1
|
Wang R, Li W, Cao H, Zhang L. Decoding the Tumor-Associated Microbiota: From Origins to Nanomedicine Applications in Cancer Therapy. BIOLOGY 2025; 14:243. [PMID: 40136500 PMCID: PMC11940167 DOI: 10.3390/biology14030243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Growing evidence reveals that the tumor microbiome-comprising distinct microbial communities within neoplastic tissues-exerts a profound influence on cancer initiation, progression, and therapeutic response. These microbes actively reshape the tumor microenvironment (TME) through metabolite secretion, the modulation of immune pathways, and direct interactions with host cells, thereby affecting tumor biology and therapeutic outcomes. Despite substantial heterogeneity among cancer types, recent insights underscore the tumor microbiome's potential as both a diagnostic/prognostic biomarker and a targetable component for innovative treatments. In this review, we synthesize emerging knowledge on the mechanistic roles of tumor-associated microbiota in shaping the TME, with a focus on how these discoveries can guide novel therapeutic strategies. We further explore interdisciplinary advances, including the convergence of microbiomics and nanotechnology, to enhance drug delivery, circumvent resistance, and foster TME remodeling. By highlighting these cutting-edge developments, our review underscores the transformative potential of integrating tumor microbiome research into precision oncology and advancing more personalized cancer therapies.
Collapse
Affiliation(s)
- Ruiqi Wang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
| | - Weizheng Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
| | - Hongqian Cao
- Department of Health Inspection and Quarantine, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (R.W.); (W.L.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Ullah H, Arbab S, Chang C, Bibi S, Muhammad N, Rehman SU, Suleman, Ullah I, Hassan IU, Tian Y, Li K. Gut microbiota therapy in gastrointestinal diseases. Front Cell Dev Biol 2025; 13:1514636. [PMID: 40078367 PMCID: PMC11897527 DOI: 10.3389/fcell.2025.1514636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025] Open
Abstract
The human gut microbiota, consisting of trillions of microorganisms, plays a crucial role in gastrointestinal (GI) health and disease. Dysbiosis, an imbalance in microbial composition, has been linked to a range of GI disorders, including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, and colorectal cancer. These conditions are influenced by the interactions between the gut microbiota, the host immune system, and the gut-brain axis. Recent research has highlighted the potential for microbiome-based therapeutic strategies, such as probiotics, prebiotics, fecal microbiota transplantation (FMT), and dietary modifications, to restore microbial balance and alleviate disease symptoms. This review examines the role of gut microbiota in the pathogenesis of common gastrointestinal diseases and explores emerging therapeutic approaches aimed at modulating the microbiome. We discuss the scientific foundations of these interventions, their clinical effectiveness, and the challenges in their implementation. The review underscores the therapeutic potential of microbiome-targeted treatments as a novel approach to managing GI disorders, offering personalized and alternative options to conventional therapies. As research in this field continues to evolve, microbiome-based interventions hold promise for improving the treatment and prevention of gastrointestinal diseases.
Collapse
Affiliation(s)
- Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Safia Arbab
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chengting Chang
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Saira Bibi
- Department of Zoology Hazara University Manshera, Dhodial, Pakistan
| | - Nehaz Muhammad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Sajid Ur Rehman
- School of Public Health and Emergency Management, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Suleman
- Department of Zoology, Government Post Graduate Collage, Swabi, Pakistan
- Higher Education Department, Civil Secretariat Peshawar, Peshawar, Pakistan
| | - Irfan Ullah
- Department of Biotechnology and Genetics Engineering, Hazara University, Manshera, Pakistan
| | - Inam Ul Hassan
- Department of Microbiology, Hazara University Manshera, Manshera, Pakistan
| | - Yali Tian
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, Nursing Key Laboratory of Sichuan Province, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Lin X, Lin J, Ji L, Zhang J, Zhang Y, Hong J, Li G, Lin X. Protective effect of Haoqin Qingdan decoction on pulmonary and intestinal injury in mice with influenza viral pneumonia. Front Pharmacol 2024; 15:1449322. [PMID: 39712501 PMCID: PMC11658977 DOI: 10.3389/fphar.2024.1449322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
Background Haoqin Qingdan decoction (HQQD), composed of eleven herbs, is a traditional Chinese formula widely recognized for its efficacy in treating pulmonary inflammation induced by viral infections. Despite its extensive use, the potential pulmonary and intestinal protective effects of HQQD on influenza viral pneumonia (IVP) and the underlying molecular mechanisms remain unclear. Materials and Methods Ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was employed to identify the major chemical constituents of the prescription. Subsequently, network analysis was conducted to predict the potential therapeutic targets of HQQD in IVP. The mechanisms by which HQQD mitigates lung and intestinal damage were further elucidated by assessing NP protein expression, inflammatory factors, TLR7/MyD88/NF-κB signaling pathway mRNAs and proteins, and through intestinal flora analysis. Results The protective effects of HQQD on pulmonary and intestinal injuries induced by IVP were thoroughly investigated using comprehensive network analysis, signaling pathway validation, and gut microflora analysis. UHPLC-MS analysis identified the primary chemical constituents. Validation experiments demonstrated a significant reduction in NP protein expression in the lungs. HQQD notably alleviated immune damage in the lungs and intestines of mice by inhibiting NP protein expression and the release of inflammatory factors such as interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ); downregulating the expression levels of TLR7, MyD88, and phospho-NF-κB p65 (p-p65); lowering serum LPS levels; and reducing the relative abundance of Proteobacteria. Conclusion HQQD exerts therapeutic effects against influenza viral pneumonia through antiviral and anti-inflammatory mechanisms and by remodeling the intestinal flora. This study provides initial insights into the "gut-lung" axis mechanism of HQQD in combating respiratory influenza virus infection.
Collapse
Affiliation(s)
- Xi Lin
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jian Lin
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lichun Ji
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaona Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Chinese Medicine Guangdong Laboratory, Guangdong, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yezi Zhang
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junbin Hong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- Chinese Medicine Guangdong Laboratory, Guangdong, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, China
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingdong Lin
- The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Rafique A, Ali I, Kim S, Farooq A, Manzoor U, Moon J, Arooj M, Ahn M, Park Y, Hyun CL, Koh YS. Toll-like receptor 13-mediated signaling protects against the development of colon cancer. Int J Cancer 2024; 155:1858-1873. [PMID: 38989970 DOI: 10.1002/ijc.35089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Appropriate host-microbiota interactions are essential for maintaining intestinal homeostasis; hence, an imbalance in these interactions leads to inflammation-associated intestinal diseases. Toll-like receptors (TLRs) recognize microbial ligands and play a key role in host-microbe interactions in health and disease. TLR13 has a well-established function in enhancing host defenses against pathogenic bacteria. However, its role in maintaining intestinal homeostasis and controlling colitis-associated colon cancer (CAC) is largely unknown. This study aimed to investigate the involvement of TLR13-mediated signaling in intestinal homeostasis and colonic tumorigenesis using ex vivo cell and in vivo CAC animal model. Tlr13-deficient mice were prone to dextran sodium sulfate (DSS)-induced colitis. During the early stages of the CAC regimen (AOM/DSS-treated), Tlr13 deficiency led to severe ulcerative colitis. Moreover, Tlr13-deficient mice exhibited increased intestinal permeability, as evidenced by elevated levels of fluorescein isothiocyanate (FITC)-dextran, endotoxins, and bacterial translocation. Enhanced cell survival and proliferation of colonic intestinal cells were observed in Tlr13-deficient mice. A transcriptome analysis revealed that Tlr13 deficiency is associated with substantial changes in gene expression profile of colonic tumor tissue. Tlr13-deficient mice were more susceptible to CAC, with increased production of interleukin (IL)-6, IL-12, and TNF-α cytokines and enhanced STAT3, NF-κB, and MAPK signaling in colon tissues. These findings suggest that TLR13 plays a protective role in maintaining intestinal homeostasis and controlling CAC. Our study provides a novel perspective on intestinal health via TLR13-mediated signaling, which is crucial for deciphering the role of host-microbiota interactions in health and disease.
Collapse
Affiliation(s)
- Asma Rafique
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Irshad Ali
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Seukchan Kim
- Department of Animal Science, College of Life Science, Sangji University, Wonju, South Korea
| | - Adeel Farooq
- Research Institute for Basic Sciences, Jeju National University, Jeju, South Korea
| | - Umar Manzoor
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
| | - Jeungho Moon
- Department of Animal Science, College of Life Science, Sangji University, Wonju, South Korea
| | - Madeeha Arooj
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju, South Korea
| | - Youngjun Park
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju, South Korea
| | - Chang Lim Hyun
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| | - Young-Sang Koh
- College of Medicine, and Jeju Research Center for Natural Medicine, Jeju National University, Jeju, South Korea
| |
Collapse
|
5
|
Fu J, Li G, Li X, Song S, Cheng L, Rui B, Jiang L. Gut commensal Alistipes as a potential pathogenic factor in colorectal cancer. Discov Oncol 2024; 15:473. [PMID: 39331213 PMCID: PMC11436608 DOI: 10.1007/s12672-024-01393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
Although previous research has shown that inflammation is associated with development of colorectal cancer (CRC), questions remain about whether inflammatory factor-secreting bacteria play a crucial role in CRC development. The potential role of gut microbiota in secreting inflammatory factors involved in the carcinogenesis of CRC among Chinese patients was explored in this study. 16S rRNA sequencing was utilized to evaluate the distinct microbial characteristics between patients with CRC and colorectal adenoma. The serum levels of TNF-α, IL-6 and IL-10 were measured using Enzyme-linked immunosorbent assay (ELISA), while the expression of LRG1 and TGF-β1 in tissues was evaluated by immunohistochemistry. The correlation between gut microbiota and inflammatory factor signaling was analyzed. Compared with the adenoma group, CRC patients exhibit distinct pathologies. Moreover, elevated levels of CEA, erythrocytes and haemoglobin in the blood of CRC patients were found. In addition, CRC patients have significantly higher levels of TNF-α, IL-6, IL-10, LRG1 and TGF-β1. Spearman correlation analysis revealed that LRG1 was positively related to IL-6 and TNF-α, respectively. The correlation analysis results of TGF-β1 were consistent with the above. The abundance of Blautia and Streptococcus was lower in CRC patients, while the relative abundance of Alistipes, Peptostreptococcus and Porphyromonas was significantly elevated. Moreover, positive correlations between Alistipes and inflammatory factor signaling were also found. Our results suggest that gut commensal Alistipes is a key bacterium with pro-inflammatory properties in the CRC carcinogenesis. TNF-α and IL-6 associated with Alistipes might activate LRG1/TGF-β1 signaling which contributed to the carcinogenesis of CRC.
Collapse
Affiliation(s)
- Jingjing Fu
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
- Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei, 230041, Anhui, China
| | - Guangyao Li
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, 241000, Anhui, China
| | - Xiaoping Li
- Department of Gastroenterology Department 1, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Shasha Song
- Department of Gastroenterology, the Second Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Lijuan Cheng
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
- Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei, 230041, Anhui, China
| | - Beibei Rui
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
- Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei, 230041, Anhui, China
| | - Lei Jiang
- Department of Pharmacy, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China.
- Anhui No.2 Provincial People's Hospital Clinical College, Anhui Medical University, Hefei, 230041, Anhui, China.
| |
Collapse
|
6
|
Radford GA, Vrbanac L, de Nys RT, Worthley DL, Wright JA, Hasty J, Woods SL. Towards Understanding Tumour Colonisation by Probiotic Bacterium E. coli Nissle 1917. Cancers (Basel) 2024; 16:2971. [PMID: 39272829 PMCID: PMC11394440 DOI: 10.3390/cancers16172971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The last decade has seen a rapid increase in studies utilising a genetically modified probiotic, Escherichia coli Nissle 1917 (EcN), as a chassis for cancer treatment and detection. This approach relies on the ability of EcN to home to and selectively colonise tumours over normal tissue, a characteristic common to some bacteria that is thought to result from the low-oxygen, nutrient-rich and immune-privileged niche the tumour provides. Pre-clinical studies have used genetically modified EcN to deliver therapeutic payloads that show efficacy in reducing tumour burden as a result of high-tumour and low off-target colonisation. Most recently, the EcN chassis has been expanded into an effective tumour-detection tool. These advances provide strong justification for the movement of genetically modified EcN into clinical oncology trials. What is currently unknown in the field is a deep mechanistic understanding of how EcN distributes to and localises within tumours. This review summarises the existing EcN literature, with the inclusion of research undertaken with other tumour-homing and pathogenic bacteria, to provide insights into possible mechanisms of EcN tumour homing for future validation. Understanding exactly how and why EcN colonises neoplastic tissue will inform the design and testing of the next generation of EcN chassis strains to address biosafety and containment concerns and optimise the detection and treatment of cancer.
Collapse
Affiliation(s)
| | - Laura Vrbanac
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Rebekah T. de Nys
- Precision Cancer Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | | | - Josephine A. Wright
- Precision Cancer Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Jeff Hasty
- Synthetic Biology Institute, University of California, San Diego, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA
| | - Susan L. Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| |
Collapse
|
7
|
Rahman Z, Bhale NA, Dikundwar AG, Dandekar MP. Multistrain Probiotics with Fructooligosaccharides Improve Middle Cerebral Artery Occlusion-Driven Neurological Deficits by Revamping Microbiota-Gut-Brain Axis. Probiotics Antimicrob Proteins 2024; 16:1251-1269. [PMID: 37365420 DOI: 10.1007/s12602-023-10109-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Recent burgeoning literature unveils the importance of gut microbiota in the neuropathology of post-stroke brain injury and recovery. Indeed, ingestion of prebiotics/probiotics imparts positive effects on post-stroke brain injury, neuroinflammation, gut dysbiosis, and intestinal integrity. However, information on the disease-specific preference of selective prebiotics/probiotics/synbiotics and their underlying mechanism is yet elusive. Herein, we examined the effect of a new synbiotic formulation containing multistrain probiotics (Lactobacillus reuteri UBLRu-87, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Lactobacillus salivarius UBLS-22, and Bifidobacterium breve UBBr-01), and prebiotic fructooligosaccharides using a middle cerebral artery occlusion (MCAO) model of cerebral ischemia in female and male rats. Three weeks pre-MCAO administration of synbiotic rescinded the MCAO-induced sensorimotor and motor deficits on day 3 post-stroke in rotarod, foot-fault, adhesive removal, and paw whisker test. We also observed a decrease in infarct volume and neuronal death in the ipsilateral hemisphere of synbiotic-treated MCAO rats. The synbiotic treatment also reversed the elevated levels/mRNA expression of the glial fibrillary acidic protein (GFAP), NeuN, IL-1β, TNF-α, IL-6, matrix metalloproteinase-9, and caspase-3 and decreased levels of occludin and zonula occludens-1 in MCAO rats. 16S rRNA gene-sequencing data of intestinal contents indicated an increase in genus/species of Prevotella (Prevotella copri), Lactobacillus (Lactobacillus reuteri), Roseburia, Allobaculum, and Faecalibacterium prausnitzii, and decreased abundance of Helicobacter, Desulfovibrio, and Akkermansia (Akkermansia muciniphila) in synbiotic-treated rats compared to the MCAO surgery group. These findings confer the potential benefits of our novel synbiotic preparation for MCAO-induced neurological dysfunctions by reshaping the gut-brain-axis mediators in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Nagesh A Bhale
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amol G Dikundwar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
8
|
Cai Y, Gong D, Xiang T, Zhang X, Pan J. Markers of intestinal barrier damage in patients with chronic insomnia disorder. Front Psychiatry 2024; 15:1373462. [PMID: 38606411 PMCID: PMC11007705 DOI: 10.3389/fpsyt.2024.1373462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Objective Insomnia disorder stands out as one of the prevalent clinical sleep and psychiatric disorders. Prior research has unequivocally demonstrated variations in the diversity and abundance of gut microbiota among individuals with insomnia disorder. These alterations may play a direct or indirect role in the onset and progression of insomnia disorder by compromising the integrity of the intestinal barrier. This study aims to evaluate the impairment of the intestinal barrier in individuals with insomnia disorder by scrutinizing the serum functionality of this barrier. Materials and methods 45 patients with chronic insomnia disorder and 30 matched healthy volunteers were meticulously selected based on inclusion criteria. ELISA technology was employed to measure serum levels of diamine oxidase (DAO), D-lactic acid (D-LA), intestinal fatty acid binding protein (I-FABP), and endothelin (ET). Spearman correlation analysis was used to explore the relationship between intestinal mucosal markers and clinical characteristics. Data were analyzed using SPSS 26.0. Results Compared to the healthy control group, the insomnia disorder group exhibited significantly elevated scores on subjective mood and sleep scales (GAD-7, PHQ-9, HAMA, HAMD, PSQI, and ISI) (P < 0.05). Overnight PSG indicated a notable increase in bed time, total wake time, sleep onset latency, and wake after sleep onset in individuals with insomnia disorder. Additionally, there was a decrease in sleep efficiency and alterations in sleep structure (increased proportion of N1 and N3 stages, prolonged N1 stage) (P < 0.05). The chronic insomnia disorder group displayed significantly reduced concentrations of serum DAO, D-LA, I-FABP, and ET (P < 0.05). Furthermore, significant positive correlations were identified between intestinal epithelial barrier markers and sleep efficiency, while negative correlations were found with wake after sleep onset, total wake time, PSQI, HAMA, and HAMD. Additionally, D-LA levels were significantly positively correlated with ET concentrations. Conclusion Individuals with chronic insomnia disorder manifest disruptions in sleep structure, heightened susceptibility to anxiety and depressive moods, and impaired intestinal barrier function. These findings suggest that the occurrence and development of insomnia disorder may be linked to the impairment of the intestinal barrier.
Collapse
Affiliation(s)
- Yixian Cai
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Di Gong
- Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Ting Xiang
- Department of Sleep Disorders, Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotao Zhang
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Bu F, Tu Y, Wan Z, Tu S. Herbal medicine and its impact on the gut microbiota in colorectal cancer. Front Cell Infect Microbiol 2023; 13:1096008. [PMID: 37469598 PMCID: PMC10352802 DOI: 10.3389/fcimb.2023.1096008] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/13/2023] [Indexed: 07/21/2023] Open
Abstract
It is well-established that there are trillions of gut microbiota (GM) in the human gut. GM and its metabolites can reportedly cause cancer by causing abnormal immune responses. With the development of sequencing technology and the application of germ-free models in recent years, significant inroads have been achieved in research on GM and microbiota-related metabolites. Accordingly, the role and mechanism of GM in colorectal cancer (CRC) development have been gradually revealed. Traditional Chinese medicine (TCM) represents an important source of natural medicines and herbal products, with huge potential as anti-CRC agents. The potential application of TCM to target gut microbes for the treatment of colorectal cancer represents an exciting area of investigation.
Collapse
Affiliation(s)
- Fan Bu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yifeng Tu
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ziang Wan
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shiliang Tu
- Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Liu J, Huang X, Chen C, Wang Z, Huang Z, Qin M, He F, Tang B, Long C, Hu H, Pan S, Wu J, Tang W. Identification of colorectal cancer progression-associated intestinal microbiome and predictive signature construction. J Transl Med 2023; 21:373. [PMID: 37291572 PMCID: PMC10249256 DOI: 10.1186/s12967-023-04119-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/09/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVE The relationship between intestinal microbiome and colorectal cancer (CRC) progression is unclear. This study aims to identify the intestinal microbiome associated with CRC progression and construct predictive labels to support the accurate assessment and treatment of CRC. METHOD The 192 patients included in the study were divided into stage I-II and stage III-IV CRC patients according to the pathological stages, and preoperative stools were collected from both groups for 16S rDNA sequencing of the intestinal microbiota. Pearson correlation and Spearman correlation coefficient analysis were used to analyze the differential intestinal microbiome and the correlation with tumor microenvironment and to predict the functional pathway. XGBoost model (XGB) and Random Forest model (RF) were used to construct the microbiome-based signature. The total RNA extraction from 17 CRC tumor simples was used for transcriptome sequencing. RESULT The Simpson index of intestinal microbiome in stage III-IV CRC were significantly lower than those in stage I-II CRC. Proteus, Parabacteroides, Alistipes and Ruminococcus etc. are significantly enriched genus in feces of CRC patients with stage III-IV. ko00514: Other types of O - glycan biosynthesis pathway is relevant with CRC progression. Alistipes indistinctus was positively correlated with mast cells, immune activators IL-6 and IL6R, and GOBP_PROTEIN_FOLDING_IN_ENDOPLASMIC_RETICULUM dominantly. The Random Forest (RF) model and eXtreme Gradient Boosting (XGBoost) model constructed with 42 CRC progression-associated differential bacteria were effective in distinguishing CRC patients between stage I-II and stage III-IV. CONCLUSIONS The abundance and diversity of intestinal microbiome may increase gradually with the occurrence and progression of CRC. Elevated fetal abundance of Proteus, Parabacteroides, Alistipes and Ruminococcus may contribute to CRC progression. Enhanced synthesis of O - glycans may result in CRC progression. Alistipes indistinctus may play a facilitated role in mast cell maturation by boosting IL-6 production. Alistipes indistinctus may work in the correct folding of endoplasmic reticulum proteins in CRC, reducing ER stress and prompting the survival and deterioration of CRC, which may owe to the enhanced PERK expression and activation of downstream UPR by Alistipes indistinctus. The CRC progression-associated differential intestinal microbiome identified in our study can be served as potential microbial markers for CRC staging prediction.
Collapse
Affiliation(s)
- Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chuanbin Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zhen Wang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Zigui Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Mingjian Qin
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Fuhai He
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Binzhe Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China
| | - Hong Hu
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China
| | - Shuibo Pan
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China
| | - Junduan Wu
- School of Public Health, Guangxi Medical University, Nanning, The People's Republic of China.
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, The People's Republic of China.
| |
Collapse
|
11
|
Elevated serum levels of diamine oxidase, D-lactate and lipopolysaccharides are associated with metabolic-associated fatty liver disease. Eur J Gastroenterol Hepatol 2023; 35:94-101. [PMID: 36468573 PMCID: PMC9719837 DOI: 10.1097/meg.0000000000002456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Studies have suggested an association between metabolic-associated fatty liver disease (MAFLD) and intestinal barrier function. The present study aims to investigate the association between MAFLD and intestinal barrier impairment in humans and identify potential risk factors for MAFLD. METHODS A total of 491 patients were retrospectively enrolled in this study. The serum levels of diamine oxidase, D-lactate and lipopolysaccharide were measured to evaluate intestinal barrier integrity in patients with and without MAFLD. Binary logistic regression and correlational analyses were conducted to verify the association between MAFLD and serum levels of intestinal barrier biomarkers. RESULTS We enrolled 294 patients with MAFLD and 197 patients without MAFLD in this study. Patients with MAFLD had higher serum levels of diamine oxidase, D-lactate and lipopolysaccharide (P < 0.001) than those without MAFLD. Multivariate logistic regression analyses showed that BMI [odds ratio (OR) 1.324; P < 0.001], triglycerides (OR 2.649; P = 0.002), nonesterified fatty acids (OR 1.002; P = 0.011), diamine oxidase (OR 1.149; P = 0.011) and D-lactate (OR 1.221; P < 0.001) were independent risk factors for MAFLD. Additionally, serum levels of diamine oxidase and D-lactate increase as liver steatosis became more severe. MAFLD patients with ≥2 metabolic abnormalities had higher serum levels of lipopolysaccharide (P = 0.034). CONCLUSIONS MAFLD is associated with intestinal barrier impairment. Diamine oxidase and D-lactate are potential predictors of MAFLD, and their serum levels are related to liver steatosis. Intestinal barrier impairment is related to metabolic disorders in patients with MAFLD.
Collapse
|
12
|
Wu JJ, Zhu S, Tang YF, Gu F, Liu JX, Sun HZ. Microbiota-host crosstalk in the newborn and adult rumen at single-cell resolution. BMC Biol 2022; 20:280. [PMID: 36514051 PMCID: PMC9749198 DOI: 10.1186/s12915-022-01490-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The rumen is the hallmark organ of ruminants, playing a vital role in their nutrition and providing products for humans. In newborn suckling ruminants milk bypasses the rumen, while in adults this first chamber of the forestomach has developed to become the principal site of microbial fermentation of plant fibers. With the advent of single-cell transcriptomics, it is now possible to study the underlying cell composition of rumen tissues and investigate how this relates the development of mutualistic symbiosis between the rumen and its epithelium-attached microbes. RESULTS We constructed a comprehensive cell landscape of the rumen epithelium, based on single-cell RNA sequencing of 49,689 high-quality single cells from newborn and adult rumen tissues. Our single-cell analysis identified six immune cell subtypes and seventeen non-immune cell subtypes of the rumen. On performing cross-species analysis of orthologous genes expressed in epithelial cells of cattle rumen and the human stomach and skin, we observed that the species difference overrides any cross-species cell-type similarity. Comparing adult with newborn cattle samples, we found fewer epithelial cell subtypes and more abundant immune cells, dominated by T helper type 17 cells in the rumen tissue of adult cattle. In newborns, there were more fibroblasts and myofibroblasts, an IGFBP3+ epithelial cell subtype not seen in adults, while dendritic cells were the most prevalent immune cell subtype. Metabolism-related functions and the oxidation-reduction process were significantly upregulated in adult rumen epithelial cells. Using 16S rDNA sequencing, fluorescence in situ hybridization, and absolute quantitative real-time PCR, we found that epithelial Desulfovibrio was significantly enriched in the adult cattle. Integrating the microbiome and metabolome analysis of rumen tissues revealed a high co-occurrence probability of Desulfovibrio with pyridoxal in the adult cattle compared with newborn ones while the scRNA-seq data indicated a stronger ability of pyroxidal binding in the adult rumen epithelial cell subtypes. These findings indicate that Desulfovibrio and pyridoxal likely play important roles in maintaining redox balance in the adult rumen. CONCLUSIONS Our integrated multi-omics analysis provides novel insights into rumen development and function and may facilitate the future precision improvement of rumen function and milk/meat production in cattle.
Collapse
Affiliation(s)
- Jia-Jin Wu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Fan Tang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Fengfei Gu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Hou X, Zheng Z, Wei J, Zhao L. Effects of gut microbiota on immune responses and immunotherapy in colorectal cancer. Front Immunol 2022; 13:1030745. [PMID: 36426359 PMCID: PMC9681148 DOI: 10.3389/fimmu.2022.1030745] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 08/13/2023] Open
Abstract
Accumulating evidence suggests that gut microbial dysbiosis is implicated in colorectal cancer (CRC) initiation and progression through interaction with host immune system. Given the intimate relationship between the gut microbiota and the antitumor immune responses, the microbiota has proven to be effective targets in modulating immunotherapy responses of preclinical CRC models. However, the proposed putative mechanisms of how these bacteria affect immune responses and immunotherapy efficacy remains obscure. In this review, we summarize recent findings of clinical gut microbial dysbiosis in CRC patients, the reciprocal interactions between gut microbiota and the innate and/or the adaptive immune system, as well as the effect of gut microbiota on immunotherapy response in CRC. Increased understanding of the gut microbiota-immune system interactions will benefit the rational application of microbiota to the clinical promising biomarker or therapeutic strategy as a cancer immunotherapy adjuvant.
Collapse
Affiliation(s)
| | | | | | - Ling Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Effects of the Replacement of Dietary Fish Meal with Defatted Yellow Mealworm ( Tenebrio molitor) on Juvenile Large Yellow Croakers ( Larimichthys crocea) Growth and Gut Health. Animals (Basel) 2022; 12:ani12192659. [PMID: 36230400 PMCID: PMC9559568 DOI: 10.3390/ani12192659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Fish meal is the most common protein source in aquatic feeds. The decline of fishery resources and the increased demand have led to a shortage of fish meal resources in recent years. To ensure the sustainable development of the aquaculture industry, it is crucial to find a low-price, high-quality protein source to replace fish meal. In this study, substituting fish meal of large yellow croakers (Larimichthys crocea) diets with defatted yellow mealworm (Tenebrio molitor) test was carried out. The results showed that the dietary fish meal could be replaced by 15% defatted yellow mealworm in feeds containing 40% fish meal without adversely affecting the growth of large yellow croakers, and to some extent improving the immunity of the organism. Substitution levels of 15% or more are beneficial for digestive enzymes. In addition, the moderate addition of defatted yellow mealworm improves intestinal health by improving the structure and microbial composition of the gut. Abstract This study was conducted to investigate the effects of Tenebrio molitor meal (TM) replacement for fish meal (FM) on growth performance, humoral immunity, and intestinal health of juvenile large yellow croakers (Larimichthys crocea). Four experimental diets were formulated by replacing FM with TM at different levels—0% (TM0), 15% (TM15), 30% (TM30), and 45% (TM45). Triplicate groups of juveniles (initial weight = 11.80 ± 0.02 g) were fed the test diets to apparent satiation two times daily for eight weeks. There was no significant difference in final body weight (FBW) and weight gain rate (WG) among TM0, TM15, and TM30, while TM45 feeding significantly reduced the FBW and WG. Compared with TM0, AKP activity in serum was significantly decreased in TM45, while the TM15 group remarkably increased LZM activity. TM30 showed significantly higher serum C3 levels compared to the TM0 group, while the TM addition groups decreased the C4 levels significantly in the serum. In terms of intestinal histology, the addition of TM increased the height and thickness of the intestinal villus and also increased the thickness of the intestinal muscles significantly. The addition of TM significantly reduced the serum DAO and D-lactate concentrations. The results of 16S rRNA gene sequencing showed that the addition of TM significantly enhanced the relative abundance of Bacilli and Lactobacillus and contributed to the decrease in the relative abundance of Plesiomonas. In addition, the TM30 and TM45 groups significantly reduced the abundance of Peptostreptococcaceae. Overall, our results indicated that TM could be a viable alternative protein source, 6.7% TM supplantation (replacing 15% FM) in large yellow croaker feed improved humoral immunity and intestinal health with no adverse effects on growth. Furthermore, the replacement of FM with 30% and 45% TM adversely affects growth and humoral immunity.
Collapse
|
15
|
The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci 2022; 23:ijms23179664. [PMID: 36077063 PMCID: PMC9456244 DOI: 10.3390/ijms23179664] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Early evidence suggests a strong association of microorganisms with several human cancers, and great efforts have been made to understand the pathophysiology underlying microbial carcinogenesis. Bacterial dysbiosis causes epithelial barrier failure, immune dysregulation and/or genotoxicity and, consequently, creates a tumor-permissive microenvironment. The majority of the bacteria in our body reside in the gastrointestinal tract, known as gut microbiota, which represents a complex and delicate ecosystem. Gut microbes can reach the pancreas, stomach and colon via the bloodstream. Oral bacterial translocations can also occur. In the stomach, pancreas and colon, low microbial diversity is associated with cancer, in particular with a bad prognosis. The urogenital tract also harbors unique microbiota, distinct from the gut microbiota, which might have a role in the urinary and female/male reproductive cancers’ pathogenesis. In healthy women, the majority of bacteria reside in the vagina and cervix and unlike other mucosal sites, the vaginal microbiota exhibits low microbial diversity. Genital dysbiosis might have an active role in the development and/or progression of gynecological malignancies through mechanisms including modulation of oestrogen metabolism. Urinary dysbiosis may influence the pathogenesis of bladder cancer and prostate cancer in males. Modulation of the microbiome via pre, pro and postbiotics, fecal or vaginal microbiota transplantation and engineering bacteria might prove useful in improving cancer treatment response and quality of life. Elucidating the complex host-microbiome interactions will result in prevention and therapeutic efficacy interventions.
Collapse
|
16
|
Zhuang YP, Zhang YT, Zhang RX, Zhong HJ, He XX. The Gut-Liver Axis in Nonalcoholic Fatty Liver Disease: Association of Intestinal Permeability with Disease Severity and Treatment Outcomes. Int J Clin Pract 2022; 2022:4797453. [PMID: 35685554 PMCID: PMC9159210 DOI: 10.1155/2022/4797453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To investigate the association between intestinal permeability and severity of nonalcoholic fatty liver disease (NAFLD) and the value of intestinal permeability in predicting the efficacy of metabolic therapy for NAFLD. METHODS Disease severity was compared between patients with normal and elevated intestinal permeability; correlations between D-lactate and different NAFLD parameters were analyzed; and the effects of metabolic therapy on NAFLD patients with normal and elevated intestinal permeability were evaluated. RESULTS A total of 190 patients with NAFLD were enrolled. NAFLD patients with elevated intestinal permeability had significantly higher levels of liver test parameters, liver ultrasonographic fat attenuation parameter, triglyceride, homeostasis model assessment of insulin resistance value, and diamine oxidase (all P˂0.05) than NAFLD patients with normal intestinal permeability. Furthermore, serum D-lactate levels were positively correlated with alanine transaminase, aspartate transaminase, gamma-glutamyl transpeptidase, total bilirubin, indirect bilirubin, fat attenuation parameter, triglyceride, and diamine oxidase (all P ˂ 0.05). Moreover, NAFLD patients with elevated intestinal permeability showed less improvement in TG levels (P = 0.014) after metabolic therapy. CONCLUSION Intestinal permeability correlates with the disease severity in patients with NAFLD. Moreover, intestinal permeability may have value for predicting the efficacy of metabolic therapy for NAFLD patients.
Collapse
Affiliation(s)
- Yu-Pei Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Yi-Ting Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Ruo-Xin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| | - Hao-Jie Zhong
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
- South China University of Technology, Guangzhou, China
| | - Xing-Xiang He
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Research Center for Engineering Techniques of Microbiota-Targeted Therapies of Guangdong Province, Guangzhou, China
| |
Collapse
|
17
|
Sun Q, Wu J, Zhu G, Li T, Zhu X, Ni B, Xu B, Ma X, Li J. Lactate-related metabolic reprogramming and immune regulation in colorectal cancer. Front Endocrinol (Lausanne) 2022; 13:1089918. [PMID: 36778600 PMCID: PMC9909490 DOI: 10.3389/fendo.2022.1089918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023] Open
Abstract
Changes in cellular metabolism involving fuel sources are well-known mechanisms of cancer cell differentiation in the context of carcinogenesis. Metabolic reprogramming is regulated by oncogenic signaling and transcriptional networks and has been identified as an essential component of malignant transformation. Hypoxic and acidified tumor microenvironment contributes mainly to the production of glycolytic products known as lactate. Mounting evidence suggests that lactate in the tumor microenvironment of colorectal cancer(CRC) contributes to cancer therapeutic resistance and metastasis. The contents related to the regulatory effects of lactate on metabolism, immune response, and intercellular communication in the tumor microenvironment of CRC are also constantly updated. Here we summarize the latest studies about the pleiotropic effects of lactate in CRC and the clinical value of targeting lactate metabolism as treatment. Different effects of lactate on various immune cell types, microenvironment characteristics, and pathophysiological processes have also emerged. Potential specific therapeutic targeting of CRC lactate metabolism is also discussed. With increased knowledge, effective druggable targets might be identified, with the aim of improving treatment outcomes by reducing chemoresistance.
Collapse
Affiliation(s)
- Qianhui Sun
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyuan Wu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Guanghui Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Tingting Li
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaoyu Zhu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Ni
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bowen Xu
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xinyi Ma
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Oncology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
18
|
A Comprehensive Evaluation of Enterobacteriaceae Primer Sets for Analysis of Host-Associated Microbiota. Pathogens 2021; 11:pathogens11010017. [PMID: 35055964 PMCID: PMC8780275 DOI: 10.3390/pathogens11010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Enterobacteriaceae is one of the most important bacterial groups within the Proteobacteria phylum. This bacterial group includes pathogens, commensal and beneficial populations. Numerous 16S rRNA gene PCR-based assays have been designed to analyze Enterobacteriaceae diversity and relative abundance, and, to the best of our knowledge, 16 primer pairs have been validated, published and used since 2003. Nonetheless, a comprehensive performance analysis of these primer sets has not yet been carried out. This information is of particular importance due to the recent taxonomic restructuration of Enterobacteriaceae into seven bacterial families. To overcome this lack of information, the identified collection of primer pairs (n = 16) was subjected to primer performance analysis using multiple bioinformatics tools. Herein it was revealed that, based on specificity and coverage of the 16S rRNA gene, these 16 primer sets could be divided into different categories: Enterobacterales-, multi-family-, multi-genus- and Enterobacteriaceae-specific primers. These results highlight the impact of taxonomy changes on performance of molecular assays and data interpretation. Moreover, they underline the urgent need to revise and update the molecular tools used for molecular microbial analyses.
Collapse
|
19
|
Mutignani M, Penagini R, Gargari G, Guglielmetti S, Cintolo M, Airoldi A, Leone P, Carnevali P, Ciafardini C, Petrocelli G, Mascaretti F, Oreggia B, Dioscoridi L, Cavalcoli F, Primignani M, Pugliese F, Bertuccio P, Soru P, Magistro C, Ferrari G, Speciani MC, Bonato G, Bini M, Cantù P, Caprioli F, Vangeli M, Forti E, Mazza S, Tosetti G, Bonzi R, Vecchi M, La Vecchia C, Rossi M. Blood Bacterial DNA Load and Profiling Differ in Colorectal Cancer Patients Compared to Tumor-Free Controls. Cancers (Basel) 2021; 13:6363. [PMID: 34944982 PMCID: PMC8699505 DOI: 10.3390/cancers13246363] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Inflammation and immunity are linked to intestinal adenoma (IA) and colorectal cancer (CRC) development. The gut microbiota is associated with CRC risk. Epithelial barrier dysfunction can occur, possibly leading to increased intestinal permeability in CRC patients. We conducted a case-control study including 100 incident histologically confirmed CRC cases, and 100 IA and 100 healthy subjects, matched to cases by center, sex and age. We performed 16S rRNA gene analysis of blood and applied conditional logistic regression. Further analyses were based on negative binomial distribution normalization and Random Forest algorithm. We found an overrepresentation of blood 16S rRNA gene copies in colon cancer as compared to tumor-free controls. For high levels of gene copies, community diversity was higher in colon cancer cases than controls. Bacterial taxa and operational taxonomic unit abundances were different between groups and were able to predict CRC with an accuracy of 0.70. Our data support the hypothesis of a higher passage of bacteria from gastrointestinal tract to bloodstream in colon cancer. This result can be applied on non-invasive diagnostic tests for colon cancer control.
Collapse
Affiliation(s)
- Massimiliano Mutignani
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (M.M.); (M.C.); (G.P.); (L.D.); (F.P.); (G.B.); (M.B.); (E.F.)
| | - Roberto Penagini
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.P.); (C.C.); (F.M.); (P.C.); (F.C.); (S.M.); (M.V.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (G.G.); (S.G.)
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, 20133 Milan, Italy; (G.G.); (S.G.)
| | - Marcello Cintolo
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (M.M.); (M.C.); (G.P.); (L.D.); (F.P.); (G.B.); (M.B.); (E.F.)
| | - Aldo Airoldi
- Hepatology and Gastroenterology Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (A.A.); (M.V.)
| | - Pierfrancesco Leone
- General Surgery Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.L.); (B.O.)
| | - Pietro Carnevali
- Division of Minimally-Invasive Surgical Oncology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (P.C.); (C.M.); (G.F.)
| | - Clorinda Ciafardini
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.P.); (C.C.); (F.M.); (P.C.); (F.C.); (S.M.); (M.V.)
| | - Giulio Petrocelli
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (M.M.); (M.C.); (G.P.); (L.D.); (F.P.); (G.B.); (M.B.); (E.F.)
- Associazione Nazionale Operatori Tecniche Endoscopiche (ANOTE), 80061 Massa Lubrense, Italy
| | - Federica Mascaretti
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.P.); (C.C.); (F.M.); (P.C.); (F.C.); (S.M.); (M.V.)
- Department of Clinical Science and Community Health, University of Milan, 20133 Milan, Italy; (P.B.); (M.C.S.); (R.B.); (C.L.V.)
| | - Barbara Oreggia
- General Surgery Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.L.); (B.O.)
| | - Lorenzo Dioscoridi
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (M.M.); (M.C.); (G.P.); (L.D.); (F.P.); (G.B.); (M.B.); (E.F.)
| | - Federica Cavalcoli
- Diagnostic and Therapeutic Endoscopy Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy;
| | - Massimo Primignani
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (G.T.)
| | - Francesco Pugliese
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (M.M.); (M.C.); (G.P.); (L.D.); (F.P.); (G.B.); (M.B.); (E.F.)
| | - Paola Bertuccio
- Department of Clinical Science and Community Health, University of Milan, 20133 Milan, Italy; (P.B.); (M.C.S.); (R.B.); (C.L.V.)
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Pietro Soru
- Division of Endoscopy, IRCCS Istituto Europeo di Oncologia, 20141 Milan, Italy;
| | - Carmelo Magistro
- Division of Minimally-Invasive Surgical Oncology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (P.C.); (C.M.); (G.F.)
| | - Giovanni Ferrari
- Division of Minimally-Invasive Surgical Oncology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (P.C.); (C.M.); (G.F.)
| | - Michela C. Speciani
- Department of Clinical Science and Community Health, University of Milan, 20133 Milan, Italy; (P.B.); (M.C.S.); (R.B.); (C.L.V.)
| | - Giulia Bonato
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (M.M.); (M.C.); (G.P.); (L.D.); (F.P.); (G.B.); (M.B.); (E.F.)
| | - Marta Bini
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (M.M.); (M.C.); (G.P.); (L.D.); (F.P.); (G.B.); (M.B.); (E.F.)
| | - Paolo Cantù
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.P.); (C.C.); (F.M.); (P.C.); (F.C.); (S.M.); (M.V.)
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.P.); (C.C.); (F.M.); (P.C.); (F.C.); (S.M.); (M.V.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Marcello Vangeli
- Hepatology and Gastroenterology Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (A.A.); (M.V.)
| | - Edoardo Forti
- Digestive and Interventional Endoscopy Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (M.M.); (M.C.); (G.P.); (L.D.); (F.P.); (G.B.); (M.B.); (E.F.)
| | - Stefano Mazza
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.P.); (C.C.); (F.M.); (P.C.); (F.C.); (S.M.); (M.V.)
- Gastroenterology and Digestive Endoscopy Unit, ASST Cremona, Cremona 26100, Italy
| | - Giulia Tosetti
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.P.); (G.T.)
| | - Rossella Bonzi
- Department of Clinical Science and Community Health, University of Milan, 20133 Milan, Italy; (P.B.); (M.C.S.); (R.B.); (C.L.V.)
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (R.P.); (C.C.); (F.M.); (P.C.); (F.C.); (S.M.); (M.V.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Carlo La Vecchia
- Department of Clinical Science and Community Health, University of Milan, 20133 Milan, Italy; (P.B.); (M.C.S.); (R.B.); (C.L.V.)
| | - Marta Rossi
- Department of Clinical Science and Community Health, University of Milan, 20133 Milan, Italy; (P.B.); (M.C.S.); (R.B.); (C.L.V.)
| |
Collapse
|
20
|
Amatya SB, Salmi S, Kainulainen V, Karihtala P, Reunanen J. Bacterial Extracellular Vesicles in Gastrointestinal Tract Cancer: An Unexplored Territory. Cancers (Basel) 2021; 13:5450. [PMID: 34771614 PMCID: PMC8582403 DOI: 10.3390/cancers13215450] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Bacterial extracellular vesicles are membrane-enclosed, lipid bi-layer nanostructures that carry different classes of biomolecules, such as nucleic acids, lipids, proteins, and diverse types of small molecular metabolites, as their cargo. Almost all of the bacteria in the gut secrete extracellular vesicles to assist them in competition, survival, material exchange, host immune modulation, infection, and invasion. The role of gut microbiota in the development, progression, and pathogenesis of gastrointestinal tract (GIT) cancer has been well documented. However, the possible involvement of bacterial extracellular vesicles (bEVs) in GIT cancer pathophysiology has not been given due attention. Studies have illustrated the ability of bEVs to cross physiological barriers, selectively accumulate near tumor cells, and possibly alter the tumor microenvironment (TME). A systematic search of original published works related to bacterial extracellular vesicles on gastrointestinal cancer was performed for this review. The current systemic review outlines the possible impact of gut microbiota derived bEVs in GIT cancer in light of present-day understanding. The necessity of using advanced sequencing technologies, such as genetic, proteomic, and metabolomic investigation methodologies, to facilitate an understanding of the interrelationship between cancer-associated bacterial vesicles and gastrointestinal cancer is also emphasized. We further discuss the clinical and pharmaceutical potential of bEVs, along with future efforts needed to understand the mechanism of interaction of bEVs in GIT cancer pathogenesis.
Collapse
Affiliation(s)
- Sajeen Bahadur Amatya
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Sonja Salmi
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| | - Veera Kainulainen
- Human Microbiome Research Program Unit, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland;
| | - Peeter Karihtala
- Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, 00290 Helsinki, Finland;
| | - Justus Reunanen
- Biocenter Oulu & Cancer and Translational Medicine Research Unit, University of Oulu, 90014 Oulu, Finland; (S.B.A.); (S.S.)
| |
Collapse
|
21
|
Roberto M, Carconi C, Cerreti M, Schipilliti FM, Botticelli A, Mazzuca F, Marchetti P. The Challenge of ICIs Resistance in Solid Tumours: Could Microbiota and Its Diversity Be Our Secret Weapon? Front Immunol 2021; 12:704942. [PMID: 34489956 PMCID: PMC8417795 DOI: 10.3389/fimmu.2021.704942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
The human microbiota and its functional interaction with the human body were recently returned to the spotlight of the scientific community. In light of the extensive implementation of newer and increasingly precise genome sequencing technologies, bioinformatics, and culturomic, we now have an extraordinary ability to study the microorganisms that live within the human body. Most of the recent studies only focused on the interaction between the intestinal microbiota and one other factor. Considering the complexity of gut microbiota and its role in the pathogenesis of numerous cancers, our aim was to investigate how microbiota is affected by intestinal microenvironment and how microenvironment alterations may influence the response to immune checkpoint inhibitors (ICIs). In this context, we show how diet is emerging as a fundamental determinant of microbiota’s community structure and function. Particularly, we describe the role of certain dietary factors, as well as the use of probiotics, prebiotics, postbiotics, and antibiotics in modifying the human microbiota. The modulation of gut microbiota may be a secret weapon to potentiate the efficacy of immunotherapies. In addition, this review sheds new light on the possibility of administering fecal microbiota transplantation to modulate the gut microbiota in cancer treatment. These concepts and how these findings can be translated into the therapeutic response to cancer immunotherapies will be presented.
Collapse
Affiliation(s)
- Michela Roberto
- Department of Clinical and Molecular Medicine, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy.,Medical Oncology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Catia Carconi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Micaela Cerreti
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Francesca Matilde Schipilliti
- Department of Clinical and Molecular Medicine, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy.,Medical Oncology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Federica Mazzuca
- Department of Clinical and Molecular Medicine, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sant' Andrea University Hospital, Sapienza University of Rome, Rome, Italy.,Medical Oncology Unit, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Wu S, Liu X, Jiang R, Yan X, Ling Z. Roles and Mechanisms of Gut Microbiota in Patients With Alzheimer's Disease. Front Aging Neurosci 2021; 13:650047. [PMID: 34122039 PMCID: PMC8193064 DOI: 10.3389/fnagi.2021.650047] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related progressive neurodegenerative disease, characterized by a decline in cognitive function and neuronal loss, and is caused by several factors. Numerous clinical and experimental studies have suggested the involvement of gut microbiota dysbiosis in patients with AD. The altered gut microbiota can influence brain function and behavior through the microbiota-gut-brain axis via various pathways such as increased amyloid-β deposits and tau phosphorylation, neuroinflammation, metabolic dysfunctions, and chronic oxidative stress. With no current effective therapy to cure AD, gut microbiota modulation may be a promising therapeutic option to prevent or delay the onset of AD or counteract its progression. Our present review summarizes the alterations in the gut microbiota in patients with AD, the pathogenetic roles and mechanisms of gut microbiota in AD, and gut microbiota-targeted therapies for AD. Understanding the roles and mechanisms between gut microbiota and AD will help decipher the pathogenesis of AD from novel perspectives and shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruilai Jiang
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|
23
|
Research progress on gut microbiota in patients with gastric cancer, esophageal cancer, and small intestine cancer. Appl Microbiol Biotechnol 2021; 105:4415-4425. [PMID: 34037843 DOI: 10.1007/s00253-021-11358-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
The pathogenesis of gut microbiota in humans can be indicated due to the wide application of techniques, such as 16S rRNA sequencing. Presently, several studies have found a significant difference in fecal flora between normal individuals and patients with gastric cancer. Although clinical research on the feedback mechanism of gastric flora and gut microbiota is lacking, clarifying the relationship between gut microbiota and the characteristics of cancer is significant for the early diagnosis of gastric cancer. This study was conducted to review the results of several studies in the past 5 years and analyze the intestinal bacteria in patients with gastric cancer and compare them with those in patients with esophageal and small intestine cancers. It was found that the gut microbiota in patients with gastric cancer was similar to that in patients with esophageal cancer. However, making an analysis and comparing the gut microbiota in patients with small intestine and gastric cancers was impossible due to the low incidence of small intestinal cancer. Our review summarized the research progress on using the gut microbiota for early screening for gastric cancer, and the results of this study will provide a further direction in this field. KEY POINTS: • We reviewed several relative mechanisms of the gut microbiota related to gastric cancer. • The gut microbiota in gastric, esophageal, and small intestine cancers are significantly different in types and quantity, and we have provided some tips for further research. • A prospective review of sequencing methods and study results on the gut microbiota in gastric, esophageal, and small intestine cancers was described.
Collapse
|
24
|
Genua F, Raghunathan V, Jenab M, Gallagher WM, Hughes DJ. The Role of Gut Barrier Dysfunction and Microbiome Dysbiosis in Colorectal Cancer Development. Front Oncol 2021; 11:626349. [PMID: 33937029 PMCID: PMC8082020 DOI: 10.3389/fonc.2021.626349] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence indicates that breakdown of the+ protective mucosal barrier of the gut plays a role in colorectal cancer (CRC) development. Inflammation and oxidative stress in the colonic epithelium are thought to be involved in colorectal carcinogenesis and the breakdown of the integrity of the colonic barrier may increase the exposure of colonocytes to toxins from the colonic milieu, enhancing inflammatory processes and release of Reactive Oxygen Species (ROS). The aetiological importance of the gut microbiome and its composition - influenced by consumption of processed meats, red meats and alcoholic drinks, smoking, physical inactivity, obesity - in CRC development is also increasingly being recognized. The gut microbiome has diverse roles, such as in nutrient metabolism and immune modulation. However, microbial encroachment towards the colonic epithelium may promote inflammation and oxidative stress and even translocation of species across the colonic lumen. Recent research suggests that factors that modify the above mechanisms, e.g., obesity and Western diet, also alter gut microbiota, degrade the integrity of the gut protective barrier, and expose colonocytes to toxins. However, it remains unclear how obesity, lifestyle and metabolic factors contribute to gut-barrier integrity, leading to metabolic disturbance, colonocyte damage, and potentially to CRC development. This review will discuss the interactive roles of gut-barrier dysfunction, microbiome dysbiosis, and exposure to endogenous toxins as another mechanism in CRC development, and how biomarkers of colonic mucosal barrier function may provide avenues for disease, prevention and detection.
Collapse
Affiliation(s)
- Flavia Genua
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - Vedhika Raghunathan
- College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Mazda Jenab
- Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France
| | - William M. Gallagher
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| | - David J. Hughes
- Cancer Biology and Therapeutics Laboratory, Conway Institute, School of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Siraj YA, Biadgelign MG, Yassin MO, Chekol YZ. Mucosa-associated cultivable aerobic gut bacterial microbiota among colorectal cancer patients attending at the referral hospitals of Amhara Regional State, Ethiopia. Gut Pathog 2021; 13:19. [PMID: 33752753 PMCID: PMC7983201 DOI: 10.1186/s13099-021-00415-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the top ten causes of cancer deaths in the world. Despite an increased prevalence of colorectal cancer has been documented from developing countries, there is no any report regarding gut microbiota among colorectal cancer patients in Ethiopia. Therefore, the current study evaluated cultivable aerobic gut bacterial distributions among malignant and its adjacent normal biopsies of CRC patients. Methods CRC patients who were under colorectal cancer resection surgery during April 2017 to February 2018 at Felege Hiwot Referral and University of Gondar Teaching Hospitals enrolled in the study. Biopsy specimens were taken from malignant and its adjacent normal-appearing tissues. Bacterial cultivation, quantification and characterization of saline washed biopsies were performed under aerobic and candle jar conditions. Differences in bacterial microbiota compositions between malignant and normal tissue biopsies were evaluated and analyzed using Microsoft excel 2010 and GraphPad Prism5 statistical software. Results Fifteen CRC patients were participated with a mean age of 53.8 ± 10.8 years old and majorities (73.3 %) of patients were in between the age groups of 40 and 60 years old. The mean ± SD bacterial microbiota of malignant biopsies (3.2 × 105 ± 1.6 × 105 CFU/ml) was significantly fewer than that of adjacent normal tissue biopsies (4.0 × 105 ± 2.2 × 105 CFU/ml). This dysbacteriosis is positively correlated with the occurrence of CRC (p = 0.019). Proteobacteria (55.6 %), Firmicutes (33.3 %) and Fusobacteria (11.1 %) were the most frequently isolated phyla from non-malignant biopsies while only Proteobacteria (58.8 %) and Firmicutes (41.2 %) were from malignant ones. Family level differences were observed among phyla (Firmicutes and Proteobacteria) isolated from the study participants. For instance, the relative abundance of family Bacillaceae from malignant (26 %) was lower than the normal biopsies (39 %). On other hand, family Enterobacteriaceae was twice more abundant in malignant tissues (45 %) than in its matched normal tissues (23 %). Furthermore, the family Enterococcaceae (14 %) of phylum Firmicutes was solely isolated from malignant tissue biopsies. Conclusions The overall microbial composition of normal and malignant tissues was considerably different among the study participants. Further culture independent analysis of mucosal microbiota will provide detail pictures of microbial composition differences and pathogenesis of CRC in Ethiopian settings. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00415-7.
Collapse
Affiliation(s)
- Yesuf Adem Siraj
- Department of Medical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia. .,CDT-Africa, College of Health Sciences, Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.
| | - Melesse Gebeyehu Biadgelign
- Department of General Surgery, School of Medicine, College of Medicine and Health Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Mensur Osman Yassin
- Department of Surgery, School of Medicine, College of Medicine and Health Sciences, University of Gondar, P.O.Box 196, Gondar, Ethiopia
| | - Yohannes Zenebe Chekol
- Department of Medical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.,Biotechnology Research Institute, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| |
Collapse
|
26
|
Ren Z, Rajani C, Jia W. The Distinctive Serum Metabolomes of Gastric, Esophageal and Colorectal Cancers. Cancers (Basel) 2021; 13:cancers13040720. [PMID: 33578739 PMCID: PMC7916516 DOI: 10.3390/cancers13040720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/18/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Cancer of the stomach, esophagus and colon are often fatal. Ways are being sought to establish patient-friendly screening tests that would allow these cancers to be detected earlier. Examination of the metabolomics results of cancer patient’s serum for certain metabolites unique for a particular cancer was the goal of this review. From studies conducted within the past five years several metabolites were found to be changed in cancer compared to non-cancer patients for each of the three cancers. Further confirmation of what was discovered in this review coupled with establishment of standard protocols may allow for cancer screening on patient blood samples to become routine clinical tests. Abstract Three of the most lethal cancers in the world are the gastrointestinal cancers—gastric (GC), esophageal (EC) and colorectal cancer (CRC)—which are ranked as third, sixth and fourth in cancer deaths globally. Early detection of these cancers is difficult, and a quest is currently on to find non-invasive screening tests to detect these cancers. The reprogramming of energy metabolism is a hallmark of cancer, notably, an increased dependence on aerobic glycolysis which is often referred to as the Warburg effect. This metabolic change results in a unique metabolic profile that distinguishes cancer cells from normal cells. Serum metabolomics analyses allow one to measure the end products of both host and microbiota metabolism present at the time of sample collection. It is a non-invasive procedure requiring only blood collection which encourages greater patient compliance to have more frequent screenings for cancer. In the following review we will examine some of the most current serum metabolomics studies in order to compare their results and test a hypothesis that different tumors, notably, from EC, GC and CRC, have distinguishing serum metabolite profiles.
Collapse
Affiliation(s)
- Zhenxing Ren
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China;
| | - Cynthia Rajani
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- Correspondence: (C.R.); or (W.J.)
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China;
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
- Correspondence: (C.R.); or (W.J.)
| |
Collapse
|
27
|
Datorre JG, de Carvalho AC, Guimarães DP, Reis RM. The Role of Fusobacterium nucleatum in Colorectal Carcinogenesis. Pathobiology 2020; 88:127-140. [PMID: 33291114 DOI: 10.1159/000512175] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent and deadly neoplasms worldwide. Genetic factors, lifestyle habits, and inflammation are important risk factors associated with CRC development. In recent years, growing evidence has supporting the significant role of the intestinal microbiome in CRC carcinogenesis. Disturbances in the healthy microbial balance, known as dysbiosis, are frequently observed in these patients. Pathogenic microorganisms that induce intestinal dysbiosis have become an important target to determine the role of bacterial infection in tumorigenesis. Interestingly, the presence of different bacterial strains, such as Fusobacterium nucleatum, has been detected in tissue and stool from patients with CRC and associated with substantial clinical and molecular features, as well as with patient therapy response. Therefore, understanding how the presence and levels of F. nucleatumstrains in the gut affect the risk of CRC onset and progression may inform suitable candidates for interventions focused on modulation of this bacteria. Here we review new insights into the role of gut microbiota in CRC carcinogenesis and the clinical utility of using the detection of F. nucleatum in different settings such as screening, prognosis, and microbiota modulation as a means to prevent cancer, augment therapies, and reduce adverse effects of treatment.
Collapse
Affiliation(s)
| | | | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Prevention, Barretos Cancer Hospital, Barretos, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil, .,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal, .,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal,
| |
Collapse
|
28
|
Sun XZ, Zhao DY, Zhou YC, Wang QQ, Qin G, Yao SK. Alteration of fecal tryptophan metabolism correlates with shifted microbiota and may be involved in pathogenesis of colorectal cancer. World J Gastroenterol 2020; 26:7173-7190. [PMID: 33362375 PMCID: PMC7723673 DOI: 10.3748/wjg.v26.i45.7173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut tryptophan (Trp) metabolites are produced by microbiota and/or host metabolism. Some of them have been proven to promote or inhibit colorectal cancer (CRC) in vitro and animal models. We hypothesized that there is an alteration of gut Trp metabolism mediated by microbiota and that it might be involved in the pathogenesis of cancer in patients with CRC. AIM To investigate the features of Trp metabolism in CRC and the correlation between fecal Trp metabolites and gut microbiota. METHODS Seventy-nine patients with colorectal neoplastic lesions (33 with colon adenoma and 46 with sporadic CRC) and 38 healthy controls (HCs) meeting the inclusion and exclusion criteria were included in the study. Their demographic and clinical features were collected. Fecal Trp, kynurenine (KYN), and indoles (metabolites of Trp metabolized by gut microbiota) were examined by ultraperformance liquid chromatography coupled to tandem mass spectrometry. Gut barrier marker and indoleamine 2,3-dioxygenase 1 (IDO1) mRNA were analyzed by quantitative real-time polymerase chain reaction. Zonula occludens-1 (ZO-1) protein expression was analyzed by immunohistochemistry. The gut microbiota was detected by 16S ribosomal RNA gene sequencing. Correlations between fecal metabolites and other parameters were examined in all patients. RESULTS The absolute concentration of KYN [1.51 (0.70, 3.46) nmol/g vs 0.81 (0.64, 1.57) nmol/g, P = 0.036] and the ratio of KYN to Trp [7.39 (4.12, 11.72) × 10-3 vs 5.23 (1.86, 7.99) × 10-3, P = 0.032] were increased in the feces of patients with CRC compared to HCs, while the indoles to Trp ratio was decreased [1.34 (0.70, 2.63) vs 2.46 (1.25, 4.10), P = 0.029]. The relative ZO-1 mRNA levels in patients with CRC (0.27 ± 0.24) were significantly lower than those in HCs (1.00 ± 0.31) (P < 0.001), and the relative IDO1 mRNA levels in patients with CRC [1.65 (0.47-2.46)] were increased (P = 0.035). IDO1 mRNA levels were positively associated with the KYN/Trp ratio (r = 0.327, P = 0.003). ZO-1 mRNA and protein levels were positively correlated with the indoles/Trp ratio (P = 0.035 and P = 0.009, respectively). In addition, the genera Asaccharobacter (Actinobacteria) and Parabacteroides (Bacteroidetes), and members of the phylum Firmicutes (Clostridium XlVb, Fusicatenibacter, Anaerofilum, and Anaerostipes) decreased in CRC and exhibited a positive correlation with indoles in all subjects. CONCLUSION Alteration of fecal Trp metabolism mediated by microbiota is associated with intestinal barrier function and tissue Trp metabolism, and may be involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Xi-Zhen Sun
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Dong-Yan Zhao
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuan-Chen Zhou
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
- Peking University China-Japan Friendship School of Clinical Medicine, Peking University, Beijing 100029, China
| | - Qian-Qian Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Peking University, Beijing 100029, China
| | - Geng Qin
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shu-Kun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
29
|
Janati AI, Karp I, Laprise C, Sabri H, Emami E. Detection of Fusobaterium nucleatum in feces and colorectal mucosa as a risk factor for colorectal cancer: a systematic review and meta-analysis. Syst Rev 2020; 9:276. [PMID: 33272322 PMCID: PMC7716586 DOI: 10.1186/s13643-020-01526-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major cause of cancer deaths worldwide. Accumulating evidence suggests a potentially important role of colorectal infection with Fusobacterium nucleatum (F. nucleatum) in colorectal carcinogenesis. We conducted a systematic review, including both a qualitative synthesis and a meta-analysis, to synthesize the evidence from the epidemiological literature on the association between F. nucleatum detection in the colon/rectum and CRC. METHODS A systematic literature search of Ovid MEDLINE(R), Embase, Web of Science Core Collection, EBM Reviews-Cochrane Database of Systematic Reviews, and CINAHL Plus with Full Text was conducted using earliest inclusive dates up to 4 October 2020. Eligible studies were original, comparative observational studies that reported results on colorectal F. nucleatum detection and CRC. Two independent reviewers extracted the relevant information. Odds ratio (OR) estimates were pooled across studies using the random effects model. Newcastle-Ottawa scale was used to critically appraise study quality. RESULTS Twenty-four studies were included in the systematic review, of which 12 were included in the meta-analysis. Studies investigated F. nucleatum in feces, colorectal tissue samples, or both. In most studies included in the systematic review, the load of F. nucleatum was higher, on average, in specimens from CRC patients than in those from CRC-free controls. Meta-analysis showed a positive association between F. nucleatum detection in colorectal specimens and CRC (OR = 8.3; 95% confidence interval (95% CI) 5.2 to 13.0). CONCLUSIONS The results of this systematic review suggest that F. nucleatum in the colon/rectum is associated with CRC. SYSTEMATIC REVIEW REGISTRATION This systematic review protocol has been registered with the International Prospective Register of Systematic Reviews (PROSPERO) on July 10, 2018 (registration number CRD42018095866).
Collapse
Affiliation(s)
| | - Igor Karp
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
- Department of Social and Preventive Medicine, School of Public Health, Université de Montréal, Montreal, Canada
| | - Claudie Laprise
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada
| | - Hisham Sabri
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada
| | - Elham Emami
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Suite 500, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
30
|
Cheng Y, Ling Z, Li L. The Intestinal Microbiota and Colorectal Cancer. Front Immunol 2020; 11:615056. [PMID: 33329610 PMCID: PMC7734048 DOI: 10.3389/fimmu.2020.615056] [Citation(s) in RCA: 323] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
The intestinal microbiota, composed of a large population of microorganisms, is often considered a "forgotten organ" in human health and diseases. Increasing evidence indicates that dysbiosis of the intestinal microbiota is closely related to colorectal cancer (CRC). The roles for intestinal microorganisms that initiated and facilitated the CRC process are becoming increasingly clear. Hypothesis models have been proposed to illustrate the complex relationship between the intestinal microbiota and CRC. Recent studies have identified Streptococcus bovis, enterotoxigenic Bacteroides fragilis, Fusobacterium nucleatum, Enterococcus faecalis, Escherichia coli, and Peptostreptococcus anaerobius as CRC candidate pathogens. In this review, we summarized the mechanisms involved in microbiota-related colorectal carcinogenesis, including inflammation, pathogenic bacteria, and their virulence factors, genotoxins, oxidative stress, bacterial metabolites, and biofilm. We also described the clinical values of intestinal microbiota and novel strategies for preventing and treating CRC.
Collapse
Affiliation(s)
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Miyake T, Iida H, Shimizu T, Ueki T, Kojima M, Ohta H, Yamaguchi T, Kaida S, Mekata E, Endo Y, Tani M. The Elevation in Preoperative Procalcitonin Is Associated with a Poor Prognosis for Patients Undergoing Resection for Colorectal Cancer. Dig Surg 2020; 38:80-86. [PMID: 33242873 DOI: 10.1159/000511908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Procalcitonin (PCT) is a well-known marker for bacterial infection; however, the clinical significance of PCT in the long-term prognosis after colorectal cancer (CRC) surgery remains unclear. METHODS This is a retrospective review of 277 patients that underwent CRC surgery to investigate the relationship between preoperative PCT, clinicopathological condition, cancer-specific overall survival (OS), and relapse-free survival (RFS). RESULTS Median follow-up interval was 5.0 years in all patients. Thirty-six patients developed recurrence, and 46 patients died due to recurrences or metastases of CRC. Preoperative PCT levels were highest in Stage IV patients. The cancer-specific OS in patients with Stage IV/PCT ≤0.05 ng/mL was significantly higher than those with Stage IV/PCT >0.05 ng/mL (3 years survival; 42.3 vs. 14.3%, p = 0.0413). On multivariate analysis, gender, TNM classification, and PCT were identified as significant risk factors for cancer-specific OS in patients with Stage I-III CRC. The cancer-specific OS rate of these patients with PCT ≥0.08 ng/mL, compared with PCT <0.08 ng/mL, was significantly decreased (5 years survival; 59.1 vs. 92.7%, p < 0.0001). TNM classification was finally identified as an independent risk factor for cancer-specific RFS in these patients by multivariate analysis. CONCLUSION High preoperative PCT values in CRC patients appeared to be associated with poor OS but not RFS following surgical treatments.
Collapse
Affiliation(s)
- Toru Miyake
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hiroya Iida
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Tomoharu Shimizu
- Medical Safety Section, Shiga University of Medical Science Hospital, Shiga, Japan,
| | - Tomoyuki Ueki
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Masatsugu Kojima
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Hiroyuki Ohta
- Department of Comprehensive Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Tsuyoshi Yamaguchi
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Sachiko Kaida
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Eiji Mekata
- Department of Comprehensive Surgery, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihiro Endo
- Department of Clinical Nursing, Shiga University of Medical Science, Shiga, Japan
| | - Masaji Tani
- Department of Surgery, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
32
|
Pancreatic Diseases and Microbiota: A Literature Review and Future Perspectives. J Clin Med 2020; 9:jcm9113535. [PMID: 33139601 PMCID: PMC7692447 DOI: 10.3390/jcm9113535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota represent an interesting worldwide research area. Several studies confirm that microbiota has a key role in human diseases, both intestinal (such as inflammatory bowel disease, celiac disease, intestinal infectious diseases, irritable bowel syndrome) and extra intestinal disorders (such as autism, multiple sclerosis, rheumatologic diseases). Nowadays, it is possible to manipulate microbiota by administering prebiotics, probiotics or synbiotics, through fecal microbiota transplantation in selected cases. In this scenario, pancreatic disorders might be influenced by gut microbiota and this relationship could be an innovative and inspiring field of research. However, data are still scarce and controversial. Microbiota manipulation could represent an important therapeutic strategy in the pancreatic diseases, in addition to standard therapies. In this review, we analyze current knowledge about correlation between gut microbiota and pancreatic diseases, by discussing on the one hand existing data and on the other hand future possible perspectives.
Collapse
|
33
|
Jia W, Rajani C, Xu H, Zheng X. Gut microbiota alterations are distinct for primary colorectal cancer and hepatocellular carcinoma. Protein Cell 2020; 12:374-393. [PMID: 32797354 PMCID: PMC8106555 DOI: 10.1007/s13238-020-00748-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) and hepatocellular carcinoma (HCC) are the second and third most common causes of death by cancer, respectively. The etiologies of the two cancers are either infectious insult or due to chronic use of alcohol, smoking, diet, obesity and diabetes. Pathological changes in the composition of the gut microbiota that lead to intestinal inflammation are a common factor for both HCC and CRC. However, the gut microbiota of the cancer patient evolves with disease pathogenesis in unique ways that are affected by etiologies and environmental factors. In this review, we examine the changes that occur in the composition of the gut microbiota across the stages of the HCC and CRC. Based on the idea that the gut microbiota are an additional "lifeline" and contribute to the tumor microenvironment, we can observe from previously published literature how the microbiota can cause a shift in the balance from normal → inflammation → diminished inflammation from early to later disease stages. This pattern leads to the hypothesis that tumor survival depends on a less pro-inflammatory tumor microenvironment. The differences observed in the gut microbiota composition between different disease etiologies as well as between HCC and CRC suggest that the tumor microenvironment is unique for each case.
Collapse
Affiliation(s)
- Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China. .,Hong Kong Tranditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, 999077, Hong Kong, China.
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, HI, 96813, USA
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaojiao Zheng
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|