1
|
Wang F, Han C, Zhang J, Zhang P, Zhang X, Yue X, Zhao Y, Dai X. Comparative Genomic Analysis of Two Monokaryons of Auricularia heimuer Hei29. J Fungi (Basel) 2025; 11:122. [PMID: 39997416 PMCID: PMC11856363 DOI: 10.3390/jof11020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Auricularia heimuer is a valuable traditional Chinese fungus used as food and medicine. Hei29 is a strain derived from wild A. heimuer through systematic domestication and selection. It has been the primary A. heimuer variety in Northeast China for 30 years and offers the advantages of high yield, good commercial property, and stable traits. This study used protoplast nucleation on Hei29 to produce two amiable and paired monokaryons, Hei29-D1 and Hei29-D2. The genome of Hei29 was sequenced utilizing the Illumina PE150 and PacBio Sequel sequencing platforms. Hei29-D1 and Hei29-D2 had genomic sizes of 47.54 Mb and 47.49 Mb, GC contents of 56.95% and 56.99%, and an N50 of 2.37 Mb and 4.28 Mb, respectively. Hei29's genome possessed two phytoene synthase (PSY) protein genes, one of which-PSY encoded by g894-has a transmembrane domain. The phylogenetic tree showed that Hei29 shared the closest evolutionary relationship with Auricularia subglabra TFB-10046 SS5. Collinearity analysis showed that the correlation between the two monokaryons was as high as 90.81%. Cluster analysis revealed that Hei29 contains 12,362 core genes, 223 unique genes in Hei29-D1, and 228 unique genes in Hei29-D2. This study is the first to sequence two related and paired monokaryons from A. heimuer, which is critical for fully understanding the genetic composition and information of the characteristic strain of A. heimuer in Northeast China. It establishes the data and theoretical foundation for gene mining, usage, and molecular breeding. It further promotes the genetic breeding and active substance utilization of A. heimuer.
Collapse
Affiliation(s)
- Fengli Wang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Chuang Han
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
- College of Plant Protection, Northeast Agricultural University/Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Harbin 150030, China
| | - Jiechi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Piqi Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Xiaojia Zhang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Xin Yue
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Yanshu Zhao
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| | - Xiaodong Dai
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China; (F.W.); (C.H.)
| |
Collapse
|
2
|
Xiao X, Guan Y, Mo H, Lv K, Chen J, Xie J, Meng Q, Liu J, Lu Y, Gao F, Chen Q. Novel insights into Cntnap4 in Alzheimer's disease: Intestinal flora interaction. Int J Biol Macromol 2025; 285:138508. [PMID: 39647729 DOI: 10.1016/j.ijbiomac.2024.138508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with unclear etiology. This study employs single-cell RNA sequencing (scRNA-seq), high-throughput transcriptome sequencing, 16s rRNA sequencing, and animal experiments to investigate the role of the contactin-associated protein like-4 (Cntnap4) gene in AD and its interaction with intestinal flora. We found that Cntnap4 deficiency in AD mice led to increased Tau protein phosphorylation, amyloid-beta plaque accumulation, and neuronal loss. Astrocytes in Cntnap4-/- mice showed impaired amyloid-beta processing. 16 s rRNA sequencing revealed distinct intestinal flora compositions between Cntnap4-/- and control mice, indicating a potential link between gut microbiota and AD progression. Notably, GABA supplementation improved cognitive impairment, restored synaptic currents, reduced amyloid-beta plaques, and increased neuronal counts. This study highlights Cntnap4's critical role in AD and suggests gut-brain axis involvement, offering novel insights for potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiaodan Xiao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan 523000, China; Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| | - Yanfei Guan
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Huiyu Mo
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Kaizhao Lv
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jiaxing Xie
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Qiguang Meng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jianqi Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Yongkeng Lu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Feng Gao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan 523000, China.
| | - Qingzhuang Chen
- Guangzhou Hospital of Integrated Traditional and Western Medicine, Department of Clinical Pharmacy, Guangzhou 514000, China.
| |
Collapse
|
3
|
Zhang C, Ye Y, Wang W, Wang C, Gao P, Wan P. Effects of Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) Triterpene on Motor and Spatial Learning Disorders in 5xFAD Mice. Int J Med Mushrooms 2025; 27:21-37. [PMID: 39912605 DOI: 10.1615/intjmedmushrooms.2024057835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that gradually destroys cognitive, memory, and thinking skills. Although increasing evidence has demonstrated that Ganoderma lucidum triterpenoids (GLT) can ameliorate the motor and spatial learning disorders of AD, the underlying mechanism remains unclear. Hence, in this study, GLT were obtained by using a traditional Chinese medicine processing method, and then the effects of GLT on motor and spatial learning disorders in 5xFAD mice were investigated by using various techniques such as behavioral analysis, micro-dialysis, and neurophysiological recording. Compared with the 5xFAD group, 0.5 g/kg GLT could decrease escape latency, the total number of limb errors, and the duration of errors. This dose could also increase the number of crossing the original platform, the total movement time, and the distance in the central region of the open-field box, as well as the maximum movement speed and continuous movement time on the rotating rod. After GLT treatment, the glutamate (Glu) content and variation coefficient of a simple spike of Purkinje cells decreased compared with the 5xFAD group, thereby improving the spatial learning and memory ability. Overall, this study shows that GLT may be a potential therapeutic method for patients with AD.
Collapse
Affiliation(s)
- Chang Zhang
- College of Basic Medicine, Yanbian University
| | - Yuanzi Ye
- College of Basic Medicine, Yanbian University, Yanbian 133002, P.R. China
| | - Weiyao Wang
- College of Basic Medicine, Yanbian University, Yanbian 133002, P.R. China
| | - Chunyan Wang
- College of Basic Medicine, Yanbian University, Yanbian 133002, P.R. China
| | - Peigang Gao
- Tumor Intervention Department, Jilin People's Hospital, Jilin 132000, P.R. China
| | - Peng Wan
- College of Basic Medicine, Yanbian University, Yanbian 133002, P.R. China
| |
Collapse
|
4
|
Liu Y, Peng H, Liu Q, Hao J, Tang C, Yan H. Differential Expression of GABA Receptor-Related Genes in Alzheimer's Disease and the Positive Regulatory Role of Aerobic Exercise-From Genetic Screening to D-gal-induced AD-like Pathology Model. Neuromolecular Med 2024; 27:1. [PMID: 39752101 DOI: 10.1007/s12017-024-08821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals. Furthermore, we established an in vivo AD-like model to validate and explore the effects of exercise on these risky genes. The datasets GSE36980 and GSE48350 were downloaded from the GEO database and visualized using R packages to obtain DEGs. Subsequently, the potential biological functions of these DEGs were predicted, PPI network interactions were screened for core genes, and Pearson correlation analysis was performed. Additionally, we determined the diagnostic value of core DEGs using ROC curves. Single-cell analysis was used to verify the cell type specificity of hub genes. Finally, we used RT-qPCR, immunohistochemistry, and immunofluorescence to validate the expression of core DEGs in model mice and to explore the beneficial mechanisms of exercise. A total of 13 differentially expressed genes (DEGs) associated with the development of AD were identified, comprising 11 down-regulated genes and 2 up-regulated genes. PPI network visualization acquired four down-regulated core DEGs with good diagnostic value. The findings from the in vivo study indicated that the mRNA expression of GABRA1, GABRG2, and SVOP decreased, and the astrocyte marker GFAP notably increased in AD mice. Surprisingly, exercise increased hippocampal GABRA1 and GABRG2 expression and decreased GFAP-positive intensity of GABRG1 localization, reducing expression of inflammatory markers TNF-α and IL-1β. In addition, exercise improved the spatial exploration ability but had little effect on the preference index in AD mice. Our data highlighted the mechanism by which exercise improves memory performance in AD patients by reducing astrocyte neurotoxicity inducing decreased hippocampal GABA receptor expression.
Collapse
Affiliation(s)
- Yang Liu
- College of Physical Education, Nanchang Institute of Technology, Nanchang, 330044, China.
- Department of Neurology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Haoran Peng
- Department of Neurology, People's Hospital of Henan University, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Qi Liu
- College of Physical Education, Nanchang Institute of Technology, Nanchang, 330044, China
| | - Jianying Hao
- College of Physical Education, Nanchang Institute of Technology, Nanchang, 330044, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China
| | - Hanhui Yan
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China
- School of Sports Science Division of Sport Physiology, Beijing Sport University, Beijing, 100084, China
| |
Collapse
|
5
|
Huanood G, Swamy MMM, Sasaki R, Shimamori K, Kuragano M, Enkhbat E, Suga Y, Anetai M, Monde K, Tokuraku K. Screening of a Fraction with Higher Amyloid β Aggregation Inhibitory Activity from a Library Containing 210 Mushroom Extracts Using a Microliter-Scale High-Throughput Screening System with Quantum Dot Imaging. Foods 2024; 13:3740. [PMID: 39682812 DOI: 10.3390/foods13233740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative disease hallmarked by amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by the amyloid β (Aβ) aggregation, so substances that inhibit this aggregation are useful for preventing and treating AD. Mushrooms are widely used medicinal fungi with high edible and nutritional value. Mushrooms have a variety of biologically active ingredients, and studies have shown that they have certain effects in anti-bacterial, anti-oxidation, anti-inflammatory, anti-tumor, and immune regulation. Previously, we developed a microliter-scale high-throughput screening (MSHTS) system using quantum dot (QD) nanoprobes to screen Aβ aggregation inhibitors. In this study, we appraised the Aβ aggregation inhibitory activity of 210 natural mushrooms from Hokkaido (Japan) and found 11 samples with high activity. We then selected Elfvingia applanata and Fuscoporia obliqua for extraction and purification as these samples were able to suppress Aβ-induced neurocytotoxicity and were readily available in large quantities. We found that the ethyl acetate (EtOAc) extract of E. applanata has high Aβ aggregation inhibitory activity, so we performed silica gel column chromatography fractionation and found that fraction 5 (f5) of the EtOAc extract displayed the highest Aβ aggregation inhibitory activity among all mushroom samples. The half-maximal effective concentration (EC50) value was 2.30 µg/mL, higher than the EC50 of 10.7 µg/mL for rosmarinic acid, a well-known Aβ aggregation inhibitor. This inhibitory activity decreased with further purification, suggesting that some compounds act synergistically. The f5 fraction also inhibited the deposition of Aβ aggregates on the cell surface of human neuroblastoma SH-SY5Y cells. Our expectation is that f5, with additional tests, may eventually prove to be an inhibitor for the prevention of AD.
Collapse
Affiliation(s)
- Gegentuya Huanood
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Mahadeva M M Swamy
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Rina Sasaki
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Keiya Shimamori
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Masahiro Kuragano
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Enkhmaa Enkhbat
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Yoshiko Suga
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Masaki Anetai
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kenji Monde
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan
| |
Collapse
|
6
|
Qi Z, Deng S, Wu Y, Ye B. The effects of Ganoderma leucocontextum triterpenoids treatment on the D-galactose and aluminum chloride-induced Alzheimer-like pathology in mouse brain. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118530. [PMID: 38977221 DOI: 10.1016/j.jep.2024.118530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Ganoderma leucocontextum T.H. Li, W. Q. Deng M. Wang & H.P.Hu. is a highland herbal medicine that has been shown to nourish the nervesand prolong life. Nevertheless, there is no evidence to indicate that Ganoderma leucocontextum triterpenoids (GLTs) reduce the damage triggered by Alzheimer's disease (AD). AIM OF THE STUDY The aim of this investigation was to ascertain the protective effects of GLTs on AD mice models and cells, as well as to look into potential pathways. MATERIALS AND METHODS In this study, the phytochemical characterization of GLTs was performed by High Performance Liquid Chromatography (HPLC) and Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). The AD mouse model was induced by injecting intraperitoneally with D-galactose (120 mg/kg) and administering orally with aluminum chloride (20 mg/kg) daily for 28 days. After that, donepezil (5 mg/kg) and GLTs (0.4, 0.8, and 1.6 g/kg) were administered orally for 35 days. During the treatment period, aluminum chloride (20 mg/kg) and D-galactose (120 mg/kg) were continuously administered. And the behavior of the animals and the molecular changes of the hippocampus were determined after the whole experimental procedure. Furthermore, BV-2 cells were employed to validate GLTs' anti-neuroinflammatory properties. RESULTS The total triterpenoids content was 443.12 ± 0.21 g/kg and was inferred to contain 19 classes of substances such as organic acids, amino acids, vitamins, flavonoids, and other chemicals in GLTs. Treatment of D-galactose/aluminum chloride-induced mouse with GLTs can ameliorate AD symptoms, counteract cognitive decline, improve Aβ1-42 deposition, reduce the expression level of pro-apoptotic proteins, and attenuate the activation of hippocampal microglia and astrocytes. GLTs significantly increased the expression of antioxidant enzymes and significantly reduced the expression of inflammatory factors. GLTs inhibits nuclear factor kappa B (NF-κB) nuclear translocation and preserves myd88/traf6-mediated mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, GLTs (2 and 5 mg/mL) inhibited the generation of nitric oxide and protected lipopolysaccharide (1 mg/L)-induced neuroinflammation in BV-2 cells. CONCLUSIONS Taken together, Ganoderma leucocontextum triterpenoids can improve cognitive functions, including learning and memory, by reducing neuroinflammation and oxidative stress, preventing apoptosis, and controlling amyloid genesis.
Collapse
Affiliation(s)
- Zhongzhi Qi
- Nuclear Medicine Department of West China Hospital of Sichuan University, China.
| | - Shizhan Deng
- Medical College of Tibet University, Lasa, 850002, China.
| | - Yexin Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610041, China.
| | - Bengui Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu, 610041, China; Medical College of Tibet University, Lasa, 850002, China.
| |
Collapse
|
7
|
Gao T, Huang Z. Novel insights into sevoflurane-induced developmental neurotoxicity mechanisms. Epigenomics 2024; 16:1231-1252. [PMID: 39316776 PMCID: PMC11485883 DOI: 10.1080/17501911.2024.2395250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Aim: This study explores Sevoflurane (Sevo)-induced neurotoxicity mechanisms in neonates through transcriptome sequencing and models.Methods: Seven-day-old mice were exposed to 3% Sevo, and hippocampal tissue was collected for analysis of differentially expressed lncRNAs and mRNAs compared with normal mice. MiR-152-3p was selected, and the interaction between H19, USP30, and miR-152-3p was explored in BV2 microglial cells and mouse hippocampal neurons.Results: Sevo disrupts mitochondrial autophagy via USP30 upregulation, exacerbating neurotoxicity and activating NLRP1 inflammasome-mediated inflammation.Conclusion: Sevo neurotoxicity is mediated through the H19/miR-152-3p/USP30 axis, implicating microglial regulation of neuronal pyroptosis.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| | - Zeqing Huang
- Department of Anesthesia, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, P.R. China
| |
Collapse
|
8
|
Bai W, Xue Y, Guo Y, Zhang D, Ma K, Chen Z, Xia K, Liao B, Huang G, Pan S, Zheng Y, Wang H, Yang H, Zhang LK, Guan YQ. Reactive oxygen species produced by photodynamic therapy enhance docosahexaenoic acid lipid peroxidation and induce the death of breast cancer cells. Colloids Surf B Biointerfaces 2024; 241:114012. [PMID: 38850743 DOI: 10.1016/j.colsurfb.2024.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Breast cancer remains a serious threat to women's physical and emotional health. The combination therapies can overcome the deficiency of single therapy, enhance the therapeutic effects and reduce the side effects at the same time. In this study, we synthesize a novel nanomedicine that enhanced the therapeutic effects of breast cancer treatment by combining photodynamic therapy and chemotherapy. The doxorubicin (DOX) and photosensitizer methyl pyropheophorbide-a (MPPa) are loaded into the nano-drug delivery system as DPSPFA/MPPa/DOX. In response to near-infrared (NIR) laser, the drugs were quickly released to the cancer cells. The MPPa produces reactive oxygen species (ROS) under the action of photodynamics. Unsaturated fatty acids with ROS promotes lipid peroxidation and the combination of chemotherapy and photodynamic therapy. The data shows that the DPSPFA/MPPa/DOX has a spherical shape, good dispersibility and stability, and the particle size is roughly 200 nm. The drug loading capability of DOX is about 13 %. Both of MCF7 cell model in vitro and breast cancer model in vivo, DPSPFA/MPPa/DOX showed an excellent anti-tumor effect of 86.9 % and without any obvious side effects. These findings might offer potential for a new approach for breast cancer treatment.
Collapse
Affiliation(s)
- Weiwei Bai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yongyong Xue
- MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yiyan Guo
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dandan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kuo Ma
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendong Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kunwen Xia
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Beining Liao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Guowei Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengjun Pan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuxin Zheng
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Haoyuan Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China; School of Engineering, Westlake University, Hangzhou 310030, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
9
|
Tian L, Tang P, Liu J, Liu Y, Hou L, Zhao J, Wang Q. Microglial gp91phox-mediated neuroinflammation and ferroptosis contributes to learning and memory deficits in rotenone-treated mice. Free Radic Biol Med 2024; 220:56-66. [PMID: 38697489 DOI: 10.1016/j.freeradbiomed.2024.04.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Apart from dopaminergic neurotoxicity, exposure to rotenone, a commonly used insecticide in agriculture, also adversely affects hippocampal and cortical neurons, resulting in cognitive impairments in mice. We recently established a role of microglia-mediated neuroinflammation in rotenone-elicited deficits of cognition, yet the mechanisms remain elusive. Here, we investigated the involvement of NADPH oxidase 2 (NOX2) catalytic subunit gp91phox in rotenone-induced cognitive deficits and the associated mechanisms. Our study demonstrated that rotenone exposure elevated expression of gp91phox and phosphorylation of the NOX2 cytosolic subunit p47phox, along with NADPH depletion in the hippocampus and cortex of mice, indicating NOX2 activation. Specific knockdown of gp91phox in microglia via adeno-associated virus delivery resulted in reduced microglial activation, proinflammatory gene expression and improved learning and memory capacity in rotenone-intoxicated mice. Genetic deletion of gp91phox also reversed rotenone-elicited cognitive dysfunction in mice. Furthermore, microglial gp91phox knockdown attenuated neuronal damage and synaptic loss in mice. This intervention also suppressed iron accumulation, disruption of iron-metabolism proteins and iron-dependent lipid peroxidation and restored the balance of ferroptosis-related parameters, including GPX4, SLC711, PTGS2, and ACSL4 in rotenone-lesioned mice. Intriguingly, pharmacological inhibition of ferroptosis with liproxstatin-1 conferred protection against rotenone-induced neurodegeneration and cognitive dysfunction in mice. In summary, our findings underscored the contribution of microglial gp91phox-dependent neuroinflammation and ferroptosis to learning and memory dysfunction in rotenone-lesioned mice. These results provided valuable insights into the pathogenesis of cognitive deficits associated with pesticide-induced Parkinsonism, suggesting potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Lu Tian
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; Chaoyang Center for Disease Control and Prevention, Beijing, China
| | - Peiyan Tang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jianing Liu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Yiyang Liu
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Liyan Hou
- Dalian Medical University Library, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian, 116044, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Qingshan Wang
- National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China; School of Public Health, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
10
|
Zhang W, Zhong Y, Wang Z, Tang F, Zheng C. Apple polysaccharide improves age-matched cognitive impairment and intestinal aging through microbiota-gut-brain axis. Sci Rep 2024; 14:16215. [PMID: 39003416 PMCID: PMC11246462 DOI: 10.1038/s41598-024-67132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
The Apple polysaccharides (AP), extracted from the fruit of apple, has been used to treat multiple pathological diseases. In this study, we evaluated the effects of AP on cognitive impairment and intestinal aging in naturally aging mice. As a result, it was found that AP could improve spatial learning and memory impairment in aging mice through the Morris water maze experiment. Additionally, AP intervention can upregulate the expression of nerve growth factor (BDNF), postsynaptic marker (PSD95), and presynaptic marker (SYP) proteins. Moreover, AP can enhance total antioxidant capacity, reduce the level of pro-inflammatory cytokine, and inhibit the activation of the NF-κB signaling pathway, exerting anti-inflammatory and antioxidant functions. And the administration of AP restored intestinal mucosal barrier function, reduced the expression of aging and apoptosis related proteins. The administration of AP also altered the gut microbiota of mice. At the genus level, AP decreased the abundance of Helicobacter and Bilophila, while increased the abundance of Lactobacillus and Bacteroides. In summary, these data demonstrate that AP treatment can alleviate cognitive impairment, oxidative stress, and inflammatory reactions, repair the intestinal mucosal barrier, reduce intestinal aging, and alter specific microbial characteristics, ultimately improving the health of the elderly.
Collapse
Affiliation(s)
- Wenming Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yuchun Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Furui Tang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Cihua Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, 330000, Nanchang, Jiangxi, People's Republic of China.
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China.
- The Institute of Translational Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
11
|
Marciniec K, Nowakowska J, Chrobak E, Bębenek E, Latocha M. Synthesis, Docking, and Machine Learning Studies of Some Novel Quinolinesulfonamides-Triazole Hybrids with Anticancer Activity. Molecules 2024; 29:3158. [PMID: 38999109 PMCID: PMC11243625 DOI: 10.3390/molecules29133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
In the presented work, a series of 22 hybrids of 8-quinolinesulfonamide and 1,4-disubstituted triazole with antiproliferative activity were designed and synthesised. The title compounds were designed using molecular modelling techniques. For this purpose, machine-learning, molecular docking, and molecular dynamics methods were used. Calculations of the pharmacokinetic parameters (connected with absorption, distribution, metabolism, excretion, and toxicity) of the hybrids were also performed. The new compounds were synthesised via a copper-catalysed azide-alkyne cycloaddition reaction (CuAAC). 8-N-Methyl-N-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}quinolinesulfonamide was identified in in silico studies as a potential strong inhibitor of Rho-associated protein kinase and as a compound that has an appropriate pharmacokinetic profile. The results obtained from in vitro experiments confirm the cytotoxicity of derivative 9b in four selected cancer cell lines and the lack of cytotoxicity of this derivative towards normal cells. The results obtained from silico and in vitro experiments indicate that the introduction of another quinolinyl fragment into the inhibitor molecule may have a significant impact on increasing the level of cytotoxicity toward cancer cells and indicate a further direction for future research in order to find new substances suitable for clinical applications in cancer treatment.
Collapse
Affiliation(s)
- Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Małgorzata Latocha
- Department of Molecular Biology, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| |
Collapse
|
12
|
Zheng W, Lan S, Zhang W, Nie B, Zhu K, Ye X, Hou Z, Chen S. Polysaccharide structure evaluation of Ganoderma lucidum from different regions in China based on an innovative extraction strategy. Carbohydr Polym 2024; 335:122079. [PMID: 38616076 DOI: 10.1016/j.carbpol.2024.122079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
The polysaccharides and triterpenes are important functional components of Ganoderma lucidum, but traditional preparation process of G. lucidum functional components can only realize the preparation of single functional component, which has poor targeting and low efficiency. In this study, the existence state of the functional components of G. lucidum was revealed. Then, the single step extraction process for functional components was established, and the precise structure evaluation of polysaccharide and triterpenes was conducted based on the process. The results showed that preparation time required for this strategy is only one-sixth of the traditional one, and 50 % of raw materials can be saved. Structural analysis of the functional components revealed that triterpenes were mainly Ganoderic acid and Lucidenic acid, and the polysaccharide structure was mainly 1,3-glucan and 1,3,6-glucan. The establishment of single step extraction strategy and the evaluation of the fine structure of functional components improved the efficiency of preparation and result determination, and provided an important basis for the development and utilization of green and low-carbon G. lucidum and even edible fungi resources and human nutritional dietary improvement strategies.
Collapse
Affiliation(s)
- Weiwei Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Suqing Lan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Weixi Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Bingqian Nie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kai Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China; Longquan Industrial Innovation Research Institute, Zhejiang University, Longquan 323700, China
| | - Zhiqiang Hou
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China; Ningbo Research Institute, Zhejiang University, Hangzhou 315100, China; Longquan Industrial Innovation Research Institute, Zhejiang University, Longquan 323700, China.
| |
Collapse
|
13
|
Lian W, Yang X, Duan Q, Li J, Zhao Y, Yu C, He T, Sun T, Zhao Y, Wang W. The Biological Activity of Ganoderma lucidum on Neurodegenerative Diseases: The Interplay between Different Active Compounds and the Pathological Hallmarks. Molecules 2024; 29:2516. [PMID: 38893392 PMCID: PMC11173733 DOI: 10.3390/molecules29112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Neurodegenerative diseases represent a cluster of conditions characterized by the progressive degeneration of the structure and function of the nervous system. Despite significant advancements in understanding these diseases, therapeutic options remain limited. The medicinal mushroom Ganoderma lucidum has been recognized for its comprehensive array of bioactive compounds with anti-inflammatory and antioxidative effects, which possess potential neuroprotective properties. This literature review collates and examines the existing research on the bioactivity of active compounds and extracts from Ganoderma lucidum in modulating the pathological hallmarks of neurodegenerative diseases. The structural information and preparation processes of specific components, such as individual ganoderic acids and unique fractions of polysaccharides, are presented in detail to facilitate structure-activity relationship research and scale up the investigation of in vivo pharmacology. The mechanisms of these components against neurodegenerative diseases are discussed on multiple levels and elaborately categorized in different patterns. It is clearly presented from the patterns that most polysaccharides of Ganoderma lucidum possess neurotrophic effects, while ganoderic acids preferentially target specific pathogenic proteins as well as regulating autophagy. Further clinical trials are necessary to assess the translational potential of these components in the development of novel multi-target drugs for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wenhui Lian
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Xu Yang
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Qidong Duan
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Jie Li
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Yuting Zhao
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Chunhui Yu
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Tianzhu He
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Tianxia Sun
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
| | - Weinan Wang
- Jilin Ginseng Academy, Changchun University of Traditional Chinese Medicine, Changchun 130117, China; (W.L.); (X.Y.); (Q.D.); (J.L.); (Y.Z.); (C.Y.); (T.H.)
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
14
|
Jiang X, Song Y, Lv C, Li Y, Feng X, Zhang H, Chen Y, Wang Q. Mushroom-derived bioactive components with definite structures in alleviating the pathogenesis of Alzheimer's disease. Front Pharmacol 2024; 15:1373660. [PMID: 38835656 PMCID: PMC11148366 DOI: 10.3389/fphar.2024.1373660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Alzheimer's disease (AD) is a complicated neurodegenerative condition with two forms: familial and sporadic. The familial presentation is marked by autosomal dominance, typically occurring early in individuals under 65 years of age, while the sporadic presentation is late-onset, occurring in individuals over the age of 65. The majority of AD cases are characterized by late-onset and sporadic. Despite extensive research conducted over several decades, there is a scarcity of effective therapies and strategies. Considering the lack of a cure for AD, it is essential to explore alternative natural substances with higher efficacy and fewer side effects for AD treatment. Bioactive compounds derived from mushrooms have demonstrated significant potential in AD prevention and treatment by different mechanisms such as targeting amyloid formation, tau, cholinesterase dysfunction, oxidative stress, neuroinflammation, neuronal apoptosis, neurotrophic factors, ER stress, excitotoxicity, and mitochondrial dysfunction. These compounds have garnered considerable interest from the academic community owing to their advantages of multi-channel, multi-target, high safety and low toxicity. This review focuses on the various mechanisms involved in the development and progression of AD, presents the regulatory effects of bioactive components with definite structure from mushroom on AD in recent years, highlights the possible intervention pathways of mushroom bioactive components targeting different mechanisms, and discusses the clinical studies, limitations, and future perspectives of mushroom bioactive components in AD prevention and treatment.
Collapse
Affiliation(s)
- Xue Jiang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yu Song
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
- Koch Biotechnology (Beijing) Co., Ltd., Beijing, China
| | - Changshun Lv
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yinghui Li
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xiangru Feng
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Hao Zhang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yujuan Chen
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Qingshuang Wang
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
15
|
Moukham H, Lambiase A, Barone GD, Tripodi F, Coccetti P. Exploiting Natural Niches with Neuroprotective Properties: A Comprehensive Review. Nutrients 2024; 16:1298. [PMID: 38732545 PMCID: PMC11085272 DOI: 10.3390/nu16091298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Natural products from mushrooms, plants, microalgae, and cyanobacteria have been intensively explored and studied for their preventive or therapeutic potential. Among age-related pathologies, neurodegenerative diseases (such as Alzheimer's and Parkinson's diseases) represent a worldwide health and social problem. Since several pathological mechanisms are associated with neurodegeneration, promising strategies against neurodegenerative diseases are aimed to target multiple processes. These approaches usually avoid premature cell death and the loss of function of damaged neurons. This review focuses attention on the preventive and therapeutic potential of several compounds derived from natural sources, which could be exploited for their neuroprotective effect. Curcumin, resveratrol, ergothioneine, and phycocyanin are presented as examples of successful approaches, with a special focus on possible strategies to improve their delivery to the brain.
Collapse
Affiliation(s)
- Hind Moukham
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
| | - Alessia Lambiase
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (H.M.); (A.L.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
16
|
Qin Y, Zhao Y, Hu X, Chen X, Jiang YP, Jin XJ, Li G, Li ZH, Yang JH, Zhang GL, Cui SY, Zhang YH. Ganoderma lucidum spore extract improves sleep disturbances in a rat model of sporadic Alzheimer's disease. Front Pharmacol 2024; 15:1390294. [PMID: 38720773 PMCID: PMC11076761 DOI: 10.3389/fphar.2024.1390294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction: Ganoderma lucidum (G. lucidum, Lingzhi) has long been listed as a premium tonic that can be used to improve restlessness, insomnia, and forgetfulness. We previously reported that a rat model of sporadic Alzheimer's disease (sAD) that was induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) showed significant learning and cognitive deficits and sleep disturbances. Treatment with a G. lucidum spore extract with the sporoderm removed (RGLS) prevented learning and memory impairments in sAD model rats. Method: The present study was conducted to further elucidate the preventive action of RGLS on sleep disturbances in sAD rats by EEG analysis, immunofluorescence staining, HPLC-MS/MS and Western blot. Results: Treatment with 720 mg/kg RGLS for 14 days significantly improved the reduction of total sleep time, rapid eye movement (REM) sleep time, and non-REM sleep time in sAD rats. The novelty recognition experiment further confirmed that RGLS prevented cognitive impairments in sAD rats. We also found that RGLS inhibited the nuclear factor-κB (NF-κB)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammatory pathway in the medial prefrontal cortex (mPFC) in sAD rats and ameliorated the lower activity of γ-aminobutyric acid (GABA)-ergic neurons in the parabrachial nucleus (PBN). Discussion: These results suggest that inhibiting the neuroinflammatory response in the mPFC may be a mechanism by which RGLS improves cognitive impairment. Additionally, improvements in PBN-GABAergic activity and the suppression of neuroinflammation in the mPFC in sAD rats might be a critical pathway to explain the preventive effects of RGLS on sleep disturbances in sAD.
Collapse
Affiliation(s)
- Yu Qin
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China
| | - Yan Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Xiao Hu
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China
| | - Xi Chen
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China
| | - Yan-Ping Jiang
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Xue-Jun Jin
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Gao Li
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| | - Zhen-Hao Li
- Zhejiang ShouXianGu Pharmaceutical Co., Ltd., Wuyi, Zhejiang, China
| | - Ji-Hong Yang
- Zhejiang ShouXianGu Pharmaceutical Co., Ltd., Wuyi, Zhejiang, China
| | - Guo-Liang Zhang
- Zhejiang ShouXianGu Pharmaceutical Co., Ltd., Wuyi, Zhejiang, China
| | - Su-Ying Cui
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China
| | - Yong-He Zhang
- Department of Pharmacology, School of Basic Medical Science, Peking University, Beijing, China
- Department of Pharmacy, Yanbian University Hospital, Yanji, China
| |
Collapse
|
17
|
Huang CH, Liao YT, Chen CL, Tsai GJ. Protective effect of Ganoderma lucidum-fermented crop extracts against hydrogen peroxide- or β-amyloid-induced damage in human neuronal SH-SY5Y cells. BMC Complement Med Ther 2024; 24:148. [PMID: 38580956 PMCID: PMC10996153 DOI: 10.1186/s12906-024-04409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/20/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of stacked β-amyloid peptides in the brain and associated with the generation of oxidative stress. So far, there is no cure for AD or a way to stop its progression. Although the neuroprotective effects of Ganoderma lucidum aqueous extract and G. lucidum-derived triterpenoids and polysaccharides have been reported, the influence of G. lucidum-fermented crops on AD still lacks clarity. METHODS This study aimed to investigate the protective effect of G. lucidum-fermented crop extracts against hydrogen peroxide- or β-amyloid peptide (Aβ25-35)-induced damage in human neuroblastoma SH-SY5Y cells. RESULTS Various extracts of G. lucidum-fermented crops, including extract A: 10% ethanol extraction using microwave, extract B: 70˚C water extraction, and extract C: 100˚C water extraction followed by ethanol precipitation, were prepared and analyzed. Extract B had the highest triterpenoid content. Extract C had the highest total glucan content, while extract A had the highest gamma-aminobutyric acid (GABA) content. The median inhibitory concentration (IC50, mg/g) for DPPH and ABTS scavenging activity of the fermented crop extracts was significantly lower than that of the unfermented extract. Pretreatment with these extracts significantly increased the cell viability of SH-SY5Y cells damaged by H2O2 or Aβ25-35, possibly by reducing cellular reactive oxygen species (ROS) and malondialdehyde (MDA) levels and increasing superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) activities. Moreover, extract B markedly alleviated the activity of acetylcholinesterase (AChE), which is crucial in the pathogenesis of AD. CONCLUSION These results clearly confirmed the effects of G. lucidum-fermented crop extracts on preventing against H2O2- or Aβ25-35-induced neuronal cell death and inhibiting AChE activity, revealing their potential in management of AD.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 202, Taiwan ROC
| | - Yu-Ting Liao
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 202, Taiwan ROC
| | - Chien-Li Chen
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 202, Taiwan ROC
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung, 202, Taiwan ROC.
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
18
|
Nong Y, Zhou X, Li S, Liu Q, Zhang Y, Liang J, Zhang Y, Liu C. Efficient and fast screening and separation based on computer-aided screening and complex chromatography methods for lipoxygenase inhibitors from Ganoderma lucidum. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:599-616. [PMID: 38287705 DOI: 10.1002/pca.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/31/2024]
Abstract
INTRODUCTION Accurate screening and targeted preparative isolation of active substances from natural medicines have long been technical challenges in natural medicine research. OBJECTIVES This study outlines a new approach for improving the efficiency of natural product preparation, focusing on the rapid and accurate screening of potential active ingredients in Ganoderma lucidum and efficient preparation of lipoxidase inhibitors, with the aim of providing new ideas for the treatment of Alzheimer's disease with G. lucidum. METHODS The medicinal plant G. lucidum was selected through ultrafiltration coupled with liquid chromatography and mass spectrometry (UF-LC-MS) and computer-assisted screening for lipoxygenase (LOX) inhibitors. In addition, the inhibitory effect of the active compounds on LOX was studied using enzymatic reaction kinetics, and the underlying mechanism is discussed. Finally, based on the earlier activity screening guidelines, the identified ligands were isolated and purified through complex chromatography (high-speed countercurrent chromatography and semi-preparative high-performance liquid chromatography). RESULTS Five active ingredients, ganoderic acids A, B, C2, D2, and F, were identified and isolated from G. lucidum. We improved the efficiency and purity of active compound preparation using virtual computer screening and enzyme inhibition assays combined with complex chromatography. CONCLUSION The innovative methods of UF-LC-MS, computer-aided screening, and complex chromatography provide powerful tools for screening and separating LOX inhibitors from complex matrices and provide a favourable platform for the large-scale production of bioactive substances and nutrients.
Collapse
Affiliation(s)
- Yuyu Nong
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Xu Zhou
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Sainan Li
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Qiang Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yutong Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Jiaqi Liang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Yuchi Zhang
- Central Laboratory, Changchun Normal University, Changchun, China
| | - Chunming Liu
- Central Laboratory, Changchun Normal University, Changchun, China
| |
Collapse
|
19
|
Chen XJ, Deng Z, Zhang LL, Pan Y, Fu J, Zou L, Bai Z, Xiao X, Sheng F. Therapeutic potential of the medicinal mushroom Ganoderma lucidum against Alzheimer's disease. Biomed Pharmacother 2024; 172:116222. [PMID: 38310653 DOI: 10.1016/j.biopha.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a high-incidence neurodegenerative disorder, characterized by cognitive impairment, memory loss, and psychiatric abnormalities. Ganoderma lucidum is a famous medicinal fungus with a long history of dietary intake, containing various bioactive components, and have been documented to exhibit antioxidant, anti-inflammatory, anti-tumor, anti-aging, and immunomodulatory effects, among others. Recent studies have shown that G. lucidum and its components have promising therapeutic potential against AD from various aspects, which can delay the progression of AD, improve cognitive function and quality of life. The underlying mechanisms mainly include inhibiting tau hyperphosphorylation, inhibiting Aβ formation, affecting activated microglia, regulating NF-κB/MAPK signalling pathway, inhibiting neuronal apoptosis, modulating immune system, and inhibiting acetylcholinesterase, etc. This paper systematically reviewed the relevant studies on the therapeutic potential of G. lucidum and its active components for treatment of AD, key points related with the mechanism studies and clinical trials have been discussed, and further perspectives have been proposed. Totally, as a natural medicinal mushroom, G. lucidum has the potential to be developed as effective adjuvant for AD treatment owing to its therapeutic efficacy against multiple pathogenesis of AD. Further mechanical investigation and clinical trials can help unlock the complete potential of G. lucidum as a therapeutic option for AD.
Collapse
Affiliation(s)
- Xu-Jia Chen
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhou Deng
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| | - Yan Pan
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| | - Feiya Sheng
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
20
|
Xiong W, Yang C, Xia J, Wang W, Li N. G. lucidum triterpenes restores intestinal flora balance in non-hepatitis B virus-related hepatocellular carcinoma: evidence of 16S rRNA sequencing and network pharmacology analysis. Front Pharmacol 2023; 14:1197418. [PMID: 37790812 PMCID: PMC10544910 DOI: 10.3389/fphar.2023.1197418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Background: Ganoderma lucidum (G. lucidum) is a popular traditional remedy medicine used in Asia to promote health and longevity, which has also been highlighted for anti-cancer effects. This study investigated the molecular pharmacological mechanism of G. lucidum triterpenes in influencing intestinal flora imbalance in non-hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) based on 16S rRNA sequencing technology and network pharmacology analysis. Methods: 16S rRNA sequencing data of fecal samples from normal controls and HCC patients were obtained from the SRA database. G. lucidum triterpenes and HCC-related targets were screened by BATMAN-TCM, ETCM, and GeneCards databases. The TCGA-LIHC dataset was downloaded through the TCGA database to analyze the differential expression of key genes. NHBV-related HCC-related transcriptome RNA sequencing dataset was downloaded via the GEO database. Results: Abundance of intestinal flora in the HBV-related HCC and NHBV-related samples was higher than that of control samples. The intestinal flora of NHBV samples was mainly enriched in apoptosis and p53 pathways. Totally, 465 G. lucidum triterpenes-related targets were intersected with 4186 HCC-related targets, yielding 176 intersected targets. Among them, apoptosis and p53 pathway factors were located at the core of the protein-protein interactions network. Ganosporelactone B, the active component of G. lucidum triterpenes, had the lowest binding free energy to CASP3. CASP3 expression were upregulated in HCC tissue samples, and had higher predictive value in NHBV-related HCC patients. Conclusion: Therefore, Ganosporelactone B, the active ingredient of G. lucidum triterpenes, improves the imbalance of intestinal flora and ultimately curtails development of NHBV-related HCC.
Collapse
Affiliation(s)
| | | | | | - Wenxiang Wang
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| | - Ning Li
- Chongqing Three Gorges Medical College, Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing, China
| |
Collapse
|
21
|
Lei X, Xu H, Wang Y, Gao H, Zhao D, Zhang J, Zhu Z, Zuo K, Liu Y, Li X, Zhang N. Integrating Network Pharmacology and Component Analysis to Study the Potential Mechanisms of Qi-Fu-Yin Decoction in Treating Alzheimer's Disease. Drug Des Devel Ther 2023; 17:2841-2858. [PMID: 37727255 PMCID: PMC10506672 DOI: 10.2147/dddt.s402624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
Purpose To elucidate the potential mechanisms of QFY for the treatment of Alzheimer's Disease (AD), and explore the effective substances of QFY. Materials and Methods UPLC-LTQ-Orbitrap-MS was used to identify the chemical constituents of the serum samples and the cerebrospinal fluid samples of rats after QFY administration. Network pharmacology was used to predict potential targets and pathways of QFY against AD. The AD mice model was established by subcutaneous injection of D-gal for 8 consecutive weeks. New object recognition (NOR) and Morris water maze test (MWM) were used to evaluate the learning and memory abilities of mice. Moreover, the levels of TNF-α, IL-1β, and IL-18 in the brain hippocampus of mice were determined by ELISA. The expression of Bax, Bcl-2, Caspase-1, PSD95, SYP, ICAM-1 and MCP-1 proteins in the hippocampus was detected by Western blotting. Furthermore, qRT-PCR was used to detect the gene expressions of PSD95, SYP, M1 and M2 polarization markers of microglia, including iNOS, CD16, ARG-1, and IL-10 in the hippocampus. Results A total of 51 prototype compounds were detected in rat serum and 15 prototype components were identified in rat cerebrospinal fluid. Behavioral experiments revealed that QFY significantly increased the recognition index, decreased the escape latency, increased the platform crossing times and increased the residence time in the target quadrant. QFY also could alleviate the ultrastructural pathological changes in the hippocampus of AD mice. Meanwhile, QFY treatment suppressed the expression of inflammatory factors, such as TNF-α, IL-1β, and IL-18. QFY improved the synaptic plasticity of the hippocampus in D-gal model mice by significantly increasing the expression of proteins and mRNAs of PSD95 and SYP. Conclusion QFY could effectively improve the learning and memory impairment of D-gal-induced AD mice by inhibiting the excessive activation of microglia, enhancing the expression of M2 microglia, inhibiting the increase of inflammatory factors, cell adhesion factors and chemokines, anti-apoptosis, and improving synaptic plasticity.
Collapse
Affiliation(s)
- Xia Lei
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, People’s Republic of China
| | - Hongdan Xu
- Department of Pharmacy, Wuxi Higher Health Vocational Technology School, Wuxi, 214000, People’s Republic of China
| | - Yan Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Hainan Gao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Deping Zhao
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Jinfeng Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Ziyue Zhu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Kun Zuo
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| | - Ying Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Xiaoliang Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, People’s Republic of China
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, People’s Republic of China
| |
Collapse
|
22
|
Ye T, Ge Y, Jiang X, Song H, Peng C, Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chin Med 2023; 18:107. [PMID: 37641070 PMCID: PMC10463474 DOI: 10.1186/s13020-023-00811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gastrointestinal (GI) cancer is the most common cancer in the world and one of the main causes of cancer-related death. Clinically, surgical excision and chemotherapy are the main treatment methods for GI cancer, which is unfortunately accompanied with serious adverse reactions and drug toxicity, bringing irreversible damage to patients and seriously affecting the quality of life. Ganoderma lucidum (G. lucidum) has a long history of medicinal and edible use in China. Its bioactive compounds mainly include polysaccharides, triterpenes, and proteins, which have potential anti-tumor activities by inhibiting proliferation, inducing apoptosis, inhibiting metastasis, and regulating autophagy. Currently, there is no in-depth review on the anti-tumor effect of G. lucidum in GI cancer. Therefore, this review is an attempt to compile the basic characteristics, anti-GI caner mechanisms, and clinical application of G. lucidum, aiming to provide a reference for further research on the role of G. lucidum in the prevention and treatment of GI cancer from the perspective of traditional Chinese and western medicine.
Collapse
Affiliation(s)
- Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yang Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoying Jiang
- Department of Technology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
23
|
Jeong JH, Hong GL, Jeong YG, Lee NS, Kim DK, Park JY, Park M, Kim HM, Kim YE, Yoo YC, Han SY. Mixed Medicinal Mushroom Mycelia Attenuates Alzheimer's Disease Pathologies In Vitro and In Vivo. Curr Issues Mol Biol 2023; 45:6775-6789. [PMID: 37623247 PMCID: PMC10453438 DOI: 10.3390/cimb45080428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by memory impairment and existence of amyloid-β (Aβ) plaques and neuroinflammation. Due to the pivotal role of oxidative damage in AD, natural antioxidative agents, such as polyphenol-rich fungi, have garnered scientific scrutiny. Here, the aqueous extract of mixed medicinal mushroom mycelia (MMMM)-Phellinus linteus, Ganoderma lucidum, and Inonotus obliquus-cultivated on a barley medium was assessed for its anti-AD effects. Neuron-like PC12 cells, which were subjected to Zn2+, an Aβ aggregator, were employed as an in vitro AD model. The cells pretreated with or without MMMM were assayed for Aβ immunofluorescence, cell viability, reactive oxygen species (ROS), apoptosis, and antioxidant enzyme activity. Then, 5XFAD mice were administered with 30 mg/kg/day MMMM for 8 weeks and underwent memory function tests and histologic analyses. In vitro results demonstrated that the cells pretreated with MMMM exhibited attenuation in Aβ immunofluorescence, ROS accumulation, and apoptosis, and incrementation in cell viability and antioxidant enzyme activity. In vivo results revealed that 5XFAD mice administered with MMMM showed attenuation in memory impairment and histologic deterioration such as Aβ plaque accumulation and neuroinflammation. MMMM might mitigate AD-associated memory impairment and cerebral pathologies, including Aβ plaque accumulation and neuroinflammation, by impeding Aβ-induced neurotoxicity.
Collapse
Affiliation(s)
- Ji Heun Jeong
- Armed Forces Medical Research Institute (AFMRI), Daejeon 34059, Republic of Korea;
| | - Geum-Lan Hong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Young Gil Jeong
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Nam Seob Lee
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Do Kyung Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| | - Jong Yea Park
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Mina Park
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Hyun Min Kim
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Ya El Kim
- Giunchan Co., Ltd., Cheonan 31035, Republic of Korea; (J.Y.P.); (M.P.); (H.M.K.); (Y.E.K.)
| | - Yung Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea;
| | - Seung Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea; (G.-L.H.); (Y.G.J.); (N.S.L.); (D.K.K.)
| |
Collapse
|
24
|
Silva AM, Preto M, Grosso C, Vieira M, Delerue-Matos C, Vasconcelos V, Reis M, Barros L, Martins R. Tracing the Path between Mushrooms and Alzheimer's Disease-A Literature Review. Molecules 2023; 28:5614. [PMID: 37513486 PMCID: PMC10384108 DOI: 10.3390/molecules28145614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is well-known among neurodegenerative diseases for the decline of cognitive functions, making overall daily tasks difficult or impossible. The disease prevails as the most common form of dementia and remains without a well-defined etiology. Being considered a disease of multifactorial origin, current targeted treatments have only managed to reduce or control symptoms, and to date, only two drugs are close to being able to halt its progression. For decades, natural compounds produced by living organisms have been at the forefront of research for new therapies. Mushrooms, which are well-known for their nutritional and medicinal properties, have also been studied for their potential use in the treatment of AD. Natural products derived from mushrooms have shown to be beneficial in several AD-related mechanisms, including the inhibition of acetylcholinesterase (AChE) and β-secretase (BACE 1); the prevention of amyloid beta (Aβ) aggregation and neurotoxicity; and the prevention of Tau expression and aggregation, as well as antioxidant and anti-inflammatory potential. Several studies in the literature relate mushrooms to neurodegenerative diseases. However, to the best of our knowledge, there is no publication that summarizes only AD data. In this context, this review aims to link the therapeutic potential of mushrooms to AD by compiling the anti-AD potential of different mushroom extracts or isolated compounds, targeting known AD-related mechanisms.
Collapse
Affiliation(s)
- Ana Margarida Silva
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
| | - Marco Preto
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
- TBIO—Centro de Investigação em Saúde Translacional e Biotecnologia Médica, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Vitor Vasconcelos
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Mariana Reis
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Lillian Barros
- CIMO, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Rosário Martins
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- CISA, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| |
Collapse
|
25
|
Hamano M, Ichinose T, Yasuda T, Ishijima T, Okada S, Abe K, Tashiro K, Furuya S. Bioinformatics Analysis of the Molecular Networks Associated with the Amelioration of Aberrant Gene Expression by a Tyr-Trp Dipeptide in Brains Treated with the Amyloid-β Peptide. Nutrients 2023; 15:2731. [PMID: 37375635 DOI: 10.3390/nu15122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Short-chain peptides derived from various protein sources have been shown to exhibit diverse bio-modulatory and health-promoting effects in animal experiments and human trials. We recently reported that the oral administration of the Tyr-Trp (YW) dipeptide to mice markedly enhances noradrenaline metabolism in the brain and ameliorates the working-memory deficits induced by the β-amyloid 25-35 peptide (Aβ25-35). In the current study, we performed multiple bioinformatics analyses of microarray data from Aβ25-35/YW-treated brains to determine the mechanism underlying the action of YW in the brain and to infer the molecular mechanisms and networks involved in the protective effect of YW in the brain. We found that YW not only reversed inflammation-related responses but also activated various molecular networks involving a transcriptional regulatory system, which is mediated by the CREB binding protein (CBP), EGR-family proteins, ELK1, and PPAR, and the calcium-signaling pathway, oxidative stress tolerance, and an enzyme involved in de novo l-serine synthesis in brains treated with Aβ25-35. This study revealed that YW has a neuroprotective effect against Aβ25-35 neuropathy, suggesting that YW is a new functional-food-material peptide.
Collapse
Affiliation(s)
- Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Takashi Ichinose
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Tokio Yasuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Tomoko Ishijima
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keiko Abe
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Kanagawa, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
- Innovative Bio-Architecture Center, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| |
Collapse
|
26
|
Ahmad F, Singh G, Soni H, Tandon S. Identification of potential neuroprotective compound from Ganoderma lucidum extract targeting microtubule affinity regulation kinase 4 involved in Alzheimer's disease through molecular dynamics simulation and MMGBSA. Aging Med (Milton) 2023; 6:144-154. [PMID: 37287673 PMCID: PMC10242270 DOI: 10.1002/agm2.12232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Objective Alzheimer's disease (AD) is one of the most prevalent neurological ailments, affecting around 50 million individuals globally. The condition is characterized by nerve cell damage due to the formation of amyloid-beta plaques and neurofibrillary tangles. Only a few US Food and Drug Administration (FDA)-approved medications are available in the market which are devoid of side effects, thus, making it imperative to investigate new alternatives for countering this disease. According to a recent study, microtubule affinity regulation kinase 4 (MARK4) is attributed as one of the most promising drug targets for AD, thus, being selected for this study. Compounds from Ganoderma lucidum (Reishi mushroom) extracts were selected to be used as ligands for this study. Methods In this study, the five most potent compounds from Ganoderma lucidum were selected and their absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis was performed, followed by molecular docking, and molecular dynamics simulation of each compound with MARK4 and supported by molecular mechanics generalized born surface area (MMGBSA) binding free energy calculations. Results The promising compounds were selected based on their ADMET profile and interactions with the active site residues of MARK4. Based on docking scores of -9.1 and -10.3 kcal/ mol, respectively, stability assessment by molecular dynamics simulation, and MMGBSA calculations, ganoderic acid A and ganoderenic acid B were found to be the most promising compounds against MARK4 which will require further in vitro and in vivo validations. Conclusion Through this study, it is suggested that ganoderic acid A and ganoderenic acid B might be a class of promising compounds against AD, based on computational research, and can be further studied for preclinical and clinical studies.
Collapse
Affiliation(s)
- Faizan Ahmad
- Department of Medical Elementology and Toxicology Jamia Hamdard University Delhi India
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi CCRAS, Ministry of AYUSH Delhi India
- Kusuma School of Biological Sciences Indian Institute of Technology Delhi India
| | - Hemant Soni
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi CCRAS, Ministry of AYUSH Delhi India
| | - Smriti Tandon
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi CCRAS, Ministry of AYUSH Delhi India
| |
Collapse
|
27
|
Li X, Wang X, Huang B, Huang R. Sennoside A restrains TRAF6 level to modulate ferroptosis, inflammation and cognitive impairment in aging mice with Alzheimer's Disease. Int Immunopharmacol 2023; 120:110290. [PMID: 37216800 DOI: 10.1016/j.intimp.2023.110290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a common neurodegenerative disease and a momentous cause of dementia in the elderly. Sennoside A (SA) is an anthraquinone compound and possesses decisive protective functions in various human diseases. The purpose of this research was to elucidate the protective effect of SA against AD and investigate its mechanism. METHODS Male APPswe/PS1dE9 (APP/PS1) transgenic mice with a C57BL/6J background were chosen as AD model. Age-matched nontransgenic littermates (C57BL/6 mice) were negative controls. SA's functions in AD in vivo were estimated by cognitive function analysis, Western blot, hematoxylin-eosin staining, TUNEL staining, Nissl staining, detection of Fe2+ levels, glutathione and malondialdehyde contents, and quantitative real-time PCR. Also, SA's functions in AD in LPS-induced BV2 cells were examined using Cell Counting Kit-8 assay, flow cytometry, quantitative real-time PCR, Western blot, enzyme-linked immunosorbent assay, and analysis of reactive oxygen species levels. Meanwhile, SA's mechanisms in AD were assessed by several molecular experiments. RESULTS Functionally, SA mitigated cognitive function, hippocampal neuronal apoptosis, ferroptosis, oxidative stress, and inflammation in AD mice. Furthermore, SA reduced BV2 cell apoptosis, ferroptosis, oxidative stress, and inflammation induced by LPS. Rescue assay revealed that SA abolished the high expressions of TRAF6 and p-P65 (NF-κB pathway-related proteins) induced by AD, and this impact was reversed after TRAF6 overexpression. Conversely, this impact was further enhanced after TRAF6 knockdown. CONCLUSIONS SA relieved ferroptosis, inflammation and cognitive impairment in aging mice with AD through decreasing TRAF6.
Collapse
Affiliation(s)
- Xiaojia Li
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China
| | - Xiaoping Wang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China.
| | - Bin Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China
| | - Rui Huang
- Department of Neurology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan, 610072, China
| |
Collapse
|
28
|
Lin NH, Goh A, Lin SH, Chuang KA, Chang CH, Li MH, Lu CH, Chen WY, Wei PH, Pan IH, Perng MD, Wen SF. Neuroprotective Effects of a Multi-Herbal Extract on Axonal and Synaptic Disruption in Vitro and Cognitive Impairment in Vivo. J Alzheimers Dis Rep 2023; 7:51-76. [PMID: 36777330 PMCID: PMC9912829 DOI: 10.3233/adr-220056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Background Alzheimer's disease (AD) is a multifactorial disorder characterized by cognitive decline. Current available therapeutics for AD have limited clinical benefit. Therefore, preventive therapies for interrupting the development of AD are critically needed. Molecules targeting multifunction to interact with various pathlogical components have been considered to improve the therapeutic efficiency of AD. In particular, herbal medicines with multiplicity of actions produce cognitive benefits on AD. Bugu-M is a multi-herbal extract composed of Ganoderma lucidum (Antler form), Nelumbo nucifera Gaertn., Ziziphus jujuba Mill., and Dimocarpus longan, with the ability of its various components to confer resilience to cognitive deficits. Objective To evaluate the potential of Bugu-M on amyloid-β (Aβ) toxicity and its in vitro mechanisms and on in vivo cognitive function. Methods We illustrated the effect of Bugu-M on Aβ25-35-evoked toxicity as well as its possible mechanisms to diminish the pathogenesis of AD in rat cortical neurons. For cognitive function studies, 2-month-old female 3×Tg-AD mice were administered 400 mg/kg Bugu-M for 30 days. Behavioral tests were performed to assess the efficacy of Bugu-M on cognitive impairment. Results In primary cortical neuronal cultures, Bugu-M mitigated Aβ-evoked toxicity by reducing cytoskeletal aberrations and axonal disruption, restoring presynaptic and postsynaptic protein expression, suppressing mitochondrial damage and apoptotic signaling, and reserving neurogenic and neurotrophic factors. Importantly, 30-day administration of Bugu-M effectively prevented development of cognitive impairment in 3-month-old female 3×Tg-AD mice. Conclusion Bugu-M might be beneficial in delaying the progression of AD, and thus warrants consideration for its preventive potential for AD.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Angela Goh
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Shyh-Horng Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Kai-An Chuang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Hsuan Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Han Li
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chu-Hsun Lu
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Wen-Yin Chen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Pei-Hsuan Wei
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - I-Hong Pan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,
School of Medicine, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| | - Shu-Fang Wen
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan,Correspondence to: Shu-Fang Wen, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, 321, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35743946; E-mail: and Ming-Der Perng, College of Life Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan. Tel.: +886 35742024; E-mail:
| |
Collapse
|
29
|
Zhang RR, Zhang J, Guo X, Chen YY, Sun JY, Miao JL, Carpena M, Prieto M, Li NY, Zhou QX, Liu C. Molecular mechanisms of the chemical constituents from anti-inflammatory and antioxidant active fractions of Ganoderma neo-japonicum Imazeki. Curr Res Food Sci 2023; 6:100441. [PMID: 36756001 PMCID: PMC9900368 DOI: 10.1016/j.crfs.2023.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Ganoderma neo-japonicum Imazeki is a rare medicinal mushroom that has been reported to play a role in scavenging free radicals, protecting the liver, and inhibiting tumor cell activity. In this study, crude extracts were prepared, and 47 triterpenoids were identified by Ultra-high-performance liquid chromatography coupled with triple quadrupole time-of flight mass spectrometry (UHPLC-Triple TOF-MS/MS). Then, the crude extracts were subjected to column chromatography for the first time to obtain six fractions (Fr. (a), (b), (c), (d), (e) and (f)). Antioxidant and anti-inflammatory active tracking assays of all fractions found that Fr. (c) exhibited the strongest bioactivity. Subsequently, the chemical composition of Fr. (c) was clarified, and eight triterpenoids were determined in combination with the standard substances. In addition, this study demonstrated that Fr. (c) reduced the levels of inflammatory cytokines and reactive oxygen species (ROS) in LPS-stimulated RAW264.7 macrophages. Further studies showed that Fr. (c) could down-regulate the expression level of proteins associated of NF-κB signaling pathway, and upregulated Nrf2 and HO-1 protein level. In conclusion, our study showed that Fr. (c) inhibited LPS-mediated inflammatory response and oxidative stress by activating the Nrf2/HO-1 pathway and inactivating the NF-κB pathway. In the future, with the clearing of its composition and activity mechanism, Fr. (c) of G. neo-japonicum are expected to become a functional food for health and longevity.
Collapse
Affiliation(s)
- Rui-rui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, PR China,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Jing Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Xu Guo
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Ying-ying Chen
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Jin-yue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Jia-lin Miao
- Weihai Yuwang Group CO., LTD, Wei Hai, 264209, Shandong, PR China
| | - M. Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain
| | - M.A. Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain,Agrifood Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur). SERGAS-UVIGO, Spain,Corresponding authors. Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain.
| | - Ning-yang Li
- College Food Science and Engineering, Shandong Agricultural University, Tai An, 271018, Shandong, PR China,Corresponding author.
| | - Qing-xin Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, PR China,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China,Corresponding authors. Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China,Weihai Yuwang Group CO., LTD, Wei Hai, 264209, Shandong, PR China,Corresponding author. Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China.
| |
Collapse
|
30
|
He Y, Li J, Yi L, Li X, Luo M, Pang Y, Wang M, Li Z, Xu M, Dong Z, Du Y. Octadecaneuropeptide Ameliorates Cognitive Impairments Through Inhibiting Oxidative Stress in Alzheimer's Disease Models. J Alzheimers Dis 2023; 92:1413-1426. [PMID: 36911940 DOI: 10.3233/jad-221115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by amyloid-β peptide (Aβ) deposition. Aβ accumulation induces oxidative stress, leading to mitochondrial dysfunction, apoptosis, and so forth. Octadecaneuropeptide (ODN), a diazepam-binding inhibitor (DBI)-derived peptide, has been reported to have antioxidant properties. However, it is unclear whether ODN has neuroprotective effects in AD. OBJECTIVE To profile the potential effects of ODN on AD. METHODS We established a mouse model of AD via microinjection of Aβ in the lateral ventricle. Utilizing a combination of western blotting assays, electrophysiological recordings, and behavioral tests, we investigated the neuroprotective effects of ODN on AD. RESULTS DBI expression was decreased in AD model mice and cells. Meanwhile, ODN decreased Aβ generation by downregulating amyloidogenic AβPP processing in HEK-293 cells stably expressing human Swedish mutant APP695 and BACE1 (2EB2). Moreover, ODN could inhibit Aβ-induced oxidative stress in primary cultured cells and mice, as reflected by a dramatic increase in antioxidants and a decrease in pro-oxidants. We also found that ODN could reduce oxidative stress-induced apoptosis by restoring mitochondrial membrane potential, intracellular Ca2+ and cleaved caspase-3 levels in Aβ-treated primary cultured cells and mice. More importantly, intracerebroventricular injection of ODN attenuated cognitive impairments as well as long-term potentiation in Aβ-treated mice. CONCLUSION These results suggest that ODN may exert a potent neuroprotective effect against Aβ-induced neurotoxicity and memory decline via its antioxidant effects, indicating that ODN may be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Yan He
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liling Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohuan Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Man Luo
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yayan Pang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Maoju Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaolun Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingliang Xu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Ji C, Yang Y, Fu Y, Pu X, Xu G. Improvement of Ganoderma lucidum water extract on the learning and memory impairment and its mechanism in d-galactose-induced aging mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
32
|
Cheng L, Wang F, Li ZH, Wen C, Ding L, Zhang SB, You QY. Study on the active components and mechanism of Suanzaoren decoction in improving cognitive impairment caused by sleep deprivation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115502. [PMID: 35777606 DOI: 10.1016/j.jep.2022.115502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Suanzaoren Decoction (SZRD) is a traditional and classic prescription for the treatment of insomnia, with a history of more than 1,000 years. It replenishes blood components, calms the nerves, reduces fever and irritability. It is commonly used in the clinical treatment of chronic fatigue syndrome, cardiac neurosis, and menopausal syndromes. Modern pharmacological studies have shown that it improves cognitive impairment; however, its mechanism of action remains unclear. AIM OF THE STUDY This study preliminarily investigated the potential bioactive components and mechanism of SZRD in improving cognitive impairment by exploring network pharmacology, molecular docking, and conducting in vivo experiments. MATERIALS AND METHODS The components of various Chinese herbs in SZRD and their disease-related targets were identified through network pharmacology and literature. Gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of intersection targets were performed using the relevant database. Next, the "Components-Targets-Pathways" (C-T-P) and "Protein-Protein interaction" networks were constructed using the enrichment analysis results to further identify potential pathways, bioactive components, and hub genes. At the same time, molecular docking was used to further distinguish the key bioactive components and genes of SZRD responsible for improving cognitive impairment. Finally, the potential mechanism of action was further analysed and verified using in vivo experiments. RESULTS A total of 117 potential active components and 138 intersection targets were identified by network pharmacology screening. The key bioactive components, including calycosin, 5-Prenylbutein, licochalcone G, glypallichalcone, and ZINC189892, were identified by analysing the networks and molecular docking results. Hub genes included ACHE, CYP19A1, EGFR, ESR1, and ESR2. The oestrogen signalling pathway was the most important in the enrichment analysis. In vivo experiments further proved that SZRD could improve cognitive impairment by affecting the oestrogen signalling pathway and the expression of ACHE and CYP19A1. CONCLUSIONS Network pharmacology and in vivo experiments demonstrate that SZRD improves cognitive impairment caused by sleep disturbance through estrogen receptor pathway, which provides a basis for its clinical application.
Collapse
Affiliation(s)
- Li Cheng
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Fei Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Zi-Heng Li
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Chun Wen
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Li Ding
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Shun-Bo Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Qiu-Yun You
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
33
|
Liu M, Zeng M, Wang S, Cao B, Guo P, Zhang Y, Jia J, Zhang Q, Zhang B, Wang R, Li J, Zheng X, Feng W. Thymidine and 2'-deoxyuridine reduce microglial activation and improve oxidative stress damage by modulating glycolytic metabolism on the Aβ 25-35-induced brain injury. Arch Biochem Biophys 2022; 729:109377. [PMID: 35998686 DOI: 10.1016/j.abb.2022.109377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/24/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is a progressive disease with a long duration and complicated pathogenesis. Thymidine (Thy) and 2'-deoxyuridine (2'-De) are pyrimidines nucleotides that are associated with nervous system diseases. However, it remains unclear whether Thy and 2'-De exert neuroprotective effects in AD. Therefore, this study was conducted to explore the interventional effects and mechanisms of Thy and 2'-De on the Aβ25-35-induced brain injury. Donepezil (Do, 10 mg/kg/d), Thy (20 mg/kg/d), and 2'-De (20 mg/kg/d) were administered for 4 weeks after the injection of Aβ25-35 peptides (200 μM, i.c.v.) to mice. UPLC-MS/MS method was performed to quantify Thy and 2'-De in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aβ1-42/Aβ1-40, p-Tau, Na+ K+-ATPase, apoptosis, oxidative stress, immune cells, and Iba 1+ were measured in Aβ25-35-induced mice. The oxygen consumption (OCR) and extracellular acidification rate (ECAR) were measured using a seahorse analyzer in Aβ25-35-induced N9 cells. Moreover, 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, was added to explore the mechanisms underlying the effects of Thy and 2'-De on Aβ25-35-induced N9 cells. The expression of Iba 1+ and levels of CD11b+ and reactive oxygen species (ROS) were measured after treatment with Thy (5 μM) and 2'-De (10 μM) against 2-DG (5 mM) in Aβ25-35-induced N9 cells. The results suggested that Do, Thy, and 2'-De improved the cognition ability, attenuated the damage to hippocampus and mitochondria, downregulated the levels of Aβ1-42/Aβ1-40, p-Tau, Na+ K+-ATPase, apoptosis, oxidative stress, and Iba 1+, and regulated the immune response induced by Aβ25-35 against the brain injury. Furthermore, Do, Thy, and 2'-De increased ATP production and inhibited glycolysis in Aβ25-35-induced N9 cells. Moreover, 2-DG enhanced the effects of drugs, reduced microglial activation, and attenuated oxidative stress to interfere with Aβ25-35-induced N9 cells. In conclusion, Thy and 2'-De reduced microglial activation and improved oxidative stress damage by modulating glycolytic metabolism on the Aβ25-35-induced brain injury.
Collapse
Affiliation(s)
- Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Bing Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Yuhan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Ru Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China
| | - Jinyue Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China.
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
34
|
Mechanism of Zhinao Capsule in Treating Alzheimer’s Disease Based on Network Pharmacology Analysis and Molecular Docking Validation. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5708769. [PMID: 36032542 PMCID: PMC9410932 DOI: 10.1155/2022/5708769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
Objective This study aimed to determine the active components of Zhinao capsule (ZNC) and the targets in treating Alzheimer's disease (AD) so as to investigate and explore the mechanism of ZNC for AD. Methods The active components and targets of ZNC were determined from the traditional Chinese medicine systems pharmacology database (TCMSP). The target genes of AD were searched for in GeneCards. Cytoscape was used to construct an herb-component-target-disease network. A protein-protein interaction (PPI) network was constructed by STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using the OmicShare. UCSF Chimera and SwissDock were used for molecular docking verification. Finally, four key target genes were validated by Western blotting. Results In total, 55 active components, 287 targets of active components, 1197 disease genes, and 134 common genes were screened, which were significantly enriched in 3975 terms of biological processes (BP), 284 terms of cellular components (CC), 433 terms of molecular functions (MF), and 245 signaling pathways. Caspase-3 (CASP3) and beta-sitosterol, tumor necrosis factor-alpha (TNF-α) and quercetin, vascular endothelial growth factor A (VEGFA) and baicalein, and mitogen-activated protein kinase 1 (MAPK1) and quercetin showed good-to-better docking. Moreover, ZNC not only downregulated CASP3 and TNF-α protein expression but also upregulated the protein expression of VEGFA and MAPK1. Conclusions The active components of ZNC, such as beta-sitosterol, quercetin, and baicalein may act on multiple targets like CASP3, VEGFA, MAPK1, and TNF-α to affect T cell receptor (TCR), TNF, and MAPK signaling pathway, thereby achieving the treatment of AD. This study provides a scientific basis for further exploring the potential mechanism of ZNC in the treatment of AD and a reference for its clinical application.
Collapse
|
35
|
Delving the Role of Caralluma fimbriata: An Edible Wild Plant to Mitigate the Biomarkers of Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5720372. [PMID: 35770046 PMCID: PMC9236770 DOI: 10.1155/2022/5720372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome (MS), commonly known as syndrome X or insulin resistance syndrome, is a collection of risk factors for cardiovascular diseases and type II diabetes. MS is believed to impact over a billion individuals worldwide. It is a medical condition defined by visceral obesity, insulin resistance, high blood pressure, and abnormal cholesterol levels, according to the World Health Organization. The current dietary trends are more focused on the use of functional foods and nutraceuticals that are well known for their preventive and curative role against such pathological disorders. Caralluma fimbriata is one such medicinal plant that is gaining popularity. It is a wild, edible, succulent roadside shrub with cactus-like leaves. Besides its main nutrient contents, various bioactive constituents have been identified and linked with positive health outcomes of appetite-suppressing, hypolipidemic, antioxidant, hepatoprotective, and anticancer potentials. Hence, such properties make C. fimbriata an invaluable plant against MS. The current review compiles recent available literature on C. fimbriata's nutritional composition, safety parameters, and therapeutic potential for MS. Summarized data in this review reveals that C. fimbriata remains a neglected plant with limited food and therapeutic applications. Yet various studies explored here do prove its positive health-ameliorating outcomes.
Collapse
|
36
|
Shen Qi Wan Ameliorates Learning and Memory Impairment Induced by STZ in AD Rats through PI3K/AKT Pathway. Brain Sci 2022; 12:brainsci12060758. [PMID: 35741643 PMCID: PMC9221466 DOI: 10.3390/brainsci12060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease is the most common form of neurodegenerative disease, and increasing evidence shows that insulin signaling has crucial roles in AD initiation and progression. In this study, we explored the effect and underlying mechanism of SQW, a representative formula for tonifying the kidney and promoting yang, on improving the cognitive function in a streptozotocin-induced model of AD rats. We investigated memory impairment in the AD rats by using the Morris water test. HE and Nissl staining were employed to observe the histomorphological changes in the hippocampal. Expression levels of NeuN and proteins related to Tau and apoptosis were measured using immunohistochemistry and Western blotting, respectively. Additionally, we performed RNA sequencing, and the selected hub genes were then validated by qRT-PCR. Furthermore, the protein expression levels of PI3K/AKT pathway-related proteins were detected by Western blot. We found that SQW treatment significantly alleviated learning and memory impairment, pathological damage, and apoptosis in rats, as evidenced by an increased level of NeuN and Bcl-2, and decreased phosphorylation of Tau, Bax, and Caspase-3 protein expression. SQW treatment reversed the expression of insulin resistance-related genes (Nr4a1, Lpar1, Bdnf, Atf2, and Ppp2r2b) and reduced the inhibition of the PI3K/AKT pathway. Our results demonstrate that SQW could contribute to neuroprotection against learning and memory impairment in rats induced by STZ through activation of the PI3K/AKT pathway.
Collapse
|
37
|
Lee DH, Lee JY, Hong DY, Lee EC, Park SW, Jo YN, Park YJ, Cho JY, Cho YJ, Chae SH, Lee MR, Oh JS. ROCK and PDE-5 Inhibitors for the Treatment of Dementia: Literature Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10061348. [PMID: 35740369 PMCID: PMC9219677 DOI: 10.3390/biomedicines10061348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Dementia is a disease in which memory, thought, and behavior-related disorders progress gradually due to brain damage caused by injury or disease. It is mainly caused by Alzheimer’s disease or vascular dementia and several other risk factors, including genetic factors. It is difficult to treat as its incidence continues to increase worldwide. Many studies have been performed concerning the treatment of this condition. Rho-associated kinase (ROCK) and phosphodiesterase-5 (PDE-5) are attracting attention as pharmacological treatments to improve the symptoms. This review discusses how ROCK and PDE-5 affect Alzheimer’s disease, vascular restructuring, and exacerbation of neuroinflammation, and how their inhibition helps improve cognitive function. In addition, the results of the animal behavior analysis experiments utilizing the Morris water maze were compared through meta-analysis to analyze the effects of ROCK inhibitors and PDE-5 inhibitors on cognitive function. According to the selection criteria, 997 publications on ROCK and 1772 publications on PDE-5 were screened, and conclusions were drawn through meta-analysis. Both inhibitors showed good improvement in cognitive function tests, and what is expected of the synergy effect of the two drugs was confirmed in this review.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Ji Young Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Eun Chae Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Yu Na Jo
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Yu Jin Park
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Jae Young Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Yoo Jin Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Su Hyun Chae
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (M.R.L.); (J.S.O.)
| | - Jae Sang Oh
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (M.R.L.); (J.S.O.)
| |
Collapse
|
38
|
Pharmacological Mechanism of Shen Huang Chong Ji for Treating Alzheimer's Disease Based on Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9243348. [PMID: 35656471 PMCID: PMC9155915 DOI: 10.1155/2022/9243348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/05/2022] [Indexed: 11/17/2022]
Abstract
The traditional Chinese medicine (TCM) formula, Sheng Huang Chong Ji (SHCJ) is largely applied for treating Alzheimer's disease (AD), but not much is known regarding its active compounds, molecular targets, and mechanism of action. The current study aimed to predict the potential molecular mechanism of SHCJ against AD based on network pharmacology combined with in vitro validation. Using public databases, SHCJ's active compounds, their potential targets, and AD-related genes were screened, while Cytoscape Version 3.7.2 was used to build protein-protein interaction (PPI) and compound-disease-target (C-D-T) networks. Analysis of enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontology (GO) terms was then carried out in R 4.0.2, including associated packages. Subsequently, molecular docking analysis was performed with AutoDock Vina 1.1.2, with intro experiments involving SH-SY5Y cells used to further investigate the mechanism of SHCJ against AD. Finally, a total of 56 active compounds of SHCJ and 192 SHCJ-AD-related targets were identified. Quercetin was identified as the top potential candidate agent. HSP90AA1, AKT1, and MAPK1 represent potential therapeutic targets. The PI3K-Akt signaling pathway potentially represents a core one mediating the effects of SHCJ against AD. Additionally, molecular docking analysis indicated that quercetin could combine well with AKT1 and multiple apoptosis-related target genes. During cell experiments, a significant increase in cell viability along with a decrease in Aβ 25-35-induced apoptosis was observed after treatment with SHCJ. Furthermore, SHCJ significantly increased the phosphorylation of PI3K and Akt while reversing Aβ 25-35-induced apoptosis-related protein expression downregulation.
Collapse
|
39
|
Li Q, Li X, Tian B, Chen L. Protective effect of pterostilbene in a streptozotocin-induced mouse model of Alzheimer's disease by targeting monoamine oxidase B. J Appl Toxicol 2022; 42:1777-1786. [PMID: 35665945 DOI: 10.1002/jat.4355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease in elderly population. Pterostilbene (PTS) is a resveratrol analogue with neuroprotective activity. However, the biological mechanisms of PTS in AD progression are largely uncertain. An animal model of AD was established using streptozotocin (STZ)-treated C57BL/6J mice. Monoamine oxidase B (MAOB) expression was analyzed by bioinformatics analysis and detected by western blotting assay. The memory impairment was investigated by Morris water maze test. The levels of Tau hyperphosphorylation and death-related proteins were detected by western blotting analysis. The levels of amyloid β (Aβ)1-42 accumulation, oxidative stress-related markers (ROS, MDA, SOD and GSH), and inflammation-relative markers (TNF-α, IL-1β, IL-6 and p-NF-κB) were measured by ELISA. MAOB expression was increased in hippocampus of AD mice, and it was decreased by PTS. PTS attenuated STZ-induced body weight loss and memory impairment by regulating MAOB. PTS mitigated Aβ1-42 accumulation and Tau hyperphosphorylation by regulating MAOB in STZ-treated mice. PTS attenuated neuronal death by decreasing cleaved caspase-3 and Bax levels and increasing Bcl2 expression in hippocampus by regulating MAOB in STZ-treated mice. PTS weakened STZ-induced oxidative stress in hippocampus by decreasing ROS and MDA levels and increasing SOD and GSH levels by regulating MAOB. PTS protected against STZ-induced neuroinflammation in hippocampus by inhibiting TNF-α, IL-1β, IL-6 and p-NF-κB levels through regulating MAOB. In conclusion, PTS alleviates STZ-induced memory impairment, Aβ1-42 accumulation, Tau hyperphosphorylation, neuronal death, oxidative stress and inflammation by decreasing MAOB in AD mice, proving anti-AD potential of PTS.
Collapse
Affiliation(s)
- Qiushi Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xidong Li
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Buxian Tian
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Long Chen
- Department of Anesthesiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
40
|
Discovery of a Multifunctional Octapeptide from Lingzhi with Antioxidant and Tyrosinase Inhibitory Activity. Pharmaceuticals (Basel) 2022; 15:ph15060684. [PMID: 35745603 PMCID: PMC9230030 DOI: 10.3390/ph15060684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Ganoderma lucidum or Lingzhi is a fungus species widely known as a traditional medicine. Exploring the beneficial peptides by hydrolysis using pepsin and trypsin has been extensively performed to identify new bioactive natural products. A multifunctional peptide that expresses potential scavenging activity and tyrosinase inhibition is valuable in therapeutic and cosmetic applications. This study aimed to identify and investigate the effects of a novel multifunctional peptide from Lingzhi on the melanogenic enzymes in melanoma cells by a targeted-proteomics approach. The multifunctional peptide was de novo sequenced by LC-MS/MS to be NH2-PVRSSNCA-CO2H (octapeptide). This sequence was chemically synthesized by solid-phase peptide synthesis (SPPS). The antioxidant ability of the synthesized octapeptide was measured by the DPPH, ABTS, and FRAP assays. The results showed that the peptide exhibited an antioxidant activity equal to 0.121 ± 0.01 mg equivalent to ascorbic acid, 0.173 ± 0.03 mg equivalent to gallic acid, and 2.21 ± 0.23 mM equivalent to FeSO4, respectively, which is comparable to these well-known antioxidants. The proteomics approach identified a total of 5804 proteins and several pathways involved in the effects of the octapeptide in melanoma cells. Targeted proteomics revealed three specific proteins associated with pigmentation including Rab29, Dct, and Tyrp1. The Rab29 and Dct were upregulated whereas Tyrp1 was downregulated in the octapeptide treatment group. These findings could be used in the understanding of the molecular functions of the multifunctional octapeptide on melanogenic enzymes, supporting its potential as a therapeutic and cosmetic ingredient.
Collapse
|
41
|
Mi X, Zeng GR, Liu JQ, Luo ZS, Zhang L, Dai XM, Fang WT, Zhang J, Chen XC. Ganoderma Lucidum Triterpenoids Improve Maternal Separation-Induced Anxiety- and Depression-like Behaviors in Mice by Mitigating Inflammation in the Periphery and Brain. Nutrients 2022; 14:nu14112268. [PMID: 35684068 PMCID: PMC9182879 DOI: 10.3390/nu14112268] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Although early life stress (ELS) can increase susceptibility to adulthood psychiatric disorders and produce a greater inflammatory response in a stressful event, targeted preventive and therapeutic drugs still remain scarce. Ganoderma lucidum triterpenoids (GLTs) can exert anti-inflammatory effects in the periphery and central nervous systems. This study employed a combined model of “childhood maternal separation + adulthood sub-stress” to explore whether GLTs may alleviate anxiety- and depression-like behaviors in male and female mice by mitigating inflammation. Male and female pups were separated from their mothers for four hours per day from postnatal day 1 (PND 1) to PND 21; starting from PND 56, GLTs were administered intraperitoneally once daily for three weeks and followed by three days of sub-stress. Results showed that maternal separation increased the anxiety- and depression-like behaviors in both male and female mice, which disappeared after the preemptive GLTs treatment (40 mg/kg) before adulthood sub-stress. Maternal separation up-regulated the pro-inflammatory markers in the periphery and brain, and activated microglia in the prefrontal cortex and hippocampus. All the abnormalities were reversed by GLTs administration, with no adverse effects on immune organ indices, liver, and renal function. Our findings suggest that GLTs can be a promising candidate in treating ELS-induced psychiatric disorders.
Collapse
Affiliation(s)
- Xue Mi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
| | - Gui-Rong Zeng
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
| | - Jie-Qing Liu
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (J.-Q.L.); (L.Z.)
| | - Zhou-Song Luo
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
| | - Ling Zhang
- School of Medicine, Huaqiao University, Quanzhou 362021, China; (J.-Q.L.); (L.Z.)
| | - Xiao-Man Dai
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wen-Ting Fang
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Jing Zhang
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Correspondence: (J.Z.); (X.-C.C.)
| | - Xiao-Chun Chen
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; (X.M.); (G.-R.Z.); (Z.-S.L.); (X.-M.D.); (W.-T.F.)
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Correspondence: (J.Z.); (X.-C.C.)
| |
Collapse
|
42
|
Zhao H, Wei J, Du Y, Chen P, Liu X, Liu H. Improved cognitive impairments by silencing DMP1 via enhancing the proliferation of neural progenitor cell in Alzheimer-like mice. Aging Cell 2022; 21:e13601. [PMID: 35366382 PMCID: PMC9124312 DOI: 10.1111/acel.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 11/28/2022] Open
Abstract
Alzheimer's disease (AD) is age-related progressive neurological dysfunction. Limited clinical benefits for current treatments indicate an urgent need for novel therapeutic strategies. Previous transcriptomic analysis showed that DMP1 expression level was increased in AD model animals whereas it can induce cell-cycle arrest in several cell lines. However, whether the cell-cycle arrest of neural progenitor cell induced by DMP1 affects cognitive function in Alzheimer-like mice still remains unknown. The objective of our study is to explore the issue. We found that DMP1 is correlated with cognitive function based on the clinical genomic analysis of ADNI database. The negative role of DMP1 on neural progenitor cell (NPC) proliferation was revealed by silencing and overexpressing DMP1 in vitro. Furthermore, silencing DMP1 could increase the number of NPCs and improve cognitive function in Alzheimer-like mice, through decreasing P53 and P21 levels, which suggested that DMP1-induced cell-cycle arrest could influence cognitive function.
Collapse
Affiliation(s)
- Huimin Zhao
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jie Wei
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Yanan Du
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Peipei Chen
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Xiaoquan Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Haochen Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | | |
Collapse
|
43
|
Activation of TGR5 Ameliorates Streptozotocin-Induced Cognitive Impairment by Modulating Apoptosis, Neurogenesis, and Neuronal Firing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3716609. [PMID: 35464765 PMCID: PMC9033389 DOI: 10.1155/2022/3716609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is the first known G protein-coupled receptor specific for bile acids and is recognized as a new and critical target for type 2 diabetes and metabolic syndrome. It is expressed in many brain regions associated with memory such as the hippocampus and frontal cortex. Here, we hypothesize that activation of TGR5 may ameliorate streptozotocin- (STZ-) induced cognitive impairment. The mouse model of cognitive impairment was established by a single intracerebroventricular (ICV) injection of STZ (3.0 mg/kg), and we found that TGR5 activation by its agonist INT-777 (1.5 or 3.0 μg/mouse, ICV injection) ameliorated spatial memory impairment in the Morris water maze and Y-maze tests. Importantly, INT-777 reversed STZ-induced downregulation of TGR5 and glucose usage deficits. Our results further showed that INT-777 suppressed neuronal apoptosis and improved neurogenesis which were involved in tau phosphorylation and CREB-BDNF signaling. Moreover, INT-777 increased action potential firing of excitatory pyramidal neurons in the hippocampal CA3 and medial prefrontal cortex of ICV-STZ groups. Taken together, these findings reveal that activation of TGR5 has a neuroprotective effect against STZ-induced cognitive impairment by modulating apoptosis, neurogenesis, and neuronal firing in the brain and TGR5 might be a novel and potential target for Alzheimer's disease.
Collapse
|
44
|
Tao P, Ji J, Gu S, Wang Q, Xu Y. Progress in the Mechanism of Autophagy and Traditional Chinese Medicine Herb Involved in Dementia. Front Pharmacol 2022; 12:825330. [PMID: 35242028 PMCID: PMC8886436 DOI: 10.3389/fphar.2021.825330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Dementias is a kind of neurodegenerative disease, which occurs among the aging population. Current therapeutic outcome for dementia is limited. The medical use of herbal plant has a rich history in traditional Chinese medicine practice for thousands of years. Herbal medicine (HM) may provide a positive effect for prevention and treatment in dementia. As an alternative treatment to dementia, there has been a growing interest in HM extracts in scientific community as a result of its promising study results, mainly in animal experiment. At the molecular level, HM extracts trigger autophagy and reduce generation of reactive oxygen species (ROS) while inhibiting inflammation and reduce neurotoxicity. Experiments both in vivo and in vitro have identified certain potential of HM extracts and natural products as an important regulator factor in mediating autophagy, which might contribute to the improvement of dementia. This brief review not only summarizes the mechanism of autophagy in dementia but also offers a general understanding of the therapeutic mechanism of HM extracts in treating dementia and evaluates the potential clinical practice of HM in general.
Collapse
Affiliation(s)
- Pengyu Tao
- Basic Medical School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ji
- Department of Nephrology, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Simeng Gu
- Department of Psychology, Jiangsu University Medical School, Zhenjiang, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| |
Collapse
|
45
|
Guo P, Zhang B, Zhao J, Wang C, Wang Z, Liu A, Du G. Medicine-Food Herbs against Alzheimer’s Disease: A Review of Their Traditional Functional Features, Substance Basis, Clinical Practices and Mechanisms of Action. Molecules 2022; 27:molecules27030901. [PMID: 35164167 PMCID: PMC8839204 DOI: 10.3390/molecules27030901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder that currently has reached epidemic proportions among elderly populations around the world. In China, available traditional Chinese medicines (TCMs) that organically combine functional foods with medicinal values are named “Medicine Food Homology (MFH)”. In this review, we focused on MFH varieties for their traditional functional features, substance bases, clinical uses, and mechanisms of action (MOAs) for AD prevention and treatment. We consider the antiAD active constituents from MFH species, their effects on in vitro/in vivo AD models, and their drug targets and signal pathways by summing up the literature via a systematic electronic search (SciFinder, PubMed, and Web of Science). In this paper, several MFH plant sources are discussed in detail from in vitro/in vivo models and methods, to MOAs. We found that most of the MFH varieties exert neuroprotective effects and ameliorate cognitive impairments by inhibiting neuropathological signs (Aβ-induced toxicity, amyloid precursor protein, and phosphorylated Tau immunoreactivity), including anti-inflammation, antioxidative stress, antiautophagy, and antiapoptosis, etc. Indeed, some MFH substances and their related phytochemicals have a broad spectrum of activities, so they are superior to simple single-target drugs in treating chronic diseases. This review can provide significant guidance for people’s healthy lifestyles and drug development for AD prevention and treatment.
Collapse
Affiliation(s)
- Pengfei Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Baoyue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (A.L.); (G.D.)
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (A.L.); (G.D.)
| |
Collapse
|
46
|
Inhibition of ROCK2 kinase activity improved behavioral deficits and reduced neuron damage in a DEACMP rat model. Brain Res Bull 2022; 180:24-30. [PMID: 34990732 DOI: 10.1016/j.brainresbull.2021.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/19/2022]
Abstract
The main pathological changes that occur in delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) are extensive demyelination of brain white matter and neuron damage. Previous studies suggested that demyelination and neuron injury are related to activating the Rho/ROCK signaling pathway. Inhibition of the Rho/ROCK signaling pathway can alleviate neuron injury and promote myelin repair. This study utilized a DEACMP model in which rats were prepared by space injection of CO gas intraperitoneally (CO group), and the association between the Rho/ROCK signaling pathway and DEACMP was investigated. The ROCK2 kinase inhibitor Y-27632 was used to prevent the effects of the DEACMP model to elucidate its protective mechanism. The results demonstrated that the cognitive and motor functions were significantly impaired, and the GFAP, NSE, RhoA, and ROCK2 protein levels were significantly increased in the CO group within three weeks after the model was established. After Y-27632 intervention, the cognitive and motor functions of the CO+Y-27632 group were significantly improved within three weeks after the model was established. In the CO+Y-27632 group, the RhoA, ROCK2, GFAP, and NSE (indicating neuron injury) protein levels decreased significantly, and the MBP protein levels (indicating myelin repair) increased significantly within three weeks after the model was established. These results suggested that the pathogenesis of DEACMP was associated with activation of the Rho/ROCK pathway and that Y-27632 inhibited ROCK2 kinase activity in the CO exposed rats, resulting in improved behavioral deficits, reduced neuron damage, and promotion of myelin repair. Therefore, Y-27632 might be a potentially effective drug for the treatment of DEACMP-induced brain damage.
Collapse
|
47
|
Xu Y, Liu S, Zhu L, Dai L, Qian W, Zhang J, Li X, Pan W. Green tea protects against hippocampal neuronal apoptosis in diabetic encephalopathy by inhibiting JNK/MLCK signaling. Mol Med Rep 2021; 24:575. [PMID: 34132368 PMCID: PMC8223107 DOI: 10.3892/mmr.2021.12214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Although diabetic encephalopathy (DE) is a major late complication of diabetes, the pathophysiology of postural instability in DE remains poorly understood. Prior studies have suggested that neuronal apoptosis is closely associated with cognitive function, but the mechanism remains to be elucidated. Green tea, which is a non-fermented tea, contains a number of tea polyphenols, alkaloids, amino acids, polysaccharides and other components. Some studies have found that drinking green tea can reduce the incidence of neurodegenerative diseases and improve cognitive dysfunction. We previously found that myosin light chain kinase (MLCK) regulates apoptosis in high glucose-induced hippocampal neurons. In neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, activation of the JNK signaling pathway promotes neuronal apoptosis. However, the relationship between JNK and MLCK remains to be elucidated. Green tea serum was obtained using seropharmacological methods and applied to hippocampal neurons. In addition, a type 1 diabetes rat model was established and green tea extract was administered, and the Morris water maze test, Cell Counting Kit-8 assays, flow cytometry, western blotting and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling assays were used to examine the effects of green tea on hippocampal neuronal apoptosis in diabetic rats. The results demonstrated that green tea can protect against hippocampal neuronal apoptosis by inhibiting the JNK/MLCK pathway and ultimately improves cognitive function in diabetic rats. The present study provided novel insights into the neuroprotective effects of green tea.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Shengju Liu
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Liying Zhu
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Longguang Dai
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Wen Qian
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Jingzhi Zhang
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Xing Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Wei Pan
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
48
|
Qi LFR, Liu S, Liu YC, Li P, Xu X. Ganoderic Acid A Promotes Amyloid-β Clearance (In Vitro) and Ameliorates Cognitive Deficiency in Alzheimer's Disease (Mouse Model) through Autophagy Induced by Activating Axl. Int J Mol Sci 2021; 22:ijms22115559. [PMID: 34074054 PMCID: PMC8197357 DOI: 10.3390/ijms22115559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is thought to be caused by amyloid-β (Aβ) accumulation in the central nervous system due to deficient clearance. The aim of the present study was to investigate the effect of ganoderic acid A (GAA) on Aβ clearance in microglia and its anti-AD activity. Aβ degradation in BV2 microglial cells was determined using an intracellular Aβ clearance assay. GAA stimulated autophagosome formation via the Axl receptor tyrosine kinase (Axl)/RAC/CDC42-activated kinase 1 (Pak1) pathway was determined by Western blot analyses, and fluorescence-labeled Aβ42 was localized in lysosomes in confocal laser microscopy images. The in vivo anti-AD activity of GAA was evaluated by object recognition and Morris water maze (MWM) tests in an AD mouse model following intracerebroventricular injection of aggregated Aβ42. The autophagy level in the hippocampus was assayed by immunohistochemical assessment against microtubule-associated proteins 1A/1B light-chain 3B (LC3B). Intracellular Aβ42 levels were significantly reduced by GAA treatment in microglial cells. Additionally, GAA activated autophagy according to increased LC3B-II levels, with this increased autophagy stimulated by upregulating Axl and Pak1 phosphorylation. The effect of eliminating Aβ by GAA through autophagy was reversed by R428, an Axl inhibitor, or IPA-3, a Pak1 inhibitor. Consistent with the cell-based assay, GAA ameliorated cognitive deficiency and reduced Aβ42 levels in an AD mouse model. Furthermore, LC3B expression in the hippocampus was up-regulated by GAA treatment, with these GAA-specific effects abolished by R428. GAA promoted Aβ clearance by enhancing autophagy via the Axl/Pak1 signaling pathway in microglial cells and ameliorated cognitive deficiency in an AD mouse model.
Collapse
Affiliation(s)
- Li-Feng-Rong Qi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Shuai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Ci Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (L.-F.-R.Q.); (S.L.); (Y.-C.L.); (P.L.)
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-2583271203
| |
Collapse
|
49
|
Dhage PA, Sharbidre AA, Dakua SP, Balakrishnan S. Leveraging hallmark Alzheimer's molecular targets using phytoconstituents: Current perspective and emerging trends. Biomed Pharmacother 2021; 139:111634. [PMID: 33965726 DOI: 10.1016/j.biopha.2021.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD), a type of dementia, severely distresses different brain regions. Characterized by various neuropathologies, it interferes with cognitive functions and neuropsychiatrical controls. This progressive deterioration has negative impacts not only on an individual's daily activity but also on social and occupational life. The pharmacological approach has always remained in the limelight for the treatment of AD. However, this approach is condemned with several side effects. Henceforth, a change in treatment approach has become crucial. Plant-based natural products are garnering special attention due to lesser side effects associated with their use. The current review emphasizes the anti-AD properties of phytoconstituents, throws light on those under clinical trials, and compiles information on their specific mode of actions against AD-related different neuropathologies. The phytoconstituents alone or in combinations will surely help discover new potent drugs for the effective treatment of AD with lesser side effects than the currently available pharmacological treatment.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sarada P Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
50
|
Jin X, Guo JL, Wang L, Zhong X, Yao WF, Gao H, Liu MY. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. Eur J Med Chem 2021; 218:113401. [PMID: 33831779 DOI: 10.1016/j.ejmech.2021.113401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disorder characterized by neuronal loss and cognitive impairment that harshly affect the elderly individuals. Currently, the available anti-AD pharmacological approaches are purely symptomatic to alleviate AD symptoms, and the curative effects of novel anti-AD drugs focused on Aβ target are disappointing. Hence, there is a tremendous need to adjust AD therapeutic targets and discover novel anti-AD agents. In AD, mitochondrial dysfunction gradually triggers neuronal death from different aspects and worsens the occurrence and progress of AD. Consequently, it has been proposed that the intervention of impaired mitochondria represents an attractive breakthrough point for AD treatments. Due to chemical diversity, poly-pharmacological activities, few adverse effects and multiple targeting, natural products (NPs) have been identified as a valuable treasure for drug discovery and development. Multiple lines of studies have scientifically proven that NPs display ameliorative benefits in AD treatment in relation to mitochondrial dysfunction. This review surveys the complicated implications for mitochondrial dysregulation and AD, and then summarizes the potentials of NPs and their underlying molecular mechanisms against AD via reducing or improving mitochondrial dysfunction. It is expected that this work may open the window to speed up the development of innovative anti-AD drugs originated from NPs and improve upcoming AD therapeutics.
Collapse
Affiliation(s)
- Xin Jin
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang, China
| | - Jia-Ling Guo
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Lin Wang
- Department of Pharmacy, School of Pharmacy, China Medical University, Shenyang, China
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wei-Fan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hua Gao
- Division of Pharmacology Laboratory, National Institutes for Food and Drug Control, Beijing, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.
| |
Collapse
|