1
|
Nawarathnage S, Tseng YJ, Soleimani S, Smith T, Pedroza Romo MJ, Abiodun WO, Egbert CM, Madhusanka D, Bunn D, Woods B, Tsubaki E, Stewart C, Brown S, Doukov T, Andersen JL, Moody JD. Fusion crystallization reveals the behavior of both the 1TEL crystallization chaperone and the TNK1 UBA domain. Structure 2023; 31:1589-1603.e6. [PMID: 37776857 PMCID: PMC10843481 DOI: 10.1016/j.str.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 10/02/2023]
Abstract
Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1 ubiquitin-associated (UBA) domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. No experimentally determined molecular structure of this unusual UBA domain is available. We fused the UBA domain to the 1TEL variant of the translocation ETS leukemia protein sterile alpha motif (TELSAM) crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and crystallize at protein concentrations as low as 0.2 mg/mL. Our studies support a mechanism of 1TEL fusion crystallization and show that 1TEL fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.
Collapse
Affiliation(s)
| | - Yi Jie Tseng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Sara Soleimani
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Tobin Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Maria J Pedroza Romo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Wisdom O Abiodun
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Christina M Egbert
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA; Fritz B. Burns Cancer Research Laboratory, Brigham Young University, Provo, UT, USA
| | - Deshan Madhusanka
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA; Fritz B. Burns Cancer Research Laboratory, Brigham Young University, Provo, UT, USA
| | - Derick Bunn
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Bridger Woods
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Evan Tsubaki
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Cameron Stewart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Seth Brown
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Tzanko Doukov
- Macromolecular Crystallography Group, Structural Molecular Biology Resource, Stanford Synchrotron Radiation Lightsource, Menlo Park, CA, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA; Fritz B. Burns Cancer Research Laboratory, Brigham Young University, Provo, UT, USA.
| | - James D Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
2
|
Nawarathnage S, Tseng YJ, Soleimani S, Smith T, Romo MJP, Abiodun WO, Egbert CM, Madhusanka D, Bunn D, Woods B, Tsubaki E, Stewart C, Brown S, Doukov T, Andersen JL, Moody JD. Fusion crystallization reveals the behavior of both the 1TEL crystallization chaperone and the TNK1 UBA domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544429. [PMID: 37398013 PMCID: PMC10312729 DOI: 10.1101/2023.06.14.544429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Human thirty-eight-negative kinase-1 (TNK1) is implicated in cancer progression. The TNK1-UBA domain binds polyubiquitin and plays a regulatory role in TNK1 activity and stability. Sequence analysis suggests an unusual architecture for the TNK1 UBA domain, but an experimentally-validated molecular structure is undetermined. To gain insight into TNK1 regulation, we fused the UBA domain to the 1TEL crystallization chaperone and obtained crystals diffracting as far as 1.53 Å. A 1TEL search model enabled solution of the X-ray phases. GG and GSGG linkers allowed the UBA to reproducibly find a productive binding mode against its host 1TEL polymer and to crystallize at protein concentrations as low as 0.1 mg/mL. Our studies support a mechanism of TELSAM fusion crystallization and show that TELSAM fusion crystals require fewer crystal contacts than traditional protein crystals. Modeling and experimental validation suggest the UBA domain may be selective for both the length and linkages of polyubiquitin chains.
Collapse
Affiliation(s)
- Supeshala Nawarathnage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
- These authors contributed equally to this work
| | - Yi Jie Tseng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
- These authors contributed equally to this work
| | - Sara Soleimani
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
- These authors contributed equally to this work
| | - Tobin Smith
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Maria J Pedroza Romo
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Wisdom Oshireku Abiodun
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Christina M. Egbert
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Deshan Madhusanka
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Derick Bunn
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Bridger Woods
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Evan Tsubaki
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Cameron Stewart
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Seth Brown
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - Tzanko Doukov
- Macromolecular Crystallography Group, Structural Molecular Biology Resource, Stanford Synchrotron Radiation Lightsource, Menlo Park, California, United States of America
| | - Joshua L. Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| | - James D. Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
3
|
Kan Y, Paung Y, Seeliger MA, Miller WT. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells 2023; 12:900. [PMID: 36980241 PMCID: PMC10047419 DOI: 10.3390/cells12060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The nonreceptor tyrosine kinase (NRTK) Ack1 comprises a distinct arrangement of non-catalytic modules. Its SH3 domain has a C-terminal to the kinase domain (SH1), in contrast to the typical SH3-SH2-SH1 layout in NRTKs. The Ack1 is the only protein that shares a region of high homology to the tumor suppressor protein Mig6, a modulator of EGFR. The vertebrate Acks make up the only tyrosine kinase (TK) family known to carry a UBA domain. The GTPase binding and SAM domains are also uncommon in the NRTKs. In addition to being a downstream effector of receptor tyrosine kinases (RTKs) and integrins, Ack1 can act as an epigenetic regulator, modulate the degradation of the epidermal growth factor receptor (EGFR), confer drug resistance, and mediate the progression of hormone-sensitive tumors. In this review, we discuss the domain architecture of Ack1 in relation to other protein kinases that possess such defined regulatory domains.
Collapse
Affiliation(s)
- Yagmur Kan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - YiTing Paung
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Markus A. Seeliger
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768-2200, USA
| |
Collapse
|
4
|
The noncatalytic regions of the tyrosine kinase Tnk1 are important for activity and substrate specificity. J Biol Chem 2022; 298:102664. [PMID: 36334623 DOI: 10.1016/j.jbc.2022.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Human Tnk1 (thirty-eight negative kinase 1) is a member of the Ack family of nonreceptor tyrosine kinases. Tnk1 contains a sterile alpha motif, a tyrosine kinase catalytic domain, an SH3 (Src homology 3) domain, and a large C-terminal region that contains a ubiquitin association domain. However, specific physiological roles for Tnk1 have not been characterized in depth. Here, we expressed and purified Tnk1 from Sf9 insect cells and established an in vitro assay system using a peptide substrate derived from the Wiskott-Aldrich Syndrome Protein (WASP). By Tnk1 expression in mammalian cells, we found that the N-terminal SAM domain is important for self-association and kinase activity. We also studied a fusion protein, originally discovered in a Hodgkin's Lymphoma cell line, that contains an unrelated sequence from the C17ORF61 gene fused to the C-terminus of Tnk1. Cells expressing the fusion protein showed increased tyrosine phosphorylation of cellular substrates relative to cells expressing WT Tnk1. A truncated Tnk1 construct (residues 1-465) also showed enhanced phosphorylation, indicating that the C17ORF61 sequence was dispensable for the effect. Additionally, in vitro kinase assays with the WASP peptide substrate showed no increase in intrinsic Tnk1 activity in C-terminally truncated constructs, suggesting that the truncations did not simply remove an autoinhibitory element. Fluorescence microscopy experiments demonstrated that the C-terminus of Tnk1 plays an important role in the subcellular localization of the kinase. Taken together, our data suggest that the noncatalytic regions of Tnk1 play important roles in governing activity and substrate phosphorylation.
Collapse
|
5
|
TNK1 is a ubiquitin-binding and 14-3-3-regulated kinase that can be targeted to block tumor growth. Nat Commun 2021; 12:5337. [PMID: 34504101 PMCID: PMC8429728 DOI: 10.1038/s41467-021-25622-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
TNK1 is a non-receptor tyrosine kinase with poorly understood biological function and regulation. Here, we identify TNK1 dependencies in primary human cancers. We also discover a MARK-mediated phosphorylation on TNK1 at S502 that promotes an interaction between TNK1 and 14-3-3, which sequesters TNK1 and inhibits its kinase activity. Conversely, the release of TNK1 from 14-3-3 allows TNK1 to cluster in ubiquitin-rich puncta and become active. Active TNK1 induces growth factor-independent proliferation of lymphoid cells in cell culture and mouse models. One unusual feature of TNK1 is a ubiquitin-association domain (UBA) on its C-terminus. Here, we characterize the TNK1 UBA, which has high affinity for poly-ubiquitin. Point mutations that disrupt ubiquitin binding inhibit TNK1 activity. These data suggest a mechanism in which TNK1 toggles between 14-3-3-bound (inactive) and ubiquitin-bound (active) states. Finally, we identify a TNK1 inhibitor, TP-5801, which shows nanomolar potency against TNK1-transformed cells and suppresses tumor growth in vivo.
Collapse
|
6
|
Liu Y, Du H, Wang S, Lv Y, Deng H, Chang K, Zhou P, Hu C. Grass carp (Ctenopharyngodon idella) TNK1 modulates JAK-STAT signaling through phosphorylating STAT1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103951. [PMID: 33253749 DOI: 10.1016/j.dci.2020.103951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
TNK1 (thirty-eight-negative kinase 1) belongs to the ACK (Activated Cdc42 Kinases) family of intracellular non-receptor tyrosine kinases that usually acts as an important regulator in cytokine receptor-mediated intracellular signal transduction pathways. JAK-STAT signal pathway acts as a key point in cellular proliferation, differentiation and immunomodulatory. Mammalian TNK1 is involved in antiviral immunity and activation of growth factors. However, TNK1 has rarely been studied in fish. To evaluate the role of fish TNK1 in JAK-STAT pathway, we cloned the full-length cDNA sequence of grass carp (Ctenopharyngodon idella) TNK1 (CiTNK1). CiTNK1 protein consists of N-terminal Tyrkc (tyrosine kinase) domain, C-terminal SH3 (Src homology 3) domain and Pro-rich domain. Phylogenetic analysis showed that CiTNK1 has a closer relationship with Danio rerio TNK1. The expression and phosphorylation of CiTNK1 in grass carp tissues and cells was increased under poly(I:C) stimulation. Subcellular localization and co-immunoprecipitation indicated that CiTNK1 is targeted in the cytoplasm and interacts with grass carp STAT1 (CiSTAT1). Co-transfection of CiTNK1 and CiSTAT1 into cells facilitated the expression of IFN I. This is because that the presence of CiTNK1 enhanced the phosphorylation of CiSTAT1 and causes activation of CiSTAT1. Our results revealed that TNK1 can potentiate the phosphorylation of STAT1 and then regulates JAK-STAT pathway to trigger IFN I expression in fish.
Collapse
Affiliation(s)
- Yapeng Liu
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hailing Du
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Yangfeng Lv
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Hang Deng
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kaile Chang
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Pengcheng Zhou
- College of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- College of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
7
|
The Seminiferous Epithelial Cycle of Spermatogenesis: Role of Non-receptor Tyrosine Kinases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:1-20. [PMID: 34453729 DOI: 10.1007/978-3-030-77779-1_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Non-receptor tyrosine kinases (NRTKs) are implicated in various biological processes including cell proliferation, differentiation, survival, and apoptosis, as well as cell adhesion and movement. NRTKs are expressed in all mammals and in different cell types, with extraordinarily high expression in the testis. Their association with the plasma membrane and dynamic subcellular localization are crucial parameters in their activation and function. Many NRTKs are found in endosomal protein trafficking pathways, which suggests a novel mechanism to regulate the timely junction restructuring in the mammalian testis to facilitate spermiation and germ cell transport across the seminiferous epithelium.
Collapse
|
8
|
Zeman T, Balcar VJ, Cahová K, Janoutová J, Janout V, Lochman J, Šerý O. Polymorphism rs11867353 of Tyrosine Kinase Non-Receptor 1 (TNK1) Gene Is a Novel Genetic Marker for Alzheimer's Disease. Mol Neurobiol 2020; 58:996-1005. [PMID: 33070267 DOI: 10.1007/s12035-020-02153-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 10/23/2022]
Abstract
Several single-nucleotide polymorphisms (SNPs) and rare variants of non-receptor tyrosine kinase 1 gene (TNK1) have been associated with Alzheimer's disease (AD). To date, none of the associations have proven to be of practical importance in predicting the risk of AD either because the evidence is not conclusive, or the risk alleles occur at very low frequency. In the present study, we are evaluating the associations between rs11867353 polymorphism of TNK1 gene and both AD and mild cognitive impairment (MCI) in a group of 1656 persons. While the association with AD was found to be highly statistically significant (p < 0.0001 for the risk genotype CC), no statistically significant association with MCI could be established. Possible explanation of the apparent discrepancy could be rapid progression of MCI to AD in persons with the CC genotype. Additional findings of the study are statistically significant associations of rs11867353 polymorphism with body mass index, body weight, and body height. The patients with AD and CC genotype had significantly lower values of body mass index and body weight compared with patients with other genotypes. The main outcome of the study is the finding of a previously never described association between the rs11867353 polymorphism of the TNK1 gene and AD. The rs11867353 polymorphism has a potential to become a significant genetic marker when predicting the risk of AD.
Collapse
Affiliation(s)
- Tomáš Zeman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic
| | - Vladimir J Balcar
- Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kamila Cahová
- Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jana Janoutová
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Janout
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jan Lochman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic. .,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
9
|
Lin J, Yang J, Xu X, Wang Y, Yu M, Zhu Y. A robust 11-genes prognostic model can predict overall survival in bladder cancer patients based on five cohorts. Cancer Cell Int 2020; 20:402. [PMID: 32843852 PMCID: PMC7441568 DOI: 10.1186/s12935-020-01491-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022] Open
Abstract
Background Bladder cancer is the tenth most common cancer globally, but existing biomarkers and prognostic models are limited. Method In this study, we used four bladder cancer cohorts from The Cancer Genome Atlas and Gene Expression Omnibus databases to perform univariate Cox regression analysis to identify common prognostic genes. We used the least absolute shrinkage and selection operator regression to construct a prognostic Cox model. Kaplan-Meier analysis, receiver operating characteristic curve, and univariate/multivariate Cox analysis were used to evaluate the prognostic model. Finally, a co-expression network, CIBERSORT, and ESTIMATE algorithm were used to explore the mechanism related to the model. Results A total of 11 genes were identified from the four cohorts to construct the prognostic model, including eight risk genes (SERPINE2, PRR11, DSEL, DNM1, COMP, ELOVL4, RTKN, and MAPK12) and three protective genes (FABP6, C16orf74, and TNK1). The 11-genes model could stratify the risk of patients in all five cohorts, and the prognosis was worse in the group with a high-risk score. The area under the curve values of the five cohorts in the first year are all greater than 0.65. Furthermore, this model's predictive ability is stronger than that of age, gender, grade, and T stage. Through the weighted co-expression network analysis, the gene module related to the model was found, and the key genes in this module were mainly enriched in the tumor microenvironment. B cell memory showed low infiltration in high-risk patients. Furthermore, in the case of low B cell memory infiltration and high-risk score, the prognosis of the patients was the worst. Conclusion The proposed 11-genes model is a promising biomarker for estimating overall survival in bladder cancer. This model can be used to stratify the risk of bladder cancer patients, which is beneficial to the realization of individualized treatment.
Collapse
Affiliation(s)
- Jiaxing Lin
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Jieping Yang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Xiao Xu
- Department of Pediatric Intensive Care Unit, The Shengjing Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Yutao Wang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| | - Meng Yu
- Department of Reproductive Biology and Transgenic Animal, China Medical University, Shenyang, 110001 Liaoning China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001 Liaoning China
| |
Collapse
|
10
|
The non-receptor tyrosine kinase ACK: regulatory mechanisms, signalling pathways and opportunities for attACKing cancer. Biochem Soc Trans 2020; 47:1715-1731. [PMID: 31845724 DOI: 10.1042/bst20190176] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Activated Cdc42-associated kinase or ACK, is a non-receptor tyrosine kinase and an effector protein for the small G protein Cdc42. A substantial body of evidence has accumulated in the past few years heavily implicating ACK as a driver of oncogenic processes. Concomitantly, more is also being revealed regarding the signalling pathways involving ACK and molecular details of its modes of action. Some details are also available regarding the regulatory mechanisms of this kinase, including activation and regulation of its catalytic activity, however, a full understanding of these aspects remains elusive. This review considers the current knowledge base concerning ACK and summarizes efforts and future prospects to target ACK therapeutically in cancer.
Collapse
|
11
|
Kosok M, Alli-Shaik A, Bay BH, Gunaratne J. Comprehensive Proteomic Characterization Reveals Subclass-Specific Molecular Aberrations within Triple-negative Breast Cancer. iScience 2020; 23:100868. [PMID: 32058975 PMCID: PMC7015993 DOI: 10.1016/j.isci.2020.100868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 12/30/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer lacking targeted therapies. This is attributed to its high heterogeneity that complicates elucidation of its molecular aberrations. Here, we report identification of specific proteome expression profiles pertaining to two TNBC subclasses, basal A and basal B, through in-depth proteomics analysis of breast cancer cells. We observed that kinases and proteases displayed unique expression patterns within the subclasses. Systematic analyses of protein-protein interaction and co-regulation networks of these kinases and proteases unraveled dysregulated pathways and plausible targets for each TNBC subclass. Among these, we identified kinases AXL, PEAK1, and TGFBR2 and proteases FAP, UCHL1, and MMP2/14 as specific targets for basal B subclass, which represents the more aggressive TNBC cell lines. Our study highlights intricate mechanisms and distinct targets within TNBC and emphasizes that these have to be exploited in a subclass-specific manner rather than a one-for-all TNBC therapy. Proteome profiling reveals functionally distinct subclasses within TNBC Kinases and proteases underlie unique functional signatures among the subclasses Kinase-protease-centric networks highlight subclass-specific molecular rewiring Protein association dysregulations reveal TNBC subclass-specific protein targets
Collapse
Affiliation(s)
- Max Kosok
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Asfa Alli-Shaik
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore; Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
12
|
Hong S, Yan Z, Wang H, Ding L, Song Y, Bi M. miR-663b promotes colorectal cancer progression by activating Ras/Raf signaling through downregulation of TNK1. Hum Cell 2019; 33:104-115. [PMID: 31758392 DOI: 10.1007/s13577-019-00294-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
MiR-663b has been demonstrated to be abnormally expressed in several cancer types and was involved in the progression of cancer. Although overexpression of miR-663b in colorectal cancer was observed, the role of miR-663b in colorectal cancer cells has not been identified yet. In this study, we analyzed expression of miR-663b in colorectal tumors and explored the molecular mechanism of miR-663b in colorectal cancer cells. MiR-663b was significantly overexpressed in colorectal tumors and cell lines. Downregulation of miR-663b inhibited cell proliferation and sphere forming ability in colorectal cancer cells. In addition, miR-663b downregulation inactivated Ras/Raf signaling activity and subsequently decreased YAP1 and CD44 expression in colorectal cancer cells. Using TargetScan software, TNK1, a negative regulator of Ras/Raf signaling, was predicted to be a target gene of miR-663b. Western blotting and RT-qPCR showed that TNK1 expression was negatively regulated by miR-663b. In addition, the direct binding of miR-663b to TNK1 mRNA was proved by dual luciferase reporter assay. Furthermore, downregulation of miR-663b inhibited colorectal cancer cell proliferation and stemness, which was reversed after siRNA-mediated silencing of TNK1. In conclusion, the current study revealed a pivotal role of miR-663b in the progression of colorectal cancer.
Collapse
Affiliation(s)
- Sen Hong
- Department of Colorectal and Anal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Zhenkun Yan
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, 130022, Jilin, People's Republic of China
| | - Helei Wang
- Department of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Lei Ding
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130022, Jilin, People's Republic of China.
| | - Yumei Song
- Department of Thoracic Oncology, Tumor Hospital of Jilin Province, Changchun, Jilin, People's Republic of China
| | - Miaomiao Bi
- Department of Ophthalmology, The China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130022, Jilin, People's Republic of China
| |
Collapse
|
13
|
Finnegan A, Cho RJ, Luu A, Harirchian P, Lee J, Cheng JB, Song JS. Single-Cell Transcriptomics Reveals Spatial and Temporal Turnover of Keratinocyte Differentiation Regulators. Front Genet 2019; 10:775. [PMID: 31552090 PMCID: PMC6733986 DOI: 10.3389/fgene.2019.00775] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/23/2019] [Indexed: 01/07/2023] Open
Abstract
Keratinocyte differentiation requires intricately coordinated spatiotemporal expression changes that specify epidermis structure and function. This article utilizes single-cell RNA-seq data from 22,338 human foreskin keratinocytes to reconstruct the transcriptional regulation of skin development and homeostasis genes, organizing them by differentiation stage and also into transcription factor (TF)–associated modules. We identify groups of TFs characterized by coordinate expression changes during progression from the undifferentiated basal to the differentiated state and show that these TFs also have concordant differential predicted binding enrichment in the super-enhancers previously reported to turn over between the two states. The identified TFs form a core subset of the regulators controlling gene modules essential for basal and differentiated keratinocyte functions, supporting their nomination as master coordinators of keratinocyte differentiation. Experimental depletion of the TFs ZBED2 and ETV4, both predicted to promote the basal state, induces differentiation. Furthermore, our single-cell RNA expression analysis reveals preferential expression of antioxidant genes in the basal state, suggesting keratinocytes actively suppress reactive oxygen species to maintain the undifferentiated state. Overall, our work demonstrates diverse computational methods to advance our understanding of dynamic gene regulation in development.
Collapse
Affiliation(s)
- Alex Finnegan
- Department of Physics, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Alan Luu
- Department of Physics, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Paymann Harirchian
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States.,Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jerry Lee
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States.,Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jeffrey B Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States.,Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Jun S Song
- Department of Physics, Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
14
|
Armacki M, Trugenberger AK, Ellwanger AK, Eiseler T, Schwerdt C, Bettac L, Langgartner D, Azoitei N, Halbgebauer R, Groß R, Barth T, Lechel A, Walter BM, Kraus JM, Wiegreffe C, Grimm J, Scheffold A, Schneider MR, Peuker K, Zeißig S, Britsch S, Rose-John S, Vettorazzi S, Wolf E, Tannapfel A, Steinestel K, Reber SO, Walther P, Kestler HA, Radermacher P, Barth TF, Huber-Lang M, Kleger A, Seufferlein T. Thirty-eight-negative kinase 1 mediates trauma-induced intestinal injury and multi-organ failure. J Clin Invest 2018; 128:5056-5072. [PMID: 30320600 DOI: 10.1172/jci97912] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.
Collapse
Affiliation(s)
- Milena Armacki
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | - Ann K Ellwanger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Christiane Schwerdt
- Waldkrankenhaus "Rudolph Elle" Eisenberg, Lehrstuhl für Orthopädie Uniklinik Jena, Jena, Germany
| | - Lucas Bettac
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, and
| | - Ninel Azoitei
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Rebecca Halbgebauer
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Rüdiger Groß
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Tabea Barth
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - André Lechel
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Benjamin M Walter
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | | | | | | | - Annika Scheffold
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | | - Kenneth Peuker
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Sebastian Zeißig
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm, Germany
| | | | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | | | | | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany
| | - Stefan O Reber
- Laboratory for Molecular Psychosomatics, Clinic for Psychosomatic Medicine and Psychotherapy, and
| | - Paul Walther
- Central Facility for Electron Microscopy, University of Ulm, Ulm, Germany
| | | | - Peter Radermacher
- Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University, Ulm, Germany
| | | | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma Immunology, University Hospital Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
15
|
Hu L, Xu J, Yin MX, Zhang L, Lu Y, Wu W, Xue Z, Ho MS, Gao G, Zhao Y, Zhang L. Ack promotes tissue growth via phosphorylation and suppression of the Hippo pathway component Expanded. Cell Discov 2016; 2:15047. [PMID: 27462444 PMCID: PMC4860957 DOI: 10.1038/celldisc.2015.47] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
Non-receptor tyrosine kinase activated cdc42 kinase was reported to participate in several types of cancers in mammals. It is also believed to have an anti-apoptotic function in Drosophila. Here, we report the identification of Drosophila activated cdc42 kinase as a growth promoter and a novel Hippo signaling pathway regulator. We find that activated cdc42 kinase promotes tissue growth through modulating Yorkie activity. Furthermore, we demonstrate that activated cdc42 kinase interacts with Expanded and induces tyrosine phosphorylation of Expanded on multiple sites. We propose a model that activated cdc42 kinase negatively regulates Expanded by changing its phosphorylation status to promote tissue growth. Moreover, we show that ack genetically interacts with merlin and expanded. Thus, we identify Drosophila activated cdc42 kinase as a Hippo pathway regulator.
Collapse
Affiliation(s)
- Lianxin Hu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jiajun Xu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Meng-Xin Yin
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Liguo Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Yi Lu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Zhaoyu Xue
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Margaret S Ho
- Department of Anatomy and Neurobiology, School of Medicine, Tongji University , Shanghai, China
| | - Guanjun Gao
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
16
|
Ooi EL, Chan ST, Cho NE, Wilkins C, Woodward J, Li M, Kikkawa U, Tellinghuisen T, Gale M, Saito T. Novel antiviral host factor, TNK1, regulates IFN signaling through serine phosphorylation of STAT1. Proc Natl Acad Sci U S A 2014; 111:1909-14. [PMID: 24449862 PMCID: PMC3918791 DOI: 10.1073/pnas.1314268111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In response to viral infection, the host induces over 300 IFN-stimulated genes (ISGs), which are the central component of intracellular antiviral innate immunity. Inefficient induction of ISGs contributes to poor control and persistence of hepatitis C virus infection. Therefore, further understanding of the hepatocytic ISG regulation machinery will guide us to an improved management strategy against hepatitis C virus infection. In this study, comprehensive genome-wide, high-throughput cDNA screening for genes regulating ISG expression identified a tyrosine kinase nonreceptor 1 (TNK1) as a unique player in the ISG induction pathway. The immune-modulatory function of TNK1 has never been studied, and this study characterizes its significance in antiviral innate immunity. TNK1 is abundantly expressed in hepatocytes and maintains basal ISG expression. More importantly, TNK1 plays a critical role in type I IFN-mediated ISG induction. We discovered that the activated IFN receptor complex recruits TNK1 from the cytoplasm. TNK1 is then phosphorylated to enhance its kinase activity. The activated TNK1 potentiates JAK-STAT signaling through dual phosphorylation of STAT1 at tyrosine 701 and serine 727 amino acid positions. Our loss-of-function approach demonstrated that TNK1 governs a cluster of ISG expression that defines the TNK1 pathway effector genes. More importantly, TNK1 abundance is inversely correlated to viral replication efficiency and is also a determinant factor for the hepatocytic response to antiviral treatment. Taken together, our studies found a critical but unidentified integrated component of the IFN-JAK-STAT signaling cascade.
Collapse
Affiliation(s)
- Ee Lyn Ooi
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Stephanie T. Chan
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Noell E. Cho
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Courtney Wilkins
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-7650
| | - Jessica Woodward
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-7650
| | - Meng Li
- Bioinformatics Service, Norris Medical Library, University of Southern California, Los Angeles, CA 90089
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Nada-ku, Kobe 657-8501, Japan; and
| | - Timothy Tellinghuisen
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458
| | - Michael Gale
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-7650
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195-7650
| |
Collapse
|
17
|
Abdallah AM, Zhou X, Kim C, Shah KK, Hogden C, Schoenherr JA, Clemens JC, Chang HC. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis. Dev Biol 2013; 378:141-53. [PMID: 23562806 DOI: 10.1016/j.ydbio.2013.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 02/15/2013] [Accepted: 02/16/2013] [Indexed: 11/25/2022]
Abstract
Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation.
Collapse
Affiliation(s)
- Abbas M Abdallah
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dkhil MA, Al-Quraishy S, Delic D, Abdel-Baki AA, Wunderlich F. Testosterone-induced persistent susceptibility to Plasmodium chabaudi malaria: long-term changes of lincRNA and mRNA expression in the spleen. Steroids 2013; 78:220-7. [PMID: 23123741 DOI: 10.1016/j.steroids.2012.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 10/01/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Testosterone (T) is known to induce persistent susceptibility to blood-stage malaria of Plasmodium chabaudi in otherwise resistant female C57BL/6 mice, which is associated with permanent changes in mRNA expression of the liver. Here, we investigate the spleen as the major effector against blood-stage malaria for any possible T-induced long-term effects on lincRNA and mRNA expression. Female C57BL/6 mice were treated with T for 3 weeks, then T was withdrawn for 12 weeks before challenging with P. chabaudi. LincRNA and mRNA expression was examined after 12 weeks of T-withdrawal and after subsequent infections using Agilent whole mouse genome oligo microarrays. Our data show for the first time long-term effects of T on lincRNA expression evidenced directly as persistent changes after T-withdrawal for 12 weeks and indirectly as altered responsiveness of expression to P. chabaudi infections. There are 3 lincRNA-species upregulated and 10 lincRNAs downregulated by more than 2-fold (p<0.01). In addition, 11 and 10 mRNAs are persistently up- and downregulated by T, respectively. These changes remain not sustained during infections at peak parasitemia, when 15 other lincRNAs and 9 other mRNAs exhibit an altered expression. The only exception is the Tnk1-mRNA encoding the non-receptor tyrosine kinase 1 that is persistently downregulated by 0.34-fold after T-withdrawal and that becomes upregulated by 5.9-fold upon infection at peak parasitemia, suggesting an involvement of tyrosine phosphorylation by Tnk1 in mediating long-term effects of T in the spleen. The T-induced changes in splenic mRNA expression are totally different to those previously observed in the liver. Collectively, our data support the view that T induces long-term organ-specific changes in both lincRNA and mRNA expression, that presumably contribute to organ-specific dysfunctions upon infection with blood-stage malaria of P. chabaudi.
Collapse
Affiliation(s)
- Mohamed A Dkhil
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | | | |
Collapse
|
19
|
Sakai I, Miyake H, Fujisawa M. Acquired resistance to sunitinib in human renal cell carcinoma cells is mediated by constitutive activation of signal transduction pathways associated with tumour cell proliferation. BJU Int 2013; 112:E211-20. [PMID: 23305097 DOI: 10.1111/j.1464-410x.2012.11655.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
UNLABELLED WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: Although there have been a few studies investigating the molecular mechanism mediating the acquisition of resistance to molecular-targeted agents, including sunitinib, by renal cell carcinoma (RCC) cells, this mechanism remains largely unclear. The maintenance of protein kinase activation during sunitinib treatment may be involved in the acquisition of a phenotype resistant to sunitinib in RCC, and additional treatment with agents targeting activated protein kinases could be a promising approach for overcoming resistance to sunitinib in RCC. OBJECTIVE To characterise the mechanism involved in the acquired resistance to sunitinib, a potential inhibitor of multiple receptor tyrosine kinases (RTKs), in renal cell carcinoma (RCC). MATERIALS AND METHODS A parental human RCC cell line, ACHN (ACHN/P), was continuously exposed to increasing doses of sunitinib, and a cell line resistant to sunitinib (ACHN/R), showing an ≈5-fold higher IC50 (concentration that reduces the effect by 50%) than that of ACHN/P, was developed. RESULTS ACHN/R appeared to acquire significant cross resistance to sorafenib; however, there were no significant differences in sensitivities to the Mammalian target of rapamycin inhibitors, temsirolimus and everolimus, between ACHN/P and ACHN/R. After sunitinib treatment, the expression levels of phosphorylated Akt and p44/42 mitogen-activated protein kinase in ACHN/P, but not those in ACHN/R, were significantly inhibited. RTK assay showed that treatment of ACHN/P with sunitinib resulted in the marked downregulation of several phosphorylated RTKs compared with that of ACHN/R. Additional treatment with a specific inhibitor of Akt significantly increased the sensitivity of ACHN/R to sunitinib, but not that of ACHN/P. There were no significant differences between in vivo growth patterns of ACHN/P and ACHN/R in mice before and after the administration of sunitinib; however, the proportion of cells positive for TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) staining in ACHN/P tumour was significantly greater than that in ACHN/R tumour in mice treated with sunitinib. CONCLUSION The maintenance of protein kinase activation during sunitinib treatment may be involved in the acquisition of resistant phenotype to sunitinib in RCC cells.
Collapse
Affiliation(s)
- Iori Sakai
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | |
Collapse
|
20
|
Schoenherr JA, Drennan JM, Martinez JS, Chikka MR, Hall MC, Chang HC, Clemens JC. Drosophila activated Cdc42 kinase has an anti-apoptotic function. PLoS Genet 2012; 8:e1002725. [PMID: 22615583 PMCID: PMC3355085 DOI: 10.1371/journal.pgen.1002725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 04/05/2012] [Indexed: 01/20/2023] Open
Abstract
Activated Cdc42 kinases (Acks) are evolutionarily conserved non-receptor tyrosine kinases. Activating somatic mutations and increased ACK1 protein levels have been found in many types of human cancers and correlate with a poor prognosis. ACK1 is activated by epidermal growth factor (EGF) receptor signaling and functions to regulate EGF receptor turnover. ACK1 has additionally been found to propagate downstream signals through the phosphorylation of cancer relevant substrates. Using Drosophila as a model organism, we have determined that Drosophila Ack possesses potent anti-apoptotic activity that is dependent on Ack kinase activity and is further activated by EGF receptor/Ras signaling. Ack anti-apoptotic signaling does not function through enhancement of EGF stimulated MAP kinase signaling, suggesting that it must function through phosphorylation of some unknown effector. We isolated several putative Drosophila Ack interacting proteins, many being orthologs of previously identified human ACK1 interacting proteins. Two of these interacting proteins, Drk and yorkie, were found to influence Ack signaling. Drk is the Drosophila homolog of GRB2, which is required to couple ACK1 binding to receptor tyrosine kinases. Drk knockdown blocks Ack survival activity, suggesting that Ack localization is important for its pro-survival activity. Yorkie is a transcriptional co-activator that is downstream of the Salvador-Hippo-Warts pathway and promotes transcription of proliferative and anti-apoptotic genes. We find that yorkie and Ack synergistically interact to produce tissue overgrowth and that yorkie loss of function interferes with Ack anti-apoptotic signaling. Our results demonstrate how increased Ack signaling could contribute to cancer when coupled to proliferative signals. A number of recent studies have uncovered an involvement of Ack family members in human cancer. The majority of these studies focus on human ACK1 and suggest that ACK1 regulates diverse cancer-relevant biological functions, including stimulation of proliferation, blocking programmed cell death, and enhancing metastasis. It is unclear from these studies whether these biological outcomes are directly controlled by ACK1 activity or if they are indirect consequences of ACK1 signaling. Using Drosophila as a model organism, our study demonstrates that Ack serves to promote cell survival by blocking programmed cell death: a mechanism of eliminating excess, damaged, or cancerous cells. We further find that Ack activity functions synergistically with cell growth signals to produce massive cellular overgrowth. Our findings define the physiological role of Ack proteins and add further support to the value of Ack family members as therapeutic drug targets for the treatment of cancer.
Collapse
Affiliation(s)
- Jessica A. Schoenherr
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - J. Michelle Drennan
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Juan S. Martinez
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Madhusudana Rao Chikka
- Department of Biology, Purdue University, West Lafayette, Indiana, United States of America
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Henry C. Chang
- Department of Biology, Purdue University, West Lafayette, Indiana, United States of America
| | - James C. Clemens
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
21
|
Henderson MC, Gonzales IM, Arora S, Choudhary A, Trent JM, Von Hoff DD, Mousses S, Azorsa DO. High-throughput RNAi screening identifies a role for TNK1 in growth and survival of pancreatic cancer cells. Mol Cancer Res 2011; 9:724-32. [PMID: 21536687 DOI: 10.1158/1541-7786.mcr-10-0436] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To identify novel targets in pancreatic cancer cells, we used high-throughput RNAi (HT-RNAi) to select genes that, when silenced, would decrease viability of pancreatic cancer cells. The HT-RNAi screen involved reverse transfecting the pancreatic cancer cell line BxPC3 with a siRNA library targeting 572 kinases. From replicate screens, approximately 32 kinases were designated as hits, of which 22 kinase targets were selected for confirmation and validation. One kinase identified as a hit from this screen was tyrosine kinase nonreceptor 1 (TNK1), a kinase previously identified as having tumor suppressor-like properties in embryonic stem cells. Silencing of TNK1 with siRNA showed reduced proliferation in a panel of pancreatic cancer cell lines. Furthermore, we showed that silencing of TNK1 led to increased apoptosis through a caspase-dependent pathway and that targeting TNK1 with siRNA can synergize with gemcitabine treatment. Despite previous reports that TNK1 affects Ras and NF-κB signaling, we did not find similar correlations with these pathways in pancreatic cancer cells. Our results suggest that TNK1 in pancreatic cancer cells does not possess the same tumor suppressor properties seen in embryonic cells but seems to be involved in growth and survival. The application of functional genomics by using HT-RNAi screens has allowed us to identify TNK1 as a growth-associated kinase in pancreatic cancer cells.
Collapse
Affiliation(s)
- Meredith C Henderson
- Clinical Translational Research Division, Translational Genomics Research Institute, Scottsdale, AZ 85259, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Regulation of ack-family nonreceptor tyrosine kinases. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:742372. [PMID: 21637378 PMCID: PMC3101793 DOI: 10.1155/2011/742372] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/13/2011] [Indexed: 01/17/2023]
Abstract
Ack family non-receptor tyrosine kinases are unique with regard to their domain composition and regulatory properties. Human Ack1 (activated Cdc42-associated kinase) is ubiquitously expressed and is activated by signals that include growth factors and integrin-mediated cell adhesion. Stimulation leads to Ack1 autophosphorylation and to phosphorylation of additional residues in the C-terminus. The N-terminal SAM domain is required for full activation. Ack1 exerts some of its effects via protein-protein interactions that are independent of its kinase activity. In the basal state, Ack1 activity is suppressed by an intramolecular interaction between the catalytic domain and the C-terminal region. Inappropriate Ack1 activation and signaling has been implicated in the development, progression, and metastasis of several forms of cancer. Thus, there is increasing interest in Ack1 as a drug target, and studies of the regulatory properties of the enzyme may reveal features that can be exploited in inhibitor design.
Collapse
|
23
|
Prieto-Echagüe V, Gucwa A, Brown DA, Miller WT. Regulation of Ack1 localization and activity by the amino-terminal SAM domain. BMC BIOCHEMISTRY 2010; 11:42. [PMID: 20979614 PMCID: PMC2987765 DOI: 10.1186/1471-2091-11-42] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/27/2010] [Indexed: 12/31/2022]
Abstract
Background The mechanisms that regulate the activity of the nonreceptor tyrosine kinase Ack1 (activated Cdc42-associated kinase) are poorly understood. The amino-terminal region of Ack1 is predicted to contain a sterile alpha motif (SAM) domain. SAM domains share a common fold and mediate protein-protein interactions in a wide variety of proteins. Here, we addressed the importance of the Ack1 SAM domain in kinase activity. Results We used immunofluorescence and Western blotting to show that Ack1 deletion mutants lacking the N-terminus displayed significantly reduced autophosphorylation in cells. A minimal construct comprising the N-terminus and kinase domain (NKD) was autophosphorylated, while the kinase domain alone (KD) was not. When expressed in mammalian cells, NKD localized to the plasma membrane, while KD showed a more diffuse cytosolic localization. Co-immunoprecipitation experiments showed a stronger interaction between full length Ack1 and NKD than between full length Ack1 and KD, indicating that the N-terminus was important for Ack1 dimerization. Increasing the local concentration of purified Ack1 kinase domain at the surface of lipid vesicles stimulated autophosphorylation and catalytic activity, consistent with a requirement for dimerization and trans-phosphorylation for activity. Conclusions Collectively, the data suggest that the N-terminus of Ack1 promotes membrane localization and dimerization to allow for autophosphorylation.
Collapse
Affiliation(s)
- Victoria Prieto-Echagüe
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | | | | | | |
Collapse
|
24
|
Han J, Chang H, Giricz O, Lee GY, Baehner FL, Gray JW, Bissell MJ, Kenny PA, Parvin B. Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture. PLoS Comput Biol 2010; 6:e1000684. [PMID: 20195492 PMCID: PMC2829039 DOI: 10.1371/journal.pcbi.1000684] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 01/25/2010] [Indexed: 11/18/2022] Open
Abstract
Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPARγ has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPARγ has been validated through two supporting biological assays. Cell culture models are an important vehicle for understanding biological processes and evaluation of therapeutic reagents. More importantly, the literature suggests that tumor cells grown in 3D exhibit pronounced drug and radiation resistances that are remarkably similar to that of tumors in vivo. Therefore, the needs for quantifying 3D assays continue to grow. In this paper, we develop robust computational methods to integrate morphometric and molecular information for a panel of breast cancer cell lines that are grown in 3D. Specifically, morphometric traits are imaged through microscopy, and then quantified computationally. We then show that these morphometric traits can identify subtypes within this panel of breast cancer cell lines, and that the subtypes are clinically relevant in terms of being ERBB2 positive or triple negative. These subtypes and their representations are then associated with their molecular data to reveal PPARG as an important marker for triple-negative breast cancer. Finally, we design two independent experiments to show the validity of this marker in both 3D cell culture models and human breast cancer tissue.
Collapse
Affiliation(s)
- Ju Han
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Hang Chang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Orsi Giricz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Genee Y. Lee
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Frederick L. Baehner
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Joe W. Gray
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Paraic A. Kenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Bahram Parvin
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Gu TL, Cherry J, Tucker M, Wu J, Reeves C, Polakiewicz RD. Identification of activated Tnk1 kinase in Hodgkin's lymphoma. Leukemia 2010; 24:861-5. [PMID: 20090780 DOI: 10.1038/leu.2009.293] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Bobenchik AM, Choi JY, Mishra A, Rujan IN, Hao B, Voelker DR, Hoch JC, Mamoun CB. Identification of inhibitors of Plasmodium falciparum phosphoethanolamine methyltransferase using an enzyme-coupled transmethylation assay. BMC BIOCHEMISTRY 2010; 11:4. [PMID: 20085640 PMCID: PMC2824672 DOI: 10.1186/1471-2091-11-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/19/2010] [Indexed: 01/20/2023]
Abstract
BACKGROUND The phosphoethanolamine methyltransferase, PfPMT, of the human malaria parasite Plasmodium falciparum, a member of a newly identified family of phosphoethanolamine methyltransferases (PMT) found solely in some protozoa, nematodes, frogs, and plants, is involved in the synthesis of the major membrane phospholipid, phosphatidylcholine. PMT enzymes catalyze a three-step S-adenosylmethionine-dependent methylation of the nitrogen atom of phosphoethanolamine to form phosphocholine. In P. falciparum, this activity is a limiting step in the pathway of synthesis of phosphatidylcholine from serine and plays an important role in the development, replication and survival of the parasite within human red blood cells. RESULTS We have employed an enzyme-coupled methylation assay to screen for potential inhibitors of PfPMT. In addition to hexadecyltrimethylammonium, previously known to inhibit PfPMT, two compounds dodecyltrimethylammonium and amodiaquine were also found to inhibit PfPMT activity in vitro. Interestingly, PfPMT activity was not inhibited by the amodiaquine analog, chloroquine, or other aminoquinolines, amino alcohols, or histamine methyltransferase inhibitors. Using yeast as a surrogate system we found that unlike wild-type cells, yeast mutants that rely on PfPMT for survival were sensitive to amodiaquine, and their phosphatidylcholine biosynthesis was inhibited by this compound. Furthermore NMR titration studies to characterize the interaction between amoidaquine and PfPMT demonstrated a specific and concentration dependent binding of the compound to the enzyme. CONCLUSION The identification of amodiaquine as an inhibitor of PfPMT in vitro and in yeast, and the biophysical evidence for the specific interaction of the compound with the enzyme will set the stage for the development of analogs of this drug that specifically inhibit this enzyme and possibly other PMTs.
Collapse
Affiliation(s)
- April M Bobenchik
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 333 Cedar St., New Haven, 06052, USA
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Jae-Yeon Choi
- The Program in Cell Biology, Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson St, Denver, 80206, USA
| | - Arunima Mishra
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Iulian N Rujan
- Department of Molecular, Microbial, and Structural Biology University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Bing Hao
- Department of Molecular, Microbial, and Structural Biology University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Dennis R Voelker
- The Program in Cell Biology, Department of Medicine, National Jewish Medical and Research Center, 1400 Jackson St, Denver, 80206, USA
| | - Jeffrey C Hoch
- Department of Molecular, Microbial, and Structural Biology University of Connecticut Health Center, 263 Farmington Ave., Farmington, 06030, USA
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, 333 Cedar St., New Haven, 06052, USA
| |
Collapse
|
27
|
Ashique AM, Choe Y, Karlen M, May SR, Phamluong K, Solloway MJ, Ericson J, Peterson AS. The Rfx4 transcription factor modulates Shh signaling by regional control of ciliogenesis. Sci Signal 2009; 2:ra70. [PMID: 19887680 DOI: 10.1126/scisignal.2000602] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Regulatory factor X (Rfx) homologs regulate the transcription of genes necessary for ciliogenesis in invertebrates and vertebrates. Primary cilia are necessary for Hedgehog signaling and regulation of the activity of the transcriptional regulators known as Gli proteins, which are targets of Hedgehog signaling. Here, we describe an Rfx4(L298P) mouse mutant with distinct dorsoventral patterning defects in the ventral spinal cord and telencephalon due to aberrant Sonic hedgehog (Shh) signaling and Gli3 activity. We find that Ift172, which encodes an intraflagellar transport protein necessary for ciliogenesis, is a direct transcriptional target of Rfx4, and the decrease in its expression in the developing telencephalon and spinal cord of Rfx4(L298P) mutants correlates with defects in patterning and cilia formation. Our data indicate that Rfx4 is a regionally specific transcriptional regulator of ciliogenesis and thus is also a regionally specific modulator of Shh signaling during development of the central nervous system.
Collapse
Affiliation(s)
- Amir M Ashique
- Department of Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Functional characterization of the murine Tnk1 promoter. Gene 2009; 444:1-9. [PMID: 19481140 DOI: 10.1016/j.gene.2009.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/05/2009] [Accepted: 05/12/2009] [Indexed: 12/31/2022]
Abstract
Tnk1/Kos1 is a non-receptor protein tyrosine kinase found to be a tumor suppressor. It negatively regulates cell growth by indirectly suppressing Ras activity. We identified and characterized the critical cis-elements required for Tnk1/Kos1's promoter activity. Results indicate that the murine Tnk1 promoter lacks a conventional TATA, CAAT or initiator element (Inr) but contains multiple transcription start sites. Transcription is initiated by a TATA-like element composed of an AT rich sequence at -30 (30 bp upstream) from the major transcription start site and an Inr-like element that overlaps the multiple start sites. Deletion analysis of the m-Tnk1 promoter reveals the presence of both positive (-25 to -151) and negative (-151 to -1201) regulatory regions. The three GC boxes which bind Sp1 and Sp3 with high affinity, an AP2 site (that overlaps with an AML1 site) and a MED1 site comprise the necessary cis-elements of the proximal promoter required for both constitutive and inducible Tnk1/Kos1 expression. Importantly, results reveal that cellular stress reverses the repression of Tnk1/Kos1 and induces its expression through increased high affinity interactions between nuclear proteins Sp1, Sp3, AP2 and MED1 for the m-Tnk1 promoter. These findings provide a mechanism by which the m-Tnk1 promoter can be dynamically regulated during normal growth.
Collapse
|