1
|
Banerjee U, Chunchanur S, R A, Balaji KN, Singh A, Chakravortty D, Chandra N. Systems-level profiling of early peripheral host-response landscape variations across COVID-19 severity states in an Indian cohort. Genes Immun 2023; 24:183-193. [PMID: 37438430 DOI: 10.1038/s41435-023-00210-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Host immune response to COVID-19 plays a significant role in regulating disease severity. Although big data analysis has provided significant insights into the host biology of COVID-19 across the world, very few such studies have been performed in the Indian population. This study utilizes a transcriptome-integrated network analysis approach to compare the immune responses between asymptomatic or mild and moderate-severe COVID-19 patients in an Indian cohort. An immune suppression phenotype is observed in the early stages of moderate-severe COVID-19 manifestation. A number of pathways are identified that play crucial roles in the host control of the disease such as the type I interferon response and classical complement pathway which show different activity levels across the severity spectrum. This study also identifies two transcription factors, IRF7 and ESR1, to be important in regulating the severity of COVID-19. Overall this study provides a deep understanding of the peripheral immune landscape in the COVID-19 severity spectrum in the Indian genetic background and opens up future research avenues to compare immune responses across global populations.
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Sneha Chunchanur
- Bangalore Medical College and Research Institute (BMCRI), Bengaluru, India
| | - Ambica R
- Bangalore Medical College and Research Institute (BMCRI), Bengaluru, India
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Center for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
- Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
2
|
Qin X, Jia G, Zhou X, Yang Z. Diet and Esophageal Cancer Risk: An Umbrella Review of Systematic Reviews and Meta-Analyses of Observational Studies. Adv Nutr 2022; 13:2207-2216. [PMID: 36041184 PMCID: PMC9776643 DOI: 10.1093/advances/nmac087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 01/29/2023] Open
Abstract
Diet may play an important role in the occurrence of esophageal cancer (EC). The aim of this umbrella review was to grade the evidence for the association between dietary factors and EC risk. A protocol for this review was registered with the PROSPERO database (CRD42021283232). Publications were identified by searching PubMed, EMBASE, Web of Science, Cochrane Database of Systematic Reviews, and CINAHL databases. Only systematic reviews and meta-analyses of observational studies (cohort studies, case-cohort studies, nested case-control studies) were eligible. AMSTAR-2 (A Measurement Tool to Assess Systematic Reviews) was used to assess the methodological quality of included systematic reviews. For each association, random-effects pooled effect size, 95% CI, number of cases, 95% prediction interval, heterogeneity, small-study effect, and excess significance bias were calculated to grade the evidence. From 882 publications, 107 full-text articles were evaluated for eligibility, and 20 systematic reviews and meta-analyses describing 32 associations between dietary factors and EC risk were included in the present umbrella review. By assessing the strength and validity of the evidence, 1 association (positively associated with alcohol intake) was supported by highly suggestive evidence and 1 (inversely associated with calcium intake) showed a suggestive level of evidence. Evidence for 7 associations was weak (positively associated with red meat and processed-meat intake; inversely associated with whole grains, fruits, green leafy vegetables, green tea, and zinc intake). The remaining 23 associations were nonsignificant. In conclusion, the findings of this umbrella review emphasize that habitually consuming calcium, whole grains, fruits, green leafy vegetables, green tea, and zinc and reducing alcohol, red meat, and processed-meat intake are associated with a lower risk of EC. Since this umbrella review included only observational study data and some of the associations were graded as weak, caution should be exercised in interpreting these relations.
Collapse
Affiliation(s)
- Xianpeng Qin
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaogang Zhou
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhou Yang
- Department of Gastrointestinal Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Barman S, Srinivasan K. Ameliorative effect of zinc supplementation on compromised small intestinal health in streptozotocin-induced diabetic rats. Chem Biol Interact 2019; 307:37-50. [DOI: 10.1016/j.cbi.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/04/2019] [Accepted: 04/15/2019] [Indexed: 01/29/2023]
|
4
|
Ning Y, Wang X, Zhang P, Anatoly SV, Prakash NT, Li C, Zhou R, Lammi M, Zhang F, Guo X. Imbalance of dietary nutrients and the associated differentially expressed genes and pathways may play important roles in juvenile Kashin-Beck disease. J Trace Elem Med Biol 2018; 50:441-460. [PMID: 29426639 DOI: 10.1016/j.jtemb.2018.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/05/2018] [Accepted: 01/23/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Kashin-Beck disease (KBD) is a childhood-onset endemic osteoarthropathy in China. Nutrients including trace elements may play active roles in the development of KBD. OBJECTIVE This study aimed to estimate the nutrient intakes of children in endemic areas and to identify the imbalanced nutrients associated differentially expressed genes in the juvenile patients with KBD. METHODS In this cross-sectional study, a consecutive 3 day 24 h semi-quantitative dietary retrospect questionnaire was conducted to estimate the daily nutrient intakes of children using CDGSS 3.0 software. Gene profile analysis was employed to identify differentially expressed genes in peripheral blood mononuclear cells of children with KBD. GOC, CTD, KEGG, and REACTOME databases were used to establish the relationship between nutrients and nutrients-associated differentially expressed genes and pathways. Statistical analyses were accomplished by SPSS 18.0 software. RESULTS Daily Se intakes without supplementation of children were significantly lower in Se-supplemented (Se + ) KBD areas (29.3 ∼ 29.6 mg/d) and non-endemic area (27.8 ± 7.9 mg/d) compared to non-Se-supplemented (Se-) KBD area (32.9 ± 7.9 mg/d, c2 = 20.24, P < .01). Children in Se+ KBD areas were suffering more serious insufficient intake of multiple nutrients, including vitamins-B2/-C/-E, Ca, Fe, Zn and I. Gene profile analysis combined with bioinformatics technique identified 34 nutrients associated differentially expressed genes and 10 significant pathways which are related to the pathological changes in juvenile KBD. CONCLUSIONS Imbalance of dietary nutrients and nutrients-associated differentially expressed genes and pathways may play important roles in the development of juvenile KBD.
Collapse
Affiliation(s)
- Yujie Ning
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Xi Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China; Xi'an Jiaotong University Global Health Institute, PR China
| | - Pan Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Skalny V Anatoly
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia; Orenburg State University, Orenburg, Russia; Yaroslavl State University, Yaroslavl, Russia; RUDN University, Moscow, Russia
| | - N Tejo Prakash
- Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, India
| | - Cheng Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China; Shaanxi Procincial Institute for Endemic Disease Control, PR China
| | - Rong Zhou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China; Shaanxi Procincial Institute for Endemic Disease Control, PR China
| | - Mikko Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China; Department of Integrative Medical Biology, University of Umeå, Umeå, Sweden, Sweden
| | - Feng Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
5
|
Christudoss P, Chacko G, Selvakumar R, Fleming JJ, Pugazhendhi S, Mathew G. Expression of Metallothionein after Administration of Aspirin, Vitamin C or Zinc Supplement in the DMH Induced Colon Carcinoma in Rat. Asian Pac J Cancer Prev 2018; 19:3237-3244. [PMID: 30486626 PMCID: PMC6318414 DOI: 10.31557/apjcp.2018.19.11.3237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Chemoprevention refers to the use of specificnatural or synthetic chemical agents to suppress the development and progression to carcinoma. The purpose of this study was to assess the effect of aspirin, vitamin C or zinc on the metallothionein (MT) mRNA gene expression as well as MT protein content byimmunohistochemistry andradioimmunoassay (RIA) in 1, 2-dimethyl hydrazine (DMH) induced cancerous colonic tissuein rats. Methods: Rats were randomly divided into three groups, group 1 (aspirin), group 2 (vitamin C) group 3 (zinc), each of which was further sub divided into two groups and given subcutaneous injections of DMH (30 mg/kg body weight) twice a week for 3 months and sacrificed at either 4 months (A-precancer model) or at 6 months (B-cancer model). The control groups were administered 0.5 ml saline subcutaneously. All the 3 groups were simultaneouslyadministered aspirin, vitamin Cor zinc supplement respectively from the beginning till the end of the study. Results: It was observed that rats co-treated with aspirin, vitamin C or zinc resulted in a significant increase in the colonic MT mRNA expression in the precancer and cancer model as compared to the saline only controls. MT protein expression showed a 60%, 64% and 78% immunopositivity in the co-treated groups respectively. The mean MT content in the precancer and the cancer model was restored to near normal levels in all the three co-treated groups. Conclusion: These results suggest that co-administration of aspirin, vitamin C or zinc resulted in a significant increase in MT mRNA gene expression, MT protein expression and MT protein content which could possibly be one of the reasons for a chemo protective effect against progression to colonic cancer in a chemically induced DMH model in rat. Zinc supplement had a greater effect on metallothionein expression than aspirin or vitamin C.
Collapse
Affiliation(s)
- Pamela Christudoss
- Department of Clinical Biochemistry, Christian Medical College, Vellore, Tamil Nadu, India.
| | | | | | | | | | | |
Collapse
|
6
|
Increased total iron and zinc intake and lower heme iron intake reduce the risk of esophageal cancer: A dose-response meta-analysis. Nutr Res 2018; 59:16-28. [DOI: 10.1016/j.nutres.2018.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/03/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023]
|
7
|
Hashemian M, Murphy G, Etemadi A, Poustchi H, Sharafkhah M, Kamangar F, Pourshams A, Malekshah AF, Khoshnia M, Gharavi A, Hekmatdoost A, Brennan PJ, Boffetta P, Dawsey SM, Abnet CC, Malekzadeh R. Nut consumption and the risk of oesophageal squamous cell carcinoma in the Golestan Cohort Study. Br J Cancer 2018; 119:176-181. [PMID: 29950612 PMCID: PMC6048068 DOI: 10.1038/s41416-018-0148-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/21/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nut consumption has been inversely associated with gastric cancer incidence in US-based studies, but not with oesophageal cancer. However, there is aetiologic heterogeneity, among oesophageal squamous cell carcinoma (ESCC) cases in low-risk vs. high-risk populations. The objective of this study was to evaluate the association between nut consumption and risk of ESCC in a high-risk population. METHODS The Golestan Cohort Study enroled 50,045 participants in Northeastern Iran, between 2004 and 2008. Intake of peanuts, walnuts and mixed nuts (including seeds) were assessed using a validated food frequency questionnaire at baseline. Cox proportional hazard models were used to estimate hazard ratios (HR) and 95% confidence intervals for subsequent ESCC adjusted for potential confounders. Non-consumers of nuts were used as the reference category and the consumers were categorised into tertiles. RESULTS We accrued 280 incident ESCC cases during 337,983 person-years of follow up. Individuals in the highest tertiles of total nut consumption, and mixed nut consumption were significantly associated with lower risk of developing ESCC compared to non-consumers (HR = 0.60, 95% CI = 0.39-0.93, p-trend = 0.02, and HR = 0.52, 95% CI = 0.32-0.84, p trend = 0.002, respectively). CONCLUSIONS We found a statistically significant inverse association between total nut consumption and the risk of ESCC in this high-risk population.
Collapse
Affiliation(s)
- Maryam Hashemian
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Department of Nutrition and Biochemistry, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Gwen Murphy
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Arash Etemadi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hossein Poustchi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharafkhah
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farin Kamangar
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Computer, Mathematical, and Natural Sciences, Morgan State University, Morgan State University, Baltimore, MD, USA
| | - Akram Pourshams
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Fazeltabar Malekshah
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Khoshnia
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolsamad Gharavi
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Paul J Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sanford M Dawsey
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Christian C Abnet
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Digestive Disease Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Fong LY, Taccioli C, Jing R, Smalley KJ, Alder H, Jiang Y, Fadda P, Farber JL, Croce CM. MicroRNA dysregulation and esophageal cancer development depend on the extent of zinc dietary deficiency. Oncotarget 2017; 7:10723-38. [PMID: 26918602 PMCID: PMC4905434 DOI: 10.18632/oncotarget.7561] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/08/2016] [Indexed: 12/21/2022] Open
Abstract
Zinc deficiency (ZD) increases the risk of esophageal squamous cell carcinoma (ESCC), and marginal ZD is prevalent in humans. In rats, marked-ZD (3 mg Zn/kg diet) induces a proliferative esophagus with a 5-microRNA signature (miR-31, -223, -21, -146b, -146a) and promotes ESCC. Here we report that moderate and mild-ZD (6 and 12 mg Zn/kg diet) also induced esophageal hyperplasia, albeit less pronounced than induced by marked-ZD, with a 2-microRNA signature (miR-31, -146a). On exposure to an environmental carcinogen, ∼16% of moderate/mild-ZD rats developed ESCC, a cancer incidence significantly greater than for Zn-sufficient rats (0%) (P ≤ 0.05), but lower than marked-ZD rats (68%) (P < 0.001). Importantly, the high ESCC, marked-ZD esophagus had a 15-microRNA signature, resembling the human ESCC miRNAome, with miR-223, miR-21, and miR-31 as the top-up-regulated species. This signature discriminated it from the low ESCC, moderate/mild-ZD esophagus, with a 2-microRNA signature (miR-31, miR-223). Additionally, Fbxw7, Pdcd4, and Stk40 (tumor-suppressor targets of miR-223, -21, and -31) were downregulated in marked-ZD cohort. Bioinformatics analysis predicted functional relationships of the 3 tumor-suppressors with other cancer-related genes. Thus, microRNA dysregulation and ESCC progression depend on the extent of dietary Zn deficiency. Our findings suggest that even moderate ZD may promote esophageal cancer and dietary Zn has preventive properties against ESCC. Additionally, the deficiency-associated miR-223, miR-21, and miR-31 may be useful therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Louise Y Fong
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cristian Taccioli
- Animal Medicine, Production and Health Department, University of Padua, Padua, Italy
| | - Ruiyan Jing
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karl J Smalley
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Yubao Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paolo Fadda
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - John L Farber
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Carlo M Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Liu CM, Liang D, Jin J, Li DJ, Zhang YC, Gao ZY, He YT. Research progress on the relationship between zinc deficiency, related microRNAs, and esophageal carcinoma. Thorac Cancer 2017; 8:549-557. [PMID: 28892299 PMCID: PMC5668500 DOI: 10.1111/1759-7714.12493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 01/06/2023] Open
Abstract
Esophageal cancer (EC) is a common malignant tumor of the gastrointestinal tract with a high incidence in China. Zinc (Zn) deficiency is a key risk factor for the occurrence and development of EC and affects progression by regulating microRNA (miRNA, miR) expression. In addition, the dysregulation of miRNAs is accompanied by the dysregulation of their target genes in EC. In this paper, we review the potential molecular mechanisms between Zn deficiency and EC with the aim of providing new strategies and methods for early diagnosis, targeted therapy, and prognostic evaluation.
Collapse
Affiliation(s)
- Cong-Min Liu
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Di Liang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Jing Jin
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Dao-Juan Li
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Ya-Chen Zhang
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Zhao-Yu Gao
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| | - Yu-Tong He
- Cancer Institute, The Fourth Hospital of Hebei Medical University/The Tumor Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
10
|
Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M. The Role of Metallothioneins in Carcinogenesis. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016. [DOI: 10.1007/978-3-319-27472-0_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Hashemian M, Poustchi H, Abnet CC, Boffetta P, Dawsey SM, Brennan PJ, Pharoah P, Etemadi A, Kamangar F, Sharafkhah M, Hekmatdoost A, Malekzadeh R. Dietary intake of minerals and risk of esophageal squamous cell carcinoma: results from the Golestan Cohort Study. Am J Clin Nutr 2015; 102:102-108. [PMID: 26016858 PMCID: PMC4480669 DOI: 10.3945/ajcn.115.107847] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 04/07/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dietary factors have been hypothesized to affect the risk of esophageal cancer via different mechanisms, but the intake of minerals is understudied and the evidence is conflicting. OBJECTIVE The objective was to evaluate the associations of dietary intake of minerals with risk of esophageal squamous cell carcinoma (ESCC). DESIGN We used data from the Golestan Cohort Study, which was launched in a high-risk region for esophageal cancer in Iran. Participants were enrolled in 2004-2008 and were followed to 2014. Intakes of minerals were assessed with a validated food-frequency questionnaire. A Cox proportional hazards model was used to estimate HRs and 95% CIs of ESCC for dietary intakes of selected minerals. RESULTS We identified 201 ESCC cases among 47,405 subjects. Calcium intake was significantly inversely associated with the risk of ESCC (HR per 100-mg/d increase: 0.88; 95% CI: 0.81, 0.96; P = 0.005; quartile 4 vs. quartile 1 HR: 0.49; 95% CI: 0.29, 0.82; P-trend = 0.013). Zinc intake was also inversely associated with ESCC, but the quartile association did not reach significance (HR per 1-mg/d increase: 0.87; 95% CI: 0.77, 0.98; P = 0.027; quartile 4 vs. quartile 1 HR: 0.56; 95% CI: 0.28, 1.12; P-trend = 0.097). The relations between dietary intakes of selenium, magnesium, and copper and risk of ESCC were nonlinear (P-nonlinear trend = 0.001, 0.016, and 0.029, respectively). There was no relation between dietary intake of manganese and the risk of ESCC. CONCLUSION The results suggest that higher intakes of calcium and zinc are associated with a lower risk of ESCC in a high-risk region of Iran.
Collapse
Affiliation(s)
| | | | - Christian C Abnet
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | - Sanford M Dawsey
- Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Paul J Brennan
- International Agency for Research on Cancer, Lyon, France; and
| | - Paul Pharoah
- Cancer Research UK, Department of Oncology, Cambridge University, Cambridge, United Kingdom
| | - Arash Etemadi
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Farin Kamangar
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Nutritional Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | | | - Azita Hekmatdoost
- Departments of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran;
| |
Collapse
|
12
|
Liu Y, Chen H, Sun Z, Chen X. Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma. Cancer Lett 2015; 361:164-173. [PMID: 25766659 PMCID: PMC4765374 DOI: 10.1016/j.canlet.2015.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Alcohol drinking is a major etiological factor of oro-esophageal squamous cell carcinoma (OESCC). Both local and systemic effects of ethanol may promote carcinogenesis, especially among chronic alcoholics. However, molecular mechanisms of ethanol-associated OESCC are still not well understood. In this review, we summarize current understandings and propose three mechanisms of ethanol-associated OESCC: (1) Disturbance of systemic metabolism of nutrients: during ethanol metabolism in the liver, systemic metabolism of retinoids, zinc, iron and methyl groups is altered. These nutrients are known to be associated with the development of OESCC. (2) Disturbance of redox metabolism in squamous epithelial cells: when ethanol is metabolized in oro-esophageal squamous epithelial cells, reactive oxygen species are generated and produce oxidative damage. Meanwhile, ethanol may also disturb fatty-acid metabolism in these cells. (3) Disturbance of signaling pathways in squamous epithelial cells: due to its physico-chemical properties, ethanol changes cell membrane fluidity and shape, and may thus impact multiple signaling pathways. Advanced molecular techniques in genomics, epigenomics, metabolomics and microbiomics will help us elucidate how ethanol promotes OESCC.
Collapse
Affiliation(s)
- Yao Liu
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China; Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Zheng Sun
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
13
|
Skrovanek S, DiGuilio K, Bailey R, Huntington W, Urbas R, Mayilvaganan B, Mercogliano G, Mullin JM. Zinc and gastrointestinal disease. World J Gastrointest Pathophysiol 2014; 5:496-513. [PMID: 25400994 PMCID: PMC4231515 DOI: 10.4291/wjgp.v5.i4.496] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 02/06/2023] Open
Abstract
This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases.
Collapse
|
14
|
Luo Z, Loja MN, Farwell DG, Luu QC, Donald PJ, Amott D, Truong AQ, Gandour-Edwards R, Nitin N. Widefield optical imaging of changes in uptake of glucose and tissue extracellular pH in head and neck cancer. Cancer Prev Res (Phila) 2014; 7:1035-44. [PMID: 25139295 DOI: 10.1158/1940-6207.capr-14-0097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The overall objective of this study was to develop an optical imaging approach to simultaneously measure altered cell metabolism and changes in tissue extracellular pH with the progression of cancer using clinically isolated biopsies. In this study, 19 pairs of clinically normal and abnormal biopsies were obtained from consenting patients with head and neck cancer at University of California, Davis Medical Center. Fluorescence intensity of tissue biopsies before and after topical delivery of 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose) and Alexa 647-pHLIP [pH (low) insertion peptide] was measured noninvasively by widefield imaging, and correlated with pathologic diagnosis. The results of widefield imaging of clinical biopsies demonstrated that 2-NBDG and pHLIP peptide can accurately distinguish the pathologically normal and abnormal biopsies. The results also demonstrated the potential of this approach to detect subepithelial lesions. Topical application of the contrast agents generated a significant increase in fluorescence contrast (3- to 4-fold) in the cancer biopsies as compared with the normal biopsies, irrespective of the patient and location of the biopsy within a head and neck cavity. This unpaired comparison across all the patients with cancer in this study highlights the specificity of the imaging approach. Furthermore, the results of this study indicated that changes in intracellular glucose metabolism and cancer acidosis are initiated in the early stages of cancer, and these changes are correlated with the progression of the disease. In conclusion, this novel optical molecular imaging approach to measure multiple biomarkers in cancer has a significant potential to be a useful tool for improving early detection and prognostic evaluation of oral neoplasia.
Collapse
Affiliation(s)
- Zhen Luo
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California
| | - Melissa N Loja
- Department of Surgery, Division of Vascular Surgery, University of California, Davis, Davis, California
| | - D Greg Farwell
- Department of Otolaryngology, University of California, Davis, Davis, California
| | - Quang C Luu
- Department of Otolaryngology, University of California, Davis, Davis, California
| | - Paul J Donald
- Department of Otolaryngology, University of California, Davis, Davis, California
| | - Deborah Amott
- Department of Otolaryngology, University of California, Davis, Davis, California
| | - Anh Q Truong
- Department of Otolaryngology, University of California, Davis, Davis, California
| | - Regina Gandour-Edwards
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis, California
| | - Nitin Nitin
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California. Department of Food Science and Technology, University of California, Davis, Davis, California.
| |
Collapse
|
15
|
Banji D, Banji OJF, Reddy M, Annamalai AR. Impact of zinc, selenium and lycopene on capsaicin induced mutagenicity and oxidative damage in mice. J Trace Elem Med Biol 2013; 27:230-5. [PMID: 23380154 DOI: 10.1016/j.jtemb.2013.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/13/2012] [Accepted: 01/05/2013] [Indexed: 11/17/2022]
Abstract
Capsaicin is employed as a condiment and colorant in the cosmetic and pharmaceutical industries. Metabolism of capsaicin produces reactive phenoxy radicals, which inflict damage to DNA. Micronutrients such as zinc and selenium facilitate the expression of tissue repair factors, and lycopene has natural antioxidant action. The current study investigated the possible protective role of zinc, selenium and lycopene singly and in combination in ameliorating capsaicin induced mutagenicity. Fifty four Swiss albino mice received the vehicle, zinc (10 mg/kg), selenium (2 mg/kg), lycopene (2 mg/kg) alone, capsaicin alone (2 mg/kg), and capsaicin along with zinc (10mg/kg), selenium (2 mg/kg) and lycopene (2 mg/kg) in combination by the oral route for 32 days. Animals were killed 24 h after the last treatment, and micronuclei formation in bone marrow and peripheral blood were assessed. Antioxidant status in plasma, the total protein, nucleic acids, and DNA fragmentation was assessed in the liver homogenate. Capsaicin substantially damaged nuclear material and increased oxidative stress. Individual therapy with lycopene was most effective in reducing micronuclei formation, lipid peroxidation, and in augmenting ferric reducing ability of plasma. This was closely followed by zinc and selenium. Zinc protected against DNA fragmentation followed by lycopene and selenium. The combination therapy was effective over individual treatment against DNA fragmentation, micronuclei and malondialdehyde formation. The combination did not exert a substantial benefit over individual therapy in enhancing the total antioxidant ability of plasma. The risk of capsaicin induced mutagenicity was lowered with the combination by reducing the generation of free radicals and by enhancing tissue repair.
Collapse
Affiliation(s)
- David Banji
- Department of Pharmacology and Toxicology, Nalanda College of Pharmacy, Cherlapally, Nalgonda 508001, A.P., India.
| | | | | | | |
Collapse
|
16
|
Wang LS, Dombkowski AA, Seguin C, Rocha C, Cukovic D, Mukundan A, Henry C, Stoner GD. Mechanistic basis for the chemopreventive effects of black raspberries at a late stage of rat esophageal carcinogenesis. Mol Carcinog 2011; 50:291-300. [PMID: 21465577 DOI: 10.1002/mc.20634] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study used a postinitiation protocol to investigate molecular mechanisms by which black raspberries (BRBs) influence the late stages of N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumorigenesis in rats. F344 rats were injected with NMBA and then fed either control diet or a diet containing 5% BRB powder. Control rats were injected with DMSO/water (20:80), the vehicle for NMBA. Esophagi from control, NMBA- and NMBA + BRB-treated rats were collected at 35 wk for histopathological, molecular, and immunohistochemical analyses. Treatment with 5% BRBs reduced the number of dysplastic lesions and the number and size of esophageal papillomas in NMBA-treated rats. When compared to esophagi from control rats, NMBA treatment led to the differential expression of 4807 genes in preneoplastic esophagus (PE) and 17 846 genes in esophageal papillomas. Dietary BRBs modulated 626 of the 4807 differentially expressed genes in PE and 625 of the 17 846 differentially expressed genes in esophageal papillomas towards normal levels of expression. In both PE and in papillomas, BRBs modulated the mRNA expression of genes associated with carbohydrate and lipid metabolism, cell proliferation and death, and inflammation. In these same tissues, BRBs modulated the expression of proteins associated with proliferation, apoptosis, inflammation, angiogenesis, and both cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism. Interestingly, matrix metalloproteinases involved in tissue invasion and metastasis, and proteins associated with cell-cell adhesion, were also modulated by BRBs. This is the first report of the effects of berries on the expression of genes associated with the late stages of rat esophageal carcinogenesis.
Collapse
Affiliation(s)
- Li-Shu Wang
- Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43240, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee BC, Hong SE, Lim HH, Kim DH, Park CS. Alteration of the Transcriptional Profile of Human Embryonic Kidney Cells by Transient Overexpression of Mouse TRPM7 Channels. Cell Physiol Biochem 2011; 27:313-26. [DOI: 10.1159/000327958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2011] [Indexed: 11/19/2022] Open
|
18
|
Sun J, Liu J, Pan X, Quimby D, Zanesi N, Druck T, Pfeifer GP, Croce CM, Fong LY, Huebner K. Effect of zinc supplementation on N-nitrosomethylbenzylamine-induced forestomach tumor development and progression in tumor suppressor-deficient mouse strains. Carcinogenesis 2010; 32:351-8. [PMID: 21097531 DOI: 10.1093/carcin/bgq251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Zinc deficiency is associated with high incidences of esophageal and other cancers in humans and leads to a highly proliferative hyperplastic condition in the upper gastrointestinal tract in laboratory rodents. Zn replenishment reduces the incidence of lingual, esophageal and forestomach tumors in Zn-deficient rats and mice. While previous animal studies focused on Zn deficiency, we have investigated the effect of Zn supplementation on carcinogenesis in Zn-sufficient mice of wild-type and tumor suppressor-deficient mouse strains. All mice received N-nitrosomethylbenzylamine and half the mice of each strain then received Zn supplementation. At killing, mice without Zn supplementation had developed more tumors than Zn-supplemented mice: wild-type C57BL/6 mice developed an average of 7.0 versus 5.0 tumors for Zn supplemented (P < 0.05); Zn-supplemented Fhit-/- mice averaged 5.7 versus 8.0 for control mice (P < 0.01); Zn-supplemented Fhit-/-Nit1-/- mice averaged 5.4 versus 9.2 for control mice (P < 0.01) and Zn-supplemented Fhit-/-Rassf1a-/- (the murine gene) mice averaged 5.9 versus 9.1 for control mice (P < 0.01). Zn supplementation reduced tumor burdens by 28% (wild-type) to 42% (Fhit-/-Nit1-/-). Histological analysis of forestomach tissues also showed significant decreases in severity of preneoplastic and neoplastic lesions in Zn-supplemented cohorts of each mouse strain. Thus, Zn supplementation significantly reduced tumor burdens in mice with multiple tumor suppressor deficiencies. When Zn supplementation was begun at 7 weeks after the final carcinogen dose, the reduction in tumor burden was the same as observed when supplementation began immediately after carcinogen dosing, suggesting that Zn supplementation may affect tumor progression rather than tumor initiation.
Collapse
Affiliation(s)
- Jin Sun
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Song Y, Elias V, Loban A, Scrimgeour AG, Ho E. Marginal zinc deficiency increases oxidative DNA damage in the prostate after chronic exercise. Free Radic Biol Med 2010; 48:82-8. [PMID: 19836448 PMCID: PMC4090116 DOI: 10.1016/j.freeradbiomed.2009.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 10/05/2009] [Accepted: 10/08/2009] [Indexed: 01/26/2023]
Abstract
Approximately 12% of Americans do not consume the recommended level of zinc and could be at risk for marginal zinc deficiency. Zinc functions in antioxidant defense and DNA repair and could be important for prostate health. We hypothesized that marginal zinc deficiency sensitizes the prostate to oxidative stress and DNA damage. Rats were fed a zinc-adequate (ZA; 30 mg Zn/kg) or marginally zinc-deficient (MZD; 5-6 mg Zn/kg) diet for 6 weeks. MZD increased p53 and PARP expression but no change in 8-hydroxy-2'-deoxyguanosine levels was detected. To examine the susceptibility to exogenous oxidative stress, rats fed a ZA or MZD diet were assigned to exercising (EXE) or sedentary (SED) groups for 9 weeks. MZD or EXE alone did not affect oxidative DNA damage in the prostate; however, combined MZD + EXE increased DNA damage in the dorsolateral lobe. PARP and p53 expression was not further induced with MZD + EXE, suggesting that MZD interferes with DNA repair responses to stress. Finally, the addition of phytase to the MZD diet successfully restored zinc levels in the prostate and decreased DNA damage back to ZA levels. Overall, this study suggests that marginal zinc deficiency sensitizes the prostate to oxidative stress and demonstrates the importance of maintaining optimal zinc nutrition in physically active populations.
Collapse
Affiliation(s)
- Yang Song
- Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Valerie Elias
- Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Andrei Loban
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Angus G. Scrimgeour
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Emily Ho
- Department of Nutrition and Exercise Sciences, Oregon State University, Corvallis, OR 97330, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA
- Corresponding author. Fax: +1 541 737 6914. (E. Ho)
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To summarize the recent findings related to the functions of zinc in prostate cancer prevention. RECENT FINDINGS The prostate contains the highest concentration of zinc of all the soft tissues, but concentrations decrease significantly during prostate cancer. A growing body of experimental evidence supports the notion that high zinc levels are essential for prostate health and may limit prostate cancer development. The possible mechanisms include the effects of zinc on the inhibition of terminal oxidation, induction of mitochondrial apoptogenesis and suppression of NF-kappaB activity. Zinc may also play an important role in the maintenance of DNA integrity in normal prostate epithelial cells by modulating DNA repair and damage response proteins, especially p53. In addition, recent findings support the role of zinc transporters as tumor suppressors in the prostate. SUMMARY Although epidemiological studies have shown mixed results, the experimental data strongly suggest a protective role of zinc in the prostate. More in-vivo studies on the effects of zinc on prostate functions are necessary to more clearly delineate the interaction between zinc and prostate function. In humans, sensitive and specific zinc biomarkers significantly impair the ability to design and interpret clinical studies and should be a priority area of research.
Collapse
Affiliation(s)
- Emily Ho
- Department of Nutrition and Exercise Science, Linus Pauling Institute, Oregon State University, 103 Milam Hall, Corvallis, Oregon 97330, USA.
| | | |
Collapse
|
21
|
Song Y, Leonard SW, Traber MG, Ho E. Zinc deficiency affects DNA damage, oxidative stress, antioxidant defenses, and DNA repair in rats. J Nutr 2009; 139:1626-31. [PMID: 19625698 PMCID: PMC3151020 DOI: 10.3945/jn.109.106369] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Approximately 12% of Americans do not consume the Estimated Average Requirement for zinc and could be at risk for marginal zinc deficiency. Zinc is an essential component of numerous proteins involved in the defense against oxidative stress and DNA damage repair. Studies in vitro have shown that zinc depletion causes DNA damage. We hypothesized that zinc deficiency in vivo causes DNA damage through increases in oxidative stress and impairments in DNA repair. Sprague-Dawley rats were fed zinc-adequate (ZA; 30 mg Zn/kg) or severely zinc-deficient (ZD; <1 mg Zn/kg) diets or were pair-fed zinc-adequate diet to match the mean feed intake of ZD rats for 3 wk. After zinc depletion, rats were repleted with a ZA diet for 10 d. In addition, zinc-adequate (MZA 30 mg Zn/kg) or marginally zinc-deficient (MZD; 6 mg Zn/kg) diets were given to different groups of rats for 6 wk. Severe zinc depletion caused more DNA damage in peripheral blood cells than in the ZA group and this was normalized by zinc repletion. We also detected impairments in DNA repair, such as compromised p53 DNA binding and differential activation of the base excision repair proteins 8-oxoguanine glycosylase and poly ADP ribose polymerase. Importantly, MZD rats also had more DNA damage and higher plasma F(2)-isoprostane concentrations than MZA rats and had impairments in DNA repair functions. However, plasma antioxidant concentrations and erythrocyte superoxide dismutase activity were not affected by zinc depletion. These results suggest interactions among zinc deficiency, DNA integrity, oxidative stress, and DNA repair and suggested a role for zinc in maintaining DNA integrity.
Collapse
Affiliation(s)
- Yang Song
- Department of Nutrition and Exercise Science and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Scott W. Leonard
- Department of Nutrition and Exercise Science and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Maret G. Traber
- Department of Nutrition and Exercise Science and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Emily Ho
- Department of Nutrition and Exercise Science and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Taccioli C, Wan SG, Liu CG, Alder H, Volinia S, Farber JL, Croce CM, Fong LYY. Zinc replenishment reverses overexpression of the proinflammatory mediator S100A8 and esophageal preneoplasia in the rat. Gastroenterology 2009; 136:953-66. [PMID: 19111725 PMCID: PMC2650087 DOI: 10.1053/j.gastro.2008.11.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 11/04/2008] [Accepted: 11/13/2008] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Zinc deficiency is implicated in the pathogenesis of human esophageal cancer. In the rat esophagus, it induces cell proliferation, modulates genetic expression, and enhances carcinogenesis. Zinc-replenishment reverses proliferation and inhibits carcinogenesis. The zinc-deficient rat model allows the identification of biological differences affected by zinc during early esophageal carcinogenesis. METHODS We evaluated gene expression profiles of esophageal epithelia from zinc-deficient and replenished rats vs zinc-sufficient rats using microarray analysis. We characterized the role of the top-up-regulated gene S100A8 in esophageal hyperplasia/reversal and in chemically induced esophageal carcinogenesis in zinc-modulated animals by immunohistochemistry and real-time quantitative polymerase chain reaction. RESULTS The hyperplastic-deficient esophagus has a distinct expression signature with the proinflammation genes S100 calcium binding protein A8 (S100A8) and A9 (S100A9) up-regulated 57-fold and 5-fold, respectively. Zinc replenishment rapidly restored to control levels the expression of S100A8/A9 and 27 other genes and reversed the hyperplastic phenotype. With its receptor for advanced glycation end products (RAGE), colocalization and overexpression of S100A8 protein occurred in the deficient esophagus that overexpressed nuclear factor kappaBeta p65 and cyclooxygenase-2 (COX-2) protein. Zinc replenishment, but not a COX-2 inhibitor, reduced the overexpression of these 4 proteins. Additionally, esophageal S100A8/A9 messenger RNA levels were associated directly with the diverse tumorigenic outcome in zinc-deficient and zinc-replenished rats. CONCLUSIONS In vivo zinc regulates S100A8 expression and modulates the link between S100A8-RAGE interaction and downstream nuclear factor kappaBeta/COX-2 signaling. The finding that zinc regulates an inflammatory pathway in esophageal carcinogenesis may lead to prevention and therapy for this cancer.
Collapse
Affiliation(s)
- Cristian Taccioli
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Shao-Gui Wan
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Chang-Gong Liu
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Hansjuerg Alder
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Stefano Volinia
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - John L. Farber
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Louise Y. Y. Fong
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio,Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
23
|
Abstract
Esophageal cancer is a significant worldwide health problem because of its poor prognosis and high incidence in certain parts of the world. Tobacco smoke and alcohol consumption are significant risk factors for esophageal squamous cell carcinoma, whereas frequent gastroesophageal reflux and subsequent inflammatory reactions play a role in causing the adenocarcinoma. Esophageal carcinogenesis involves multiple genetic alterations. A large body of knowledge has been generated regarding molecular alterations associated with esophageal carcinogenesis. These alterations include aberrant cell cycle control, DNA repair, cellular enzymes, growth factor receptors, and nuclear receptors. This chapter reviews the most frequent gene alterations and their correlation with risk factors as well as the prevention strategies in esophageal cancer.
Collapse
Affiliation(s)
- Xiao-chun Xu
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
24
|
Abstract
Calponin is an actin filament-associated regulatory protein expressed in smooth muscle and non-muscle cells. Calponin is an inhibitor of the actin-activated myosin ATPase. Three isoforms of calponin have been found in the vertebrates. Whereas the role of calponin in regulating smooth muscle contractility has been extensively investigated, the function and regulation of calponin in non-muscle cells is much less understood. Based on recent progresses in the field, this review focuses on the studies of calponin in non-muscle cells, especially its regulation by cytoskeleton tension and function in cell motility. The ongoing research has demonstrated that calponin plays a regulatory role in non-muscle cell motility. Therefore, non-muscle calponin is an attractive target for the control of cell proliferation, migration and phagocytosis, and the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Kai-Chun Wu
- Section of Molecular Cardiology, Evanston Northwestern Healthcare, Northwestern University Feinberg School of Medicine, Evanston, IL 60201, USA
| | | |
Collapse
|
25
|
Rousselet E, Martelli A, Chevallet M, Diemer H, Van Dorsselaer A, Rabilloud T, Moulis JM. Zinc adaptation and resistance to cadmium toxicity in mammalian cells: molecular insight by proteomic analysis. Proteomics 2008; 8:2244-55. [PMID: 18452231 DOI: 10.1002/pmic.200701067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To identify proteins involved in cellular adaptive responses to zinc, a comparative proteome analysis between a previously developed high zinc- and cadmium-resistant human epithelial cell line (high zinc-resistant HeLa cells, HZR) and the parental HeLa cells has been carried out. Differentially produced proteins included cochaperones, proteins associated with oxido-reductase activities, and ubiquitin. Biochemical pathways to which these proteins belong were probed for their involvement in the resistance of both cell lines against cadmium toxicity. Among ER stressors, thapsigargin sensitized HZR cells, but not HeLa cells, to cadmium toxicity more acutely than tunicamycin, implying that these cells heavily relied on proper intracellular calcium distribution. The similar sensitivity of both HeLa and HZR cells to inhibitors of the proteasome, such as MG-132 or lactacystin, excluded improved proteasome activity as a mechanism associated with zinc adaptation of HZR cells. The enzyme 4-hydroxyphenylpyruvate dioxygenase (HPPD) was overproduced in HZR cells as compared to HeLa cells. It transforms HPP to homogentisate in the second step of tyrosine catabolism. Inhibition of HPPD decreased the resistance of HZR cells against cadmium, but not that of HeLa cells, suggesting that adaptation to zinc overload and increased HPP removal are linked in HZR cells.
Collapse
Affiliation(s)
- Estelle Rousselet
- CEA, DSV, IRTSV, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Fong LYY, Jiang Y, Riley M, Liu X, Smalley KJ, Guttridge DC, Farber JL. Prevention of upper aerodigestive tract cancer in zinc-deficient rodents: inefficacy of genetic or pharmacological disruption of COX-2. Int J Cancer 2008; 122:978-89. [PMID: 17985342 DOI: 10.1002/ijc.23221] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zinc deficiency in humans is associated with an increased risk of upper aerodigestive tract (UADT) cancer. In rodents, zinc deficiency predisposes to carcinogenesis by causing proliferation and alterations in gene expression. We examined whether in zinc-deficient rodents, targeted disruption of the cyclooxygenase (COX)-2 pathway by the COX-2 selective inhibitor celecoxib or by genetic deletion prevent UADT carcinogenesis. Tongue cancer prevention studies were conducted in zinc-deficient rats previously exposed to a tongue carcinogen by celecoxib treatment with or without zinc replenishment, or by zinc replenishment alone. The ability of genetic COX-2 deletion to protect against chemically-induced forestomach tumorigenesis was examined in mice on zinc-deficient versus zinc-sufficient diet. The expression of 3 predictive biomarkers COX-2, nuclear factor (NF)-kappa B p65 and leukotriene A(4) hydrolase (LTA(4)H) was examined by immunohistochemistry. In zinc-deficient rats, celecoxib without zinc replenishment reduced lingual tumor multiplicity but not progression to malignancy. Celecoxib with zinc replenishment or zinc replenishment alone significantly lowered lingual squamous cell carcinoma incidence, as well as tumor multiplicity. Celecoxib alone reduced overexpression of the 3 biomarkers in tumors slightly, compared with intervention with zinc replenishment. Instead of being protected, zinc-deficient COX-2 null mice developed significantly greater tumor multiplicity and forestomach carcinoma incidence than wild-type controls. Additionally, zinc-deficient COX-2-/- forestomachs displayed strong LTA(4)H immunostaining, indicating activation of an alternative pathway under zinc deficiency when the COX-2 pathway is blocked. Thus, targeting only the COX-2 pathway in zinc-deficient animals did not prevent UADT carcinogenesis. Our data suggest zinc supplementation should be more thoroughly explored in human prevention clinical trials for UADT cancer.
Collapse
Affiliation(s)
- Louise Y Y Fong
- Department of Molecular Virology, Immunology, and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Kumar A, Chatopadhyay T, Raziuddin M, Ralhan R. Discovery of deregulation of zinc homeostasis and its associated genes in esophageal squamous cell carcinoma using cDNA microarray. Int J Cancer 2007; 120:230-42. [PMID: 17068819 DOI: 10.1002/ijc.22246] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) in the Indian population is associated with poor nutritional status, low socioeconomic conditions, bidi smoking and consumption of smokeless tobacco products, besides alcohol drinking and cigarette smoking. To determine the impact of these risk factors on molecular pathogenesis of ESCC, we determined global gene expression profiles of 7 paired samples of ESCC and histologically confirmed nonmalignant esophageal tissues using 19.1K cDNA microarrays. The most salient finding was identification of 19 differentially expressed genes encoding zinc binding or modulating proteins associated with transcriptional regulation, ubiquitin-protein degradation and maintenance of zinc homeostasis. Validation of differential expression of a subset of genes by real-time quantitative RT-PCR (real-time QRT-PCR) in clinical specimens of ESCC, esophageal dysplasia and histologically nonmalignant esophageal tissues and immunohistochemical analysis using tissue microarrays confirmed the microarray data and demonstrated upregulation of zinc finger proteins, cellular modulator of immune recognition (c-MIR), snail homolog 2 (SLUG), zinc transporter, ZnT7 and downregulation of zinc metabolizing protein, metallothionein MT1G. We also observed upregulation of mitogen activated protein kinase kinase kinase 3 (MAP3K3/MEKK3), a kinase anchor protein 13 (AKAP13) and transglutaminase2 (TG2). Interestingly, we found upregulation of ZnT7 transcripts in ESCC cells (TE13) grown in zinc deficient condition. In conclusion, our data suggest deregulation of genes associated with zinc homeostasis in ESCC.
Collapse
Affiliation(s)
- Anupam Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | | | | | | |
Collapse
|
28
|
Yu YY, Kirschke CP, Huang L. Immunohistochemical Analysis of ZnT1, 4, 5, 6, and 7 in the Mouse Gastrointestinal Tract. J Histochem Cytochem 2006; 55:223-34. [PMID: 17101726 DOI: 10.1369/jhc.6a7032.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Expression of five zinc transporters (ZnT1, 4, 5, 6, and 7) of the Slc30 family in the mouse gastrointestinal tract was studied by immunohistochemical analysis. Results demonstrated unique expression patterns, levels, and cellular localization among ZnT proteins in the mouse gastrointestinal tract with some overlapping. ZnT1 was abundantly expressed in the epithelium of the esophagus, duodenum of the small intestine, and cecum of the large intestine. ZnT4 was predominantly detected in the large intestine. ZnT5 was mainly expressed in the parietal cell of the stomach and in the absorptive epithelium of the duodenum and jejunum. ZnT6 was predominantly detected in the chief cell of the stomach, columnar epithelial cells of the jejunum, cecum, colon, and rectum. Lastly, ZnT7 was observed in all epithelia of the mouse gastrointestinal tract with the highest expression in the small intestine. Expression of ZnT proteins in the absorptive epithelial cell of the gastrointestinal tract suggests that ZnT proteins may play important roles in zinc absorption and endogenous zinc secretion.
Collapse
Affiliation(s)
- Yan Yiu Yu
- Department of Nutrition, University of California at Davis, Davis, California, USA
| | | | | |
Collapse
|
29
|
Fong LYY, Jiang Y, Farber JL. Zinc deficiency potentiates induction and progression of lingual and esophageal tumors in p53-deficient mice. Carcinogenesis 2006; 27:1489-96. [PMID: 16543248 DOI: 10.1093/carcin/bgl012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Upper aerodigestive tract (UADT) cancer, including oral and esophageal cancer, is an important cause of cancer deaths worldwide. Patients with UADT cancer are frequently zinc deficient (ZD) and show a loss of function of the pivotal tumor suppressor gene p53. The present study examined whether zinc deficiency in collaboration with p53 insufficiency (p53+/-) promotes lingual and esophageal tumorigenesis in mice exposed to low doses of the carcinogen 4-nitroquinoline 1-oxide. In wild-type mice, ZD significantly increased the incidence of lingual and esophageal tumors from 0% in zinc sufficient (ZS) ZS:p53+/+ mice to approximately 40%. On the p53+/- background, ZD:p53+/- mice had significantly greater tumor incidence and multiplicity than ZS:p53+/- and ZD:p53+/+ mice, with a high frequency of progression to malignancy. Sixty-nine and 31% of ZD:p53+/- lingual and esophageal tumors, respectively, were squamous cell carcinoma versus 19 and 0% of ZS:p53+/- tumors (tongue, P = 0.003; esophagus, P = 0.005). Immunohistochemical analysis revealed that the increased cellular proliferation observed in preneoplastic lingual and esophageal lesions, as well as invasive carcinomas, was accompanied by overexpression of cytokeratin 14, cyclooxygenase-2 and metallothionein. In summary, a new UADT cancer model is developed in ZD:p53+/- mouse that recapitulates aspects of the human cancer and provides opportunities to probe the genetic changes intrinsic to UADT carcinogenesis and to test strategies for prevention and reversal of this deadly cancer.
Collapse
Affiliation(s)
- Louise Y Y Fong
- Department of Molecular Virology, Immunology and Medical Genetics Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|