1
|
Bellato F, Feola S, Dalla Verde G, Bellio G, Pirazzini M, Salmaso S, Caliceti P, Cerullo V, Mastrotto F. Mannosylated Polycations Target CD206 + Antigen-Presenting Cells and Mediate T-Cell-Specific Activation in Cancer Vaccination. Biomacromolecules 2022; 23:5148-5163. [PMID: 36394394 DOI: 10.1021/acs.biomac.2c00993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunotherapy is deemed one of the most powerful therapeutic approaches to treat cancer. However, limited response and tumor specificity are still major challenges to address. Herein, mannosylated polycations targeting mannose receptor- are developed as vectors for plasmid DNA (pDNA)-based vaccines to improve selective delivery of genetic material to antigen-presenting cells and enhance immune cell activation. Three diblock glycopolycations (M15A12, M29A25, and M58A45) and two triblock copolymers (M29A29B9 and M62A52B32) are generated by using mannose (M), agmatine (A), and butyl (B) derivatives to target CD206, complex nucleic acids, and favor the endosomal escape, respectively. All glycopolycations efficiently complex pDNA at N/P ratios <5, protecting the pDNA from degradation in a physiological milieu. M58A45 and M62A52B32 complexed with plasmid encoding for antigenic ovalbumin (pOVA) trigger the immune activation of cultured dendritic cells, which present the SIINFEKL antigenic peptide via specific major histocompatibility complex-I. Importantly, administration of M58A45/pOVA elicits SIINFEKL-specific T-cell response in C56BL/6 mice bearing the melanoma tumor model B16-OVA, well in line with a reduction in tumor growth. These results qualify mannosylation as an efficient strategy to target immune cells in cancer vaccination and emphasize the potential of these glycopolycations as effective delivery vehicles for nucleic acids.
Collapse
Affiliation(s)
- Federica Bellato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Sara Feola
- Drug Research Program ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy, Helsinki University, Viikinkaari 5E, 00790Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, FI-00014Helsinki, Finland
| | - Gloria Dalla Verde
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Greta Bellio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131Padova, Italy
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| | - Vincenzo Cerullo
- Drug Research Program ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy, Helsinki University, Viikinkaari 5E, 00790Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, FI-00014Helsinki, Finland
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131Padova, Italy
| |
Collapse
|
2
|
Yang M, Olaoba OT, Zhang C, Kimchi ET, Staveley-O’Carroll KF, Li G. Cancer Immunotherapy and Delivery System: An Update. Pharmaceutics 2022; 14:1630. [PMID: 36015256 PMCID: PMC9413869 DOI: 10.3390/pharmaceutics14081630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
With an understanding of immunity in the tumor microenvironment, immunotherapy turns out to be a powerful tool in the clinic to treat many cancers. The strategies applied in cancer immunotherapy mainly include blockade of immune checkpoints, adoptive transfer of engineered cells, such as T cells, natural killer cells, and macrophages, cytokine therapy, cancer vaccines, and oncolytic virotherapy. Many factors, such as product price, off-target side effects, immunosuppressive tumor microenvironment, and cancer cell heterogeneity, affect the treatment efficacy of immunotherapies against cancers. In addition, some treatments, such as chimeric antigen receptor (CAR) T cell therapy, are more effective in treating patients with lymphoma, leukemia, and multiple myeloma rather than solid tumors. To improve the efficacy of targeted immunotherapy and reduce off-target effects, delivery systems for immunotherapies have been developed in past decades using tools such as nanoparticles, hydrogel matrix, and implantable scaffolds. This review first summarizes the currently common immunotherapies and their limitations. It then synopsizes the relative delivery systems that can be applied to improve treatment efficacy and minimize side effects. The challenges, frontiers, and prospects for applying these delivery systems in cancer immunotherapy are also discussed. Finally, the application of these approaches in clinical trials is reviewed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Olamide Tosin Olaoba
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
3
|
Navarro F, Casares N, Martín-Otal C, Lasarte-Cía A, Gorraiz M, Sarrión P, Llopiz D, Reparaz D, Varo N, Rodriguez-Madoz JR, Prosper F, Hervás-Stubbs S, Lozano T, Lasarte JJ. Overcoming T cell dysfunction in acidic pH to enhance adoptive T cell transfer immunotherapy. Oncoimmunology 2022; 11:2070337. [PMID: 35529677 PMCID: PMC9067511 DOI: 10.1080/2162402x.2022.2070337] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The high metabolic activity and insufficient perfusion of tumors leads to the acidification of the tumor microenvironment (TME) that may inhibit the antitumor T cell activity. We found that pharmacological inhibition of the acid loader chloride/bicarbonate anion exchanger 2 (Ae2), with 4,4’-diisothiocyanatostilbene-2,2’-disulfonicacid (DIDS) enhancedCD4+ andCD8+ T cell function upon TCR activation in vitro, especially under low pH conditions. In vivo, DIDS administration delayed B16OVA tumor growth in immunocompetent mice as monotherapy or when combined with adoptive T cell transfer of OVA-specificT cells. Notably, genetic Ae2 silencing in OVA-specificT cells improvedCD4+/CD8+ T cell function in vitro as well as their antitumor activity in vivo. Similarly, genetic modification of OVA-specificT cells to overexpress Hvcn1, a selectiveH+ outward current mediator that prevents cell acidification, significantly improved T cell function in vitro, even at low pH conditions. The adoptive transfer of OVA-specificT cells overexpressing Hvcn1 exerted a better antitumor activity in B16OVA tumor-bearingmice. Hvcn1 overexpression also improved the antitumor activity of CAR T cells specific for Glypican 3 (GPC3) in mice bearing PM299L-GPC3tumors. Our results suggest that preventing intracellular acidification by regulating the expression of acidifier ion channels such as Ae2 or alkalinizer channels like Hvcn1 in tumor-specificlymphocytes enhances their antitumor response by making them more resistant to the acidic TME.
Collapse
Affiliation(s)
- Flor Navarro
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| | - Noelia Casares
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| | - Celia Martín-Otal
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| | - Aritz Lasarte-Cía
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| | - Marta Gorraiz
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| | - Patricia Sarrión
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| | - Diana Llopiz
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| | - David Reparaz
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| | - Nerea Varo
- Department of Clinical Biochemistry, Clínica Universidad de Navarra, University of Navarra, IdiSNA, CIBERONC, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNAHemato-Oncology, Pamplona, Spain
| | - Felipe Prosper
- Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNAHemato-Oncology, Pamplona, Spain
- Department of Hematology, Clínica Universidad de Navarra, University of Navarra, IdiSNA, CIBERONC, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| | - Teresa Lozano
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| | - Juan José Lasarte
- Immunology and Immunotherapy Program, University of Navarra, IdiSNA, Pamplona, Spain
| |
Collapse
|
4
|
TCR-induced FOXP3 expression by CD8 + T cells impairs their anti-tumor activity. Cancer Lett 2022; 528:45-58. [PMID: 34973390 DOI: 10.1016/j.canlet.2021.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/09/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022]
Abstract
Adoptive cell transfer therapy using CD8+ T lymphocytes showed promising results eradicating metastatic malignancies. However, several regulatory mechanisms limit its efficacy. We studied the role of the expression of the transcription factor FOXP3 on CD8+ T cell function and anti-tumor immunity. Here we show that suboptimal T cell receptor stimulation of CD8+ T cells upregulates FOXP3 in vitro. Similarly, CD8 T cells transferred into tumor-bearing mice upregulate FOXP3 in vivo. Cell-intrinsic loss of FOXP3 by CD8+ T cells resulted in improved functionality after TCR stimulation and better antitumor responses in vivo. Inhibition of the FOXP3/NFAT interaction likewise improved CD8+ T cell functionality. Transcriptomic analysis of cells after TCR stimulation revealed an enrichment of genes implicated in the response to IFN-γ, IFN-α, inflammatory response, IL-6/JAK/STAT, G2M checkpoint and IL-2/STAT signaling in FOXP3-deficient CD8+ T cells with respect to FOXP3-wt CD8+ T cells. Our results suggest that transient expression of FOXP3 by CD8+ T cells in the tumor microenvironment restrains their anti-tumor activity, with clear implications for improving T cell responses during immunotherapy.
Collapse
|
5
|
Lozano T, Chocarro S, Martin C, Lasarte-Cia A, Del Valle C, Gorraiz M, Sarrión P, Ruiz de Galarreta M, Lujambio A, Hervás-Stubbs S, Sarobe P, Casares N, Lasarte JJ. Genetic Modification of CD8 + T Cells to Express EGFR: Potential Application for Adoptive T Cell Therapies. Front Immunol 2019; 10:2990. [PMID: 31921216 PMCID: PMC6934060 DOI: 10.3389/fimmu.2019.02990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/05/2019] [Indexed: 12/23/2022] Open
Abstract
Adoptive immunotherapy with ex vivo-expanded tumor-infiltrating lymphocytes (TILs) has achieved objective clinical responses in a significant number of patients with cancer. The failure of many patients to develop long-term tumor control may be, in part, due to exhaustion of transferred T cells in the presence of a hostile tumor microenvironment. In several tumor types, growth and survival of carcinoma cells appear to be sustained by a network of receptors/ligands of the ErbB family. We speculated that if transferred T cells could benefit from EGFR ligands produced by the tumor, they might proliferate better and exert their anti-tumor activities more efficiently. We found that CD8+ T cells transduced with a retrovirus to express EGFR responded to EGFR ligands activating the EGFR signaling pathway. These EGFR-expressing effector T cells proliferated better and produced more IFN-γ and TNF-α in the presence of EGFR ligands produced by tumor cells in vitro. EGFR-expressing CD8 T cells from OT-1 mice were more efficient killing B16-OVA cells than control OT-1 CD8 T cells. Importantly, EGFR-expressing OT-1 T cells injected into B16-OVA tumor bearing mice were recruited into the tumor, expressed lower levels of the exhaustion markers PD1, TIGIT, and LAG3, and were more efficient in delaying tumor growth. Our results suggest that genetic modification of CD8+ T cells to express EGFR might be considered in immunotherapeutic strategies based on adoptive transfer of anti-tumor T cells against cancers expressing EGFR ligands.
Collapse
Affiliation(s)
- Teresa Lozano
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Silvia Chocarro
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Celia Martin
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Cynthia Del Valle
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Marta Gorraiz
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Patricia Sarrión
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Marina Ruiz de Galarreta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Amaia Lujambio
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sandra Hervás-Stubbs
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Pablo Sarobe
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Noelia Casares
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Juan J Lasarte
- Immunology and Immunotherapy Program, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| |
Collapse
|
6
|
Wylie B, Chee J, Forbes CA, Booth M, Stone SR, Buzzai A, Abad A, Foley B, Cruickshank MN, Waithman J. Acquired resistance during adoptive cell therapy by transcriptional silencing of immunogenic antigens. Oncoimmunology 2019; 8:1609874. [PMID: 31413920 PMCID: PMC6682399 DOI: 10.1080/2162402x.2019.1609874] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/23/2022] Open
Abstract
Immunotherapies such as adoptive cell therapy (ACT) are promising treatments for solid cancers. However, relapsing disease remains a problem and the molecular mechanisms underlying resistance are poorly defined. We postulated that the deregulated epigenetic landscape in cancer cells could underpin the acquisition of resistance to immunotherapy. To address this question, two preclinical models of ACT were employed to study transcriptional and epigenetic regulatory processes within ACT-treated cancer cells. In these models ACT consistently causes robust tumor regression, but resistance develops and tumors relapse. We identified down-regulated expression of immunogenic antigens at the mRNA level correlated with escape from immune control. To determine whether this down-regulation was under epigenetic control, we treated escaped tumor cells with DNA demethylating agents, azacytidine (AZA) and decitabine (DEC). AZA or DEC treatment restored antigen expression in a proportion of the tumor population. To explore the importance of other epigenetic modifications we isolated tumor cells refractory to DNA demethylation and screened clones against a panel of 19 different epigenetic modifying agents (EMAs). The library of EMAs included inhibitors of a range of chromosomal and transcription regulatory protein complexes, however, when tested as single agents none restored further antigen expression. These findings suggest that tumor cells employ multiple epigenetic and genetic mechanisms to evade immune control, and a combinatorial approach employing several EMAs targeting transcription and genome stability may be required to overcome tumor resistance to immunotherapy.
Collapse
Affiliation(s)
- Ben Wylie
- Phylogica, Harry Perkins Institute for Medical Research, QEII Medical Centre, Nedlands, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, School of Biomedical Sciences, University of Western Australia, QEII Medical Centre, Nedlands, Australia
| | - Catherine A Forbes
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, Nedlands, Australia
| | - Mitchell Booth
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, Nedlands, Australia
| | - Shane R Stone
- Phylogica, Harry Perkins Institute for Medical Research, QEII Medical Centre, Nedlands, Australia
| | - Anthony Buzzai
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, Nedlands, Australia
| | - Ana Abad
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, Nedlands, Australia
| | - Bree Foley
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, Nedlands, Australia
| | - Mark N Cruickshank
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, Nedlands, Australia
| | - Jason Waithman
- Telethon Kids Institute, University of Western Australia, Northern Entrance, Perth Children’s Hospital, Nedlands, Australia
| |
Collapse
|
7
|
Lelliott EJ, Cullinane C, Martin CA, Walker R, Ramsbottom KM, Souza-Fonseca-Guimaraes F, Abuhammad S, Michie J, Kirby L, Young RJ, Slater A, Lau P, Meeth K, Oliaro J, Haynes N, McArthur GA, Sheppard KE. A novel immunogenic mouse model of melanoma for the preclinical assessment of combination targeted and immune-based therapy. Sci Rep 2019; 9:1225. [PMID: 30718660 PMCID: PMC6361951 DOI: 10.1038/s41598-018-37883-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
Both targeted therapy and immunotherapy have been used successfully to treat melanoma, but the development of resistance and poor response rates to the individual therapies has limited their success. Designing rational combinations of targeted therapy and immunotherapy may overcome these obstacles, but requires assessment in preclinical models with the capacity to respond to both therapeutic classes. Herein, we describe the development and characterization of a novel, immunogenic variant of the BrafV600ECdkn2a−/−Pten−/− YUMM1.1 tumor model that expresses the immunogen, ovalbumin (YOVAL1.1). We demonstrate that, unlike parental tumors, YOVAL1.1 tumors are immunogenic in vivo and can be controlled by immunotherapy. Importantly, YOVAL1.1 tumors are sensitive to targeted inhibitors of BRAFV600E and MEK, responding in a manner consistent with human BRAFV600E melanoma. The YOVAL1.1 melanoma model is transplantable, immunogenic and sensitive to clinical therapies, making it a valuable platform to guide strategic development of combined targeted therapy and immunotherapy approaches in BRAFV600E melanoma.
Collapse
Affiliation(s)
- Emily J Lelliott
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Carleen Cullinane
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Claire A Martin
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rachael Walker
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kelly M Ramsbottom
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Division of Molecular Immunology, The Walter Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Shatha Abuhammad
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Jessica Michie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Laura Kirby
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Richard J Young
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alison Slater
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Peter Lau
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Katrina Meeth
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Jane Oliaro
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole Haynes
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Grant A McArthur
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Department of Medicine, St Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Karen E Sheppard
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia. .,Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Zupančič E, Curato C, Kim JS, Yeini E, Porat Z, Viana AS, Globerson-Levin A, Waks T, Eshhar Z, Moreira JN, Satchi-Fainaro R, Eisenbach L, Jung S, Florindo HF. Nanoparticulate vaccine inhibits tumor growth via improved T cell recruitment into melanoma and huHER2 breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:835-847. [PMID: 29306001 DOI: 10.1016/j.nano.2017.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/26/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022]
Abstract
Nanoparticulate vaccines are promising tools to overcome cancer immune evasion. However, a deeper understanding on nanoparticle-immune cell interactions and treatments regime is required for optimal efficacy. We provide a comprehensive study of treatment schedules and mode of antigen-association to nanovaccines on the modulation of T cell immunity in vivo, under steady-state and tumor-bearing mice. The coordinated delivery of antigen and two adjuvants (Monophosphoryl lipid A, oligodeoxynucleotide cytosine-phosphate-guanine motifs (CpG)) by nanoparticles was crucial for dendritic cell activation. A single vaccination dictated a 3-fold increase on cytotoxic memory-T cells and raised antigen-specific immune responses against B16.M05 melanoma. It generated at least a 5-fold increase on IFN-γ cytokine production, and presented over 50% higher lymphocyte count in the tumor microenvironment, compared to the control. The number of lymphocytes at the tumor site doubled with triple immunization. This lymphocyte infiltration pattern was confirmed in mammary huHER2 carcinoma, with significant tumor reduction.
Collapse
Affiliation(s)
- Eva Zupančič
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculty of Medicine (Polo I), Coimbra, Portugal
| | - Caterina Curato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Ziv Porat
- Flow Cytometry unit, Biological Services Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ana S Viana
- Chemistry and Biochemistry Center, Sciences Faculty, Universidade de Lisboa, Lisbon, Portugal
| | - Anat Globerson-Levin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Immunology research center, Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - Tova Waks
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Immunology research center, Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - Zelig Eshhar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Immunology research center, Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - João N Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculty of Medicine (Polo I), Coimbra, Portugal; Faculty of Pharmacy (FFUC), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
9
|
Kottke T, Evgin L, Shim KG, Rommelfanger D, Boisgerault N, Zaidi S, Diaz RM, Thompson J, Ilett E, Coffey M, Selby P, Pandha H, Harrington K, Melcher A, Vile R. Subversion of NK-cell and TNFα Immune Surveillance Drives Tumor Recurrence. Cancer Immunol Res 2017; 5:1029-1045. [PMID: 29038298 PMCID: PMC5858196 DOI: 10.1158/2326-6066.cir-17-0175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 01/22/2023]
Abstract
Understanding how incompletely cleared primary tumors transition from minimal residual disease (MRD) into treatment-resistant, immune-invisible recurrences has major clinical significance. We show here that this transition is mediated through the subversion of two key elements of innate immunosurveillance. In the first, the role of TNFα changes from an antitumor effector against primary tumors into a growth promoter for MRD. Second, whereas primary tumors induced a natural killer (NK)-mediated cytokine response characterized by low IL6 and elevated IFNγ, PD-L1hi MRD cells promoted the secretion of IL6 but minimal IFNγ, inhibiting both NK-cell and T-cell surveillance. Tumor recurrence was promoted by trauma- or infection-like stimuli inducing VEGF and TNFα, which stimulated the growth of MRD tumors. Finally, therapies that blocked PD-1, TNFα, or NK cells delayed or prevented recurrence. These data show how innate immunosurveillance mechanisms, which control infection and growth of primary tumors, are exploited by recurrent, competent tumors and identify therapeutic targets in patients with MRD known to be at high risk of relapse. Cancer Immunol Res; 5(11); 1029-45. ©2017 AACR.
Collapse
Affiliation(s)
- Tim Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin G Shim
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - Shane Zaidi
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rosa Maria Diaz
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jill Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth Ilett
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | - Matt Coffey
- Oncolytics Biotech Incorporated, Calgary, Canada
| | - Peter Selby
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
| | | | | | - Alan Melcher
- The Institute of Cancer Research, London, United Kingdom
| | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota.
- Leeds Institute of Cancer and Pathology, St. James' University Hospital, Leeds, United Kingdom
- Department of Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Haji-Fatahaliha M, Hosseini M, Akbarian A, Sadreddini S, Jadidi-Niaragh F, Yousefi M. CAR-modified T-cell therapy for cancer: an updated review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2016; 44:1339-1349. [PMID: 26068778 DOI: 10.3109/21691401.2015.1052465] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/24/2015] [Indexed: 01/21/2023]
Abstract
The use of chimeric antigen receptor (CAR)-modified T cells is a promising approach for cancer immunotherapy. These genetically modified receptors contain an antigen-binding moiety, a hinge region, a transmembrane domain, and an intracellular costimulatory domain resulting in T-cell activation subsequent to antigen binding. Optimal tumor removal through CAR-modified T cells requires suitable target antigen selection, co-stimulatory signaling domain, and the ability of CAR T cells to traffic, persist, and retain antitumor function after adoptive transfer. There are several elements which can improve antitumor function of CAR T cells, including signaling, conditioning chemotherapy and irradiation, tumor burden of the disease, T-cell phenotype, and supplementary cytokine usage. This review outlines four generations of CAR. The pre-clinical and clinical studies showed that this technique has a great potential for treatment of solid and hematological malignancies. The main purpose of the current review is to focus on the pre-clinical and clinical developments of CAR-based immunotherapy.
Collapse
Affiliation(s)
- Mostafa Haji-Fatahaliha
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
- b Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
- c Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Maryam Hosseini
- b Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
- c Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Asiye Akbarian
- d Department of Microbiology , Faculty of Medicine, Tehran University of Medical Sciences , Tehran , Iran
| | - Sanam Sadreddini
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
- b Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
- c Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farhad Jadidi-Niaragh
- e Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Mehdi Yousefi
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
- b Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
- c Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
11
|
Ish-Shalom E, Meirow Y, Sade-Feldman M, Kanterman J, Wang L, Mizrahi O, Klieger Y, Baniyash M. Impaired SNX9 Expression in Immune Cells during Chronic Inflammation: Prognostic and Diagnostic Implications. THE JOURNAL OF IMMUNOLOGY 2015; 196:156-67. [PMID: 26608909 DOI: 10.4049/jimmunol.1402877] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/25/2015] [Indexed: 11/19/2022]
Abstract
Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases.
Collapse
Affiliation(s)
- Eliran Ish-Shalom
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and ImProDia Ltd., Herzliya Pituah 46723, Israel
| | - Yaron Meirow
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Moshe Sade-Feldman
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Julia Kanterman
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | - Lynn Wang
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| | | | - Yair Klieger
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and ImProDia Ltd., Herzliya Pituah 46723, Israel
| | - Michal Baniyash
- Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel; and
| |
Collapse
|
12
|
Strategies and Advancements in Harnessing the Immune System for Gastric Cancer Immunotherapy. J Immunol Res 2015; 2015:308574. [PMID: 26579545 PMCID: PMC4633567 DOI: 10.1155/2015/308574] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
In cancer biology, cells and molecules that form the fundamental components of the tumor microenvironment play a major role in tumor initiation, and progression as well as responses to therapy. Therapeutic approaches that would enable and harness the immune system to target tumor cells mark the future of anticancer therapy as it could induce an immunological memory specific to the tumor type and further enhance tumor regression and relapse-free survival in cancer patients. Gastric cancer is one of the leading causes of cancer-related mortalities that has a modest survival benefit from existing treatment options. The advent of immunotherapy presents us with new approaches in gastric cancer treatment where adaptive cell therapies, cancer vaccines, and antibody therapies have all been used with promising outcomes. In this paper, we review the current advances and prospects in the gastric cancer immunotherapy. Special focus is laid on new strategies and clinical trials that attempt to enhance the efficacy of various immunotherapeutic modalities in gastric cancer.
Collapse
|
13
|
Cafri G, Sharbi-Yunger A, Tzehoval E, Alteber Z, Gross T, Vadai E, Margalit A, Gross G, Eisenbach L. mRNA-transfected Dendritic Cells Expressing Polypeptides That Link MHC-I Presentation to Constitutive TLR4 Activation Confer Tumor Immunity. Mol Ther 2015; 23:1391-1400. [PMID: 25997427 DOI: 10.1038/mt.2015.90] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 04/19/2015] [Indexed: 12/20/2022] Open
Abstract
Recently, we have developed a novel genetic platform for improving dendritic cell (DC) induction of peptide-specific CD8 T cells, based on membrane-anchored β2-microglobulin (β2m) linked to a selected antigenic peptide at its N-terminus and to the cytosolic domain of toll-like receptor (TLR)4 C-terminally. In vitro transcribed mRNA transfection of antigen presenting cells resulted in polypeptides that efficiently coupled peptide presentation to cellular activation. In the present study, we evaluated the immunogenicity of such constructs in mRNA-transfected immature murine bone marrow-derived DCs. We show that the encoded peptide β2m-TLR4 products were expressed at the cell surface up to 72 hours and stimulated the maturation of DCs. In vivo, these DCs prompted efficient peptide-specific T-cell activation and target cell killing which were superior to those induced by peptide-loaded, LPS-stimulated DCs. This superiority was also evident in the ability to protect mice from tumor progression following the administration of B16F10.9 melanoma cells and to inhibit the development of pre-established B16F10.9 tumors. Our results provide evidence that the products of two recombinant genes encoding for peptide-hβ2m-TLR4 and peptide-hβ2m-K(b) expressed from exogenous mRNA can cooperate to couple Major Histocompatibility Complex (MHC-I) peptide presentation to TLR-mediated signaling, offering a safe, economical and highly versatile genetic platform for a novel category of CTL-inducing vaccines.
Collapse
Affiliation(s)
- Gal Cafri
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Laboratory of Immunology, MIGAL, Kiryat Shmona, Israel
| | - Adi Sharbi-Yunger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Esther Tzehoval
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Zoya Alteber
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Gross
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ezra Vadai
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Margalit
- Laboratory of Immunology, MIGAL, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Gideon Gross
- Laboratory of Immunology, MIGAL, Kiryat Shmona, Israel; Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Straetemans T, Berrevoets C, Coccoris M, Treffers-Westerlaken E, Wijers R, Cole DK, Dardalhon V, Sewell AK, Taylor N, Verweij J, Debets R. Recurrence of melanoma following T cell treatment: continued antigen expression in a tumor that evades T cell recruitment. Mol Ther 2014; 23:396-406. [PMID: 25363716 DOI: 10.1038/mt.2014.215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 10/25/2014] [Indexed: 12/14/2022] Open
Abstract
Clinical therapy with T cells shows promise for cancer patients, but is currently challenged by incomplete responses and tumor relapse. The exact mechanisms that contribute to tumor relapse remain largely unclear. Here, we treated mouse melanomas with T cell receptor-engineered T cells directed against a human peptide-major histocompatibility complex antigen in immune-competent mice. T cells resulted in significant tumor regression, which was followed by relapse in about 80-90% of mice. Molecular analysis revealed that relapsed tumors harbored nonmutated antigen genes, not silenced by promoter methylation, and functionally expressed surface antigen at levels equal to nontreated tumors. Relapsed tumors resisted a second in vivo T cell treatment, but regained sensitivity to T cell treatment upon retransplantation in mice. Notably, relapsed tumors demonstrated decreased levels of CD8 T cells and monocytes, which were substantiated by downregulated expression of chemoattractants and adhesion molecules. These observations were confirmed when using T cells specific for a less immunogenic, endogenous mouse melanoma antigen. We conclude that tumors, when exposed to T cell treatment, can relapse without loss of antigen and develop a milieu that evades recruitment of effector CD8 T cells. Our findings support the concept to target the tumor milieu to aid T cell therapy in limiting tumor relapse.
Collapse
Affiliation(s)
- Trudy Straetemans
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Cor Berrevoets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Miriam Coccoris
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Elike Treffers-Westerlaken
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rebecca Wijers
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - David K Cole
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff, UK
| | - Valerie Dardalhon
- Institute de Génétique Moléculaire de Montpellier, Université Montpellier, Montpellier, France
| | - Andrew K Sewell
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff, UK
| | - Naomi Taylor
- Institute de Génétique Moléculaire de Montpellier, Université Montpellier, Montpellier, France
| | - Jaap Verweij
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Bak SP, Barnkob MS, Wittrup KD, Chen J. CD8+ T-cell responses rapidly select for antigen-negative tumor cells in the prostate. Cancer Immunol Res 2014; 1:393-401. [PMID: 24778132 DOI: 10.1158/2326-6066.cir-13-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Stimulation of patients' immune systems for the treatment of solid tumors is an emerging therapeutic paradigm. The use of enriched autologous T cells for adoptive cell therapy or vaccination with antigen-loaded dendritic cells have shown clinical efficacy in melanoma and prostate cancer, respectively. However, the long-term effects of immune responses on selection and outgrowth of antigen-negative tumor cells in specific tumor types must be determined to understand and achieve long-term therapeutic effects. In this study, we have investigated the expression of a tumor-specific antigen in situ after treatment with tumor-specific CD8(+) T cells in an autochthonous mouse model of prostate cancer. After T-cell treatment, aggregates of dead antigen-positive tumor cells were concentrated in the lumen of the prostate gland and were eventually eliminated from the prostate tissue. Despite the elimination of antigen-positive tumor cells, prostate tumor continued to grow in T-cell-treated mice. Interestingly, the remaining tumor cells were antigen negative and downregulated MHC class I expression. These results show that CD8(+) T cells are effective in eliminating antigen-bearing prostate tumor cells but they also can select for the outgrowth of antigen-negative tumor cells. These findings provide insights into the requirements for an effective cancer immunotherapy within the prostate that not only induces potent immune responses but also avoids selection and outgrowth of antigen-negative tumor cells.
Collapse
Affiliation(s)
- S Peter Bak
- Authors' Affiliations: Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | | | |
Collapse
|
16
|
Chan WM, Rahman MM, McFadden G. Oncolytic myxoma virus: the path to clinic. Vaccine 2013; 31:4252-8. [PMID: 23726825 PMCID: PMC3755036 DOI: 10.1016/j.vaccine.2013.05.056] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Abstract
Many common neoplasms are still noncurative with current standards of cancer therapy. More therapeutic modalities need to be developed to significantly prolong the lives of patients and eventually cure a wider spectrum of cancers. Oncolytic virotherapy is one of the promising new additions to clinical cancer therapeutics. Successful oncolytic virotherapy in the clinic will be those strategies that best combine tumor cell oncolysis with enhanced immune responses against tumor antigens. The current candidate oncolytic viruses all share the common property that they are relatively nonpathogenic to humans, yet they have the ability to replicate selectively in human cancer cells and induce cancer regression by direct oncolysis and/or induction of improved anti-tumor immune responses. Many candidate oncolytic viruses are in various stages of clinical and preclinical development. One such preclinical candidate is myxoma virus (MYXV), a member of the Poxviridae family that, in its natural setting, exhibits a very restricted host range and is only pathogenic to European rabbits. Despite its narrow host range in nature, MYXV has been shown to productively infect various classes of human cancer cells. Several preclinical in vivo modeling studies have demonstrated that MYXV is an attractive and safe candidate oncolytic virus, and hence, MYXV is currently being developed as a potential therapeutic for several cancers, such as pancreatic cancer, glioblastoma, ovarian cancer, melanoma, and hematologic malignancies. This review highlights the preclinical cancer models that have shown the most promise for translation of MYXV into human clinical trials.
Collapse
Affiliation(s)
- Winnie M. Chan
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Masmudur M. Rahman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
17
|
Tan S, Sasada T, Bershteyn A, Yang K, Ioji T, Zhang Z. Combinational delivery of lipid-enveloped polymeric nanoparticles carrying different peptides for anti-tumor immunotherapy. Nanomedicine (Lond) 2013; 9:635-47. [PMID: 23905577 DOI: 10.2217/nnm.13.67] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM The authors aimed to investigate whether nanotechnology-based delivery of antigenic peptides is feasible for efficiently inducing anti-tumor cytotoxic T lymphocyte responses through vaccination. MATERIALS & METHODS Three different murine melanoma antigens were entrapped in lipid-coated poly(D,L-lactide-co-glycolide) nanoparticles (NPs) by the double emulsion method. RESULTS The loading efficiency of hydrophilic peptides was greatly improved when lipids were introduced to formulate lipid-coated NPs. The lipid-coated NPs carrying a single peptide and/or combinations of multiple lipid-coated NPs carrying antigenic peptides were characterized in vitro and in vivo in a C57/BL6 (B6) mouse model. Both the single melanoma antigen peptide-loaded NPs and combinational delivery of lipid-coated NPs carrying different peptides could induce antigen-specific T-cell responses. However, single peptide-loaded NPs failed to significantly delay the growth of subcutaneously inoculated B16 melanoma cells in a prophylactic setting. By contrast, the combinational delivery of lipid-coated NPs carrying different peptides significantly suppressed growth of inoculated B16 melanoma cells.
Collapse
Affiliation(s)
- Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | | | | | | | | | | |
Collapse
|
18
|
Arens R, van Hall T, van der Burg SH, Ossendorp F, Melief CJM. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol 2013; 25:182-90. [PMID: 23706598 DOI: 10.1016/j.smim.2013.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 01/15/2023]
Abstract
The insight that the immune system is involved in tumor resistance is gaining momentum and this has led to the development of immunotherapeutic strategies aiming at enhancement of immune-mediated tumor destruction. Although some of these strategies have moderate clinical benefit, most stand-alone therapies fail to significantly affect progressive disease and survival or do so only in a minority of patients. Research on the mechanisms underlying the generation of immune responses against tumors and the immune evasion by tumors has emphasized that various mechanisms simultaneously prevent effective immunity against cancer including inefficient presentation of tumor antigens by dendritic cells and induction of negative immune regulation by regulatory T-cells (Tregs) and myeloid derived suppressor cells (MDSCs). Thus the design of therapies that simultaneously improve effective tumor immunity and counteract immune evasion by tumors seems most desirable for clinical efficacy. As it is unlikely that a single immunotherapeutic strategy addresses all necessary requirements, combinatorial strategies that act synergistically need to be developed. Here we discuss the current knowledge and prospects of treatment with synthetic peptide vaccines that stimulate tumor-specific T-cell responses combined with adjuvants, immune modulating antibodies, cytokines and chemotherapy. We conclude that combinatorial approaches have the best potency to accomplish the most significant tumor destruction but further research is required to optimize such approaches.
Collapse
Affiliation(s)
- Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
19
|
Curran KJ, Pegram HJ, Brentjens RJ. Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J Gene Med 2012; 14:405-15. [PMID: 22262649 DOI: 10.1002/jgm.2604] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The genetic engineering of T cells through the introduction of a chimeric antigen receptor (CAR) allows for generation of tumor-targeted T cells. Once expressed by T cells, CARs combine antigen-specificity with T cell activation in a single fusion molecule. Most CARs are comprised of an antigen-binding domain, an extracellular spacer/hinge region, a trans-membrane domain and an intracellular signaling domain resulting in T cell activation after antigen binding. METHODS We performed a search of the literature regarding tumor immunotherapy using CAR-modified T cells to provide a concise review of this topic. RESULTS This review aims to focus on the elements of CAR design required for successful application of this technology in cancer immunotherapy. Most notably, proper target antigen selection, co-stimulatory signaling, and the ability of CAR-modified T cells to traffic, persist and retain function after adoptive transfer are required for optimal tumor eradication. Furthermore, recent clinical trials have demonstrated tumor burden and chemotherapy conditioning before adoptive transfer as being critically important for this therapy. Future research into counteracting the suppressive tumor microenvironment and the ability to activate an endogenous anti-tumor response by CAR-modified T cells may enhance the therapeutic potential of this treatment. CONCLUSIONS In conclusion, CAR-modified T cell therapy is a highly promising treatment for cancer, having already demonstrated both promising preclinical and clinical results. However, further modification and additional clinical trials will need to be conducted to ultimately optimize the anti-tumor efficacy of this approach.
Collapse
Affiliation(s)
- Kevin J Curran
- Memorial Sloan-Kettering Cancer Center - Bone Marrow Transplant Service, Department of Pediatrics, New York, NY, USA
| | | | | |
Collapse
|
20
|
Kaluza KM, Thompson JM, Kottke TJ, Flynn Gilmer HC, Knutson DL, Vile RG. Adoptive T cell therapy promotes the emergence of genomically altered tumor escape variants. Int J Cancer 2011; 131:844-54. [PMID: 21935923 DOI: 10.1002/ijc.26447] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/07/2011] [Indexed: 12/22/2022]
Abstract
Adoptive T cell therapy has been proven effective against melanoma in mice and humans. However, because most responses are incomplete or transient, cures remain rare. To maximize the efficacy of this therapy, it will be essential to gain a better understanding of the processes which result in tumor relapse. We studied these processes using B16ova murine melanoma and adoptive transfer of OT-I T cells. Transfer of T cells as a single therapy provided a significant survival benefit for mice with established subcutaneous tumors. However, tumors which initially regressed often recurred. By analyzing tumors which emerged in the presence of a potent OT-I response, we identified a novel tumor escape mechanism in which tumor cells evaded T cell pressure by undergoing major genomic changes involving loss of the gene encoding the target tumor antigen. Furthermore, we show that these in vivo processes can be recapitulated in vitro using T cell/tumor cell co-cultures. A single round of in vitro co-culture led to significant loss of the ova gene and a tumor cell population with rapidly induced and diverse karyotypic changes. Although these current studies focus on the model OVA antigen, the finding that T cells can directly promote genomic instability has important implications for the development of adoptive T cell therapies.
Collapse
Affiliation(s)
- Karen M Kaluza
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
21
|
Molinari P, Crespo MI, Gravisaco MJ, Taboga O, Morón G. Baculovirus capsid display potentiates OVA cytotoxic and innate immune responses. PLoS One 2011; 6:e24108. [PMID: 21918683 PMCID: PMC3168877 DOI: 10.1371/journal.pone.0024108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 08/04/2011] [Indexed: 01/08/2023] Open
Abstract
Baculoviruses (BV) are DNA viruses that are pathogenic for insects. Although BV infect a range of mammalian cell types, they do not replicate in these cells. Indeed, the potential effects of these insect viruses on the immune responses of mammals are only just beginning to be studied. We show in this paper that a recombinant Autographa californica multiple nuclear polyhedrosis virus carrying a fragment of ovalbumin (OVA) on the VP39 capsid protein (BV-OVA) has the capacity to act as an adjuvant and vector of antigens in mice, thereby promoting specific CD4 and cytotoxic T cell responses against OVA. BV also induced in vivo maturation of dendritic cells and the production of inflammatory cytokines, thus promoting innate and adaptive immune responses. The OVA-specific response induced by BV-OVA was strong enough to reject a challenge with OVA-expressing melanoma cells (MO5 cells) and effectively prolonged survival of MO5 bearing mice. All these findings, together with the absence of pre-existing immunity to BV in humans and the lack of viral gene expression in mammalian cells, make BV a candidate for vaccination.
Collapse
Affiliation(s)
- Paula Molinari
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - María I. Crespo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María J. Gravisaco
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - Oscar Taboga
- Instituto de Biotecnología, Centro Nacional de Investigaciones Agropecuarias (CNIA), INTA Castelar, Buenos Aires, Argentina
| | - Gabriel Morón
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- * E-mail:
| |
Collapse
|
22
|
Sartorius R, Bettua C, D'Apice L, Caivano A, Trovato M, Russo D, Zanoni I, Granucci F, Mascolo D, Barba P, Del Pozzo G, De Berardinis P. Vaccination with filamentous bacteriophages targeting DEC-205 induces DC maturation and potent anti-tumor T-cell responses in the absence of adjuvants. Eur J Immunol 2011; 41:2573-84. [PMID: 21688262 DOI: 10.1002/eji.201141526] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 06/09/2011] [Accepted: 06/15/2011] [Indexed: 12/30/2022]
Abstract
The efficacy of a new vaccine-delivery vector, based on the filamentous bacteriophage fd displaying a single-chain antibody fragment known to bind the mouse DC surface molecule DEC-205, is reported. We demonstrate both in vitro and in vivo an enhanced receptor-mediated uptake of phage particles expressing the anti-DEC-205 fragment by DCs. We also report that DCs targeted by fd virions in the absence of other stimuli produce IFN-α and IL-6, and acquire a mature phenotype. Moreover, DC-targeting with fd particles double-displaying the anti-DEC-205 fragment on the pIII protein and the OVA(257-264) antigenic determinant on the pVIII protein induced potent inhibition of the growth of the B16-OVA tumor in vivo. This protection was much stronger than other immunization strategies and similar to that induced by adoptively transferred DCs. Since targeting DEC-205 in the absence of DC activation/maturation agents has previously been described to result in tolerance, the ability of fd bacteriophages to induce a strong tumor-specific immune response by targeting DCs through DEC-205 is unexpected, and further validates the potential employment of this safe, versatile and inexpensive delivery system for vaccine formulation.
Collapse
|
23
|
Thomas DL, Doty R, Tosic V, Liu J, Kranz DM, McFadden G, Macneill AL, Roy EJ. Myxoma virus combined with rapamycin treatment enhances adoptive T cell therapy for murine melanoma brain tumors. Cancer Immunol Immunother 2011; 60:1461-72. [PMID: 21656158 DOI: 10.1007/s00262-011-1045-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/20/2011] [Indexed: 12/11/2022]
Abstract
Adoptive transfer of tumor-specific T cells has shown some success for treating metastatic melanoma. We evaluated a novel strategy to improve adoptive therapy by administering both T cells and oncolytic myxoma virus to mice with syngeneic B16.SIY melanoma brain tumors. Adoptive transfer of activated CD8(+) 2C T cells that recognize SIY peptide doubled survival time, but SIY-negative tumors recurred. Myxoma virus killed B16.SIY cells in vitro, and intratumoral injection of virus led to selective and transient infection of the tumor. Virus treatment recruited innate immune cells to the tumor and induced IFNβ production in the brain, resulting in limited oncolytic effects in vivo. To counter this, we evaluated the safety and efficacy of co-administering 2C T cells, myxoma virus, and either rapamycin or neutralizing antibodies against IFNβ. Mice that received either triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Importantly, rapamycin treatment did not impair T cell-mediated tumor destruction, supporting the feasibility of combining adoptive immunotherapy and rapamycin-enhanced virotherapy. Myxoma virus may be a useful vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.
Collapse
Affiliation(s)
- Diana L Thomas
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sakamoto N, Rosenberg AS. Apolipoprotein B binding domains: evidence that they are cell-penetrating peptides that efficiently deliver antigenic peptide for cross-presentation of cytotoxic T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:5004-11. [PMID: 21402897 DOI: 10.4049/jimmunol.1003557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Low-density lipoproteins (LDLs) are a good source of cholesterol, which is important in cellular homeostasis and production of steroids. Apolipoprotein B-100 (ApoB-100), the sole protein component of LDL, is known to bind to cell surface LDL receptor (LDLR) or cell surface-bound proteoglycans and to be internalized into cells. We found that APCs, consisting of macrophages and dendritic cells, upregulate LDLR on culture in vitro without obvious stimulation. In contrast, T cell populations only upregulate LDLR on activation. Thus, we strategized that tagging immunogens to ApoB-100 might be a useful means to target Ag to APCs. We generated fusion proteins consisting of receptor binding sites in ApoB-100, coupled to OVA peptide (ApoB-OVA), as Ag delivery vehicles and demonstrated that this novel delivery method successfully cross-presented OVA peptides in eliciting CTL responses. Surprisingly, internalization of ApoB-OVA peptide occurred via cell surface proteoglycans rather than LDLRs, consistent with evidence that structural elements of ApoB-100 indicate it to have cell-penetrating peptide properties. Finally, we used this strategy to assess therapeutic vaccination in a tumor setting. OVA-expressing EL-4 tumors grew progressively in mice immunized with ApoB-100 alone but regressed in mice immunized with ApoB-OVA fusion protein, coinciding with development of OVA-specific CTLs. Thus, to our knowledge, this is the first article to describe the cell-penetrating properties of a conserved human origin cell penetrating peptide that may be harnessed as a novel vaccination strategy as well as a therapeutics delivery device.
Collapse
Affiliation(s)
- Norihisa Sakamoto
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|
25
|
Wick DA, Martin SD, Nelson BH, Webb JR. Profound CD8+ T cell immunity elicited by sequential daily immunization with exogenous antigen plus the TLR3 agonist poly(I:C). Vaccine 2010; 29:984-93. [PMID: 21115055 DOI: 10.1016/j.vaccine.2010.11.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 11/06/2010] [Accepted: 11/15/2010] [Indexed: 01/22/2023]
Abstract
The development of vaccines that elicit robust CD8(+) T cell immunity has long been a subject of intense investigation. Although whole exogenous protein has not historically been considered as useful for eliciting CD8(+) T cell immunity, we report herein that whole, protein antigen is capable of eliciting profound levels of CD8(+) T cell immunity if it is administered via repeated, daily subcutaneous immunization in combination with the TLR3 agonist poly(I:C). Mice immunized for four consecutive days with 100 μg of either whole exogenous OVA or whole HPV16 E7 protein combined with 10 μg of poly(I:C) mounted remarkable antigen-specific CD8(+) T cell responses as measured by tetramer staining and ELISPOT analysis of splenocytes and peripheral blood, with up to 30% of peripheral CD8(+) T cells being antigen specific within 7-8 days of vaccination. CD8(+) T cell immunity elicited using this vaccination approach was critically dependent upon cross presentation, as either whole protein or long synthetic peptides were highly effective immunogens whereas minimal peptide epitopes were not. Vaccine-induced CD8(+) T cells were also able to regress large, established tumors in vivo. Together these data suggest that 'cluster' vaccination with exogenous antigen combined with TLR3 agonist may constitute a profoundly important advancement in therapeutic vaccine design.
Collapse
Affiliation(s)
- Darin A Wick
- Trev and Joyce Deeley Research Centre, BC Cancer Agency, Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
26
|
Garrido F, Algarra I, García-Lora AM. The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible "hard" lesions. Cancer Immunol Immunother 2010; 59:1601-6. [PMID: 20625726 PMCID: PMC11029827 DOI: 10.1007/s00262-010-0893-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
The discovery of tumor antigens recognized by T lymphocytes has stimulated the development of a variety of cancer treatment protocols aimed at enhancing antitumor-specific T cell responses and tumor rejection. However, immunotherapy-mediated regression of established tumors and clearly positive clinical response to such treatment has not been achieved yet despite the induction of T cells directed against tumor antigens. The failure of the modern immunotherapy protocols can be explained by different tumor escape mechanisms that have been defined in various types of malignancy. The loss or downregulation of MHC class I antigens in tumor cells is one of the best analyzed mechanisms. In this review, we show experimental evidence obtained in our laboratory on human tumors and in a mouse cancer model suggesting that the molecular mechanism responsible for the MHC class I alteration in tumor cells might have a crucial impact on tumor recovery of normal H-2/HLA expression during the natural history of tumor development or after immunotherapy. When the preexisting molecular lesion underlying tumor MHC class I alteration is reversible (regulatory or soft), class I expression can be recovered leading to regression of tumor lesion. In contrast, if the HLA class I alteration is irreversible in nature (structural or hard), the lesion will progress killing the host. This is a new vision of the role of MHC class I alteration in tumors that can explain the failure of immunotherapy in a variety of different clinical protocols.
Collapse
Affiliation(s)
- Federico Garrido
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Ignacio Algarra
- Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Angel M. García-Lora
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
27
|
Deguchi T, Tanemura M, Miyoshi E, Nagano H, Machida T, Ohmura Y, Kobayashi S, Marubashi S, Eguchi H, Takeda Y, Ito T, Mori M, Doki Y, Sawa Y. Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express alpha-gal epitopes: a novel approach to immunotherapy in pancreatic cancer. Cancer Res 2010; 70:5259-5269. [PMID: 20530670 DOI: 10.1158/0008-5472.can-09-4313] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mucin 1 (MUC1), a bound mucin glycoprotein, is overexpressed and aberrantly glycosylated in >80% of human ductal pancreatic carcinoma. Evidence suggests that MUC1 can be used as a tumor marker and is a potential target for immunotherapy of pancreatic cancer. However, vaccination with MUC1 peptides fails to stimulate the immune response against cancer cells because immunity toward tumor-associated antigens (TAA), including MUC1, in cancer patients is relatively weak, and the presentation of these TAAs to the immune system is poor due to their low immunogenicity. We investigated whether vaccination with immunogenetically enhanced MUC1 (by expressing alpha-gal epitopes; Galalpha1-3Galbeta1-4GlcNAc-R) can elicit effective antibody production for MUC1 itself as well as certain TAAs derived from pancreatic cancer cells and induced tumor-specific T-cell responses. We also used alpha1,3galactosyltransferase (alpha1,3GT) knockout mice that were preimmunized with pig kidney and transplanted with B16F10 melanoma cells transfected with MUC1 expression vector. Vaccination of these mice with alpha-gal MUC1 resulted in marked inhibition of tumor growth and significant improvement of overall survival time compared with mice vaccinated with MUC1 alone (P = 0.003). Furthermore, vaccination with pancreatic cancer cells expressing alpha-gal epitopes induced immune responses against not only differentiated cancer cells but also cancer stem cells. The results suggested that vaccination using cells engineered to express alpha-gal epitopes is a novel strategy for treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Takashi Deguchi
- Department of Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Beaudette TT, Bachelder EM, Cohen JA, Obermeyer AC, Broaders KE, Fréchet JMJ, Kang ES, Mende I, Tseng WW, Davidson MG, Engleman EG. In vivo studies on the effect of co-encapsulation of CpG DNA and antigen in acid-degradable microparticle vaccines. Mol Pharm 2009; 6:1160-9. [PMID: 19415922 DOI: 10.1021/mp900038e] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein-based vaccines have been explored as a safer alternative to traditional weakened or killed whole organism based vaccination strategies and have been investigated for their ability to activate the immune system against certain cancers. For optimal stimulation of T lymphocytes, protein-based vaccines should deliver protein antigens to antigen presenting cells in the context of appropriate immunostimulatory signals, thus mimicking actual pathogens. In this report, we describe the synthesis, characterization, and biological evaluation of immunostimulatory acid-degradable microparticles, which are suitable delivery vehicles for use in protein-based vaccines and cancer immunotherapy. Using a 3' conjugation strategy, we optimized the attachment of immunostimulatory CpG DNA to our vaccine carriers and demonstrated that under acidic conditions similar to those found in endosomal compartments, these new particles were capable of simultaneously releasing a model protein antigen and a CpG DNA adjuvant. We found in an in vivo cytotoxicity assay that the co-encapsulation of ovalbumin, a model antigen, and immunostimulatory agent in the same particle led to superior cytotoxic T lymphocyte activity compared to particles coadministered with adjuvant in an unbound form. In addition, we investigated the ability of these acid-degradable particles to induce protective immunity in the MO5 murine melanoma model and found that they were effective until tumor escape, which appeared to result from a loss of antigen expression by the cancer cells due to in vivo selection pressure.
Collapse
Affiliation(s)
- Tristan T Beaudette
- College of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|