1
|
Peyvand P, Allami P, Rezaei N. From genetic roots to recent advancements in gene therapy targeting amyloid beta in Alzheimer's disease. Rev Neurosci 2025:revneuro-2025-0025. [PMID: 40448320 DOI: 10.1515/revneuro-2025-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 05/10/2025] [Indexed: 06/02/2025]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. The pathological hallmarks of AD are amyloid-beta (Aβ) plaques and tau protein tangles, which cause neurodegeneration and lead to cognitive decline. The distinguished role of Aβ plaques in the onset of the disease, especially in familial AD, alongside the genetic complexity of AD, underscores the need for precise and targeted genetic interventions targeting Aβ. This review first highlights the amyloidogenic and non-amyloidogenic pathways and inflammatory mechanisms contributing to Aβ accumulation. It also introduces the role of genetic variants such as amyloid precursor protein (APP), presenilin (PSEN1), PSEN2, and Apolipoprotein E (APOE) alongside the molecular and cellular mechanisms involved in Aβ pathology. Then, gene therapy techniques are discussed for their potential to target Aβ either directly by inhibiting its production or enhancing its degradation or indirectly by targeting APOE, inflammatory pathways, and neurotrophic factors. While these approaches show significant preclinical promise, challenges such as timing, safety, and delivery across the blood-brain barrier persist and need further investigation.
Collapse
Affiliation(s)
- Pinar Peyvand
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran, 1416634793, Iran
| | - Pantea Allami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran, 1416634793, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Italy St Cross, St, Vesal Shirazi, Tehran, 1417755331, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| |
Collapse
|
2
|
Dietz LT, Põld K, Györffy BA, Zharkovsky A, Sørensen JB, Pankratova S, Dmytriyeva O. A Peptide Motif Covering Splice Site B in Neuroligin-1 Binds to Aβ and Acts as a Neprilysin Inhibitor. Mol Neurobiol 2025; 62:3244-3257. [PMID: 39261388 PMCID: PMC11790763 DOI: 10.1007/s12035-024-04475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
The most common cause of dementia among elderly people is Alzheimer's disease (AD). The typical symptom of AD is the decline of cognitive abilities, which is caused by loss of synaptic function. Amyloid-β (Aβ) oligomers play a significant role in the development of this synaptic dysfunction. Neuroligin-(NL)1 is a postsynaptic cell-adhesion molecule located in excitatory synapses and involved in the maintenance and modulation of synaptic contacts. A recent study has found that Aβ interacts with the soluble N-terminal fragment of NL1. The present study aimed to elucidate the role of NL1 in Aβ-induced neuropathology. Employing surface plasmon resonance and competitive ELISA, we confirmed the high-affinity binding of NL1 to the Aβ peptide. We also identified a sequence motif representing the NL1-binding site for the Aβ peptide and showed that a synthetic peptide modeled after this motif, termed neurolide, binds to the Aβ peptide with high affinity, comparable to the NL1-Aβ interaction. To assess the effect of neurolide in vivo, wild-type and 5XFAD mice were subcutaneously treated with this peptide for 10 weeks. We observed an increase in Aβ plaque formation in the cortex of neurolide-treated 5XFAD mice. Furthermore, we showed that neurolide reduces the activity of neprilysin, the predominant Aβ-degrading enzyme in the brain. Accordingly, we suggest that neurolide is the NL1-binding site for Aβ peptide, and acts as an inhibitor of neprilysin activity. Based on these data, we confirm the involvement of NL1 in the development of AD and suggest a mechanism for NL1-induced Aβ plaque formation.
Collapse
Affiliation(s)
- Lene T Dietz
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Põld
- Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Balázs A Györffy
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jakob B Sørensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanislava Pankratova
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark
- Section of Comparative Pediatrics and Nutrition, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Oksana Dmytriyeva
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen, Copenhagen, Denmark.
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Saxena SK, Ansari S, Maurya VK, Kumar S, Sharma D, Malhotra HS, Tiwari S, Srivastava C, Paweska JT, Abdel-Moneim AS, Nityanand S. Neprilysin-Mediated Amyloid Beta Clearance and Its Therapeutic Implications in Neurodegenerative Disorders. ACS Pharmacol Transl Sci 2024; 7:3645-3657. [PMID: 39698259 PMCID: PMC11651204 DOI: 10.1021/acsptsci.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 12/20/2024]
Abstract
Neprilysin (NEP) is a neutral endopeptidase, important for the degradation of amyloid beta (Aβ) peptides and other neuropeptides, including enkephalins, substance P, and bradykinin, in the brain, that influences various physiological processes such as blood pressure homeostasis, pain perception, and neuroinflammation. NEP breaks down Aβ peptides into smaller fragments, preventing the development of detrimental aggregates such as Aβ plaques. NEP clears Aβ plaques predominantly by enzymatic breakdown in the extracellular space. However, NEP activity may be regulated by a variety of factors, including its expression and activity levels as well as interactions with other proteins or substances present in the brain. The Aβ de novo synthesis results from the amyloidogenic and nonamyloidogenic processing of the amyloid precursor protein (APP). In addition to Aβ synthesis, enzymatic degradation and various clearance pathways also contribute to the degradation of the monomeric form of Aβ peptides in the brain. Higher production, dysfunction of degradation enzymes, defective clearance mechanisms, intracellular accumulation of phosphorylated tau proteins, and extracellular deposition of Aβ are hallmarks of neurodegenerative diseases. Strategies for promoting NEP levels or activity, such as pharmaceutical interventions or gene therapy procedures, are being studied as possible therapies for neurodegenerative diseases including Alzheimer's disease. Therefore, in this perspective, we discuss the recent developments in NEP-mediated amyloidogenic and plausible mechanisms of nonamyloidogenic clearance of Aβ. We further highlight the current therapeutic interventions such as pharmaceutical agents, gene therapy, monoclonal antibodies, and stem-cell-based therapies targeting NEP for the management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shailendra K. Saxena
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
- The
World Society for Virology (WSV), Northampton, Massachusetts 01060, United States
| | - Saniya Ansari
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
- The
World Society for Virology (WSV), Northampton, Massachusetts 01060, United States
| | - Vimal K. Maurya
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
- The
World Society for Virology (WSV), Northampton, Massachusetts 01060, United States
| | - Swatantra Kumar
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
- The
World Society for Virology (WSV), Northampton, Massachusetts 01060, United States
| | - Deepak Sharma
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
| | - Hardeep S. Malhotra
- Department
of Neurology, King George’s Medical
University, Lucknow 226003, India
| | - Sneham Tiwari
- F.
M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Chhitij Srivastava
- Department
of Neurosurgery, King George’s Medical
University, Lucknow 226003, India
| | - Janusz T. Paweska
- The
World Society for Virology (WSV), Northampton, Massachusetts 01060, United States
- Centre for
Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health
Laboratory Service, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | - Ahmed S. Abdel-Moneim
- Department
of Microbiology, College of Medicine, Taif
University, Al-Taif 21944 Saudi Arabia
| | - Soniya Nityanand
- Centre
for Advanced Research (CFAR), Faculty of Medicine, King George’s Medical University (KGMU), Lucknow 226003, India
| |
Collapse
|
4
|
Teng X, Li M, He H, Jia D, Yin J, Bolarinho R, Cheng JX. Mid-infrared Photothermal Imaging: Instrument and Life Science Applications. Anal Chem 2024; 96:7895-7906. [PMID: 38702858 PMCID: PMC11785416 DOI: 10.1021/acs.analchem.4c02017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Recently developed mid-infrared photothermal (MIP) microscopy has attracted great attention from the research community in terms of video-rate imaging speed, sub-micron resolution, sensitivity in the range of several micro-molars, and suitability for live-cell analysis. In this review, we recount the developmental history of MIP microscopy. Subsequently, we describe the operational principles. Next, we delve into the wide-ranging applications of MIP microscopy to life sciences, spanning various samples from viruses to tissues. We explore the potential of MIP imaging in comprehension of cellular metabolism, cellular responses to chemical stimuli, and the mechanism of diseases. Finally, we discuss the future perspectives of MIP microscopy.
Collapse
Affiliation(s)
- Xinyan Teng
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Mingsheng Li
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Hongjian He
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Danchen Jia
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Jiaze Yin
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| | - Rylie Bolarinho
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, MA, USA
- Photonics Center, Boston University, Boston, MA, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Tseng WHS, Chattopadhyay A, Phan NN, Chuang EY, Lee OK. Utilizing multimodal approach to identify candidate pathways and biomarkers and predicting frailty syndrome in individuals from UK Biobank. GeroScience 2024; 46:1211-1228. [PMID: 37523034 PMCID: PMC10828416 DOI: 10.1007/s11357-023-00874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Frailty, a prevalent clinical syndrome in aging adults, is characterized by poor health outcomes, represented via a standardized frailty-phenotype (FP), and Frailty Index (FI). While the relevance of the syndrome is gaining awareness, much remains unclear about its underlying biology. Further elucidation of the genetic determinants and possible underlying mechanisms may help improve patients' outcomes allowing healthy aging.Genotype, clinical and demographic data of subjects (aged 60-73 years) from UK Biobank were utilized. FP was defined on Fried's criteria. FI was calculated using electronic-health-records. Genome-wide-association-studies (GWAS) were conducted and polygenic-risk-scores (PRS) were calculated for both FP and FI. Functional analysis provided interpretations of underlying biology. Finally, machine-learning (ML) models were trained using clinical, demographic and PRS towards identifying frail from non-frail individuals.Thirty-one loci were significantly associated with FI accounting for 12% heritability. Seventeen of those were known associations for body-mass-index, coronary diseases, cholesterol-levels, and longevity, while the rest were novel. Significant genes CDKN2B and APOE, previously implicated in aging, were reported to be enriched in lipoprotein-particle-remodeling. Linkage-disequilibrium-regression identified specific regulation in limbic-system, associated with long-term memory and cognitive-function. XGboost was established as the best performing ML model with area-under-curve as 85%, sensitivity and specificity as 0.75 and 0.8, respectively.This study provides novel insights into increased vulnerability and risk stratification of frailty syndrome via a multi-modal approach. The findings suggest frailty as a highly polygenic-trait, enriched in cholesterol-remodeling and metabolism and to be genetically associated with cognitive abilities. ML models utilizing FP and FI + PRS were established that identified frailty-syndrome patients with high accuracy.
Collapse
Affiliation(s)
- Watson Hua-Sheng Tseng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
| | - Nam Nhut Phan
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Oscar K Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Center for Translational Genomics and Regenerative Medicine, China Medical University Hospital, Taichung, Taiwan.
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
6
|
Somin S, Kulasiri D, Samarasinghe S. Alleviating the unwanted effects of oxidative stress on Aβ clearance: a review of related concepts and strategies for the development of computational modelling. Transl Neurodegener 2023; 12:11. [PMID: 36907887 PMCID: PMC10009979 DOI: 10.1186/s40035-023-00344-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Treatment for Alzheimer's disease (AD) can be more effective in the early stages. Although we do not completely understand the aetiology of the early stages of AD, potential pathological factors (amyloid beta [Aβ] and tau) and other co-factors have been identified as causes of AD, which may indicate some of the mechanism at work in the early stages of AD. Today, one of the primary techniques used to help delay or prevent AD in the early stages involves alleviating the unwanted effects of oxidative stress on Aβ clearance. 4-Hydroxynonenal (HNE), a product of lipid peroxidation caused by oxidative stress, plays a key role in the adduction of the degrading proteases. This HNE employs a mechanism which decreases catalytic activity. This process ultimately impairs Aβ clearance. The degradation of HNE-modified proteins helps to alleviate the unwanted effects of oxidative stress. Having a clear understanding of the mechanisms associated with the degradation of the HNE-modified proteins is essential for the development of strategies and for alleviating the unwanted effects of oxidative stress. The strategies which could be employed to decrease the effects of oxidative stress include enhancing antioxidant activity, as well as the use of nanozymes and/or specific inhibitors. One area which shows promise in reducing oxidative stress is protein design. However, more research is needed to improve the effectiveness and accuracy of this technique. This paper discusses the interplay of potential pathological factors and AD. In particular, it focuses on the effect of oxidative stress on the expression of the Aβ-degrading proteases through adduction of the degrading proteases caused by HNE. The paper also elucidates other strategies that can be used to alleviate the unwanted effects of oxidative stress on Aβ clearance. To improve the effectiveness and accuracy of protein design, we explain the application of quantum mechanical/molecular mechanical approach.
Collapse
Affiliation(s)
- Sarawoot Somin
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand.,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand. .,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand
| |
Collapse
|
7
|
Bhatti GK, Mishra J, Sehrawat A, Sharma E, Kanozia R, Navik U, Reddy PH, Bhatti JS. Lifestyle modifications and nutrition in Alzheimer's disease. DIET AND NUTRITION IN NEUROLOGICAL DISORDERS 2023:13-39. [DOI: https:/doi.org/10.1016/b978-0-323-89834-8.00049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
8
|
Shimanouchi T, Sano Y, Yasuhara K, Kimura Y. Amyloid-β aggregates induced by β-cholesteryl glucose-embedded liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140816. [PMID: 35777623 DOI: 10.1016/j.bbapap.2022.140816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Senile plaques that is characterized as an amyloid deposition found in Alzheimer's disease are composed primarily of fibrils of an aggregated peptide, amyloid β (Aβ). The ability to monitor senile plaque formation on a neuronal membrane under physiological conditions provides an attractive model. In this study, the growth behavior of amyloid Aβ fibrils in the presence of liposomes incorporating β-cholesteryl-D-glucose (β-CG) was examined using total internal reflection fluorescence microscopy, transmittance electron microscopy, and other spectroscopic methods. We found that β-CG on the liposome membrane induced the spontaneous formation of spherulitic Aβ fibrillar aggregates. The β-CG cluster formed on liposome membranes appeared to induce the accumulation of Aβ, followed by the growth of the spherulitic Aβ aggregates. In contrast, DMPC and DMPC incorporated cholesterol-induced fibrils that are laterally associated with each other. A comparison study using three types of liposomes implied that the induction of glucose contributed to the agglomeration of Aβ fibrils and liposomes. This agglomeration required the spontaneous formation of spherulitic Aβ fibrillary aggregates. This action can be regarded as a counterbalance to the growth of fibrils and their toxicity, which has great potential in the study of amyloidopathies.
Collapse
Affiliation(s)
- Toshinori Shimanouchi
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-kku, Okayama 700-8530, Japan.
| | - Yasuhiro Sano
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-kku, Okayama 700-8530, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Yukitaka Kimura
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-kku, Okayama 700-8530, Japan
| |
Collapse
|
9
|
Vervuurt M, Zhu X, Schrader J, de Kort AM, Marques TM, Kersten I, Peters van Ton AM, Abdo WF, Schreuder FHBM, Rasing I, Terwindt GM, Wermer MJH, Greenberg SM, Klijn CJM, Kuiperij HB, Van Nostrand WE, Verbeek MM. Elevated expression of urokinase plasminogen activator in rodent models and patients with cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2022; 48:e12804. [PMID: 35266166 DOI: 10.1111/nan.12804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this work is to study the association of urokinase plasminogen activator (uPA) with development and progression of cerebral amyloid angiopathy (CAA). MATERIALS AND METHODS We studied the expression of uPA mRNA by quantitative polymerase chain reaction (qPCR) and co-localisation of uPA with amyloid-β (Aβ) using immunohistochemistry in the cerebral vasculature of rTg-DI rats compared with wild-type (WT) rats and in a sporadic CAA (sCAA) patient and control subject using immunohistochemistry. Cerebrospinal fluid (CSF) uPA levels were measured in rTg-DI and WT rats and in two separate cohorts of sCAA and Dutch-type hereditary CAA (D-CAA) patients and controls, using enzyme-linked immunosorbent assays (ELISA). RESULTS The presence of uPA was clearly detected in the cerebral vasculature of rTg-DI rats and an sCAA patient but not in WT rats or a non-CAA human control. uPA expression was highly co-localised with microvascular Aβ deposits. In rTg-DI rats, uPA mRNA expression was highly elevated at 3 months of age (coinciding with the emergence of microvascular Aβ deposition) and sustained up to 12 months of age (with severe microvascular CAA deposition) compared with WT rats. CSF uPA levels were elevated in rTg-DI rats compared with WT rats (p = 0.03), and in sCAA patients compared with controls (after adjustment for age of subjects, p = 0.05 and p = 0.03). No differences in CSF uPA levels were found between asymptomatic and symptomatic D-CAA patients and their respective controls (after age-adjustment, p = 0.09 and p = 0.44). Increased cerebrovascular expression of uPA in CAA correlates with increased quantities of CSF uPA in rTg-DI rats and human CAA patients, suggesting that uPA could serve as a biomarker for CAA.
Collapse
Affiliation(s)
- Marc Vervuurt
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Xiaoyue Zhu
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Joseph Schrader
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Anna M de Kort
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tainá M Marques
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Kersten
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Wilson F Abdo
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Floris H B M Schreuder
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ingeborg Rasing
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Catharina J M Klijn
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Bea Kuiperij
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - William E Van Nostrand
- Department of Biomedical and Pharmaceutical Sciences, George & Anne Institute for Neuroscience, University of Rhode Island, Kingston, Rhode Island, USA
| | - Marcel M Verbeek
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Extracellular Vesicles Released from Neprilysin Gene-Modified Human Umbilical Cord-Derived Mesenchymal Stem Cell Enhance Therapeutic Effects in an Alzheimer's Disease Animal Model. Stem Cells Int 2021; 2021:5548630. [PMID: 34899919 PMCID: PMC8664527 DOI: 10.1155/2021/5548630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/12/2021] [Accepted: 11/02/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) animal studies have reported that mesenchymal stem cells (MSCs) have therapeutic effects; however, clinical trial results are controversial. Neprilysin (NEP) is the main cleavage enzyme of β-amyloid (Aβ), which plays a major role in the pathology and etiology of AD. We evaluated whether transplantation of MSCs with NEP gene modification enhances the therapeutic effects in an AD animal model and then investigated these pathomechanisms. We manufactured NEP gene-enhanced human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and intravenously transplanted them in Aβ1-42-injected AD animal models. We compared the differences in behavioral tests and immunohistochemical assays between four groups: normal, Aβ1-42 injection, naïve hUC-MSCs, and NEP-enhanced hUC-MSCs. Both naïve and NEP-enhanced hUC-MSC groups showed significant improvements in memory compared to the Aβ1-42 injection group. There was no significant difference between naïve and NEP-enhanced hUC-MSC groups. There was a significant decrease in Congo red, BACE-1, GFAP, and Iba-1 and a significant increase in BDNF, NeuN, and NEP in both hUC-MSC groups compared to the Aβ1-42 injection group. Among them, BDNF, NeuN, GFAP, Iba-1, and NEP showed more significant changes in the NEP-enhanced hUC-MSC group than in the naïve group. After stem cell injection, stem cells were not found. Extracellular vesicles (EVs) were equally observed in the hippocampus in the naïve and NEP-enhanced hUC-MSC groups. However, the EVs of NEP-enhanced hUC-MSCs contained higher amounts of NEP as compared to the EVs of naïve hUC-MSCs. Thus, hUC-MSCs affect AD animal models through stem cell-released EVs. Although there was no significant difference in cognitive function between the hUC-MSC groups, NEP-enhanced hUC-MSCs had superior neurogenesis and anti-inflammation properties compared to naïve hUC-MSCs due to increased NEP in the hippocampus by enriched NEP-possessing EVs. NEP gene-modified MSCs that release an increased amount of NEP within EVs may be a promising therapeutic option in AD treatment.
Collapse
|
11
|
Block copolymers in Alzheimer's disease therapy: A perceptive to revolutionize biomaterials. J Control Release 2021; 340:271-281. [PMID: 34763003 DOI: 10.1016/j.jconrel.2021.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease is a fatal illness associated with two persistent problems in treatment i. ineffective drug transportation across the bio-membranes and ii. on-site targeting. Such problems originate from the combinational factors for non-specific targets, physicochemical limitations in the delivery of the active agents and insignificant permeability across blood-brain-barrier. In this context, block copolymers such as PLGA-PEG, PEG-PLA, Poloxamers, PLGA-PEG-PLGA triblock copolymers, etc. present interesting potential in the development of nano-sized carrier systems like polymerosomes, polymeric micelles, etc. for the management and treatment of Alzheimer's disease. Modifications of block copolymers display improvement in solubility and reduction in toxicity due to the process of complexation, functionalization, dose reduction and modification of kinetics for the rate of release. This review article focuses on new insights into different copolymers and their superiority over conventional polymers in Alzheimer's disease for long-term therapy in the body. Association of block copolymers to therapy of Alzheimer's disease overcome the limitations of drug delivery by offering attributes such as smaller molecular size (less than 150 nm), higher solubility owing to hydrophilic interactions between polymeric components and systemic environment, better entrapment efficiency (above 80%) due to large effective surface area and long-term stability for sensitive actives such as peptides, monoclonal antibodies, curcumin, resveratrol, catechins, etc. With such multifunctional features, block copolymers actively permeate the bio-membrane as polymeric nanoparticles, nanomicelles and polymerosomes using different mechanisms such as transcellular- and receptor-mediated transportation to reach target neural network as well as extra-neuronal amyloid-β plaques for anti-Alzheimer's disease activity with neuroprotective action. These polymers emerge as important components for personalized therapy with potential applications in biosensing, drug delivery, theranostics, etc. for qualitative and quantitative predictions in the detection and treatment of Alzheimer's disease.
Collapse
|
12
|
Sharma S, Behl T, Kumar A, Sehgal A, Singh S, Sharma N, Bhatia S, Al-Harrasi A, Bungau S. Targeting Endothelin in Alzheimer's Disease: A Promising Therapeutic Approach. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7396580. [PMID: 34532504 PMCID: PMC8440097 DOI: 10.1155/2021/7396580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022]
Abstract
Endothelin is a chemical mediator that helps in maintaining balance within the blood-brain barrier by regulating the levels of toxicants and molecules which pass through the brain, suggesting that a rise in its production determines Alzheimer's disease. The inequity in the amyloid β occurs due to a problem in its clearance from the brain initiating the production of reactive oxygen species and superoxide that activates a cascade wherein the release of inflammatory mediators and various enzymes like endothelin-converting enzymes take place. Furthermore, the cascade increases the levels of endothelin in the brain from endothelial cells. Endothelin levels are upregulated, which can be regulated by modulating the action of endothelin-converting enzymes and endothelin receptors. Hence, endothelin paves a pathway in the treatment of Alzheimer's disease. In this article, we have covered various mechanisms and preclinical studies that support and direct endothelin involvement in the progression of Alzheimer's disease by using various search tools such as PubMed, Science Direct, and Medline. Conclusive outcome data were extracted that all together defy contrivance pathways, potential drugs, endothelin receptors, and endothelin enzymes in our article giving profound importance to target endothelin for prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Shiwali Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anoop Kumar
- Delhi Pharmaceutical Sciences and Research University, Delhi, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Amity Institute of Pharmacy, Amity University, Haryana, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
13
|
Choi J, Kwon H, Han PL. Hyperoxygenation Treatment Reduces Beta-amyloid Deposition via MeCP2-dependent Upregulation of MMP-2 and MMP-9 in the Hippocampus of Tg-APP/PS1 Mice. Exp Neurobiol 2021; 30:294-307. [PMID: 34483143 PMCID: PMC8424382 DOI: 10.5607/en21014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/18/2022] Open
Abstract
Recently we reported that hyperoxygenation treatment reduces amyloid-beta accumulation and rescues cognitive impairment in the Tg-APP/PS1 mouse model of Alzheimer’s disease. In the present study, we continue to investigate the mechanism by which hyperoxygenation reduces amyloid-beta deposition in the brain. Hyperoxygenation treatment induces upregulation of matrix metalloproteinase-2 (MMP-2), MMP-9, and tissue plasminogen activator (tPA), the endopeptidases that can degrade amyloid-beta, in the hippocampus of Tg-APP/PS1 mice. The promoter regions of the three proteinase genes all contain potential binding sites for MeCP2 and Pea3, which are upregulated in the hippocampus after hyperoxygenation. Hyperoxygenation treatment in HT22 neuronal cells increases MeCP2 but not Pea3 expression. In HT22 cells, siRNA-mediated knockdown of Mecp2 decreases Mmp-9 expression and to a lesser extent, Mmp-2 and tPA expression. In mice, siRNA-mediated Mecp2 knockdown in the hippocampus reduces Mmp-9 expression, but not significantly Mmp-2 and tPA expression. The ChIP assay indicates that hyperoxygenation treatment in Tg-APP/PS1 mice increases MeCP2 binding to the promoter regions of Mmp-2, Mmp-9 and tPA genes in the hippocampus. Together, these results suggest that hyperoxygenation increases the expression of MMP-2, MMP-9, and tPA, of which MMP-9 is upregulated via MeCP2 in neuronal cells, and MMP-2 and tPA are upregulated through MeCP2 and other nuclear factors.
Collapse
Affiliation(s)
- Juli Choi
- Departments of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Hyejin Kwon
- Departments of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Pyung-Lim Han
- Departments of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.,Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
14
|
Wojtunik-Kulesza K, Rudkowska M, Kasprzak-Drozd K, Oniszczuk A, Borowicz-Reutt K. Activity of Selected Group of Monoterpenes in Alzheimer's Disease Symptoms in Experimental Model Studies-A Non-Systematic Review. Int J Mol Sci 2021; 22:7366. [PMID: 34298986 PMCID: PMC8306454 DOI: 10.3390/ijms22147366] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and cognitive function impairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes-low-molecular compounds with anti-inflammatory, antioxidant, enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes and monoterpenoids for which possible mechanisms of action have been explained. The main body of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic and sleep-regulating effects as determined by in vitro and in silico tests-followed by validation in in vivo models.
Collapse
Affiliation(s)
| | - Monika Rudkowska
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| | - Kamila Kasprzak-Drozd
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Kinga Borowicz-Reutt
- Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.R.); (K.B.-R.)
| |
Collapse
|
15
|
Pentkowski NS, Rogge-Obando KK, Donaldson TN, Bouquin SJ, Clark BJ. Anxiety and Alzheimer's disease: Behavioral analysis and neural basis in rodent models of Alzheimer's-related neuropathology. Neurosci Biobehav Rev 2021; 127:647-658. [PMID: 33979573 DOI: 10.1016/j.neubiorev.2021.05.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) pathology is commonly associated with cognitive decline but is also composed of neuropsychiatric symptoms including psychological distress and alterations in mood, including anxiety and depression. Emotional dysfunction in AD is frequently modeled using tests of anxiety-like behavior in transgenic rodents. These tests often include the elevated plus-maze, light/dark test and open field test. In this review, we describe prototypical behavioral paradigms used to examine emotional dysfunction in transgenic models of AD, specifically anxiety-like behavior. Next, we summarize the results of studies examining anxiety-like behavior in transgenic rodents, noting that the behavioral outcomes using these paradigms have produced inconsistent results. We suggest that future research will benefit from using a battery of tests to examine emotional behavior in transgenic AD models. We conclude by discussing putative, overlapping neurobiological mechanisms underlying AD-related neuropathology, stress and anxiety-like behavior reported in AD models.
Collapse
Affiliation(s)
- Nathan S Pentkowski
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| | | | - Tia N Donaldson
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Samuel J Bouquin
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87109, Mexico.
| |
Collapse
|
16
|
Humpel C. Intranasal Delivery of Collagen-Loaded Neprilysin Clears Beta-Amyloid Plaques in a Transgenic Alzheimer Mouse Model. Front Aging Neurosci 2021; 13:649646. [PMID: 33967739 PMCID: PMC8100061 DOI: 10.3389/fnagi.2021.649646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is pathologically characterized by extracellular beta-amyloid (Aβ) plaques and intraneuronal tau tangles in the brain. A therapeutic strategy aims to prevent or clear these Aβ plaques and the Aβ-degrading enzyme neprilysin is a potent drug to degrade plaques. The major challenge is to deliver bioactive neprilysin into the brain via the blood-brain barrier. The aim of the present study is to explore if intranasal delivery of neprilysin can eliminate plaques in a transgenic AD mouse model (APP_SweDI). We will test if collagen or platelets are useful vehicles to deliver neprilysin into the brain. Using organotypic brain slices from adult transgenic APP_SweDI mice, we show that neprilysin alone or loaded in collagen hydrogels or in platelets cleared cortical plaques. Intransasal delivery of neprilysin alone increased small Aβ depositions in the middle and caudal cortex in transgenic mice. Platelets loaded with neprilysin cleared plaques in the frontal cortex after intranasal application. Intranasal delivery of collagen-loaded neprilysin was very potent to clear plaques especially in the middle and caudal parts of the cortex. Our data support that the Aβ degrading enzyme neprilysin delivered to the mouse brain can clear Aβ plaques and intranasal delivery (especially with collagen as a vehicle) is a fast and easy application. However, it must be considered that intranasal neprilysin may also activate more plaque production in the transgenic mouse brain as a side effect.
Collapse
Affiliation(s)
- Christian Humpel
- Laboratory of Psychiatry and Experimental Alzheimer’s Research, Department of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Mock JR, Dial CF, Tune MK, Gilmore RC, O'Neal WK, Dang H, Doerschuk CM. Impact of Regulatory T Cells on Type 2 Alveolar Epithelial Cell Transcriptomes during Resolution of Acute Lung Injury and Contributions of IFN-γ. Am J Respir Cell Mol Biol 2020; 63:464-477. [PMID: 32543909 DOI: 10.1165/rcmb.2019-0399oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
By enhancing tissue repair and modulating immune responses, Foxp3+ regulatory T cells (Tregs) play essential roles in resolution from lung injury. The current study investigated the effects that Tregs exert directly or indirectly on the transcriptional profiles of type 2 alveolar epithelial (AT2) cells during resolution in an experimental model of acute lung injury. Purified AT2 cells were isolated from uninjured mice or mice recovering from LPS-induced lung injury, either in the presence of Tregs or in Treg-depleted mice, and transcriptome profiling identified differentially expressed genes. Depletion of Tregs resulted in altered expression of 49 genes within AT2 cells during resolution, suggesting that Tregs present in this microenvironment influence AT2-cell function. Biological processes from Gene Ontology enriched in the absence of Tregs included those describing responses to IFN. Neutralizing IFN-γ in Treg-depleted mice reversed the effect of Treg depletion on inflammatory macrophages and B cells by preventing the increase in inflammatory macrophages and the decrease in B cells. Our results provide insight into the effects of Tregs on AT2 cells. Tregs directly or indirectly impact many AT2-cell functions, including IFN type I and II-mediated signaling pathways. Inhibition of IFN-γ expression and/or function may be one mechanism through which Tregs accelerate resolution after acute lung injury.
Collapse
Affiliation(s)
- Jason R Mock
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | - Catherine F Dial
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | - Miriya K Tune
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | | | - Wanda K O'Neal
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and
| | | | - Claire M Doerschuk
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine.,Marsico Lung Institute, and.,Center for Airways Disease, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
18
|
MCF7 Spheroid Development: New Insight about Spatio/Temporal Arrangements of TNTs, Amyloid Fibrils, Cell Connections, and Cellular Bridges. Int J Mol Sci 2020; 21:ijms21155400. [PMID: 32751344 PMCID: PMC7432950 DOI: 10.3390/ijms21155400] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Human breast adenocarcinoma cells (MCF7) grow in three-dimensional culture as spheroids that represent the structural complexity of avascular tumors. Therefore, spheroids offer a powerful tool for studying cancer development, aggressiveness, and drug resistance. Notwithstanding the large amount of data regarding the formation of MCF7 spheroids, a detailed description of the morpho-functional changes during their aggregation and maturation is still lacking. In this study, in addition to the already established role of gap junctions, we show evidence of tunneling nanotube (TNT) formation, amyloid fibril production, and opening of large stable cellular bridges, thus reporting the sequential events leading to MCF7 spheroid formation. The variation in cell phenotypes, sustained by dynamic expression of multiple proteins, leads to complex networking among cells similar to the sequence of morphogenetic steps occurring in embryogenesis/organogenesis. On the basis of the observation that early events in spheroid formation are strictly linked to the redox homeostasis, which in turn regulate amyloidogenesis, we show that the administration of N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger that reduces the capability of cells to produce amyloid fibrils, significantly affects their ability to aggregate. Moreover, cells aggregation events, which exploit the intrinsic adhesiveness of amyloid fibrils, significantly decrease following the administration during the early aggregation phase of neutral endopeptidase (NEP), an amyloid degrading enzyme.
Collapse
|
19
|
Alzheimer's disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci 2020; 256:117996. [PMID: 32585249 DOI: 10.1016/j.lfs.2020.117996] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/14/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and is identified as the most common cause for dementia. Despite huge global economic burden and the impact on the close family of the patients, there is no definitive cure and thus, improved treatment methods are of need. While memory and cognition are severely affected in AD, exact etiology is yet unknown. The β-Amyloid plaque formation and aggregation hypothesis is among the well-known hypotheses used to explain disease pathogenesis. Currently there are five Food and Drug Administration (FDA) approved drugs as treatment options. All these drugs are used for symptomatic treatment of AD. Thus, disease modifying therapies which can directly address the pathological changes in AD, are needed. Such therapies could be designed based on inhibiting key steps of pathogenesis. Currently there are novel AD drug candidates with various therapeutic mechanisms, undergoing different stages of drug development. Extensive research is being done globally to broaden understanding of the exact mechanisms involved in AD and to develop therapeutic agents that can successfully hinder the occurrence and progression of the disease. In this review, a comprehensive approach to understanding AD and suggestions to be considered in the development of therapeutics for it are presented.
Collapse
|
20
|
Dhanavade MJ, Sonawane KD. Amyloid beta peptide-degrading microbial enzymes and its implication in drug design. 3 Biotech 2020; 10:247. [PMID: 32411571 PMCID: PMC7214582 DOI: 10.1007/s13205-020-02240-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic and progressive neurological brain disorder. AD pathophysiology is mainly represented by formation of neuritic plaques and neurofibrillary tangles (NFTs). Neuritic plaques are made up of amyloid beta (Aβ) peptides, which play a central role in AD pathogenesis. In AD brain, Aβ peptide accumulates due to overproduction, insufficient clearance and defective proteolytic degradation. The degradation and cleavage mechanism of Aβ peptides by several human enzymes have been discussed previously. In the mean time, numerous experimental and bioinformatics reports indicated the significance of microbial enzymes having potential to degrade Aβ peptides. Thus, there is a need to shift the focus toward the substrate specificity and structure-function relationship of Aβ peptide-degrading microbial enzymes. Hence, in this review, we discussed in vitro and in silico studies of microbial enzymes viz. cysteine protease and zinc metallopeptidases having ability to degrade Aβ peptides. In silico study showed that cysteine protease can cleave Aβ peptide between Lys16-Cys17; similarly, several other enzymes also showed capability to degrade Aβ peptide at different sites. Thus, this review paves the way to explore the role of microbial enzymes in Aβ peptide degradation and to design new lead compounds for AD treatment.
Collapse
Affiliation(s)
- Maruti J. Dhanavade
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| | - Kailas D. Sonawane
- Structural Bioinformatics Unit, Department of Biochemistry, Shivaji University, Kolhapur, Maharashtra 416004 India
- Department of Microbiology, Shivaji University, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
21
|
Xie Y, Yan L, Zeng H, Chen W, Lu JH, Wan JB, Su H, Yao X. Fish oil protects the blood-brain barrier integrity in a mouse model of Alzheimer's disease. Chin Med 2020; 15:29. [PMID: 32256685 PMCID: PMC7106819 DOI: 10.1186/s13020-020-00314-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is ranked as the most prevalent neurodegenerative disease. However, the exact molecular mechanisms underlying pathophysiological alterations in AD remain unclear, especially at the prodromal stage. The decreased proteolytic degradation of Aβ, blood-brain barrier (BBB) disruption, and neuroinflammation are considered to play key roles in the course of AD. METHODS Male APPswe/PS1dE9 C57BL/6 J double-transgenic (APP/PS1) mice in the age range from 1 month to 6 months and age-matched wild type mice were used in this study, intending to investigate the expression profiles of Aβ-degrading enzymes for Aβ degradation activities and zonula occludens-1 (zo-1) for BBB integrity at the prodromal stage. RESULTS Our results showed that there were no significant genotype-related alterations in mRNA expression levels of 4 well-characterized Aβ-degrading enzymes in APP/PS1 mice within the ages of 6 months. Interestingly, a significant decrease in zo-1 expression was observed in APP/PS1 mice starting from the age of 5 months, suggesting that BBB disrupt occurs at an early stage. Moreover, treatment of fish oil (FO) for 4 weeks remarkably increased zo-1 expression and significantly inhibited the glial activation and NF-κB activation in APP/PS1 mice. CONCLUSION The results of our study suggest that FO supplement could be a potential therapeutic early intervention for AD through protecting the BBB integrity and suppressing glial and NF-κB activation.
Collapse
Affiliation(s)
- Youna Xie
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Haitao Zeng
- Center for Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080 People’s Republic of China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaoli Yao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical, Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080 China
| |
Collapse
|
22
|
Kannaian B, Sharma B, Phillips M, Chowdhury A, Manimekalai MSS, Adav SS, Ng JTY, Kumar A, Lim S, Mu Y, Sze SK, Grüber G, Pervushin K. Abundant neuroprotective chaperone Lipocalin-type prostaglandin D synthase (L-PGDS) disassembles the Amyloid-β fibrils. Sci Rep 2019; 9:12579. [PMID: 31467325 PMCID: PMC6715741 DOI: 10.1038/s41598-019-48819-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/06/2019] [Indexed: 01/08/2023] Open
Abstract
Misfolding of Amyloid β (Aβ) peptides leads to the formation of extracellular amyloid plaques. Molecular chaperones can facilitate the refolding or degradation of such misfolded proteins. Here, for the first time, we report the unique ability of Lipocalin-type Prostaglandin D synthase (L-PGDS) protein to act as a disaggregase on the pre-formed fibrils of Aβ(1-40), abbreviated as Aβ40, and Aβ(25-35) peptides, in addition to inhibiting the aggregation of Aβ monomers. Furthermore, our proteomics results indicate that L-PGDS can facilitate extraction of several other proteins from the insoluble aggregates extracted from the brain of an Alzheimer's disease patient. In this study, we have established the mode of binding of L-PGDS with monomeric and fibrillar Aβ using Nuclear Magnetic Resonance (NMR) Spectroscopy, Small Angle X-ray Scattering (SAXS), and Transmission Electron Microscopy (TEM). Our results confirm a direct interaction between L-PGDS and monomeric Aβ40 and Aβ(25-35), thereby inhibiting their spontaneous aggregation. The monomeric unstructured Aβ40 binds to L-PGDS via its C-terminus, while the N-terminus remains free which is observed as a new domain in the L-PGDS-Aβ40 complex model.
Collapse
Affiliation(s)
- Bhuvaneswari Kannaian
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Bhargy Sharma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Margaret Phillips
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Anup Chowdhury
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Malathy S S Manimekalai
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Justin T Y Ng
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ambrish Kumar
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Siu K Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
23
|
Abstract
Studies have linked obesity, metabolic syndrome, type 2 diabetes, cardiovascular disease (CVD), nonalcoholic fatty liver disease (NAFLD) and dementia. Their relationship to the incidence and progression of these disease states suggests an interconnected pathogenesis involving chronic low-grade inflammation and oxidative stress. Metabolic syndrome represents comorbidities of central obesity, insulin resistance, dyslipidemia, hypertension and hyperglycemia associated with increased risk of type 2 diabetes, NAFLD, atherosclerotic CVD and neurodegenerative disease. As the socioeconomic burden for these diseases has grown signficantly with an increasing elderly population, new and alternative pharmacologic solutions for these cardiometabolic diseases are required. Adipose tissue, skeletal muscle and liver are central endocrine organs that regulate inflammation, energy and metabolic homeostasis, and the neuroendocrine axis through synthesis and secretion of adipokines, myokines, and hepatokines, respectively. These organokines affect each other and communicate through various endocrine, paracrine and autocrine pathways. The ultimate goal of this review is to provide a comprehensive understanding of organ crosstalk. This will include the roles of novel organokines in normal physiologic regulation and their pathophysiological effect in obesity, metabolic syndrome, type 2 diabetes, CVD, NAFLD and neurodegenerative disorders.
Collapse
Affiliation(s)
- Hye Soo Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Hallym University, Seoul, South Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
24
|
Noriega L, Díaz A, Limón D, Castro ME, Caballero NA, Ramírez RE, Perez-Aguilar JM, Melendez FJ. Inhibitory mechanism of 17β-aminoestrogens in the formation of Aβ aggregates. J Mol Model 2019; 25:229. [PMID: 31321557 DOI: 10.1007/s00894-019-4128-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/07/2019] [Indexed: 12/01/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder associated with the aggregation of the amyloid-beta peptide (Aβ) into large oligomers and fibrils that damage healthy brain cells. The predominant peptide fragments in the plaques are mainly formed by the Aβ1-40 and Aβ1-42 peptides, albeit the eleven-residue Aβ25-35 segment is largely used in biological studies because it retains the neurotoxic properties of the longer Aβ peptides. Recent studies indicate that treatment with therapeutic steroid hormones reduces the progress of the disease in AD models. Particularly, treatment with 17β-aminoestrogens (AEs) has shown a significant alleviation of the AD development by inhibiting oxidative stress and neuronal death. Yet, the mechanism by which the AE molecules exhibit their beneficial effects remains speculative. To shed light into the molecular mechanism of inhibition of the AD development by AEs, we investigated the possibility of direct interaction with the Aβ25-35 peptide. First, we calculate various interacting electronic properties of three AE derivatives as follows: prolame, butolame, and pentolame by performing DFT calculations. To account for the polymorphic nature of the Aβ aggregates, we considered four different Aβ25-35 systems extracted from AD relevant fibril structures. From the calculation of different electron density properties, specific interacting loci were identified that guided the construction and optimization of various complexes. Interestingly, the results suggest a similar inhibitory mechanism based on the direct interaction between the AEs and the M35 residue that seems to be general and independent of the polymorphic properties of the Aβ aggregates. Our analysis of the complex formation provides a structural framework for understanding the AE therapeutic properties in the molecular inhibitory mechanism of Aβ aggregation.
Collapse
Affiliation(s)
- Lisset Noriega
- Laboratorio de Química Teórica, Centro de Investigación. Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif 105-I, San Claudio y 22 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Mexico
| | - Alfonso Díaz
- Departamento de Farmacia, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur, Col. San Manuel, 72570, Puebla, Mexico
| | - Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 14 Sur, Col. San Manuel, 72570, Puebla, Mexico
| | - María Eugenia Castro
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Complejo de Ciencias, ICUAP, Edif. IC8, 22 Sur y San Claudio, Ciudad Universitaria, 72570, Puebla, Mexico
| | - Norma A Caballero
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, San Claudio y 14 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Mexico
| | - Ramsés E Ramírez
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif 105-I, San Claudio y 22 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Mexico
| | - Jose Manuel Perez-Aguilar
- Laboratorio de Química Teórica, Centro de Investigación. Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif 105-I, San Claudio y 22 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Mexico.
| | - Francisco J Melendez
- Laboratorio de Química Teórica, Centro de Investigación. Depto. de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif 105-I, San Claudio y 22 Sur, Ciudad Universitaria, Col. San Manuel, 72570, Puebla, Mexico.
| |
Collapse
|
25
|
Ali S, Asad MHHB, Maity S, Zada W, Rizvanov AA, Iqbal J, Babak B, Hussain I. Fluoro-benzimidazole derivatives to cure Alzheimer's disease: In-silico studies, synthesis, structure-activity relationship and in vivo evaluation for β secretase enzyme inhibition. Bioorg Chem 2019; 88:102936. [PMID: 31054426 DOI: 10.1016/j.bioorg.2019.102936] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Sayyad Ali
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Muhammad Hassham Hassan Bin Asad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan; Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021, Russia.
| | - Soham Maity
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wahid Zada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Albert A Rizvanov
- Department of Genetics, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021, Russia
| | - Jamshed Iqbal
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Borhan Babak
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Izhar Hussain
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
26
|
Hao X, Zheng J, Sun Y, Dong X. Seeding and Cross-Seeding Aggregations of Aβ 40 and Its N-Terminal-Truncated Peptide Aβ 11-40. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:2821-2831. [PMID: 30681866 DOI: 10.1021/acs.langmuir.8b03599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the amyloid plaques of Alzheimer's disease (AD) patients, a large number of N-terminal-truncated amyloid β (Aβ) peptides such as Aβ11-40 have been identified in addition to the full-length Aβ peptides. However, little is known about the roles of the N-terminal-truncated peptides in AD pathological process. Herein, seeding and cross-seeding aggregations of Aβ40 and its N-terminal-truncated Aβ11-40 were investigated in the solution and on the surfaces of chips with immobilized seeds by extensive biophysical and biological analyses. The results showed that Aβ40 and Aβ11-40 aggregates could seed both homologous and heterologous aggregations of the two monomers. However, the capability and characteristics of the seeding (homologous aggregation) and cross-seeding (heterologous aggregation) were significantly different. Aβ40 seeds showed stronger acceleration effects on the aggregations than Aβ11-40 seeds and induced β-sheet-rich fibrous aggregates of similar cytotoxicities for the two monomers. This indicates that Aβ40 and Aβ11-40 had similar aggregation pathways in the seeding and cross-seeding on Aβ40 seeds. By contrast, Aβ11-40 seeds led to different aggregation pathways of Aβ40 and Aβ11-40. Pure Aβ11-40 aggregates had higher toxicity than Aβ40 aggregates, and as seeds, Aβ11-40 seeds induced Aβ40 to form aggregates of higher cytotoxicity. However, homologous Aβ11-40 aggregates induced by Aβ11-40 seeds showed lower cytotoxicity than pure Aβ11-40 aggregates. The results suggest that Aβ11-40 plays an important role in the pathological process of AD.
Collapse
Affiliation(s)
- Xiuping Hao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
| |
Collapse
|
27
|
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease. Int J Mol Sci 2019; 20:ijms20030719. [PMID: 30743990 PMCID: PMC6386829 DOI: 10.3390/ijms20030719] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/18/2019] [Accepted: 02/03/2019] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative disorders affect around one billion people worldwide. They can arise from a combination of genomic, epigenomic, metabolic, and environmental factors. Aging is the leading risk factor for most chronic illnesses of old age, including Alzheimer’s and Parkinson’s diseases. A progressive neurodegenerative process and neuroinflammation occur, and no current therapies can prevent, slow, or halt disease progression. To date, no novel disease-modifying therapies have been shown to provide significant benefit for patients who suffer from these devastating disorders. Therefore, early diagnosis and the discovery of new targets and novel therapies are of upmost importance. Neurodegenerative diseases, like in other age-related disorders, the progression of pathology begins many years before the onset of symptoms. Many efforts in this field have led to the conclusion that exits some similar events among these diseases that can explain why the aging brain is so vulnerable to suffer neurodegenerative diseases. This article reviews the current knowledge about these diseases by summarizing the most common features of major neurodegenerative disorders, their causes and consequences, and the proposed novel therapeutic approaches.
Collapse
|
28
|
Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte Biomarkers in Alzheimer's Disease. Trends Mol Med 2019; 25:77-95. [PMID: 30611668 DOI: 10.1016/j.molmed.2018.11.006] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Astrocytic contributions to Alzheimer's disease (AD) progression were, until recently, largely overlooked. Astrocytes are integral to normal brain function and astrocyte reactivity is an early feature of AD, potentially providing a promising target for preclinical diagnosis and treatment. Several in vivo AD biomarkers already exist, but presently there is a paucity of specific and sensitive in vivo astrocyte biomarkers that can accurately measure preclinical AD. Measuring monoamine oxidase-B with neuroimaging and glial fibrillary acidic protein from bodily fluids are biomarkers that are currently available. Developing novel, more specific, and sensitive astrocyte biomarkers will make it possible to pharmaceutically target chemical pathways that preserve beneficial astrocytic functions in response to AD pathology. This review discusses astrocyte biomarkers in the context of AD.
Collapse
Affiliation(s)
- Stephen F Carter
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Karl Herholz
- Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Douglas Hospital Research Centre, Montreal, Canada; Montreal Neurological Institute, Montreal, Canada
| | - Luc Pellerin
- Département de Physiologie, Université de Lausanne, Lausanne, Switzerland; Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex 33760, France
| | - Agneta Nordberg
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Eduardo R Zimmer
- Department of Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute (BraIns) of Rio Grande do Sul, Porto Alegre, Brazil; Website: www.zimmer-lab.org.
| |
Collapse
|
29
|
Effective nose-to-brain delivery of exendin-4 via coadministration with cell-penetrating peptides for improving progressive cognitive dysfunction. Sci Rep 2018; 8:17641. [PMID: 30518944 PMCID: PMC6281676 DOI: 10.1038/s41598-018-36210-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023] Open
Abstract
In a recent study, we demonstrated the potential of a cell-penetrating peptide (CPP) penetratin to deliver the peptide drug insulin to the brain via nasal administration, and its pharmacological effect on the mild cognitive dysfunction in senescence-accelerated mouse (SAMP8). However, the therapeutic potential of intranasal insulin administration was attenuated when applied to the aged SAMP8 with severe cognitive dysfunction. The present study, therefore, aimed to overcome the difficulty in treating severe cognitive dysfunction using insulin by investigating potential alternatives, glucagon-like peptide-1 (GLP-1) receptor agonists such as exendin-4. Examination using normal ddY mice demonstrated that the distribution of exendin-4 throughout the brain was dramatically increased by intranasal coadministration with the L-form of penetratin. The activation of hippocampal insulin signaling after the simultaneous nose-to-brain delivery of exendin-4 and an adequate level of insulin were confirmed by analyzing the phosphorylation of Akt. Furthermore, spatial learning ability, evaluated in the Morris water maze test after daily administration of exendin-4 with L-penetratin and supplemental insulin for 4 weeks, suggested therapeutic efficacy against severe cognitive dysfunction. The present study suggests that nose-to-brain delivery of exendin-4 with supplemental insulin, mediated by CPP coadministration, shows promise for the treatment of progressive cognitive dysfunction in SAMP8.
Collapse
|
30
|
Gulati A, Hornick MG, Briyal S, Lavhale MS. A novel neuroregenerative approach using ET(B) receptor agonist, IRL-1620, to treat CNS disorders. Physiol Res 2018; 67:S95-S113. [PMID: 29947531 DOI: 10.33549/physiolres.933859] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endothelin B (ET(B)) receptors present in abundance the central nervous system (CNS) have been shown to have significant implications in its development and neurogenesis. We have targeted ET(B) receptors stimulation using a highly specific agonist, IRL-1620, to treat CNS disorders. In a rat model of cerebral ischemia intravenous administration IRL-1620 significantly reduced infarct volume and improved neurological and motor functions compared to control. This improvement, in part, is due to an increase in neuroregeneration. We also investigated the role of IRL-1620 in animal models of Alzheimer's disease (AD). IRL-1620 improved learning and memory, reduced oxidative stress and increased VEGF and NGF in Abeta treated rats. IRL-1620 also improved learning and memory in an aged APP/PS1 transgenic mouse model of AD. These promising findings prompted us to initiate human studies. Successful chemistry, manufacturing and control along with mice, rat and dog toxicological studies led to completion of a human Phase I study in healthy volunteers. We found that a dose of 0.6 microg/kg of IRL-1620 can be safely administered, three times every four hours, without any adverse effect. A Phase II clinical study with IRL-1620 has been initiated in patients with cerebral ischemia and mild to moderate AD.
Collapse
Affiliation(s)
- A Gulati
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA.
| | | | | | | |
Collapse
|
31
|
Medvedev AE, Radko SP, Yurinskaya MM, Vinokurov MG, Buneeva OA, Kopylov AT, Kozin SA, Mitkevich VA, Makarov AA. Neurotoxic Effects of Aβ6-42 Peptides Mimicking Putative Products Formed by the Angiotensin Converting Enzyme. J Alzheimers Dis 2018; 66:263-270. [PMID: 30282362 DOI: 10.3233/jad-180500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Angiotensin converting enzyme (ACE) is involved in proteolytic processing of the amyloid-β(Aβ) peptide implicated in the development of Alzheimer's disease (AD) and known products of ACE-based processing of Aβ42 are characterized by reduced aggregability and cytotoxicity. Recently it has been demonstrated that ACE can act as an arginine specific endopeptidase cleaving the N-terminal pentapeptide (Aβ1-5) from synthetic Aβ peptide analogues. In the context of proteolytic processing of full length Aβ42, this suggests possible formation of Aβ6-42 species. The aim of this study was to test a hypothesis that some N-terminally truncated Aβ peptide(s) could retain aggregability and neurotoxic properties typical for Aβ42. We have investigated aggregability of two amyloid-β peptides, Aβ6-42 and isoD7-Aβ6-42, mimicking potential proteolytic products of Aβ42 and isoD7-Aβ42, and evaluated their effects on the repertoire of brain Aβ binding proteins, and cytotoxicity towards neuroblastoma SH-SY5Y cells. Aggregability of isoD7-Aβ6-42 and Aβ6-42 was higher than that of full-length peptides Aβ42 and isoD7-Aβ42, while the repertoire of mouse brain Aβ binding proteins dramatically decreased. Aβ6-42 and isoD7-Aβ6-42 exhibited higher neurotoxicity towards SH-SY5Y cells than Aβ42 and isoD7-Aβ42, respectively. They effectively stimulated production of ROS and NO, and also TNFα secretion by cells. Thus, our results suggest that ACE-dependent processing of full-length Aβs could result in formation of more pathogenic peptides.
Collapse
Affiliation(s)
- Alexei E Medvedev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Institute of Biomedical Chemistry, Moscow, Russia
| | - Sergey P Radko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Institute of Biomedical Chemistry, Moscow, Russia
| | - Marina M Yurinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Maxim G Vinokurov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Yun J, Yeo IJ, Hwang CJ, Choi DY, Im HS, Kim JY, Choi WR, Jung MH, Han SB, Hong JT. Estrogen deficiency exacerbates Aβ-induced memory impairment through enhancement of neuroinflammation, amyloidogenesis and NF-ĸB activation in ovariectomized mice. Brain Behav Immun 2018; 73:282-293. [PMID: 29782911 DOI: 10.1016/j.bbi.2018.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 12/23/2022] Open
Abstract
Estrogen is well known to have a preventative effect in Alzheimer's disease (AD) pathology. Several studies have demonstrated that nuclear factor kappa-B (NF-ĸB) can contribute to the effects of estrogen on the development of AD. We investigated whether NF-ĸB affects amyloid-beta (Aβ)-induced memory impairment in an estrogen-lacking condition. In the present study, nine-week-old Institute cancer research (ICR) mice were ovariectomized to block estrogen stimulation. Ten weeks after the ovariectomization, mice were administered with Aβ (300 pmol) via intracerebroventricular (ICV) infusion for 2 weeks. Memory impairment, neuroinflammatory protein expression, and amyloidogenic pathways were then measured. Ovariectomized mice demonstrated severe memory impairment, Aβ accumulation, neprilysin downregulation, and activation of NF-ĸB signaling compared to sham-control mice. In vitro experiments demonstrated that β-estradiol (10 μM) inhibited Aβ (1 μM)-induced neuroinflammation in microglial BV-2 cells and prevented Aβ-induced cell death in primary cultured neuronal cells. As in in vivo experiments, NF-ĸB activation was significantly upregulated in in vitro experiments. Furthermore β-estradiol treatment inhibited NF-ĸB activation in both of microglial BV-2 cells and cultured neuronal cells. These findings suggest that estrogen may protect against memory impairment through the regulation of Aβ accumulation and neurogenic inflammation by inhibiting NF-κB activity.
Collapse
Affiliation(s)
- Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea; College of Pharmacy, Wonkwang University, Iksandaero 460, Iksan, Jeonbuk 54538, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280, Daehak-Ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Hyung-Sik Im
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Ji Youg Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Won Rak Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Myung Hee Jung
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro 194-31, Osong-eup, Heungduk-gu, Cheongju, Chungbuk 28160, Republic of Korea.
| |
Collapse
|
33
|
Biliverdin reductase-A impairment links brain insulin resistance with increased Aβ production in an animal model of aging: Implications for Alzheimer disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3181-3194. [PMID: 29981845 DOI: 10.1016/j.bbadis.2018.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 12/26/2022]
|
34
|
Ding M, Shen Y, Wang P, Xie Z, Xu S, Zhu Z, Wang Y, Lyu Y, Wang D, Xu L, Bi J, Yang H. Exosomes Isolated From Human Umbilical Cord Mesenchymal Stem Cells Alleviate Neuroinflammation and Reduce Amyloid-Beta Deposition by Modulating Microglial Activation in Alzheimer's Disease. Neurochem Res 2018; 43:2165-2177. [PMID: 30259257 DOI: 10.1007/s11064-018-2641-5] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/09/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by excessive accumulation of the amyloid-β peptide (Aβ) in the brain, which has been considered to mediate the neuroinflammation process. Microglial activation is the main component of neuroimmunoregulation. In recent years, exosomes isolated from human umbilical cord mesenchymal stem cells (hucMSC-exosomes) have been demonstrated to mimic the therapeutic effects of hucMSCs in many inflammation-related diseases. In this study, exosomes from the supernatant of hucMSCs were injected into AD mouse models. We observed that hucMSC-exosomes injection could repair cognitive disfunctions and help to clear Aβ deposition in these mice. Moreover, we found that hucMSC-exosomes injection could modulate the activation of microglia in brains of the mice to alleviated neuroinflammation. The levels of pro-inflammatory cytokines in peripheral blood and brains of mice were increased and the levels of anti-inflammatory cytokines were decreased. We also treated BV2 cells with hucMSC-exosomes in culture medium. HucMSC-exosomes also had inflammatory regulating effects to alternatively activate microglia and modulate the levels of inflammatory cytokines in vitro.
Collapse
Affiliation(s)
- Mao Ding
- Medicine School, Shandong University, Jinan, 250012, China
| | - Yang Shen
- Medicine School, Shandong University, Jinan, 250012, China
| | - Ping Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Zhaohong Xie
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Shunliang Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - ZhengYu Zhu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Yun Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Yongtao Lyu
- Department of Neurology Medicine, Shandong Provincial Third Hospital, Jinan, 250031, China
| | - Dewei Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Linlin Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - JianZhong Bi
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China.
| | - Hui Yang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China.
| |
Collapse
|
35
|
Stock AJ, Kasus-Jacobi A, Pereira HA. The role of neutrophil granule proteins in neuroinflammation and Alzheimer's disease. J Neuroinflammation 2018; 15:240. [PMID: 30149799 PMCID: PMC6112130 DOI: 10.1186/s12974-018-1284-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are the innate immune system’s first line of defense. Neutrophils play a critical role in protecting the host against infectious pathogens, resolving sterile injuries, and mediating inflammatory responses. The granules of neutrophils and their constituent proteins are central to these functions. Although neutrophils may exert a protective role upon acute inflammatory conditions or insults, continued activity of neutrophils in chronic inflammatory diseases can contribute to tissue damage. Neutrophil granule proteins are involved in a number of chronic inflammatory conditions and diseases. However, the functions of these proteins in neuroinflammation and chronic neuroinflammatory diseases, including Alzheimer’s disease (AD), remain to be elucidated. In this review, we discuss recent findings from our lab and others that suggest possible functions for neutrophils and the neutrophil granule proteins, CAP37, neutrophil elastase, and cathepsin G, in neuroinflammation, with an emphasis on AD. These findings reveal that neutrophil granule proteins may exert both neuroprotective and neurotoxic effects. Further research should determine whether neutrophil granule proteins are valid targets for therapeutic interventions in chronic neuroinflammatory diseases.
Collapse
Affiliation(s)
- Amanda J Stock
- The Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd., BRC Rm 06B121, Baltimore, MD, 21224, USA.,Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA
| | - Anne Kasus-Jacobi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA
| | - H Anne Pereira
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA. .,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Ave., CPB 255, Oklahoma City, OK, 73117, USA. .,Department of Cell Biology, University of Oklahoma Health Sciences Center, 1105 N. Stonewall, Robert M. Bird Library, Rm 258, Oklahoma City, OK, 73117, USA. .,Department of Pathology, University of Oklahoma Health Sciences Center, 1105 N. Stonewall, Robert M. Bird Library, Rm 258, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
36
|
Heywood WE, Hallqvist J, Heslegrave AJ, Zetterberg H, Fenoglio C, Scarpini E, Rohrer JD, Galimberti D, Mills K. CSF pro-orexin and amyloid-β38 expression in Alzheimer's disease and frontotemporal dementia. Neurobiol Aging 2018; 72:171-176. [PMID: 30292090 PMCID: PMC6221294 DOI: 10.1016/j.neurobiolaging.2018.08.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/02/2022]
Abstract
There is an unmet need for markers that can stratify different forms and subtypes of dementia. Because of similarities in clinical presentation, it can be difficult to distinguish between Alzheimer's disease (AD) and frontotemporal dementia (FTD). Using a multiplex targeted proteomic LC-MS/MS platform, we aimed to identify cerebrospinal fluid proteins differentially expressed between patients with AD and FTD. Furthermore analysis of 2 confirmed FTD genetic subtypes carrying progranulin (GRN) and chromosome 9 open reading frame 72 (C9orf72) mutations was performed to give an insight into the differing pathologies of these forms of FTD. Patients with AD (n = 13) demonstrated a significant (p < 0.007) 1.24-fold increase in pro-orexin compared to FTD (n = 32). Amyloid beta-38 levels in patients with AD were unaltered but demonstrated a >2-fold reduction (p < 0.0001) in the FTD group compared to controls and a similar 1.83-fold reduction compared to the AD group (p < 0.001). Soluble TREM2 was elevated in both dementia groups but did not show any difference between AD and FTD. A further analysis comparing FTD subgroups revealed slightly lower levels of proteins apolipoprotein E, CD166, osteopontin, transthyretin, and cystatin C in the GRN group (n = 9) compared to the C9orf72 group (n = 7). These proteins imply GRN FTD elicits an altered inflammatory response to C9orf72 FTD.
Collapse
Affiliation(s)
- Wendy E Heywood
- Centre for Translational Omics, Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Jenny Hallqvist
- Centre for Translational Omics, Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Amanda J Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Salhgrenska Academy at the University of Gothenburg, Sweden
| | - Chiara Fenoglio
- Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Daniela Galimberti
- Neurodegenerative Disease Unit, University of Milan, Centro Dino Ferrari, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Kevin Mills
- Centre for Translational Omics, Genetics & Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
37
|
Insulin-signaling Pathway Regulates the Degradation of Amyloid β-protein via Astrocytes. Neuroscience 2018; 385:227-236. [PMID: 29932983 DOI: 10.1016/j.neuroscience.2018.06.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) has been considered as a metabolic dysfunction disease associated with impaired insulin signaling. Determining the mechanisms underlying insulin signaling dysfunction and resistance in AD will be important for its treatment. Impaired clearance of amyloid-β peptide (Aβ) significantly contributes to amyloid accumulation, which is typically observed in the brain of AD patients. Reduced expression of important Aβ-degrading enzymes in the brain, such as neprilysin (NEP) and insulin-degrading enzyme (IDE), can promote Aβ deposition in sporadic late-onset AD patients. Here, we investigated whether insulin regulates the degradation of Aβ by inducing expression of NEP and IDE in cultured astrocytes. Treatment of astrocytes with insulin significantly reduced cellular NEP levels, but increased IDE expression. The effects of insulin on the expression of NEP and IDE involved activation of an extracellular signal-regulated kinase (ERK)-mediated pathway. The reduction in cellular NEP levels was associated with NEP secretion into the culture medium, whereas IDE was increased in the cell membranes. Moreover, insulin-treated astrocytes significantly facilitated the degradation of exogenous Aβ within the culture medium. Interestingly, pretreatment of astrocytes with an ERK inhibitor prior to insulin exposure markedly inhibited insulin-induced degradation of Aβ. These results suggest that insulin exposure enhanced Aβ degradation via an increase in NEP secretion and IDE expression in astrocytes, via activation of the ERK-mediated pathway. The inhibition of insulin signaling pathways delayed Aβ degradation by attenuating alterations in NEP and IDE levels and competition with insulin and Aβ. Our results provide further insight into the pathological relevance of insulin resistance in AD development.
Collapse
|
38
|
Tikhonova MA, Amstislavskaya TG, Belichenko VM, Fedoseeva LA, Kovalenko SP, Pisareva EE, Avdeeva AS, Kolosova NG, Belyaev ND, Aftanas LI. Modulation of the expression of genes related to the system of amyloid-beta metabolism in the brain as a novel mechanism of ceftriaxone neuroprotective properties. BMC Neurosci 2018; 19:13. [PMID: 29745864 PMCID: PMC5998892 DOI: 10.1186/s12868-018-0412-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background The dominant hypothesis about the pathogenesis of Alzheimer’s disease (AD) is the “amyloid cascade” concept and modulating the expression of proteins involved in the metabolism of amyloid-beta (Aβ) is proposed as an effective strategy for the prevention and therapy of AD. Recently, we found that an antibiotic ceftriaxone (CEF), which possesses neuroprotective activity, reduced cognitive deficits and neurodegenerative changes in OXYS rats, a model of sporadic AD. The molecular mechanisms of this effect are not completely clear, we suggested that the drug might serve as the regulator of the expression of the genes involved in the metabolism of Aβ and the pathogenesis of AD. The study was aimed to determine the effects of CEF on mRNA levels of Bace1 (encoding β-secretase BACE1 involved in Aβ production), Mme, Ide, Ece1, Ace2 (encoding enzymes involved in Aβ degradation), Epo (encoding erythropoietin related to endothelial function and clearance of Aβ across the blood brain barrier) in the frontal cortex, hippocampus, striatum, hypothalamus, and amygdala of OXYS and Wistar (control strain) male rats. Starting from the age of 14 weeks, animals received CEF (100 mg/kg/day, i.p., 36 days) or saline. mRNA levels were evaluated with RT-qPCR method. Biochemical parameters of plasma were measured for control of system effects of the treatment. Results To better understand strain variations studied here, we compared the gene expression between untreated OXYS and Wistar rats. This comparison showed a significant decrease in mRNA levels of Ace2 in the frontal cortex and hypothalamus, and of Actb in the amygdala of untreated OXYS rats. Analysis of potential effects of CEF revealed its novel targets. In the compound-treated OXYS cohort, CEF diminished mRNA levels of Bace1 and Ace2 in the hypothalamus, and Aktb in the frontal cortex. Furthermore, CEF augmented Mme, Ide, and Epo mRNA levels in the amygdala as well as the levels of Ece1 and Aktb in the striatum. Finally, CEF also attenuated the activity of ALT and AST in plasma of OXYS rats. Conclusion Those findings disclosed novel targets for CEF action that might be involved into neuroprotective mechanisms at early, pre-plaque stages of AD-like pathology development.
Collapse
Affiliation(s)
- Maria A Tikhonova
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Tamara G Amstislavskaya
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Victor M Belichenko
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia
| | - Larisa A Fedoseeva
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia.,Federal Research Center "Institute of Cytology and Genetics", Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Sergey P Kovalenko
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia
| | - Ekaterina E Pisareva
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia
| | - Alla S Avdeeva
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia
| | - Nataliya G Kolosova
- Federal Research Center "Institute of Cytology and Genetics", Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | - Lyubomir I Aftanas
- Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" (SRIPhBM), Timakov St., 4, Novosibirsk, 630117, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
39
|
Fu W, Dai Y, Ma T, Wei J, Chen H, Xu S. Tongluo Xingnao effervescent tablet reverses memory deficit and reduces plaque load in APPswe/PS1dE9 mice. Exp Ther Med 2018; 15:4005-4013. [PMID: 29563991 DOI: 10.3892/etm.2018.5897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Amyloid-β (Aβ)-induced neurodegeneration is hypothesized to be the primary pathological mechanism of AD. Tongluo Xingnao effervescent tablets (TXET), based on the traditional Chinese formula Qionggui Tang, have been used to treat AD and other types of dementia in China for decades. In the present study, the effects of TXET on cognition deficit, amyloid-β production, amyloid precursor protein procession and β-secretase expression were investigated in the APPswe/PS1dE9 mouse model of AD. As expected, APPswe/PS1dE9 mice exhibited cognitive decline and higher levels of Aβ and plaques in the brain compared with normal mice; however, these changes were attenuated following TXET treatment. Levels of C-terminal fragment (CTF)-β protein were decreased following treatment with TXET; however, CTF-α levels were unaffected. Furthermore, TXET treatment did not decrease γ-secretase activity or levels of presenilin-1 (PS1), neprilysin or insulin-degrading enzyme. These results indicate that TXET may regulate Aβ metabolism by downregulating the expression of β-secretase. The results of the present study have laid the foundation for the development of a Chinese medicinal compound with a β-secretase inhibitor as the target for the treatment of AD.
Collapse
Affiliation(s)
- Wenjun Fu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Yuan Dai
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Beijing 100078, P.R. China
| | - Tao Ma
- Experimental Center of Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Jiangping Wei
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Huan Chen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| |
Collapse
|
40
|
Tewari D, Stankiewicz AM, Mocan A, Sah AN, Tzvetkov NT, Huminiecki L, Horbańczuk JO, Atanasov AG. Ethnopharmacological Approaches for Dementia Therapy and Significance of Natural Products and Herbal Drugs. Front Aging Neurosci 2018; 10:3. [PMID: 29483867 PMCID: PMC5816049 DOI: 10.3389/fnagi.2018.00003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Dementia is a clinical syndrome wherein gradual decline of mental and cognitive capabilities of an afflicted person takes place. Dementia is associated with various risk factors and conditions such as insufficient cerebral blood supply, toxin exposure, mitochondrial dysfunction, oxidative damage, and often coexisting with some neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). Although there are well-established (semi-)synthetic drugs currently used for the management of AD and AD-associated dementia, most of them have several adverse effects. Thus, traditional medicine provides various plant-derived lead molecules that may be useful for further medical research. Herein we review the worldwide use of ethnomedicinal plants in dementia treatment. We have explored a number of recognized databases by using keywords and phrases such as “dementia”, “Alzheimer's,” “traditional medicine,” “ethnopharmacology,” “ethnobotany,” “herbs,” “medicinal plants” or other relevant terms, and summarized 90 medicinal plants that are traditionally used to treat dementia. Moreover, we highlight five medicinal plants or plant genera of prime importance and discuss the physiological effects, as well as the mechanism of action of their major bioactive compounds. Furthermore, the link between mitochondrial dysfunction and dementia is also discussed. We conclude that several drugs of plant origin may serve as promising therapeutics for the treatment of dementia, however, pivotal evidence for their therapeutic efficacy in advanced clinical studies is still lacking.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Adrian M Stankiewicz
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Nikolay T Tzvetkov
- Department of Molecular Biology and Biochemical Pharmacology, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jarosław O Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
41
|
The antioxidant xanthorrhizol prevents amyloid-β-induced oxidative modification and inactivation of neprilysin. Biosci Rep 2018; 38:BSR20171611. [PMID: 29330223 PMCID: PMC5794500 DOI: 10.1042/bsr20171611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Activity of neprilysin (NEP), the major protease which cleaves amyloid-β peptide (Aβ), is reportedly reduced in the brains of patients with Alzheimer's disease (AD). Accumulation of Aβ generates reactive oxygen species (ROS) such as 4-hydroxynonenal (HNE), and then reduces activities of Aβ-degrading enzymes including NEP. Xanthorrhizol (Xan), a natural sesquiterpenoid, has been reported to possess antioxidant and anti-inflammatory properties. The present study examined the effects of Xan on HNE- or oligomeric Aβ42-induced oxidative modification of NEP protein. Xan was added to the HNE- or oligomeric Aβ42-treated SK-N-SH human neuroblastoma cells and then levels, oxidative modification and enzymatic activities of NEP protein were measured. Increased HNE levels on NEP proteins and reduced enzymatic activities of NEP were observed in the HNE- or oligomeric Aβ42-treated cells. Xan reduced HNE levels on NEP proteins and preserved enzymatic activities of NEP in HNE- or oligomeric Aβ42-treated cells. Xan reduced Aβ42 accumulation and protected neurones against oligomeric Aβ42-induced neurotoxicity through preservation of NEP activities. These findings indicate that Xan possesses therapeutic potential for the treatment of neurodegenerative diseases, including AD, and suggest a potential mechanism for the neuroprotective effects of antioxidants for the prevention of AD.
Collapse
|
42
|
Doig AJ. Positive Feedback Loops in Alzheimer's Disease: The Alzheimer's Feedback Hypothesis. J Alzheimers Dis 2018; 66:25-36. [PMID: 30282364 PMCID: PMC6484277 DOI: 10.3233/jad-180583] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
The dominant model for Alzheimer's disease (AD) is the amyloid cascade hypothesis, in which the accumulation of excess amyloid-β (Aβ) leads to inflammation, excess glutamate and intracellular calcium, oxidative stress, tau hyperphosphorylation and tangle formation, neuronal loss, and ultimately dementia. In a cascade, AD proceeds in a unidirectional fashion, with events only affecting downstream processes. Compelling evidence now exists for the presence of positive feedback loops in AD, however, involving oxidative stress, inflammation, glutamate, calcium, and tau. The pathological state of AD is thus a system of positive feedback loops, leading to amplification of the initial perturbation, rather than a linear cascade. Drugs may therefore be effective by targeting numerous points within the loops, rather than concentrating on upstream processes. Anti-inflammatories and anti-oxidants may be especially valuable, since these processes are involved in many loops and hence would affect numerous processes in AD.
Collapse
Affiliation(s)
- Andrew J. Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, Oxford Road, University of Manchester, UK
| |
Collapse
|
43
|
Song J, Choi SM, Whitcomb DJ, Kim BC. Adiponectin controls the apoptosis and the expression of tight junction proteins in brain endothelial cells through AdipoR1 under beta amyloid toxicity. Cell Death Dis 2017; 8:e3102. [PMID: 29022894 PMCID: PMC5682657 DOI: 10.1038/cddis.2017.491] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 06/20/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease, characterized by excessive beta amyloid (Aβ) deposition in brain, leading to blood–brain barrier (BBB) disruption. The mechanisms of BBB disruption in AD are still unclear, despite considerable research. The adipokine adiponectin is known to regulate various metabolic functions and reduce inflammation. Though adiponectin receptors have been reported in the brain, its role in the central nervous system has not been fully characterized. In the present study, we investigate whether adiponectin contributes to the tight junction integrity and cell death of brain endothelial cells under Aβ-induced toxicity conditions. We measured the expression of adiponectin receptors (AdipoR1 and AdipoR2) and the alteration of tight junction proteins in in vivo 5xFAD mouse brain. Moreover, we examined the production of reactive oxygen species (ROS) and the loss of tight junction proteins such as Claudin 5, ZO-1, and inflammatory signaling in in vitro brain endothelial cells (bEnd.3 cells) under Aβ toxicity. Our results showed that Acrp30 (a globular form of adiponectin) reduces the expression of proinflammatory cytokines and the expression of RAGE as Aβ transporters into brain. Moreover, we found that Acrp 30 attenuated the apoptosis and the tight junction disruption through AdipoR1-mediated NF-κB pathway in Aβ-exposed bEnd.3 cells. Thus, we suggest that adiponectin is an attractive therapeutic target for treating BBB breakdown in AD brain.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju 61469, South Korea.,Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, South Korea
| | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Healthy Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju 61469, South Korea
| |
Collapse
|
44
|
Stanga S, Vrancx C, Tasiaux B, Marinangeli C, Karlström H, Kienlen-Campard P. Specificity of presenilin-1- and presenilin-2-dependent γ-secretases towards substrate processing. J Cell Mol Med 2017; 22:823-833. [PMID: 28994238 PMCID: PMC5783875 DOI: 10.1111/jcmm.13364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
The two presenilin‐1 (PS1) and presenilin‐2 (PS2) homologs are the catalytic core of the γ‐secretase complex, which has a major role in cell fate decision and Alzheimer's disease (AD) progression. Understanding the precise contribution of PS1‐ and PS2‐dependent γ‐secretases to the production of β‐amyloid peptide (Aβ) from amyloid precursor protein (APP) remains an important challenge to design molecules efficiently modulating Aβ release without affecting the processing of other γ‐secretase substrates. To that end, we studied PS1‐ and PS2‐dependent substrate processing in murine cells lacking presenilins (PSs) (PS1KO, PS2KO or PS1‐PS2 double‐KO noted PSdKO) or stably re‐expressing human PS1 or PS2 in an endogenous PS‐null (PSdKO) background. We characterized the processing of APP and Notch on both endogenous and exogenous substrates, and we investigated the effect of pharmacological inhibitors targeting the PSs activity (DAPT and L‐685,458). We found that murine PS1 γ‐secretase plays a predominant role in APP and Notch processing when compared to murine PS2 γ‐secretase. The inhibitors blocked more efficiently murine PS2‐ than murine PS1‐dependent processing. Human PSs, especially human PS1, expression in a PS‐null background efficiently restored APP and Notch processing. Strikingly, and contrary to the results obtained on murine PSs, pharmacological inhibitors appear to preferentially target human PS1‐ than human PS2‐dependent γ‐secretase activity.
Collapse
Affiliation(s)
- Serena Stanga
- Alzheimer Research group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Céline Vrancx
- Alzheimer Research group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Bernadette Tasiaux
- Alzheimer Research group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Claudia Marinangeli
- Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT, University of Lille, Lille, France
| | - Helena Karlström
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Pascal Kienlen-Campard
- Alzheimer Research group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
45
|
Yamamoto N, Shibata M, Ishikuro R, Tanida M, Taniguchi Y, Ikeda-Matsuo Y, Sobue K. Epigallocatechin gallate induces extracellular degradation of amyloid β-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways. Neuroscience 2017; 362:70-78. [DOI: 10.1016/j.neuroscience.2017.08.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/08/2017] [Accepted: 08/15/2017] [Indexed: 01/29/2023]
|
46
|
d'Uscio LV, He T, Katusic ZS. Expression and Processing of Amyloid Precursor Protein in Vascular Endothelium. Physiology (Bethesda) 2017; 32:20-32. [PMID: 27927802 DOI: 10.1152/physiol.00021.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyloid precursor protein (APP) is evolutionary conserved protein expressed in endothelial cells of cerebral and peripheral arteries. In this review, we discuss mechanisms responsible for expression and proteolytic cleavage of APP in endothelial cells. We focus on physiological and pathological implications of APP expression in vascular endothelium.
Collapse
Affiliation(s)
- Livius V d'Uscio
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tongrong He
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
47
|
Pardeshi R, Bolshette N, Gadhave K, Ahire A, Ahmed S, Cassano T, Gupta VB, Lahkar M. Insulin signaling: An opportunistic target to minify the risk of Alzheimer's disease. Psychoneuroendocrinology 2017. [PMID: 28624654 DOI: 10.1016/j.psyneuen.2017.05.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is progressive neurodegenerative disorder characterized by accumulation of senile plaques, neurofibrillary tangles (NFT) and neurodegeneration. The diabetes mellitus (DM) is one of the risk factors for AD pathogenesis by impairment in insulin signaling and glucose metabolism in central as well as peripheral system. Insulin resistance, impaired glucose and lipid metabolism are leading to the Aβ (Aβ) aggregation, Tau phosphorylation, mitochondrial dysfunction, oxidative stress, protein misfolding, memory impairment and also mark over Aβ transport through central to peripheral and vice versa. Several pathways, like enzymatic degradation of Aβ, forkhead box protein O1 (FOXO) signaling, insulin signaling shared common pathological mechanism for both AD and DM. Recent evidence showed that hyperinsulinemia and hyperglycemia affect the onset and progression of AD differently. Some researchers have suggested that hyperglycemia influences vascular tone, while hyperinsulinemia may underlie mitochondrial deficit. The objective of this review is to determine whether existing evidence supports the concept that impairment in insulin signaling and glucose metabolism play an important role in pathogenesis of AD. In the first part of this review, we tried to explain the interconnecting link between AD and DM, whereas the second part includes more information on insulin resistance and its involvement in AD pathogenesis. In the final part of this review, we have focused more toward the AD treatment by targeting insulin signaling like anti-diabetic, antioxidant, nutraceuticals and dietary supplements. To date, more researches should be done in this field in order to explore the pathways in insulin signaling, which might ameliorate the treatment options and reduce the risk of AD due to DM.
Collapse
Affiliation(s)
- Rohit Pardeshi
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Kundlik Gadhave
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Ashutosh Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Luigi Pinto, c/o Ospedali Riuniti, 71122 Foggia, Italy
| | - Veer Bala Gupta
- Centre of Excellence for Alzheimer's Disease Research & Care, School of Medical Sciences, Edith-Cowan University, Joondalup, WA 6027, Australia
| | - Mangala Lahkar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India; Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati 781032, Assam, India.
| |
Collapse
|
48
|
Mullins RJ, Diehl TC, Chia CW, Kapogiannis D. Insulin Resistance as a Link between Amyloid-Beta and Tau Pathologies in Alzheimer's Disease. Front Aging Neurosci 2017; 9:118. [PMID: 28515688 PMCID: PMC5413582 DOI: 10.3389/fnagi.2017.00118] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
Current hypotheses and theories regarding the pathogenesis of Alzheimer’s disease (AD) heavily implicate brain insulin resistance (IR) as a key factor. Despite the many well-validated metrics for systemic IR, the absence of biomarkers for brain-specific IR represents a translational gap that has hindered its study in living humans. In our lab, we have been working to develop biomarkers that reflect the common mechanisms of brain IR and AD that may be used to follow their engagement by experimental treatments. We present two promising biomarkers for brain IR in AD: insulin cascade mediators probed in extracellular vesicles (EVs) enriched for neuronal origin, and two-dimensional magnetic resonance spectroscopy (MRS) measures of brain glucose. As further evidence for a fundamental link between brain IR and AD, we provide a novel analysis demonstrating the close spatial correlation between brain expression of genes implicated in IR (using Allen Human Brain Atlas data) and tau and beta-amyloid pathologies. We proceed to propose the bold hypotheses that baseline differences in the metabolic reliance on glycolysis, and the expression of glucose transporters (GLUT) and insulin signaling genes determine the vulnerability of different brain regions to Tau and/or Amyloid beta (Aβ) pathology, and that IR is a critical link between these two pathologies that define AD. Lastly, we provide an overview of ongoing clinical trials that target IR as an angle to treat AD, and suggest how biomarkers may be used to evaluate treatment efficacy and target engagement.
Collapse
Affiliation(s)
- Roger J Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Thomas C Diehl
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Chee W Chia
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health (NIA/NIH)Baltimore, MD, USA
| |
Collapse
|
49
|
Diehl T, Mullins R, Kapogiannis D. Insulin resistance in Alzheimer's disease. Transl Res 2017; 183:26-40. [PMID: 28034760 PMCID: PMC5393926 DOI: 10.1016/j.trsl.2016.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
The links between systemic insulin resistance (IR), brain-specific IR, and Alzheimer's disease (AD) have been an extremely productive area of current research. This review will cover the fundamentals and pathways leading to IR, its connection to AD via cellular mechanisms, the most prominent methods and models used to examine it, an introduction to the role of extracellular vesicles (EVs) as a source of biomarkers for IR and AD, and an overview of modern clinical studies on the subject. To provide additional context, we also present a novel analysis of the spatial correlation of gene expression in the brain with the aid of Allen Human Brain Atlas data. Ultimately, examining the relation between IR and AD can be seen as a means of advancing the understanding of both disease states, with IR being a promising target for therapeutic strategies in AD treatment. In conclusion, we highlight the therapeutic potential of targeting brain IR in AD and the main strategies to pursue this goal.
Collapse
Affiliation(s)
- Thomas Diehl
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
| | - Roger Mullins
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD
| | - Dimitrios Kapogiannis
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging/National Institutes of Health (NIA/NIH), Baltimore, MD.
| |
Collapse
|
50
|
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular Pathogenesis of Alzheimer's Disease: An Update. Ann Neurosci 2017; 24:46-54. [PMID: 28588356 DOI: 10.1159/000464422] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 07/26/2016] [Indexed: 01/15/2023] Open
Abstract
Dementia is a chronic or progressive syndrome, characterized by impaired cognitive capacity beyond what could be considered a consequence of normal aging. It affects the memory, thinking process, orientation, comprehension, calculation, learning ability, language, and judgment; although awareness is usually unaffected. Alzheimer's disease (AD) is the most common form of dementia; symptoms include memory loss, difficulty solving problems, disorientation in time and space, among others. The disease was first described in 1906 at a conference in Tubingen, Germany by Alois Alzheimer. One hundred and ten years since its first documentation, many aspects of the pathophysiology of AD have been discovered and understood, however gaps of knowledge continue to exist. This literature review summarizes the main underlying neurobiological mechanisms in AD, including the theory with emphasis on amyloid peptide, cholinergic hypothesis, glutamatergic neurotransmission, the role of tau protein, and the involvement of oxidative stress and calcium.
Collapse
Affiliation(s)
- Alfredo Sanabria-Castro
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Fund (CCSS), San José, Costa Rica
| | | | - Cecilia Monge-Bonilla
- Research Unit, Hospital San Juan de Dios, Costa Rican Social Security Fund (CCSS), San José, Costa Rica
| |
Collapse
|