of particulate matter (PM) and nitrogen dioxide (NO2) on haemoglobin concentrations and the prevalence of anaemia, respectively, among 10,611 older Chinese adults enrolled in World Health Organization (WHO) Study on global AGEing and adult health (SAGE) China. The average community exposure to ambient air pollutants (PM with an aerodynamic diameter of 10 μm or less (PM10), 2.5 μm or less (PM2.5), 1 μm or less (PM1) and nitrogen dioxide (NO2)) for each participant was estimated using a satellite-based spatial statistical model. Haemoglobin levels were measured for participants from dried blood spots. The models were controlled for confounders. RESULTS All the studied pollutants were significantly associated with increased anaemia prevalence in single pollutant model (e.g., the prevalence ratios associated with an increase in inter quartile range in three years moving average PM10 (1.05; 95% CI: 1.02-1.09), PM2.5 (1.11; 95% CI: 1.06-1.16), PM1 (1.13; 95% CI: 1.06-1.20) and NO2 (1.42; 95% CI: 1.34-1.49), respectively. These air pollutants were also associated with lower concentrations of haemoglobin: PM10 (-0.53; 95% CI: -0.67, -0.38); PM2.5 (-0.52; 95% CI: -0.71, -0.33); PM1 (-0.55; 95% CI: -0.69, -0.41); NO2 (-1.71; 95% CI: -1.85, -1.57) respectively. CONCLUSIONS Air pollution exposure was significantly associated with increased prevalence of anaemia and decreased haemoglobin levels in a cohort of older Chinese adults.
Collapse
Affiliation(s)
- Mona Elbarbary
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
- Correspondence: ; Tel.: +61-416405016
| | - Trenton Honda
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| | - Geoffrey Morgan
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
- School of Public Health, University Centre for Rural Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine at School of Public Health and Preventive Medicine, Monash University, Clayton, VIC 3800, Australia;
| | - Yanfei Guo
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China;
| | - Paul Kowal
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Joel Negin
- Faculty of Medicine and Health, Sydney School of Public Health, The University of Sydney, Sydney, NSW 2006, Australia; (G.M.); (J.N.)
| |
Collapse
|