1
|
Wang L, Kulthinee S, Yano N, Wen H, Zhang LX, Saleeba ZSSL, Jin N, Chen O, Zhao TC. Gold nanoparticles-conjugation of irisin enhances therapeutic effect by improving cardiac function and attenuating inflammation in sepsis. Mol Divers 2025; 29:1557-1568. [PMID: 39026117 PMCID: PMC11924206 DOI: 10.1007/s11030-024-10933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Irisin is considered to be a promising therapeutic approach for cardiac depression and inflammatory disorders. The short half-life of irisin impeded its use and drug efficacy in the treatment. This study aimed to examine if pegylated gold nanoparticles-conjugated to irisin would improve therapeutic effects in cecal ligation and puncture (CLP)-induced sepsis in mice. Recombinant irisin were conjugated to a pegylated gold nanoparticle, which was given to mice exposed to CLP. The cecal ligation procedure and sham on mice were operated and assigned to one of following five groups: (I) CLP group: The mouse models underwent the CLP surgical procedure and received only vehicle saline treatment (n = 5); (II) CLP + soluble Irisin: The mouse underwent the CLP and received an intramuscular injection (i.m) (TA) injection of 1 ug of soluble irisin into each tibialis anterior (TA) leg (n = 5); (III) CLP + Gold nanoparticle-conjugated to Irisin: The mouse models underwent the CLP and received an i.m (TA) injection of 1 µg of Gold nanoparticle-irisin via intramuscular injection (TA) into each leg (n = 5); (IV) CLP + Gold nanoparticles- conjugated to IgG: The mouse underwent the CLP and received an i.m (TA) injection of gold nanoparticles conjugated to IgG (n = 5). (V) Sham: The mouse underwent the surgical operation without conducting the CLP (n = 10). The post-operated animals were observed for one week, and survival rates were estimated. Echocardiography was performed to measure cardiac function at 12 h following CLP. TUNEL was employed to detect apoptosis in both cardiac and skeletal muscles; histology was conducted to assess tissue injury in muscles. Enzyme linked immunosorbent assay (ELISA) was conducted to examine release of interleukin 6 (IL6) and the tumor necrosis factor (TNF) alpha. Compared to the CLP control, soluble irisin treatment improved cardiac function recovery, as indicated by the fractional shortening (FS) and ejection fraction (EF). Irisin treatment exhibited reduced IL6 and TNF-alpha release in association with less apoptosis, lower muscle injury index and improved survival post-CLP. However, compared to soluble irisin treatment, gold nanoparticles-conjugated to irisin showed a significant improvement in cardiac function, suppression of apoptosis, reduced IL6 and TNF-alpha releases, decreased muscle injury and an improved survival rate of post-CLP. This study reveals that gold nanoparticles-conjugated irisin can serve to improve irisin's therapeutic effects over a longer course of treatment.
Collapse
Affiliation(s)
- Lijiang Wang
- Department of Surgery and Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, 02903, USA
| | - Supaporn Kulthinee
- Department of Surgery and Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, 02903, USA
| | - Nahiro Yano
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Huai Wen
- Department of Surgery and Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, 02903, USA
| | - Ling X Zhang
- Department of Biomedical Engineering, Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, USA
| | | | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island, 02912, USA
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island, 02912, USA
| | - Ting C Zhao
- Department of Surgery and Department of Plastic Surgery, Rhode Island Hospital, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
2
|
Herouvi D, Vlachopapadopoulou EA, Vakaki M, Gouriotis D, Marmarinos A, Kalpia C, Kossiva L, Tsolia M, Karavanaki K. Relation of serum irisin levels with adiposity, components of metabolic syndrome and carotid intima media thickness in prepubertal children with obesity: a cross-sectional study. Endocrine 2025; 87:1031-1040. [PMID: 39725768 DOI: 10.1007/s12020-024-04139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
AIM Irisin, a newly discovered adipomyokine, has pleiotropic effects in metabolic and energy homeostasis, insulin resistance (IR), and browning of white adipose tissue. The aim of this study was to evaluate irisin levels in children with obesity and also to elucidate possible relationships between irisin with anthropometric obesity indices, parameters of metabolic syndrome (MetS), and intima media thickness (IMT). METHODS A total of 77 prepubertal children, 4-12 years old, were enrolled in this study, including 44 children with obesity (BMI ≥ 95th percentile) and 33 normal weight controls of matched age and gender. Detailed clinical examination, anthropometric parameters, laboratory data, including serum irisin levels, using ELISA technique and cIMT measurement were carried out in all subjects. RESULTS Children with obesity had significantly higher values of irisin compared to controls (p = 0.003) independently of age, gender, or IR status. Irisin levels were positively correlated with weight z-score, Body Mass Index (BMI), BMI z-score, % Body Fat, waist circumference (WC), triglycerides (TG), and HOMA-IR (p = 0.016, p = 0.025, p = 0.028, p = 0.035, p = 0.019, p = 0.049, p = 0.007 respectively) and inversely correlated with HDL (p = 0.037). In multiple regression analysis irisin levels were strongly associated with excess adiposity (p < 0.001) and uric acid (p = 0.054). CONCLUSION Children with obesity showed an unfavorable cardiometabolic profile and higher levels of IMT and irisin. Moreover, irisin was correlated with metabolic parameters, suggesting that irisin can serve as a prognostic index for future development of MetS in children with obesity.
Collapse
Affiliation(s)
- D Herouvi
- Department of Endocrinology-Growth and Development, "P. & A. Kyriakou" Children's Hospital, Athens, Greece.
| | - E A Vlachopapadopoulou
- Department of Endocrinology-Growth and Development, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - M Vakaki
- Department of Radiology, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - D Gouriotis
- Biochemical Laboratory, 2nd Department of Pediatrics, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - A Marmarinos
- Biochemical Laboratory, 2nd Department of Pediatrics, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - C Kalpia
- Department of Endocrinology-Growth and Development, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - L Kossiva
- 2nd Department of Pediatrics, "P. & A. Kyriakou" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - M Tsolia
- 2nd Department of Pediatrics, "P. & A. Kyriakou" Children's Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - K Karavanaki
- Diabetes & Metabolism Clinic, 2nd Department of Pediatrics, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| |
Collapse
|
3
|
Wang X, He B. Endothelial dysfunction: molecular mechanisms and clinical implications. MedComm (Beijing) 2024; 5:e651. [PMID: 39040847 PMCID: PMC11261813 DOI: 10.1002/mco2.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Cardiovascular disease (CVD) and its complications are a leading cause of death worldwide. Endothelial dysfunction plays a crucial role in the initiation and progression of CVD, serving as a pivotal factor in the pathogenesis of cardiovascular, metabolic, and other related diseases. The regulation of endothelial dysfunction is influenced by various risk factors and intricate signaling pathways, which vary depending on the specific disease context. Despite numerous research efforts aimed at elucidating the mechanisms underlying endothelial dysfunction, the precise molecular pathways involved remain incompletely understood. This review elucidates recent research findings on the pathophysiological mechanisms involved in endothelial dysfunction, including nitric oxide availability, oxidative stress, and inflammation-mediated pathways. We also discuss the impact of endothelial dysfunction on various pathological conditions, including atherosclerosis, heart failure, diabetes, hypertension, chronic kidney disease, and neurodegenerative diseases. Furthermore, we summarize the traditional and novel potential biomarkers of endothelial dysfunction as well as pharmacological and nonpharmacological therapeutic strategies for endothelial protection and treatment for CVD and related complications. Consequently, this review is to improve understanding of emerging biomarkers and therapeutic approaches aimed at reducing the risk of developing CVD and associated complications, as well as mitigating endothelial dysfunction.
Collapse
Affiliation(s)
- Xia Wang
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ben He
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Zhang T, Yi Q, Huang W, Feng J, Liu H. New insights into the roles of Irisin in diabetic cardiomyopathy and vascular diseases. Biomed Pharmacother 2024; 175:116631. [PMID: 38663105 DOI: 10.1016/j.biopha.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Diabetes mellitus (DM) is a prevalent chronic disease in the 21st century due to increased lifespan and unhealthy lifestyle choices. Extensive research indicates that exercise can play a significant role in regulating systemic metabolism by improving energy metabolism and mitigating various metabolic disorders, including DM. Irisin, a well-known exerkine, was initially reported to enhance energy expenditure by indicating the browning of white adipose tissue (WAT) through peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) signaling. In this review, we summarize the potential mechanisms underlying the beneficial effects of Irisin on glucose dysmetabolism, including reducing gluconeogenesis, enhancing insulin energy expenditure, and promoting glycogenesis. Additionally, we highlight Irisin's potential to improve diabetic vascular diseases by stimulating nitric oxide (NO) production, reducing oxidative and nitrosative stress, curbing inflammation, and attenuating endothelial cell aging. Furthermore, we discuss the potential of Irisin to improve diabetic cardiomyopathy by preventing cardiomyocyte loss and reducing myocardial hypertrophy and fibrosis. Given Irisin's promising functions in managing diabetic cardiomyopathy and vascular diseases, targeting Irisin for therapeutic purposes could be a fruitful avenue for future research and clinical interventions.
Collapse
Affiliation(s)
- Tiandong Zhang
- Collage of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenhua Huang
- Collage of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China; Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Jianguo Feng
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; The Third People's Hospital of Longmatan District, Luzhou, Sichuan 646000, China.
| |
Collapse
|
5
|
Li X, Lindholm B. The role of irisin in kidney diseases. Clin Chim Acta 2024; 554:117756. [PMID: 38218331 DOI: 10.1016/j.cca.2023.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024]
Abstract
Irisin is a hormone that is produced mainly by skeletal muscles in response to exercise. It has been found to have a close correlation with obesity and diabetes mellitus for its energy expenditure and metabolic properties. Recent research has revealed that irisin also possesses anti-inflammatory, anti-oxidative and anti-apoptotic properties, which make it associated with major chronic diseases, such as chronic kidney disease (CKD), liver diseases, osteoporosis, atherosclerosis and Alzheimer s disease. The identification of irisin has not only opened up new possibilities for monitoring metabolic and non-metabolic diseases but also presents a promising therapeutic target due to its multiple biological functions. Studies have shown that circulating irisin levels are lower in CKD patients than in non-CKD patients and decrease with increasing CKD stage. Furthermore, irisin also plays a role in many CKD-related complications like protein energy wasting (PEW), cardiovascular disease (CVD) and chronic kidney disease-mineral and bone disorder (CKD-MBD). In this review, we present the current knowledge on the role of irisin in kidney diseases and their complications.
Collapse
Affiliation(s)
- Xiejia Li
- Department of Nephrology, The 2nd Xiangya Hospital, Central South University, Changsha, Hunan, China; Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Bengt Lindholm
- Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Šebeková K, Staruchová M, Mišľanová C, Líšková A, Horváthová M, Tulinská J, Lehotská Mikušová M, Szabová M, Gurecká R, Koborová I, Csongová M, Tábi T, Szökö É, Volkovová K. Association of Inflammatory and Oxidative Status Markers with Metabolic Syndrome and Its Components in 40-to-45-Year-Old Females: A Cross-Sectional Study. Antioxidants (Basel) 2023; 12:1221. [PMID: 37371951 DOI: 10.3390/antiox12061221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress and sterile inflammation play roles in the induction and maintenance of metabolic syndrome (MetS). This study cohort included 170 females aged 40 to 45 years who were categorized according to the presentation of MetS components (e.g., central obesity, insulin resistance, atherogenic dyslipidemia, and elevated systolic blood pressure) as controls not presenting a single component (n = 43), those with pre-MetS displaying one to two components (n = 70), and females manifesting MetS, e.g., ≥3 components (n = 53). We analyzed the trends of seventeen oxidative and nine inflammatory status markers across three clinical categories. A multivariate regression of selected oxidative status and inflammatory markers on the components of MetS was performed. Markers of oxidative damage (malondialdehyde and advanced-glycation-end-products-associated fluorescence of plasma) were similar across the groups. Healthy controls displayed lower uricemia and higher bilirubinemia than females with MetS; and lower leukocyte counts, concentrations of C-reactive protein, interleukine-6, and higher levels of carotenoids/lipids and soluble receptors for advanced glycation end-products than those with pre-MetS and MetS. In multivariate regression models, levels of C-reactive protein, uric acid, and interleukine-6 were consistently associated with MetS components, although the impacts of single markers differed. Our data suggest that a proinflammatory imbalance precedes the manifestation of MetS, while an imbalance of oxidative status accompanies overt MetS. Further studies are needed to elucidate whether determining markers beyond traditional ones could help improve the prognosis of subjects at an early stage of MetS.
Collapse
Affiliation(s)
- Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University in Bratislava, 83303 Bratislava, Slovakia
| | - Marta Staruchová
- Institute of Biology, Medical Faculty, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Csilla Mišľanová
- Institute of Nutrition, Faculty of Nursing and Medical Professional Studies, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Aurélia Líšková
- Department of Immunology and Immunotoxicology, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Mira Horváthová
- Department of Immunology and Immunotoxicology, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Jana Tulinská
- Department of Immunology and Immunotoxicology, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Miroslava Lehotská Mikušová
- Department of Immunology and Immunotoxicology, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Michaela Szabová
- Department of Immunology and Immunotoxicology, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| | - Radana Gurecká
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University in Bratislava, 83303 Bratislava, Slovakia
- Institute of Medical Physics, Biophysics, Informatics and Telemedicine, Faculty of Medicine, Comenius University in Bratislava, 83303 Bratislava, Slovakia
| | - Ivana Koborová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University in Bratislava, 83303 Bratislava, Slovakia
| | - Melinda Csongová
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University in Bratislava, 83303 Bratislava, Slovakia
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary
| | - Éva Szökö
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary
| | - Katarína Volkovová
- Institute of Biology, Medical Faculty, Slovak Medical University in Bratislava, 83303 Bratislava, Slovakia
| |
Collapse
|
7
|
Ma Y, Du Y, Yang J, He Q, Wang H, Lin X. Anti-inflammatory effect of Irisin on LPS-stimulated macrophages through inhibition of MAPK pathway. Physiol Res 2023; 72:235-249. [PMID: 37159857 PMCID: PMC10226406 DOI: 10.33549/physiolres.934937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/20/2022] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the effect of irisin on LPS-induced inflammation in RAW 264.7 macrophages through inhibition of the mitogen-activated protein kinase (MAPK) pathway. A network pharmacology-based approach, combined with molecular docking and in vitro validation were performed to identify the biological activity, key targets, and potential pharmacological mechanisms of irisin against LPS-induced inflammation. By matching 100 potential genes of irisin with 1893 ulcerative colitis (UC) related genes, 51 common genes were obtained. Using protein-protein interaction networks (PPI) and component-target network analysis,10 core genes of irisin on UC were further identified. The results of gene ontology (GO) enrichment analysis showed that the molecular mechanisms of irisin on UC were mainly related to major enrichment in the categories of response to xenobiotic stimulus, response to the drug, and negative regulation of gene expression. Molecular docking results showed good binding activity for almost all core component targets. More importantly, MTT assay and flow cytometry results showed that LPS-induced cytotoxicity was reversed by irisin, after coincubation with irisin, the level of IL-12 and IL-23 decreased in LPS-stimulated RAW264.7 macrophages. Irisin pretreatment significantly inhibited the phosphorylation of ERK and AKT and increased the expression of PPAR alpha and PPAR gamma. LPS-induced enhancement of phagocytosis and cell clearance were reversed by irisin pretreatment. Irisin ameliorated LPS-induced inflammation by inhibiting cytotoxicity and apoptosis, and this protective effect may be mediated through the MAPK pathway. These findings confirmed our prediction that irisin plays an anti-inflammatory role in LPS-induced inflammation via the MAPK pathway.
Collapse
Affiliation(s)
- Y Ma
- Department of Clinical Laboratory, Huaihe Hospital of Henan University, Kaifeng, China.
| | | | | | | | | | | |
Collapse
|
8
|
Hou Y, Zhang Z, Cui Y, Peng C, Fan Y, Tan C, Wang Q, Liu Z, Gong J. Pu-erh tea and theabrownin ameliorate metabolic syndrome in mice via potential microbiota-gut-liver-brain interactions. Food Res Int 2022; 162:112176. [DOI: 10.1016/j.foodres.2022.112176] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
|
9
|
Zhu B, Wang B, Zhao C, Wang Y, Zhou Y, Lin J, Zhao R. Irisin Regulates Cardiac Responses to Exercise in Health and Diseases: a Narrative Review. J Cardiovasc Transl Res 2022; 16:430-442. [PMID: 36036861 DOI: 10.1007/s12265-022-10310-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
Exercise has been recognized as an important non-pharmacological approach for the prevention, treatment, and rehabilitation of cardiovascular diseases, but the mechanisms of exercise in promoting cardiovascular health remain unclear. Exercise generates cardiac benefits via stimulating muscle to secret hundreds of myokines that directly enter circulation and target heart tissue. Therefore, inter-organ communication between skeletal muscle and heart may be one important regulating pattern, and such communication can occur through secretion of molecules, frequently known as myokines. Irisin, a newly identified myokine, is cleaved from fibronectin type III domain-containing protein 5 (FNDC5) and secreted by the stimulation of exercise. Recently, accumulating evidence focusing on the interaction between irisin and cardiac function has been reported. This review highlights the molecular signaling by which irisin regulates the benefits of exercise on cardiac function both in physiological and pathological process, and discusses the clinical potential of irisin in treating heart diseases. Exercise generates various cardiovascular benefits through stimulating skeletal muscle to secrete irisin. The exercise "hormone" irisin, both produced by exercise or recombinant form, exerts therapeutic effects in a group of cardiovascular disorders including heart failure, myocardial infarction, atherosclerosis and hypertension. However, the molecular mechanisms involved remain ambiguous.This review highlights the most up-to-date findings to bridge the gap between exercise, irisin and cardiovascular diseases, and discusses the potential clinical prospect of irisin.
Collapse
Affiliation(s)
- Baishu Zhu
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Bin Wang
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Chen Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Yuanxin Wang
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Yalan Zhou
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Junjie Lin
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China
| | - Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
10
|
Slate-Romano JJ, Yano N, Zhao TC. Irisin reduces inflammatory signaling pathways in inflammation-mediated metabolic syndrome. Mol Cell Endocrinol 2022; 552:111676. [PMID: 35569582 PMCID: PMC10084474 DOI: 10.1016/j.mce.2022.111676] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Irisin is an exercise induced myokine first shown to induce the browning of white adipose tissue (WAT) which increases energy expenditure, improves glucose tolerance, and reduces insulin resistance. Among irisin's involvement in lipid homeostasis, osteoblast proliferation, and muscle growth, it also acts as a mediator of many inflammatory pathways throughout the body. This review aims to describe the role of irisin in inflammatory processes and understand how targeting irisin can alter the inflammatory response in metabolic syndrome (MetS). The mechanisms involved in irisin's anti-inflammatory functions include reducing production of pro-inflammatory cytokines while increasing production of anti-inflammatory cytokines, reducing macrophage proliferation, inducing alternatively activated (M2-type) macrophage polarization, inhibiting pathways of increased vascular permeability, and preventing the formation of inflammasomes. While there are some contradictory results, most studies found reduced levels of irisin in MetS and type II diabetes mellitus (T2DM). Irisin treatment of cells exposed to inflammatory stimuli ameliorates the inflammatory response and promotes cellular viability. Numerous methods have been studied to increase plasma irisin levels including dietary, behavioral, and pharmaceutical. Further investigation is necessary to understand how irisin can be targeted for disease modification.
Collapse
Affiliation(s)
- John J Slate-Romano
- Warren Alpert Medical School of Brown University School of Medicine, 222 Richmond St. Providence, RI, 02903, USA
| | - Naohiro Yano
- Department of Surgery, Rhode Island Hospital, 593 Eddy St. Providence, RI, 02903, USA
| | - Ting C Zhao
- Department of Plastic Surgery, Department of Surgery, Rhode Island Hospital, Warren Alpert School of Medicine, 593 Eddy St. Providence, RI, 02903, USA.
| |
Collapse
|
11
|
Baumgartner M, Lischka J, Schanzer A, de Gier C, Walleczek NK, Greber-Platzer S, Zeyda M. Plasma Myostatin Increases with Age in Male Youth and Negatively Correlates with Vitamin D in Severe Pediatric Obesity. Nutrients 2022; 14:nu14102133. [PMID: 35631274 PMCID: PMC9144022 DOI: 10.3390/nu14102133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Obesity already causes non-communicable diseases during childhood, but the mechanisms of disease development are insufficiently understood. Myokines such as myostatin and irisin are muscle-derived factors possibly involved in obesity-associated diseases. This explorative study aims to investigate whether myostatin and irisin are associated with metabolic parameters, including the vitamin D status in pediatric patients with severe obesity. Clinical, anthropometric and laboratory data from 108 patients with severe obesity (>97th percentile) aged between 9 and 19 years were assessed. Myostatin, its antagonist follistatin, and irisin, were measured from plasma by ELISA. Myostatin concentrations, particularly in males, positively correlated with age and pubertal stage, as well as metabolic parameters such as insulin resistance. Irisin concentrations correlated positively with HDL and negatively with LDL cholesterol values. For follistatin, the associations with age and pubertal stage were inverse. Strikingly, a negative correlation of myostatin with serum vitamin D levels was observed that remained significant after adjusting for age and pubertal stage. In conclusion, there is an independent association of low vitamin D and elevated myostatin levels. Further research may focus on investigating means to prevent increased myostatin levels in interventional studies, which might open several venues to putative options to treat and prevent obesity-associated diseases.
Collapse
|
12
|
Benincasa G, Coscioni E, Napoli C. Cardiovascular risk factors and molecular routes underlying endothelial dysfunction: Novel opportunities for primary prevention. Biochem Pharmacol 2022; 202:115108. [DOI: 10.1016/j.bcp.2022.115108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/23/2022]
|
13
|
Hertiš Petek T, Petek T, Močnik M, Marčun Varda N. Systemic Inflammation, Oxidative Stress and Cardiovascular Health in Children and Adolescents: A Systematic Review. Antioxidants (Basel) 2022; 11:894. [PMID: 35624760 PMCID: PMC9137597 DOI: 10.3390/antiox11050894] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 12/02/2022] Open
Abstract
Recent studies indicate that cerebrovascular diseases and processes of atherosclerosis originate in the childhood era and are largely influenced by chronic inflammation. Some features of vascular dysfunction in adulthood may even be programmed prenatally via genetic influences and an unfavorable intrauterine milieu. Oxidative stress, defined by an imbalance between the production and generation of reactive oxygen species (ROS) in cells and tissues and the capability of an organism to scavenge these molecules via antioxidant mechanisms, has been linked to adverse cardiovascular health in adults, yet has not been systematically reviewed in the pediatric population. We performed a systematic search as per the PRISMA guidelines in PubMed/Medline and Cochrane Reviews and detected, in total, 1228 potentially eligible pediatric articles on systemic inflammation, oxidative stress, antioxidant use, cardiovascular disease and endothelial dysfunction. The abstracts and full-text manuscripts of these were screened for inclusion and exclusion criteria, and a total of 160 articles were included. The results indicate that systemic inflammation and oxidative stress influence cardiovascular health in many chronic pediatric conditions, including hypertension, obesity, diabetes mellitus types 1 and 2, chronic kidney disease, hyperlipidemia and obstructive sleep apnea. Exercise and diet may diminish ROS formation and enhance the total serum antioxidant capacity. Antioxidant supplementation may, in selected conditions, contribute to the diminution of the oxidative state and improve endothelial function; yet, in many areas, studies provide unsatisfactory results.
Collapse
Affiliation(s)
- Tjaša Hertiš Petek
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (T.H.P.); (M.M.); (N.M.V.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tadej Petek
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (T.H.P.); (M.M.); (N.M.V.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Mirjam Močnik
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (T.H.P.); (M.M.); (N.M.V.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Nataša Marčun Varda
- Department of Paediatrics, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia; (T.H.P.); (M.M.); (N.M.V.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
14
|
KAYA SEZGİNER E, KIRLANGIÇ ÖF, EŞKİN TANRIVERDİ MD, TOPÇU HO, GÜR S. Analysis of Changes in Serum Levels and Gene Expression Profiles of Novel Adipocytokines (Omentin, Vaspin, Irisin and Visfatin) and Their Correlation with Serum C-reactive Protein Levels in Women Diagnosed with Endometriosis. Turk J Pharm Sci 2022; 19:48-53. [DOI: 10.4274/tjps.galenos.2021.52284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Rodríguez-Gutiérrez N, Villareal-Calderón JR, Castillo EC, García-Rivas G. Prediction of Insulin Resistance Based on Anthropometric and Clinical Variables in Children with Overweight or Obesity at a Tertiary Center in Northeast Mexico. Metab Syndr Relat Disord 2022; 20:174-181. [PMID: 35073186 DOI: 10.1089/met.2021.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: This study provides a clinical model to identify children with insulin resistance (IR) in health care units where laboratory tests are not readily available. Methods: A retrospective study of Mexican children aged 2-16 years at an obesity (OB) clinic. A receiver operating characteristic (ROC) curve was used to assess the accuracy of the proposed model consisting of clinical parameters and to establish the cutoff value for the variables (439 children). A second cohort of children with similar characteristics served as the cohort for the validation of the model (577 children). Results: To determine the best model for predicting IR, we performed a multivariate logistic regression analysis, which showed that waist circumference, acanthosis nigricans, and pubertal status are independent predictors of IR, and when integrated, their predictive power increases. Based on this model, we constructed a simplified equation. The predictive tool was constructed using an ROC curve, with an area under the curve of 0.849. A cutoff value of 7.68 was selected based on the Youden Index, with sensitivity and specificity of 78.3% and 83.3%, respectively. Incorporating metabolic laboratory determinations with a cutoff value of 20.64 improved the sensitivity to 94.9%. Conclusions: We developed a simple and affordable method of identifying IR in children with overweight or OB based on anthropometric variables and routine blood tests for metabolic indicators, such as glucose and triglycerides, which can be implemented in underserved sites.
Collapse
Affiliation(s)
- Nora Rodríguez-Gutiérrez
- Departamento de Endocrinología Pediátrica, Clínica de Obesidad, Hospital Materno Infantil de Alta Especialidad, Secretaría de Salud, Monterrey, México.,Tecnologico de Monterrey, Escuela Medicina y Ciencias de la Salud, Grupo de Enfoque en Medicina Cardiovascular y Metabolómica, Monterrey, México
| | - José R Villareal-Calderón
- Tecnologico de Monterrey, Escuela Medicina y Ciencias de la Salud, Grupo de Enfoque en Medicina Cardiovascular y Metabolómica, Monterrey, México
| | - Elena Cristina Castillo
- Tecnologico de Monterrey, Escuela Medicina y Ciencias de la Salud, Grupo de Enfoque en Medicina Cardiovascular y Metabolómica, Monterrey, México
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela Medicina y Ciencias de la Salud, Grupo de Enfoque en Medicina Cardiovascular y Metabolómica, Monterrey, México.,Tecnologico de Monterrey, Centro de Investigación Biomédica, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, México.,Tecnologico de Monterrey, The Institute for Obesity Research, San Pedro Garza García, México
| |
Collapse
|
16
|
The Physiological Role of Irisin in the Regulation of Muscle Glucose Homeostasis. ENDOCRINES 2021; 2:266-283. [PMID: 35392577 PMCID: PMC8986094 DOI: 10.3390/endocrines2030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Irisin is a myokine that primarily targets adipose tissue, where it increases energy expenditure and contributes to the beneficial effects of exercise through the browning of white adipose tissue. As our knowledge has deepened in recent years, muscle has been found to be a major target organ for irisin as well. Several studies have attempted to characterize the role of irisin in muscle to improve glucose metabolism through mechanisms such as reducing insulin resistance. Although they are very intriguing reports, some contradictory results make it difficult to grasp the whole picture of the action of irisin on muscle. In this review, we attempted to organize the current knowledge of the role of irisin in muscle glucose metabolism. We discussed the direct effects of irisin on glucose metabolism in three types of muscle, that is, skeletal muscle, smooth muscle, and the myocardium. We also describe irisin’s effects on mitochondria and its interactions with other hormones. Furthermore, to consider the relationship between the irisin-induced improvement of glucose metabolism in muscle and systemic disorders of glucose metabolism, we reviewed the results from animal interventional studies and human clinical studies.
Collapse
|
17
|
Testai L, De Leo M, Flori L, Polini B, Braca A, Nieri P, Pistelli L, Calderone V. Contribution of irisin pathway in protective effects of mandarin juice (Citrus reticulata Blanco) on metabolic syndrome in rats fed with high fat diet. Phytother Res 2021; 35:4324-4333. [PMID: 33942395 PMCID: PMC8453895 DOI: 10.1002/ptr.7128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 02/01/2023]
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy.,Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Miao Y, Qin H, Zhong Y, Huang K, Rao C. Novel adipokine asprosin modulates browning and adipogenesis in white adipose tissue. J Endocrinol 2021; 249:83-93. [PMID: 33705351 PMCID: PMC8052515 DOI: 10.1530/joe-20-0503] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022]
Abstract
Obesity is an increasingly serious epidemic worldwide characterized by an increase in the number and size of adipocytes. Adipose tissue maintains the balance between lipid storage and energy utilization. Therefore, adipose metabolism is of great significance for the prevention, treatment and intervention of obesity. Asprosin, a novel adipokine, is a circulating hormone mainly secreted by white adipose tissue. Previous studies have shown that asprosin plays a role in fasting-induced homeostasis, insulin resistance, and glucose tolerance. However, whether it can regulate the metabolism of adipose tissue itself has not been studied. This study intended to examine the roles and potential mechanisms of asprosin in adipose regulation. We first demonstrated that the expression level of asprosin was significantly downregulated in subcutaneous white adipose tissue (scWAT) of high-fat diet (HFD)-fed or cold-stimulated mice. Overexpression of asprosin in scWAT reduced heat production, decreased expression of the browning marker uncoupling protein 1 (UCP1) and other browning-related genes, along with upregulation of adipogenic gene expression. Mechanistically, we found that Nrf2 was activated upon cold exposure, but this activation was suppressed after asprosin overexpression. In primary cultured adipocytes, adenovirusmediated asprosin overexpression inhibited adipose browning and aggravated lipid deposition, while Nrf2 agonist oltipraz could reverse these changes. Our findings suggest that novel adipokine asprosin negatively regulated browning and elevate lipid deposition in adipose tissue via a Nrf2-mediated mechanism. Asprosin may be a promising target for the prevention and treatment of obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Yanli Miao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haojie Qin
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Zhong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Correspondence should be addressed to K Huang or C Rao: or
| | - Caijun Rao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Correspondence should be addressed to K Huang or C Rao: or
| |
Collapse
|
19
|
Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int J Mol Sci 2021; 22:3850. [PMID: 33917744 PMCID: PMC8068178 DOI: 10.3390/ijms22083850] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) and its complications are the leading cause of death worldwide. Inflammatory activation and dysfunction of the endothelium are key events in the development and pathophysiology of atherosclerosis and are associated with an elevated risk of cardiovascular events. There is great interest to further understand the pathophysiologic mechanisms underlying endothelial dysfunction and atherosclerosis progression, and to identify novel biomarkers and therapeutic strategies to prevent endothelial dysfunction, atherosclerosis and to reduce the risk of developing CAD and its complications. The use of liquid biopsies and new molecular biology techniques have allowed the identification of a growing list of molecular and cellular markers of endothelial dysfunction, which have provided insight on the molecular basis of atherosclerosis and are potential biomarkers and therapeutic targets for the prevention and or treatment of atherosclerosis and CAD. This review describes recent information on normal vascular endothelium function, as well as traditional and novel potential biomarkers of endothelial dysfunction and inflammation, and pharmacological and non-pharmacological therapeutic strategies aimed to protect the endothelium or reverse endothelial damage, as a preventive treatment for CAD and related complications.
Collapse
Affiliation(s)
- Diana Jhoseline Medina-Leyte
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Oscar Zepeda-García
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Mayra Domínguez-Pérez
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Antonia González-Garrido
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Teresa Villarreal-Molina
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Leonor Jacobo-Albavera
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| |
Collapse
|
20
|
Wang Q, Ma L, Zhang Y, Zhang L, An Y, Liu J, Wang G. Effect of Sitagliptin on Serum Irisin Levels in Patients with Newly Diagnosed Type 2 Diabetes Mellitus. Diabetes Ther 2021; 12:1029-1039. [PMID: 33625721 PMCID: PMC7994490 DOI: 10.1007/s13300-021-01023-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/04/2021] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Irisin is a unique myokine with striking effects on regulating insulin sensitivity and energy metabolism. This study aimed to investigate the changes in serum irisin in patients with newly diagnosed type 2 diabetes mellitus (T2DM) following sitagliptin treatment. METHODS Thirty-two patients with T2DM were treated with 100 mg/day sitagliptin for 16 weeks. Twenty age-, sex- and body mass index (BMI)-matched healthy subjects were enrolled as the control group. Irisin and metabolic parameters were measured at baseline and after treatment. RESULTS Patients with T2DM had lower irisin levels than the controls (10.03 ± 2.06 vs. 13.06 ± 3.10 ng/ml, P < 0.01). Sitagliptin treatment significantly increased serum irisin levels in T2DM patients compared to baseline (11.18 ± 1.91 vs. 10.03 ± 2.06 ng/ml, P < 0.01). Increased irisin levels were associated with decreased fasting blood glucose (FBG) (β = - 0.24, P < 0.05) and glycosylated hemoglobin (HbA1c) (β = - 0.15, P < 0.05). CONCLUSIONS Sitagliptin treatment significantly increased serum irisin levels in patients with T2DM, and the increase of the irisin level was associated with decreases of FBG and HbA1c levels. These results suggest that irisin might be involved in the antidiabetic mechanisms of sitagliptin. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT04495881.
Collapse
Affiliation(s)
- Qiu Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lirong Ma
- Department of Endocrinology, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, China
| | - Yuanying Zhang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Lin Zhang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jia Liu
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, China.
- Department of Endocrinology, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, 100026, China.
| |
Collapse
|
21
|
Oxidative stress assessment and its relationship with the prevalence of atherogenic risk in patients with type 2 diabetes. J Diabetes Metab Disord 2021; 20:583-590. [PMID: 34178854 DOI: 10.1007/s40200-021-00785-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/20/2021] [Indexed: 12/27/2022]
Abstract
Objectives During diabetes, prolonged hyperglycemia is characterized by the generation of free radicals via multiple mechanisms leading to various diabetic complications including cardiovascular diseases. This study aims to determine the relationship between a deregulation of the oxidative state in type 2 diabetes patients and the prevalence of atheroma plate formation. Methods This research was carried out at the Bouguerra Boulaares hospital and Alia Salah hospital in Tebessa, Algeria, on 560 patients with type 2 diabetes (300 women and 260 men), compared with 100 normal subjects (50 women and 50 men). For all subjects the following parameters were estimated: blood pressure, BMI (body mass index), glucose, glycated hemoglobin, total cholesterol, HDL Cholesterol, LDL Cholesterol, Triglycerides, Creatinine, serum redox status indicators (GSH, GPx, GSTs, and MDA) and a complete blood count was performed. Results The findings of this study indicated a slight increase in arterial pressure in 336 diabetic patients (60%) with an HbA1c level between 7 and 9% (210 patients) and > 9% (126 patients); while the flow of the glomerular filtration remained within the norms for all the studied subjects. Patients showed an increase in blood glucose levels, disturbance of the lipid parameters with an increase in lipid peroxidation and a decrease in serum and erythrocyte antioxidant defense. Conclusion It can be concluded that the formation of atheroma plate in diabetics is caused by the oxidation of circulating lipoproteins by free radicals generated following hyperglycemia, which can be avoided by supplementing antioxidant molecules such as antioxidant vitamins, trace elements.
Collapse
|
22
|
de Oliveira dos Santos AR, de Oliveira Zanuso B, Miola VFB, Barbalho SM, Santos Bueno PC, Flato UAP, Detregiachi CRP, Buchaim DV, Buchaim RL, Tofano RJ, Mendes CG, Tofano VAC, dos Santos Haber JF. Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions. Int J Mol Sci 2021; 22:2639. [PMID: 33807959 PMCID: PMC7961600 DOI: 10.3390/ijms22052639] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adipose, skeletal, and hepatic muscle tissues are the main endocrine organs that produce adipokines, myokines, and hepatokines. These biomarkers can be harmful or beneficial to an organism and still perform crosstalk, acting through the endocrine, paracrine, and autocrine pathways. This study aims to review the crosstalk between adipokines, myokines, and hepatokines. Far beyond understanding the actions of each biomarker alone, it is important to underline that these cytokines act together in the body, resulting in a complex network of actions in different tissues, which may have beneficial or non-beneficial effects on the genesis of various physiological disorders and their respective outcomes, such as type 2 diabetes mellitus (DM2), obesity, metabolic syndrome, and cardiovascular diseases (CVD). Overweight individuals secrete more pro-inflammatory adipokines than those of a healthy weight, leading to an impaired immune response and greater susceptibility to inflammatory and infectious diseases. Myostatin is elevated in pro-inflammatory environments, sharing space with pro-inflammatory organokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), resistin, and chemerin. Fibroblast growth factor FGF21 acts as a beta-oxidation regulator and decreases lipogenesis in the liver. The crosstalk mentioned above can interfere with homeostatic disorders and can play a role as a potential therapeutic target that can assist in the methods of diagnosing metabolic syndrome and CVD.
Collapse
Affiliation(s)
- Ana Rita de Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Vitor Fernando Bordin Miola
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
- Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília 17500-000, São Paulo, Brazil
| | - Patrícia C. Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil
| | - Uri Adrian Prync Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Daniela Vieira Buchaim
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
- Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, São Paulo, Brazil
| | - Rogério Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (FOB–USP), Alameda Doutor Octávio Pinheiro Brisolla 9-75, Bauru 17040, São Paulo, Brazil;
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Avenida Hygino Muzzy Filho 1001, Marília 17525-902, São Paulo, Brazil;
| | - Viviane Alessandra Capelluppi Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| | - Jesselina F. dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, São Paulo, Brazil; (A.R.d.O.d.S.); (B.d.O.Z.); (V.F.B.M.); (P.C.S.B.); (U.A.P.F.); (D.V.B.); (R.J.T.); (C.G.M.); (V.A.C.T.); (J.F.d.S.H.)
| |
Collapse
|
23
|
Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Irisin: A New Code Uncover the Relationship of Skeletal Muscle and Cardiovascular Health During Exercise. Front Physiol 2021; 12:620608. [PMID: 33597894 PMCID: PMC7882619 DOI: 10.3389/fphys.2021.620608] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Exercise not only produces beneficial effects on muscle itself via various molecular pathways, but also mediates the interaction between muscles and other organs in an autocrine/paracrine manner through myokines, which plays a positive role in maintaining overall health. Irisin, an exercise-derived myokine, has been found involved in the regulation of some cardiovascular diseases. However, the relationship between irisin and cardiovascular health is not fully elucidated and there are some divergences on the regulation of irisin by exercise. In this review, we present the current knowledge on the origin and physiology of irisin, describe the regulation of irisin by acute and chronic exercises, and discuss the divergences of the related research results. Importantly, we discuss the role of irisin as a biomarker in the diagnosis of cardiovascular diseases and describe its treatment and molecular mechanism in some cardiovascular diseases. It is expected that irisin will be used as a therapeutic agent to combat cardiovascular diseases or other disorders caused by inactivity in the near future.
Collapse
Affiliation(s)
- Chunlian Ma
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Haichao Ding
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Yuting Deng
- Graduate School, Wuhan Sports University, Wuhan, China
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaoling Xiong
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| |
Collapse
|