1
|
Zhang X, Xie G, Rao L, Tian C. Citrullination in health and disease: From physiological function to gene regulation. Genes Dis 2025; 12:101355. [PMID: 40271192 PMCID: PMC12017988 DOI: 10.1016/j.gendis.2024.101355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/11/2024] [Accepted: 06/09/2024] [Indexed: 04/25/2025] Open
Abstract
Protein citrullination involves the deimination of arginine or methylarginine residues in peptide chains to form citrulline by peptidyl arginine deiminases. This process is an important protein post-translational modification that affects molecular structure and function of various proteins, including histones. In recent years, protein citrullination has attracted widespread attention for its influence on gene transcription. Studies on the impact of protein citrullination modification on chromatin structure remodeling and the establishment of gene regulatory networks have made rapid progress. In this review, we briefly summarize the physiological functions of protein citrullination modification. Specifically, we comprehensively outline the latest progress in the study of the role of protein citrullination modification in gene transcription regulation, focusing on the interaction of protein citrullination with other post-translational modifications.
Collapse
Affiliation(s)
- Xiaoya Zhang
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Pharmacy, Jilin University, Changchun 130012, China
| | - Guiqiu Xie
- School of Pharmacy, Jilin University, Changchun 130012, China
| | - Lang Rao
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chaoguang Tian
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low–Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
2
|
Kim S, Kim HJ. Histone lysine demethylase 1A inhibitors, seclidemstat and tranylcypromine, induce astrocytogenesis in rat neural stem cells. Biochem Biophys Res Commun 2025; 750:151330. [PMID: 39899938 DOI: 10.1016/j.bbrc.2025.151330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Identifying the molecules that control neural stem cell (NSC) fate would revolutionize treatment strategies for neurodegenerative diseases. Histone lysine demethylase 1A (KDM1A) demethylates the mono- and di-methyl groups of histone 3 lysine 4 (H3K4) and H3K9 and plays an essential role in NSC proliferation. In this study, we investigated the effects of Seclidemstat (SP-2577), a reversible KDM1A inhibitor, and tranylcypromine (TCP), a monoamine oxidase inhibitor and recently known as an irreversible histone lysine demethylase 1A inhibitor, on NSCs. SP-2577 and TCP increased glial fibrillary acidic protein expression (GFAP), decreased βIII-tubulin (TUBB3) expression, and phosphorylated signal transducer and activator of transcription 3 (STAT3) in rat NSCs. SP-2577 and TCP enhanced the transcription of Gfap and reduced Tubb3 transcription. Furthermore, SP-2577 increased the transcription levels of interleukin-6 and leukemia inhibitory factor, while TCP induced the transcription level of fibroblast growth factor 2. Therefore, we show that the KDM1A inhibitors, SP-2577 and TCP, induce astrocytogenesis in rat NSCs. These findings suggest that KDM1A is a target for regulating NSCs fate and provide insights into the molecular mechanisms underlying neurodevelopmental processes and epigenetics.
Collapse
Affiliation(s)
- Sohyeon Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
3
|
Shin JH, Yoo HB, Roe JS. Current advances and future directions in targeting histone demethylases for cancer therapy. Mol Cells 2025; 48:100192. [PMID: 39938867 PMCID: PMC11889978 DOI: 10.1016/j.mocell.2025.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025] Open
Abstract
Epigenetic regulators, known as "writers," erasers," and "readers," are essential for controlling gene expression by adding, removing, or recognizing post-translational modifications to histone tails, respectively. These regulators significantly affect genes involved in cancer initiation and maintenance. Recently, several clinical strategies targeting these epigenetic enzymes have emerged and some trials have demonstrated promising results for cancer treatment. Histone lysine demethylases (KDMs) yield distinct transcriptional outcomes that depend on the position of the methylated lysine and the specific genotype or lineage of the cancer cells. Due to their diverse roles in transcription, KDMs offer valuable opportunities for precision oncology, allowing treatments to be tailored to meet individual patient needs. This review emphasizes our current understanding of the functional relationship between KDMs and cancer as well as the development and application of small-molecule compounds that target KDMs.
Collapse
Affiliation(s)
- June-Ha Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Hye-Been Yoo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Li M, Sun F, Wang J, Lu S, Que Y, Song M, Chen H, Xiong X, Xie W, Zhu J, Huang J, Zhang Y, Zhang Y. SUV39H1 epigenetically modulates the MCPIP1-AURKA signaling axis to enhance neuroblastoma tumorigenesis. Oncogene 2024; 43:3306-3320. [PMID: 39300256 PMCID: PMC11534703 DOI: 10.1038/s41388-024-03164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Epigenetic regulation is a pivotal factor during neuroblastoma (NB) pathogenesis and investigations into cancer epigenetics are actively underway to identify novel therapeutic strategies for NB patients. SUV39H1, a member of the H3K9 methyltransferase family, contributing to tumorigenesis across multiple malignancies. However, its specific role in NB remains unexplored. In this study, we conducted a high-throughput screen utilizing a compound library containing 288 epigenetic drugs, leading to the identification of chaetocin as the most potent NB inhibitor by targeting SUV39H1. Genetic manipulation and therapeutic inhibition of SUV39H1 significantly impacted proliferation, migration, cell cycle phases, and apoptosis in NB cells. Concurrently, chaetocin demonstrated robust anti-tumor efficacy in vivo with tolerable toxicity. RNA-seq unveiled that SUV39H1 knockdown and inhibition down-regulated cell cycle pathways, impacting vital genes such as AURKA. Besides, MCPIP1 emerged as a novel tumor suppressor following SUV39H1 inhibition, which decreased AURKA expression in NB. In detail, SUV39H1 mediated the enrichment of H3K9me3 at the promoter region of MCPIP1, repressing the MCPIP1-mediated degradation of AURKA and facilitating the subsequent accumulation of AURKA, which revealed the oncogenic role of SUV39H1 via the SUV39H1-MCPIP1-AURKA signaling axis in NB. Therapeutic inhibition of SUV39H1 using chaetocin emerges as an effective and safe strategy for NB patients. Illustration of the oncogenic pathway regulated by SUV39H1 in NB.
Collapse
Affiliation(s)
- Mengzhen Li
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Feifei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Juan Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Suying Lu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yi Que
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mengjia Song
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huimou Chen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Xiangyu Xiong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weiji Xie
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jia Zhu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Junting Huang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Yizhuo Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Sprüssel A, Suzuki T, Miyata N, Astrahantseff K, Szymansky A, Toedling J, Thole-Kliesch TM, Ballagee A, Lodrini M, Künkele A, Truss M, Heukamp LC, Mathia S, Hertwig F, Rosenberger C, Eggert A, Deubzer HE, Schulte JH. Targeting KDM1A in Neuroblastoma with NCL-1 Induces a Less Aggressive Phenotype and Suppresses Angiogenesis. J Clin Med 2024; 13:6081. [PMID: 39458030 PMCID: PMC11508765 DOI: 10.3390/jcm13206081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The KDM1A histone demethylase regulates the cellular balance between proliferation and differentiation, and is often deregulated in human cancers including the childhood tumor neuroblastoma. We previously showed that KDM1A is strongly expressed in undifferentiated neuroblastomas and correlates with poor patient prognosis, suggesting a possible clinical benefit from targeting KDM1A. Methods: Here, we tested the efficacy of NCL-1, a small molecule specifically inhibiting KDM1A in preclinical models for neuroblastoma. Results: NCL-1 mimicked the effects of siRNA-mediated KDM1A knockdown and effectively inhibited KDM1A activity in four neuroblastoma cell lines and a patient-representative cell model. KDM1A inhibition shifted the aggressive tumor cell phenotypes towards less aggressive phenotypes. The proliferation and cell viability was reduced, accompanied by the induction of markers of neuronal differentiation. Interventional NCL-1 treatment of nude mice harboring established neuroblastoma xenograft tumors reduced tumor growth and inhibited cell proliferation. Reduced vessel density and defects in blood vessel construction also resulted, and NCL-1 inhibited the growth and tube formation of HUVEC-C cells in vitro. Conclusions: Inhibiting KDM1A could attack aggressive neuroblastomas two-fold, by re-directing tumor cells toward a less aggressive, slower-growing phenotype and by preventing or reducing the vascular support of large tumors.
Collapse
Affiliation(s)
- Annika Sprüssel
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
- German Cancer Consortium (DKTK), Partner Sites Berlin and Tuebingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Takayoshi Suzuki
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Osaka, Japan;
- CREST, Japan Science and Technology Agency (JST), Honcho 4-1-8, Kawaguchi 332-0012, Saitama, Japan
| | - Naoki Miyata
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Aichi, Japan;
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
| | - Annabell Szymansky
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
| | - Joern Toedling
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
| | - Theresa M. Thole-Kliesch
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
| | - Annika Ballagee
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
| | - Marco Lodrini
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
- German Cancer Consortium (DKTK), Partner Sites Berlin and Tuebingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
- German Cancer Consortium (DKTK), Partner Sites Berlin and Tuebingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Matthias Truss
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
| | - Lukas C. Heukamp
- Hematopathology Hamburg, Fangdieckstraße 75A, 22547 Hamburg, Germany;
| | - Susanne Mathia
- Department of Vegetative Physiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- Department of Nephrology, Charité—University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
| | - Christian Rosenberger
- Department of Nephrology, Charité—University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
- German Cancer Consortium (DKTK), Partner Sites Berlin and Tuebingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
| | - Hedwig E. Deubzer
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
- German Cancer Consortium (DKTK), Partner Sites Berlin and Tuebingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of Charité and Max-Delbrück-Center of Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany
- Max-Delbrück Center of Molecular Medicine in the Helmholtz Association, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany (K.A.); (A.S.); (T.M.T.-K.); (M.L.); (A.K.); (M.T.); (A.E.); (H.E.D.)
- German Cancer Consortium (DKTK), Partner Sites Berlin and Tuebingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178 Berlin, Germany
- Department of Pediatric Hematology and Oncology, University of Tuebingen, Hoppe-Seyler-Straße 1, 72076 Tuebingen, Germany
| |
Collapse
|
6
|
Tian Z, Huang K, Yang W, Chen Y, Lyv W, Zhu B, Yang X, Ma P, Tong Z. Exogenous and endogenous formaldehyde-induced DNA damage in the aging brain: mechanisms and implications for brain diseases. Cell Biol Toxicol 2024; 40:83. [PMID: 39367211 PMCID: PMC11452425 DOI: 10.1007/s10565-024-09926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/02/2024] [Indexed: 10/06/2024]
Abstract
Exogenous gaseous formaldehyde (FA) is recognized as a significant indoor air pollutant due to its chemical reactivity and documented mutagenic and carcinogenic properties, particularly in its capacity to damage DNA and impact human health. Despite increasing attention on the adverse effects of exogenous FA on human health, the potential detrimental effects of endogenous FA in the brain have been largely neglected in current research. Endogenous FA have been observed to accumulate in the aging brain due to dysregulation in the expression and activity of enzymes involved in FA metabolism. Surprisingly, excessive FA have been implicated in the development of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and brain cancers. Notably, FA has the ability to not only initiate DNA double strand breaks but also induce the formation of crosslinks of DNA-DNA, DNA-RNA, and DNA-protein, which further exacerbate the progression of these brain diseases. However, recent research has identified that FA-resistant gene exonuclease-1 (EXO1) and FA scavengers can potentially mitigate FA toxicity, offering a promising strategy for mitigating or repairing FA-induced DNA damage. The present review offers novel insights into the impact of FA metabolism on brain ageing and the contribution of FA-damaged DNA to the progression of neurological disorders.
Collapse
Affiliation(s)
- Zixi Tian
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Kai Huang
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanting Yang
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ying Chen
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanjia Lyv
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Beilei Zhu
- Beijing Geriatric Hospital, Beijing, 100049, China
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xu Yang
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ping Ma
- Beijing Geriatric Hospital, Beijing, 100049, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
- Key Laboratory of Environmental Related Diseases and One Health, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Zhiqian Tong
- Beijing Geriatric Hospital, Beijing, 100049, China.
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health, The Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
7
|
Park S, Cho JH, Kim JH, Kim JA. Histone lysine methylation modifiers controlled by protein stability. Exp Mol Med 2024; 56:2127-2144. [PMID: 39394462 PMCID: PMC11541785 DOI: 10.1038/s12276-024-01329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/13/2024] Open
Abstract
Histone lysine methylation is pivotal in shaping the epigenetic landscape and is linked to cell physiology. Coordination of the activities of multiple histone lysine methylation modifiers, namely, methyltransferases and demethylases, modulates chromatin structure and dynamically alters the epigenetic landscape, orchestrating almost all DNA-templated processes, such as transcription, DNA replication, and DNA repair. The stability of modifier proteins, which is regulated by protein degradation, is crucial for their activity. Here, we review the current knowledge of modifier-protein degradation via specific pathways and its subsequent impact on cell physiology through epigenetic changes. By summarizing the functional links between the aberrant stability of modifier proteins and human diseases and highlighting efforts to target protein stability for therapeutic purposes, we aim to promote interest in defining novel pathways that regulate the degradation of modifiers and ultimately increase the potential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sungryul Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, South Korea.
| | - Jung-Ae Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
- Department of Bioscience, University of Science and Technology, Daejeon, South Korea.
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
| |
Collapse
|
8
|
Cai W, Xiao C, Fan T, Deng Z, Wang D, Liu Y, Li C, He J. Targeting LSD1 in cancer: Molecular elucidation and recent advances. Cancer Lett 2024; 598:217093. [PMID: 38969160 DOI: 10.1016/j.canlet.2024.217093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Histones are the main components of chromatin, functioning as an instructive scaffold to maintain chromosome structure and regulate gene expression. The dysregulation of histone modification is associated with various pathological processes, especially cancer initiation and development, and histone methylation plays a critical role. However, the specific mechanisms and potential therapeutic targets of histone methylation in cancer are not elucidated. Lys-specific demethylase 1A (LSD1) was the first identified demethylase that specifically removes methyl groups from histone 3 at lysine 4 or lysine 9, acting as a repressor or activator of gene expression. Recent studies have shown that LSD1 promotes cancer progression in multiple epigenetic regulation or non-epigenetic manners. Notably, LSD1 dysfunction is correlated with repressive cancer immunity. Many LSD1 inhibitors have been developed and clinical trials are exploring their efficacy in monotherapy, or combined with other therapies. In this review, we summarize the oncogenic mechanisms of LSD1 and the current applications of LSD1 inhibitors. We highlight that LSD1 is a promising target for cancer treatment. This review will provide the latest theoretical references for further understanding the research progress of oncology and epigenetics, deepening the updated appreciation of epigenetics in cancer.
Collapse
Affiliation(s)
- Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Liu TA, Stewart TM, Casero RA. The Synergistic Benefit of Combination Strategies Targeting Tumor Cell Polyamine Homeostasis. Int J Mol Sci 2024; 25:8173. [PMID: 39125742 PMCID: PMC11311409 DOI: 10.3390/ijms25158173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.
Collapse
Affiliation(s)
- Ting-Ann Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| |
Collapse
|
10
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
11
|
Murray JE, Valli E, Milazzo G, Mayoh C, Gifford AJ, Fletcher JI, Xue C, Jayatilleke N, Salehzadeh F, Gamble LD, Rouaen JRC, Carter DR, Forgham H, Sekyere EO, Keating J, Eden G, Allan S, Alfred S, Kusuma FK, Clark A, Webber H, Russell AJ, de Weck A, Kile BT, Santulli M, De Rosa P, Fleuren EDG, Gao W, Wilkinson-White L, Low JKK, Mackay JP, Marshall GM, Hilton DJ, Giorgi FM, Koster J, Perini G, Haber M, Norris MD. The transcriptional co-repressor Runx1t1 is essential for MYCN-driven neuroblastoma tumorigenesis. Nat Commun 2024; 15:5585. [PMID: 38992040 PMCID: PMC11239676 DOI: 10.1038/s41467-024-49871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/23/2024] [Indexed: 07/13/2024] Open
Abstract
MYCN oncogene amplification is frequently observed in aggressive childhood neuroblastoma. Using an unbiased large-scale mutagenesis screen in neuroblastoma-prone transgenic mice, we identify a single germline point mutation in the transcriptional corepressor Runx1t1, which abolishes MYCN-driven tumorigenesis. This loss-of-function mutation disrupts a highly conserved zinc finger domain within Runx1t1. Deletion of one Runx1t1 allele in an independent Runx1t1 knockout mouse model is also sufficient to prevent MYCN-driven neuroblastoma development, and reverse ganglia hyperplasia, a known pre-requisite for tumorigenesis. Silencing RUNX1T1 in human neuroblastoma cells decreases colony formation in vitro, and inhibits tumor growth in vivo. Moreover, RUNX1T1 knockdown inhibits the viability of PAX3-FOXO1 fusion-driven rhabdomyosarcoma and MYC-driven small cell lung cancer cells. Despite the role of Runx1t1 in MYCN-driven tumorigenesis neither gene directly regulates the other. We show RUNX1T1 forms part of a transcriptional LSD1-CoREST3-HDAC repressive complex recruited by HAND2 to enhancer regions to regulate chromatin accessibility and cell-fate pathway genes.
Collapse
Affiliation(s)
- Jayne E Murray
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Chengyuan Xue
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Nisitha Jayatilleke
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Firoozeh Salehzadeh
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Laura D Gamble
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Daniel R Carter
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Technology Sydney, Broadway, NSW, Australia
| | - Helen Forgham
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Eric O Sekyere
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Joanna Keating
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Georgina Eden
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Sophie Allan
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Stephanie Alfred
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Frances K Kusuma
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Ashleigh Clark
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Hannah Webber
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Amanda J Russell
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Antoine de Weck
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Benjamin T Kile
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Martina Santulli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Piergiuseppe De Rosa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Weiman Gao
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
| | - Lorna Wilkinson-White
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, NSW, Australia
| | - Jason K K Low
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Douglas J Hilton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Jan Koster
- Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia
- School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, 2031, Australia.
- UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Lin CT, Ting RT, Ou YH, Shao TL, Lee MC. Protein degradation of Lsd1 is mediated by Bre1 yet opposed by Lsd1-interacting lncRNAs during fly follicle development. iScience 2024; 27:109683. [PMID: 38655201 PMCID: PMC11035368 DOI: 10.1016/j.isci.2024.109683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/13/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Tissue development, homeostasis, and repair all require efficient progenitor expansion. Lysine-specific demethylase 1 (Lsd1) maintains plastic epigenetic states to promote progenitor proliferation while overexpressed Lsd1 protein causes oncogenic gene expression in cancer cells. However, the precise regulation of Lsd1 protein expression at the molecular level to drive progenitor differentiation remains unclear. Here, using Drosophila melanogaster oogenesis as our experimental system, we discovered molecular machineries that modify Lsd1 protein stability in vivo. Through genetic and biochemical analyses, an E3 ubiquitin ligase, Bre1, was identified as required for follicle progenitor differentiation, likely by mediating Lsd1 protein degradation. Interestingly, specific Lsd1-interacting long non-coding RNAs (LINRs) were found to antagonize Bre1-mediated Lsd1 protein degradation. The intricate interplay discovered among the Lsd1 complex, LINRs and Bre1 provides insight into how Lsd1 protein stability is fine-tuned to underlie progenitor differentiation in vivo.
Collapse
Affiliation(s)
- Chun Ting Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Info & Research Bldg, Rm 904, #155, Sec. 2, Li-Nong St, Taipei City 112, Taiwan
| | - Ruei-Teng Ting
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Info & Research Bldg, Rm 904, #155, Sec. 2, Li-Nong St, Taipei City 112, Taiwan
| | - Yang-Hsuan Ou
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Info & Research Bldg, Rm 904, #155, Sec. 2, Li-Nong St, Taipei City 112, Taiwan
| | - Tzu-Ling Shao
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Info & Research Bldg, Rm 904, #155, Sec. 2, Li-Nong St, Taipei City 112, Taiwan
| | - Ming-Chia Lee
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Info & Research Bldg, Rm 904, #155, Sec. 2, Li-Nong St, Taipei City 112, Taiwan
| |
Collapse
|
13
|
Xiong S, Song K, Xiang H, Luo G. Dual-target inhibitors based on ERα: Novel therapeutic approaches for endocrine resistant breast cancer. Eur J Med Chem 2024; 270:116393. [PMID: 38588626 DOI: 10.1016/j.ejmech.2024.116393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Estrogen receptor alpha (ERα), a nuclear transcription factor, is a well-validated therapeutic target for more than 70% of all breast cancers (BCs). Antagonizing ERα either by selective estrogen receptor modulators (SERMs) or selective estrogen receptor degraders (SERDs) forms the foundation of endocrine therapy and has achieved great success in the treatment of ERα positive (ERα+) BCs. Unfortunately, despite initial effectiveness, endocrine resistance eventually emerges in up to 30% of ERα+ BC patients and remains a significant medical challenge. Several mechanisms implicated in endocrine resistance have been extensively studied, including aberrantly activated growth factor receptors and downstream signaling pathways. Hence, the crosstalk between ERα and another oncogenic signaling has led to surge of interest to develop combination therapies and dual-target single agents. This review briefly introduces the synergisms between ERα and another anticancer target and summarizes the recent advances of ERα-based dual-targeting inhibitors from a medicinal chemistry perspective. Accordingly, their rational design strategies, structure-activity relationships (SARs) and biological activities are also dissected to provide some perspectives on future directions for ERα-based dual target drug discovery in BC therapy.
Collapse
Affiliation(s)
- Shuangshuang Xiong
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ke Song
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Guoshun Luo
- Jiangsu Key Laboratory of Drug Design and Optimization, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
14
|
Kim JH, Park C, Kim WS. Lysine demethylase LSD1 is associated with stemness in EBV-positive B cell lymphoma. Sci Rep 2024; 14:6764. [PMID: 38514636 PMCID: PMC10957933 DOI: 10.1038/s41598-024-55113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
EBV-infected lymphoma has a poor prognosis and various treatment strategies are being explored. Reports suggesting that B cell lymphoma can be induced by epigenetic regulation have piqued interest in studying mechanisms targeting epigenetic regulation. Here, we set out to identify an epigenetic regulator drug that acts synergistically with doxorubicin in EBV-positive lymphoma. We expressed the major EBV protein, LMP1, in B-cell lymphoma cell lines and used them to screen 100 epigenetic modifiers in combination with doxorubicin. The screening results identified TCP, which is an inhibitor of LSD1. Further analyses revealed that LMP1 increased the activity of LSD1 to enhance stemness ability under doxorubicin treatment, as evidenced by colony-forming and ALDEFLUOR activity assays. Quantseq 3' mRNA sequencing analysis of potential targets regulated by LSD1 in modulating stemness revealed that the LMP1-induced upregulation of CHAC2 was decreased when LSD1 was inhibited by TCP or downregulated by siRNA. We further observed that SOX2 expression was altered in response to CHAC2 expression, suggesting that stemness is regulated. Collectively, these findings suggest that LSD1 inhibitors could serve as promising therapeutic candidates for EBV-positive lymphoma, potentially reducing stemness activity when combined with conventional drugs to offer an effective treatment approach.
Collapse
Affiliation(s)
- Joo Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea
| | - Chaehwa Park
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Won Seog Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Seoul, 06351, Korea.
| |
Collapse
|
15
|
Dong B, Wang X, Song X, Wang J, Liu X, Yu Z, Zhou Y, Deng J, Wu Y. RNF20 contributes to epigenetic immunosuppression through CDK9-dependent LSD1 stabilization. Proc Natl Acad Sci U S A 2024; 121:e2307150121. [PMID: 38315842 PMCID: PMC10873621 DOI: 10.1073/pnas.2307150121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024] Open
Abstract
Cyclin-dependent kinase 9 (CDK9) plays a critical role in transcription initiation and is essential for maintaining gene silencing at heterochromatic loci. Inhibition of CDK9 increases sensitivity to immunotherapy, but the underlying mechanism remains unclear. We now report that RNF20 stabilizes LSD1 via K29-mediated ubiquitination, which is dependent on CDK9-mediated phosphorylation. This CDK9- and RNF20-dependent LSD1 stabilization is necessary for the demethylation of histone H3K4, then subsequent repression of endogenous retrovirus, and an interferon response, leading to epigenetic immunosuppression. Moreover, we found that loss of RNF20 sensitizes cancer cells to the immune checkpoint inhibitor anti-PD-1 in vivo and that this effect can be rescued by the expression of ectopic LSD1. Our findings are supported by the observation that RNF20 levels correlate with LSD1 levels in human breast cancer specimens. This study sheds light on the role of RNF20 in CDK9-dependent LSD1 stabilization, which is crucial for epigenetic silencing and immunosuppression. Our findings explore the potential importance of targeting the CDK9-RNF20-LSD1 axis in the development of new cancer therapies.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| | - Xinzhao Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
| | - Xiang Song
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong250355, People’s Republic of China
| | - Jianlin Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| | - Xia Liu
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| | - Zhiyong Yu
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
| | - Yongkun Zhou
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250355, People’s Republic of China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong250355, People’s Republic of China
| | - Jiong Deng
- Medical Research Institute, Binzhou Medical University Hospital, Binzhou256600, People’s Republic of China
| | - Yadi Wu
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY40508
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY40508
| |
Collapse
|
16
|
Veschi V, Durinck K, Thiele CJ, Speleman F. Neuroblastoma Epigenetic Landscape: Drugging Opportunities. PEDIATRIC ONCOLOGY 2024:71-95. [DOI: 10.1007/978-3-031-51292-6_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Guo YJ, Pang JR, Zhang Y, Li ZR, Zi XL, Liu HM, Wang N, Zhao LJ, Gao Y, Wang B, Herdewijn P, Jin CY, Liu Y, Zheng YC. Neddylation-dependent LSD1 destabilization inhibits the stemness and chemoresistance of gastric cancer. Int J Biol Macromol 2024; 254:126801. [PMID: 37689288 DOI: 10.1016/j.ijbiomac.2023.126801] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Histone lysine-specific demethylase 1 (LSD1) expression has been evaluated in multiple tumors, including gastric cancer (GC). However, the mechanisms underlying LSD1 dysregulation in GC remain largely unclear. In this study, neural precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) was identified to be conjugated to LSD1 at K63 by ubiquitin-conjugating enzyme E2 M (UBE2M), and this neddylated LSD1 could promote LSD1 ubiquitination and degradation, leading to a decrease of GC cell stemness and chemoresistance. Herein, our findings revealed a novel mechanism of LSD1 neddylation and its contribution to decreasing GC cell stemness and chemoresistance. Taken together, our findings may whistle about the future application of neddylation inhibitors.
Collapse
Affiliation(s)
- Yan-Jia Guo
- Henan Key Laboratory of Precision Clinical Pharmacy, Academy of Medical Sciences, Zhengzhou University, Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing-Ru Pang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhong-Rui Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiao-Lin Zi
- Department of Urology, University of California, Irvine, CA, USA; Department of Pharmacology, University of California, Irvine, CA, USA
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Ya Gao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Bo Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Piet Herdewijn
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000 Leuven, Belgium
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Ying Liu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, XNA platform, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Takada Y, Adachi K, Fujinaga Y, Yamashita Y, Itoh Y, Suzuki T. A Structure-Activity Relationship Study of SNAIL1 Peptides as Inhibitors of Lysine-Specific Demethylase 1. Chem Pharm Bull (Tokyo) 2024; 72:155-160. [PMID: 38296557 DOI: 10.1248/cpb.c23-00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Peptides have recently garnered attention as middle-molecular-weight drugs with the characteristics of small molecules and macromolecules. Lysine-specific demethylase 1 (LSD1) is a potential therapeutic target for lung cancer, neuroblastoma, and leukemia, and some peptide-based LSD1 inhibitors designed based on the N-terminus of SNAIL1, a member of the SNAIL/SCRATCH family of transcription factors, have been reported. The N-terminus of SNAIL1 peptide acts as a cap of the catalytic site of LSD1, inhibiting interactions with LSD1. However, the structure-activity relationship (SAR) of these inhibitors is not yet fully understood. Therefore, in the present study, we aimed to uncover the SAR and to identify novel SNAIL1 peptide-based LSD1 inhibitors. We synthesized peptide inhibitor candidates based on truncating the N-terminus of SNAIL1 or substituting its amino acid residues. In the truncation study, we found that SNAIL1 1-16 (2), which was composed of 16 residues, strongly inhibited LSD1. Furthermore, we investigated the SAR at residues-3 and -5 from the N-terminus and found that peptides 2j and 2k, in which leucine 5 of the parent peptide is substituted with unnatural amino acids, cyclohexylalanine and norleucine, respectively, strongly inhibited LSD1. This result suggests that the hydrophobic interaction between the inhibitor peptides and LSD1 affects the LSD1-inhibitory activity. We believe that this SAR information provides a basis for the development of more potent LSD1 inhibitors.
Collapse
|
19
|
Shi Q, Yu B, Zhang Y, Yang Y, Xu C, Zhang M, Chen G, Luo F, Sun B, Yang R, Li Y, Feng H. Targeting TRIM24 promotes neuroblastoma differentiation and decreases tumorigenicity via LSD1/CoREST complex. Cell Oncol (Dordr) 2023; 46:1763-1775. [PMID: 37466744 DOI: 10.1007/s13402-023-00843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
PURPOSE High-risk neuroblastoma (NB) still has an unfavorable prognosis and inducing NB differentiation is a potential strategy in clinical treatment, yet underlying mechanisms are still elusive. Here we identify TRIM24 as an important regulator of NB differentiation. METHODS Multiple datasets and clinical specimens were analyzed to define the role of TRIM24 in NB. The effects of TRIM24 on differentiation and growth of NB were determined by cell morphology, spheres formation, soft agar assay, and subcutaneous xenograft in nude mice. RNA-Seq and qRT-PCR were used to identify genes and pathways involved. Mass spectrometry and co-immunoprecipitation were used to explore the interaction of proteins. RESULTS Trim24 is highly expressed in spontaneous NB in TH-MYCN transgenic mice and clinical NB specimens. It is associated with poor NB differentiation and unfavorable prognostic. Knockout of TRIM24 in neuroblastoma cells promotes cell differentiation, reduces cell stemness, and inhibits colony formation in soft agar and subcutaneous xenograft tumor growth in nude mice. Mechanistically, TRIM24 knockout alters genes and pathways related to neural differentiation and development by suppressing LSD1/CoREST complex formation. Besides, TRIM24 knockout activates the retinoic acid pathway. Targeting TRIM24 in combination with retinoic acid (RA) synergistically promotes NB cell differentiation and inhibits cell viability. CONCLUSION Our findings demonstrate that TRIM24 is critical for NB differentiation and suggest that TRIM24 is a promising therapeutic target in combination with RA in NB differentiation therapy.
Collapse
Affiliation(s)
- Qiqi Shi
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bo Yu
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yingwen Zhang
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yi Yang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chenxin Xu
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mingda Zhang
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guoyu Chen
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Luo
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bowen Sun
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ru Yang
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Haizhong Feng
- Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
20
|
Dong B, Song X, Wang X, Dai T, Wang J, Zhiyong Y, Deng J, Evers BM, Wu Y. FBXO24 Suppresses Breast Cancer Tumorigenesis by Targeting LSD1 for Ubiquitination. Mol Cancer Res 2023; 21:1303-1316. [PMID: 37540490 PMCID: PMC10840093 DOI: 10.1158/1541-7786.mcr-23-0169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/27/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Lysine-specific demethylase 1 (LSD1), a critical chromatin modulator, functions as an oncogene by demethylation of H3K4me1/2. The stability of LSD1 is governed by a complex and intricate process involving ubiquitination and deubiquitination. Several deubiquitinases preserve LSD1 protein levels. However, the precise mechanism underlying the degradation of LSD1, which could mitigate its oncogenic function, remains unknown. To gain a better understanding of LSD1 degradation, we conducted an unbiased siRNA screening targeting all the human SCF family E3 ligases. Our screening identified FBXO24 as a genuine E3 ligase that ubiquitinates and degrades LSD1. As a result, FBXO24 inhibits LSD1-induced tumorigenesis and functions as a tumor suppressor in breast cancer cells. Moreover, FBXO24 exhibits an inverse correlation with LSD1 and is associated with a favorable prognosis in breast cancer patient samples. Taken together, our study uncovers the significant role of FBXO24 in impeding breast tumor progression by targeting LSD1 for degradation. IMPLICATIONS Our study provides comprehensive characterization of the significant role of FBXO24 in impeding breast tumor progression by targeting LSD1 for degradation.
Collapse
Affiliation(s)
- Bo Dong
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Xiang Song
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, People’s Republic of China
| | - Xinzhao Wang
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Tao Dai
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Jianlin Wang
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| | - Yu Zhiyong
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Jiong Deng
- Medical Research Institute, Binzhou Medical University Hospital, Binzhou, China
| | - B. Mark Evers
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Yadi Wu
- Department of Pharmacology & Nutritional Sciences, Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
- Markey Cancer Center, the University of Kentucky, College of Medicine, Lexington, KY 40506, United States
| |
Collapse
|
21
|
Lee SW, Frankston CM, Kim J. Epigenome editing in cancer: Advances and challenges for potential therapeutic options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 383:191-230. [PMID: 38359969 DOI: 10.1016/bs.ircmb.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Cancers are diseases caused by genetic and non-genetic environmental factors. Epigenetic alterations, some attributed to non-genetic factors, can lead to cancer development. Epigenetic changes can occur in tumor suppressors or oncogenes, or they may contribute to global cell state changes, making cells abnormal. Recent advances in gene editing technology show potential for cancer treatment. Herein, we will discuss our current knowledge of epigenetic alterations occurring in cancer and epigenetic editing technologies that can be applied to developing therapeutic options.
Collapse
Affiliation(s)
- Seung-Won Lee
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Connor Mitchell Frankston
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Biomedical Engineering Graduate Program, Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; Department of Molecular and Medical Genetics, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
22
|
Freire NH, Jaeger MDC, de Farias CB, Nör C, Souza BK, Gregianin L, Brunetto AT, Roesler R. Targeting the epigenome of cancer stem cells in pediatric nervous system tumors. Mol Cell Biochem 2023; 478:2241-2255. [PMID: 36637615 DOI: 10.1007/s11010-022-04655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
Medulloblastoma, neuroblastoma, and pediatric glioma account for almost 30% of all cases of pediatric cancers. Recent evidence indicates that pediatric nervous system tumors originate from stem or progenitor cells and present a subpopulation of cells with highly tumorigenic and stem cell-like features. These cancer stem cells play a role in initiation, progression, and resistance to treatment of pediatric nervous system tumors. Histone modification, DNA methylation, chromatin remodeling, and microRNA regulation display a range of regulatory activities involved in cancer origin and progression, and cellular identity, especially those associated with stem cell features, such as self-renewal and pluripotent differentiation potential. Here, we review the contribution of different epigenetic mechanisms in pediatric nervous system tumor cancer stem cells. The choice between a differentiated and undifferentiated state can be modulated by alterations in the epigenome through the regulation of stemness genes such as CD133, SOX2, and BMI1 and the activation neuronal of differentiation markers, RBFOX3, GFAP, and S100B. Additionally, we highlighted the stage of development of epigenetic drugs and the clinical benefits and efficacy of epigenetic modulators in pediatric nervous system tumors.
Collapse
Affiliation(s)
- Natália Hogetop Freire
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 (Setor IV - Campus do Vale), Porto Alegre, 91501-970, Brazil.
| | - Mariane da Cunha Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Tesainer Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Children's Cancer Institute, Porto Alegre, RS, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500 (Setor IV - Campus do Vale), Porto Alegre, 91501-970, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
23
|
Yin Z, Liu S, Yang X, Chen M, Du J, Liu H, Yang L. LSD1-Based Reversible Inhibitors Virtual Screening and Binding Mechanism Computational Study. Molecules 2023; 28:5315. [PMID: 37513188 PMCID: PMC10383809 DOI: 10.3390/molecules28145315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
As one of the crucial targets of epigenetics, histone lysine-specific demethylase 1 (LSD1) is significant in the occurrence and development of various tumors. Although several irreversible covalent LSD1 inhibitors have entered clinical trials, the large size and polarity of the FAD-binding pocket and undesired toxicity have focused interest on developing reversible LSD1 inhibitors. In this study, targeting the substrate-binding pocket of LSD1, structure-based and ligand-based virtual screenings were adopted to expand the potential novel structures with molecular docking and pharmacophore model strategies, respectively. Through drug-likeness evaluation, ADMET screening, molecular dynamics simulations, and binding free energy screening, we screened out one and four hit compounds from the databases of 2,029,554 compounds, respectively. Generally, these hit compounds can be divided into two categories, amide (Lig2 and Comp2) and 1,2,4-triazolo-4,3-α-quinazoline (Comp3, Comp4, Comp7). Among them, Comp4 exhibits the strongest binding affinity. Finally, the binding mechanisms of the hit compounds were further calculated in detail by the residue free energy decomposition. It was found that van der Waals interactions contribute most to the binding, and FAD is also helpful in stabilizing the binding and avoiding off-target effects. We believe this work not only provides a solid theoretical foundation for the design of LSD1 substrate reversible inhibitors, but also expands the diversity of parent nucleus, offering new insights for synthetic chemists.
Collapse
Affiliation(s)
- Zhili Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shaohui Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengguo Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangfeng Du
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou University, Zhengzhou 450001, China
- Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
| | - Longhua Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
24
|
Bao L, Zhu P, Mou Y, Song Y, Qin Y. Targeting LSD1 in tumor immunotherapy: rationale, challenges and potential. Front Immunol 2023; 14:1214675. [PMID: 37483603 PMCID: PMC10360200 DOI: 10.3389/fimmu.2023.1214675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is an enzyme that removes lysine methylation marks from nucleosome histone tails and plays an important role in cancer initiation, progression, metastasis, and recurrence. Recent research shows that LSD1 regulates tumor cells and immune cells through multiple upstream and downstream pathways, enabling tumor cells to adapt to the tumor microenvironment (TME). As a potential anti-tumor treatment strategy, immunotherapy has developed rapidly in the past few years. However, most patients have a low response rate to available immune checkpoint inhibitors (ICIs), including anti-PD-(L)1 therapy and CAR-T cell therapy, due to a broad array of immunosuppressive mechanisms. Notably, inhibition of LSD1 turns "cold tumors" into "hot tumors" and subsequently enhances tumor cell sensitivity to ICIs. This review focuses on recent advances in LSD1 and tumor immunity and discusses a potential therapeutic strategy for combining LSD1 inhibition with immunotherapy.
Collapse
Affiliation(s)
- Lei Bao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Ping Zhu
- Department of Nephrology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Yuan Mou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Yinhong Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Ye Qin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, China
| |
Collapse
|
25
|
Rienhoff HY, Gill H. Bomedemstat as an investigative treatment for myeloproliferative neoplasms. Expert Opin Investig Drugs 2023; 32:879-886. [PMID: 37804041 DOI: 10.1080/13543784.2023.2267980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
INTRODUCTION Myeloproliferative neoplasm (MPN) is a heterogeneous group of hematopoietic stem cell disorders characterized by clonal proliferation of one of more of the hematopoietic stem cell lineages. Clinical manifestations result from uncontrolled myeloproliferation, extramedullary hematopoiesis with splenomegaly and excessive inflammatory cytokine production. Currently available therapy improves hematologic parameters and symptoms but does not adequately address the underlying neoplastic biology. Bomedemstat has thus far demonstrated clinical efficacy and tolerability in the treatment of MPNs with recent evidence of impacting the malignant stem cell population. AREAS COVERED This review summarizes the mechanisms of action, pharmacokinetics and pharmacodynamics, safety and efficacy of bomedemstat in MPN with specific emphasis on essential thrombocythemia (ET) and myelofibrosis (MF). EXPERT OPINION In patients with MPNs, bomedemstat appears effective and well tolerated. The signs and symptoms of these diseases are managed as a reduction in the frequency of mutant cells was demonstrated in patients with ET and MF. Ongoing and planned studies of bomedemstat in MPN will establish the position of bomedemstat in MPNs and may help to redefine treatment endpoints of MPNs in the future.
Collapse
Affiliation(s)
| | - Harinder Gill
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Li J, Peng J, Wu L, Shen X, Zhen X, Zhang Y, Ma H, Xu Y, Xiong Q, Zhu Q, Zhang P. The deubiquitinase USP28 maintains the expression of the transcription factor MYCN and is essential in neuroblastoma cells. J Biol Chem 2023; 299:104856. [PMID: 37230388 PMCID: PMC10404617 DOI: 10.1016/j.jbc.2023.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Neuroblastoma (NB) is one of the most common extracranial solid tumors in children. MYCN gene amplification is highly associated with poor prognosis in high-risk NB patients. In non-MYCN-amplified high-risk NB patients, the expression of c-MYC (MYCC) and its target genes is highly elevated. USP28 as a deubiquitinase is known to regulate the stability of MYCC. We show here USP28 also regulates the stability of MYCN. Genetic depletion or pharmacologic inhibition of the deubiquitinase strongly destabilizes MYCN and stops the growth of NB cells that overexpress MYCN. In addition, MYCC could be similarly destabilized in non-MYCN NB cells by compromising USP28 function. Our results strongly suggest USP28 as a therapeutic target for NB with or without MYCN amplification/overexpression.
Collapse
Affiliation(s)
- Junjun Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Peng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingzhi Wu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiang Shen
- Chaser Therapeutics Inc., Hangzhou, Zhejiang, China
| | - Xinghua Zhen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yimao Zhang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huailu Ma
- Institute of Translational Medicine, Zhejiang University Medical School, Hangzhou, Zhejiang, China
| | - Yongfeng Xu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China.
| | - Pumin Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Translational Medicine, Zhejiang University Medical School, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Dai XJ, Zhao LJ, Yang LH, Guo T, Xue LP, Ren HM, Yin ZL, Xiong XP, Zhou Y, Ji SK, Liu HM, Liu HM, Liu Y, Zheng YC. Phenothiazine-Based LSD1 Inhibitor Promotes T-Cell Killing Response of Gastric Cancer Cells. J Med Chem 2023; 66:3896-3916. [PMID: 36856685 DOI: 10.1021/acs.jmedchem.2c01593] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Histone lysine specific demethylase 1 (LSD1) has been recognized as an important epigenetic target for cancer treatment. Although several LSD1 inhibitors have entered clinical trials, the discovery of novel potent LSD1 inhibitors remains a challenge. In this study, the antipsychotic drug chlorpromazine was characterized as an LSD1 inhibitor (IC50 = 5.135 μM), and a series of chlorpromazine derivatives were synthesized. Among them, compound 3s (IC50 = 0.247 μM) was the most potent one. More importantly, compound 3s inhibited LSD1 in the cellular level and downregulated the expression of programmed cell death-ligand 1 (PD-L1) in BGC-823 and MFC cells to enhance T-cell killing response. An in vivo study confirmed that compound 3s can inhibit MFC cell proliferation without significant toxicity in immunocompetent mice. Taken together, our findings indicated that the novel LSD1 inhibitor 3s tethering a phenothiazine scaffold may serve as a lead compound for further development to activate T-cell immunity in gastric cancer.
Collapse
Affiliation(s)
- Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Li-Juan Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Academy of Medical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Long-Hua Yang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Ting Guo
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Lei-Peng Xue
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Hong-Mei Ren
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Zhi-Li Yin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Xiao-Peng Xiong
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Ying Zhou
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Shi-Kun Ji
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Hui-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy; Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhengzhou 450052, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| |
Collapse
|
28
|
Dreher RD, Theisen ER. Lysine specific demethylase 1 is a molecular driver and therapeutic target in sarcoma. Front Oncol 2023; 12:1076581. [PMID: 36686841 PMCID: PMC9846348 DOI: 10.3389/fonc.2022.1076581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023] Open
Abstract
Sarcomas are a diverse group of tumors with numerous oncogenic drivers, and display varied clinical behaviors and prognoses. This complexity makes diagnosis and the development of new and effective treatments challenging. An incomplete understanding of both cell of origin and the biological drivers of sarcomas complicates efforts to develop clinically relevant model systems and find new molecular targets. Notably, the histone lysine specific demethylase 1 (LSD1) is overexpressed in a number of different sarcomas and is a potential therapeutic target in these malignancies. With the ability to modify histone marks, LSD1 is a key player in many protein complexes that epigenetically regulate gene expression. It is a largely context dependent enzyme, having vastly different and often opposing roles depending on the cellular environment and which interaction partners are involved. LSD1 has been implicated in the development of many different types of cancer, but its role in bone and soft tissue sarcomas remains poorly understood. In this review, we compiled what is known about the LSD1 function in various sarcomas, to determine where knowledge is lacking and to find what theme emerge to characterize how LSD1 is a key molecular driver in bone and soft tissue sarcoma. We further discuss the current clinical landscape for the development of LSD1 inhibitors and where sarcomas have been included in early clinical trials.
Collapse
Affiliation(s)
- Rachel D. Dreher
- Abigail Wexner Research Institute, Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, the Ohio State University, Columbus, OH, United States
| | - Emily R. Theisen
- Abigail Wexner Research Institute, Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, the Ohio State University, Columbus, OH, United States
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
29
|
Baghel VS, Shinde S, Sinha V, Dixit V, Tiwari AK, Saxena S, Vishvakarma NK, Shukla D, Bhatt P. Inhibitors targeting epigenetic modifications in cancer. TRANSCRIPTION AND TRANSLATION IN HEALTH AND DISEASE 2023:287-324. [DOI: 10.1016/b978-0-323-99521-4.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
30
|
Novel dual LSD1/HDAC6 inhibitor for the treatment of cancer. PLoS One 2023; 18:e0279063. [PMID: 36595522 PMCID: PMC9810167 DOI: 10.1371/journal.pone.0279063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/11/2022] [Indexed: 01/04/2023] Open
Abstract
Dually targeting the epigenetic proteins lysine specific demethylase 1 (LSD1) and histone deacetylases (HDACs) that play a key role in cancer cells by modulating gene repressor complexes including CoREST will have a profound effect in inhibiting tumour growth. Here, we evaluated JBI-097 a dual LSD1/HDAC6 inhibitor, for its in vitro and in vivo activities in various tumor models. In vitro, JBI-097 showed a strong potency in inhibiting LSD1 and HDAC6 enzymatic activities with the isoform selectivity over other HDACs. Cell-based experiments demonstrated a superior anti-proliferative profile against haematological and solid tumor cell lines. JBI-097 also showed strong modulation of HDAC6 and LSD1 specific biomarkers, alpha-tubulin, CD86, CD11b, and GFi1b. In vivo, JBI-097 showed a stronger effect in erythroleukemia, multiple myeloma xenograft models, and in CT-26 syngeneic model. JBI-097 also showed efficacy as monotherapy and additive or synergistic efficacy in combination with the standard of care or with immune checkpoint inhibitors. These and other findings suggest that JBI-097 could be a promising molecule for targeting the LSD1 and HDAC6. Further studies are warranted to elucidate the mechanism of action.
Collapse
|
31
|
Mao F, Shi YG. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:15-49. [PMID: 37751134 DOI: 10.1007/978-3-031-38176-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.
Collapse
Affiliation(s)
- Fei Mao
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yujiang Geno Shi
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Casey MJ, Call AM, Thorpe AV, Jette CA, Engel ME, Stewart RA. The scaffolding function of LSD1/KDM1A reinforces a negative feedback loop to repress stem cell gene expression during primitive hematopoiesis. iScience 2022; 26:105737. [PMID: 36594016 PMCID: PMC9803847 DOI: 10.1016/j.isci.2022.105737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Lsd1/Kdm1a functions both as a histone demethylase enzyme and as a scaffold for assembling chromatin modifier and transcription factor complexes to regulate gene expression. The relative contributions of Lsd1's demethylase and scaffolding functions during embryogenesis are not known. Here, we analyze two independent zebrafish lsd1/kdm1a mutant lines and show Lsd1 is required to repress primitive hematopoietic stem cell gene expression. Lsd1 rescue constructs containing point mutations that selectively abrogate its demethylase or scaffolding capacity demonstrate the scaffolding function of Lsd1, not its demethylase activity, is required for repression of gene expression in vivo. Lsd1's SNAG-binding domain mediates its scaffolding function and reinforces a negative feedback loop to repress the expression of SNAG-domain-containing genes during embryogenesis, including gfi1 and snai1/2. Our findings reveal a model in which the SNAG-binding and scaffolding function of Lsd1, and its associated negative feedback loop, provide transient and reversible regulation of gene expression during hematopoietic development.
Collapse
Affiliation(s)
- Mattie J. Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Alexandra M. Call
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Annika V. Thorpe
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Michael E. Engel
- Department of Pediatric Hematology/Oncology, Emily Couric Cancer Center, University of Virginia, Charlottesville, VA 22903, USA,Corresponding author
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA,Corresponding author
| |
Collapse
|
33
|
Mills CM, Turner J, Piña IC, Garrabrant KA, Geerts D, Bachmann AS, Peterson YK, Woster PM. Synthesis and evaluation of small molecule inhibitors of LSD1 for use against MYCN-expressing neuroblastoma. Eur J Med Chem 2022; 244:114818. [DOI: 10.1016/j.ejmech.2022.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
|
34
|
Alsehli M, Aljuhani A, Ihmaid SK, El-Messery SM, Othman DIA, El-Sayed AAAA, Ahmed HEA, Rezki N, Aouad MR. Design and Synthesis of Benzene Homologues Tethered with 1,2,4-Triazole and 1,3,4-Thiadiazole Motifs Revealing Dual MCF-7/HepG2 Cytotoxic Activity with Prominent Selectivity via Histone Demethylase LSD1 Inhibitory Effect. Int J Mol Sci 2022; 23:ijms23158796. [PMID: 35955929 PMCID: PMC9369007 DOI: 10.3390/ijms23158796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022] Open
Abstract
In this study, an efficient multistep synthesis of novel aromatic tricyclic hybrids incorporating different biological active moieties, such as 1,3,4-thiadiazole and 1,2,4-triazole, was reported. These target scaffolds are characterized by having terminal lipophilic or hydrophilic parts, and their structures are confirmed by different spectroscopic methods. Further, the cytotoxic activities of the newly synthesized compounds were evaluated using in vitro MTT cytotoxicity screening assay against three different cell lines, including HepG-2, MCF-7, and HCT-116, compared with the reference drug Taxol. The results showed variable performance against cancer cell lines, exhibiting MCF-7 and HepG-2 selectivities by active analogs. Among these derivatives, 1,2,4-triazoles 11 and 13 and 1,3,4-thiadiazole 18 were found to be the most potent compounds against MCF-7 and HepG-2 cancer cells. Moreover, structure–activity relationship (SAR) studies led to the identification of some potent LSD1 inhibitors. The tested compounds showed good LSD1 inhibitory activities, with an IC50 range of 0.04–1.5 μM. Compounds 27, 23, and 22 were found to be the most active analogs with IC50 values of 0.046, 0.065, and 0.074 μM, respectively. In addition, they exhibited prominent selectivity against a MAO target with apparent cancer cell apoptosis, resulting in DNA fragmentation. This research provides some new aromatic-centered 1,2,4-triazole-3-thione and 1,3,4-thiadiazole analogs as highly effective anticancer agents with good LSD1 target selectivity.
Collapse
Affiliation(s)
- Mosa Alsehli
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Ateyatallah Aljuhani
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Saleh K. Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Jadara University, Irbid 21110, Jordan
| | - Shahenda M. El-Messery
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Dina I. A. Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Abdel-Aziz A. A. El-Sayed
- Biology Department, Faculty of Science, Islamic University of Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Hany E. A. Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 35511, Egypt
- Correspondence: (H.E.A.A.); (N.R.)
| | - Nadjet Rezki
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
- Correspondence: (H.E.A.A.); (N.R.)
| | - Mohamed R. Aouad
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| |
Collapse
|
35
|
Lysine-Specific Demethylase 1 (LSD1/KDM1A) Inhibition as a Target for Disease Modification in Myelofibrosis. Cells 2022; 11:cells11132107. [PMID: 35805191 PMCID: PMC9265913 DOI: 10.3390/cells11132107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
Myelofibrosis (MF) is the most symptomatic form of myeloproliferative neoplasm and carries the worst outcome. Allogeneic hematopoietic stem cell transplantation is the only therapy with potential for cure at present, but is limited by significant mortality and morbidity. JAK inhibition is the mainstay of treatment for intermediate- and high-risk MF. Ruxolitinib is the most widely used JAK1/2 inhibitor and provides durable effects in controlling symptom burden and spleen volumes. Nevertheless, ruxolitinib may not adequately address the underlying disease biology. Its effects on mutant allele burden, bone marrow fibrosis, and the prevention of leukemic transformation are minimal. Multiple small molecules are being tested in multiple phase 2 and 3 studies as either monotherapy or in combination with JAK2 inhibitors. In this review, the role of LSD1/KDM1A inhibition as a potential disease-modification strategy in patients with myelofibrosis is described and discussed.
Collapse
|
36
|
Urban-Wójciuk Z, Graham A, Barker K, Kwok C, Sbirkov Y, Howell L, Campbell J, Woster PM, Poon E, Petrie K, Chesler L. The biguanide polyamine analog verlindamycin promotes differentiation in neuroblastoma via induction of antizyme. Cancer Gene Ther 2022; 29:940-950. [PMID: 34522028 PMCID: PMC9293756 DOI: 10.1038/s41417-021-00386-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 11/09/2022]
Abstract
Deregulated polyamine biosynthesis is emerging as a common feature of neuroblastoma and drugs targeting this metabolic pathway such as DFMO are in clinical and preclinical development. The polyamine analog verlindamycin inhibits the polyamine biosynthesis pathway enzymes SMOX and PAOX, as well as the histone demethylase LSD1. Based on our previous research in acute myeloid leukemia (AML), we reasoned verlindamycin may also unblock neuroblastoma differentiation when combined with all-trans-retinoic acid (ATRA). Indeed, co-treatment with verlindamycin and ATRA strongly induced differentiation regardless of MYCN status, but in MYCN-expressing cells, protein levels were strongly diminished. This process was not transcriptionally regulated but was due to increased degradation of MYCN protein, at least in part via ubiquitin-independent, proteasome-dependent destruction. Here we report that verlindamycin effectively induces the expression of functional tumor suppressor-antizyme via ribosomal frameshifting. Consistent with previous results describing the function of antizyme, we found that verlindamycin treatment led to the selective targeting of ornithine decarboxylase (the rate-limiting enzyme for polyamine biosynthesis) as well as key oncoproteins, such as cyclin D and Aurora A kinase. Retinoid-based multimodal differentiation therapy is one of the few interventions that extends relapse-free survival in MYCN-associated high-risk neuroblastoma and these results point toward the potential use of verlindamycin in this regimen.
Collapse
Affiliation(s)
- Zuzanna Urban-Wójciuk
- Division of Clinical Studies, Institute of Cancer Research, London, UK.
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK.
| | - Amy Graham
- School of Natural Sciences, University of Stirling, Stirling, UK
| | - Karen Barker
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Colin Kwok
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Yordan Sbirkov
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Louise Howell
- Cell Imaging Facility, Institute of Cancer Research, London, UK
| | - James Campbell
- Bioinformatics Core Facility, Institute of Cancer Research, London, UK
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Evon Poon
- Division of Clinical Studies, Institute of Cancer Research, London, UK.
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK.
| | - Kevin Petrie
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
- School of Natural Sciences, University of Stirling, Stirling, UK
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| |
Collapse
|
37
|
New Peptide Functionalized Nanostructured Lipid Carriers with CNS Drugs and Evaluation Anti-proliferative Activity. Int J Mol Sci 2022; 23:ijms23137109. [PMID: 35806112 PMCID: PMC9266917 DOI: 10.3390/ijms23137109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/31/2022] Open
Abstract
Nanoparticulate systems have been widely investigated as delivery vectors for efficient drug delivery in different diseases. Nanostructured lipid carriers (NLC) are composed of both solid and liquid lipids (glyceryl dibehenate and diethylene glycol monoethyl ether) and have demonstrated enhanced biological compatibility and increased drug loading capability. Furthermore, the use of peptides, in particular cell-penetrating peptides, to functionalize nanoparticles and enhance cell membrane permeation was explored in this paper. In this paper, we described the synthesis of a new conjugated of tranylcypromine with MAP. In addition, taking into consideration our previous results, this study developed different NLCs loaded with three central nervous system (CNS) drugs (tacrine (TAC), rasagiline (RAS), and tranylcypromine (TCP)) functionalized with model amphipathic peptide (MAP) and evaluated their activity against cancer cells. Particle size analysis demonstrated NLC presented less than 200 nm and a polydispersity index less than 0.3. Moreover, in vitro results showed that conjugation of MAP with drugs led to a higher decrease in cell viability of a neuroblastoma cell line and Caco-2 cell line, more than MAP alone. Furthermore, NLC encapsulation contributed to higher cellular delivery and enhanced toxic activity at lower concentrations when compared with free or co-administration drug-MAP conjugate.
Collapse
|
38
|
Bottner J, Ribbat-Idel J, Klapper L, Jagomast T, Lemster AL, Perner S, Idel C, Kirfel J. Elevated LSD1 and SNAIL Expression Indicate Poor Prognosis in Hypopharynx Carcinoma. Int J Mol Sci 2022; 23:ijms23095075. [PMID: 35563463 PMCID: PMC9100259 DOI: 10.3390/ijms23095075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/23/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are among the most common cancers worldwide and are associated with a poor prognosis for patients. Among HNSCC, those originating in the hypopharynx have the worst prognosis. The histone demethylase LSD1 has been shown to promote cancer initiation, progression, and relapse through various mechanisms and is upregulated in many cancer tissues. LSD1 physically interacts with SNAIL and is required for SNAIL mediated transcriptional repression. Previous studies of the prognostic value of LSD1 in HNSCC have been limited in their analysis of sub-sites, and a correlation between LSD1 and SNAIL has not been shown in HNSCC patient samples. Here we used a large, representative, and clinically well-characterized cohort of 339 HNSCC patients to investigate the co-expression of LSD1 and SNAIL and their prognostic value in all HNSCC using immunohistochemical staining. Elevated LSD1 expression correlated with advanced tumor stage and poor progression-free survival (PFS) in HNSCC originating in the hypopharynx. Overexpression of the transcription factor SNAIL independently correlated with worse overall survival (OS) and PFS in HNSCC in general and prominently in tumors of the hypopharynx. Furthermore, increased LSD1 expression significantly correlated with elevated SNAIL expression in patient samples. Therefore, the presented data implicates LSD1 and SNAIL as independent prognostic biomarkers.
Collapse
Affiliation(s)
- Justus Bottner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany; (J.B.); (J.R.-I.); (L.K.); (T.J.); (A.-L.L.); (S.P.)
| | - Julika Ribbat-Idel
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany; (J.B.); (J.R.-I.); (L.K.); (T.J.); (A.-L.L.); (S.P.)
| | - Luise Klapper
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany; (J.B.); (J.R.-I.); (L.K.); (T.J.); (A.-L.L.); (S.P.)
| | - Tobias Jagomast
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany; (J.B.); (J.R.-I.); (L.K.); (T.J.); (A.-L.L.); (S.P.)
| | - Anna-Lena Lemster
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany; (J.B.); (J.R.-I.); (L.K.); (T.J.); (A.-L.L.); (S.P.)
| | - Sven Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany; (J.B.); (J.R.-I.); (L.K.); (T.J.); (A.-L.L.); (S.P.)
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Christian Idel
- Department of Otorhinolaryngology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany;
| | - Jutta Kirfel
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, 23538 Luebeck, Germany; (J.B.); (J.R.-I.); (L.K.); (T.J.); (A.-L.L.); (S.P.)
- Correspondence:
| |
Collapse
|
39
|
Pedicona F, Casado P, Hijazi M, Gribben JG, Rouault-Pierre K, Cutillas PR. Targeting the lysine-specific demethylase 1 rewires kinase networks and primes leukemia cells for kinase inhibitor treatment. Sci Signal 2022; 15:eabl7989. [PMID: 35439021 DOI: 10.1126/scisignal.abl7989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most tumor types either fail to respond or become resistant to kinase inhibitors, often because of compensatory prosurvival pathways in the cancer cell's broader signaling circuitry. Here, we found that intrinsic resistance to kinase inhibitors in cultured primary acute myeloid leukemia (AML) cells may be overcome by reshaping kinase networks into topologies that confer drug sensitivity. We identified several antagonists of chromatin-modifying enzymes that sensitized AML cell lines to kinase inhibitors. Of these, we confirmed that inhibitors of the lysine-specific demethylase (LSD1; also known as KDM1A) rewired kinase signaling in AML cells in a way that increased the activity of the kinase MEK and that broadly suppressed the activity of other kinases and feedback loops. As a result, AML cell lines and about half of primary human AML samples were primed for sensitivity to the MEK inhibitor trametinib. Primary human cells with KRAS mutations and those with high MEK pathway activity were the best responders to sequential treatment with LSD1 inhibitors then trametinib, whereas those with NRAS mutations and high mTOR activity were poor responders. Overall, our study reveals the MEK pathway as a mechanism of resistance to LSD1 inhibitors in AML and shows a way to modulate kinase network circuitry to potentially overcome therapeutic resistance to kinase inhibitors.
Collapse
Affiliation(s)
- Federico Pedicona
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro Casado
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Maruan Hijazi
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Kevin Rouault-Pierre
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro R Cutillas
- Cell Signaling and Proteomics Group, Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
- Alan Turing Institute, British Library, 2QR, 96 Euston Road, London NW1 2DB, UK
| |
Collapse
|
40
|
Barrero MJ, Cejas P, Long HW, Ramirez de Molina A. Nutritional Epigenetics in Cancer. Adv Nutr 2022; 13:1748-1761. [PMID: 35421212 PMCID: PMC9526851 DOI: 10.1093/advances/nmac039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 01/28/2023] Open
Abstract
Alterations in the epigenome are well known to affect cancer development and progression. Epigenetics is highly influenced by the environment, including diet, which is a source of metabolic substrates that influence the synthesis of cofactors or substrates for chromatin and RNA modifying enzymes. In addition, plants are a common source of bioactives that can directly modify the activity of these enzymes. Here, we review and discuss the impact of diet on epigenetic mechanisms, including chromatin and RNA regulation, and its potential implications for cancer prevention and treatment.
Collapse
Affiliation(s)
| | - Paloma Cejas
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA,Translational Oncology Laboratory, Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
41
|
Lemster AL, Sievers E, Pasternack H, Lazar-Karsten P, Klümper N, Sailer V, Offermann A, Brägelmann J, Perner S, Kirfel J. Histone Demethylase KDM5C Drives Prostate Cancer Progression by Promoting EMT. Cancers (Basel) 2022; 14:cancers14081894. [PMID: 35454801 PMCID: PMC9032772 DOI: 10.3390/cancers14081894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Prostate cancer is the most common cancer in men and is one of the leading causes of cancer-related deaths. During prostate cancer progression and metastasis, the epithelial cells can undergo epithelial–mesenchymal transition (EMT). Here, we show that the histone demethylase KDM5C is highly expressed in metastatic prostate cancer. We establish that stable clones silence KDM5C in prostate cancer cells. Knockdown of KDM5C leads to a reduced migratory and invasion capacity. This is associated with changes by multiple molecular mechanisms. This signaling subsequently modifies the expression of various transcription factors like Snail, Twist, and Zeb1/2, which are also known as master regulators of EMT. Taken together, our results indicate the potential to therapeutically target KDM5C either alone or in combination with Akt/mTOR-inhibitor in prostate cancer patients by targeting the EMT signaling pathways. Abstract Prostate cancer (PCa) poses a major public health problem in men. Metastatic PCa is incurable, and ultimately threatens the life of many patients. Mutations in tumor suppressor genes and oncogenes are important for PCa progression, whereas the role of epigenetic factors in prostate carcinogenesis is insufficiently examined. The histone demethylase KDM5C exerts important roles in tumorigenesis. KDM5C has been reported to be highly expressed in various cancer cell types, particularly in primary PCa. Here, we could show that KDM5C is highly upregulated in metastatic PCa. Functionally, in KDM5C knockdown cells migratory and invasion capacity was reduced. Interestingly, modulation of KDM5C expression influences several EMT signaling pathways (e.g., Akt/mTOR), expression of EMT transcription factors, epigenetic modifiers, and miR-205, resulting in increased expression of E-cadherin and reduced expression of N-cadherin. Mouse xenografts of KDM5C knockdown cells showed reduced tumor growth. In addition, the Akt/mTOR pathway is one of the classic signaling pathways to mediate tumor metabolic homeostasis, which is beneficial for tumor growth and metastasis. Taken together, our findings indicate that a combination of a selective KDM5C- and Akt/mTOR-inhibitor might be a new promising therapeutic strategy to reduce metastatic burden in PCa.
Collapse
Affiliation(s)
- Anna-Lena Lemster
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Elisabeth Sievers
- Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Helen Pasternack
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Pamela Lazar-Karsten
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Verena Sailer
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
| | - Johannes Brägelmann
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany;
- Mildred Scheel School of Oncology Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Institute of Pathology, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, 23538 Luebeck, Germany; (A.-L.L.); (H.P.); (P.L.-K.); (V.S.); (A.O.); (S.P.)
- Correspondence:
| |
Collapse
|
42
|
LI ZR, GU MZ, XU X, ZHANG JH, ZHANG HL, HAN C. Promising natural lysine specific demethylase 1 inhibitors for cancer treatment: advances and outlooks. Chin J Nat Med 2022; 20:241-257. [DOI: 10.1016/s1875-5364(22)60141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 12/24/2022]
|
43
|
Nicosia L, Boffo FL, Ceccacci E, Conforti F, Pallavicini I, Bedin F, Ravasio R, Massignani E, Somervaille TCP, Minucci S, Bonaldi T. Pharmacological inhibition of LSD1 triggers myeloid differentiation by targeting GSE1 oncogenic functions in AML. Oncogene 2022; 41:878-894. [PMID: 34862459 PMCID: PMC8830420 DOI: 10.1038/s41388-021-02123-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022]
Abstract
The histone demethylase LSD1 is over-expressed in hematological tumors and has emerged as a promising target for anticancer treatment, so that several LSD1 inhibitors are under development and testing, in preclinical and clinical settings. However, the complete understanding of their complex mechanism of action is still unreached. Here, we unraveled a novel mode of action of the LSD1 inhibitors MC2580 and DDP-38003, showing that they can induce differentiation of AML cells through the downregulation of the chromatin protein GSE1. Analysis of the phenotypic effects of GSE1 depletion in NB4 cells showed a strong decrease of cell viability in vitro and of tumor growth in vivo. Mechanistically, we found that a set of genes associated with immune response and cytokine-signaling pathways are upregulated by LSD1 inhibitors through GSE1-protein reduction and that LSD1 and GSE1 colocalize at promoters of a subset of these genes at the basal state, enforcing their transcriptional silencing. Moreover, we show that LSD1 inhibitors lead to the reduced binding of GSE1 to these promoters, activating transcriptional programs that trigger myeloid differentiation. Our study offers new insights into GSE1 as a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Luciano Nicosia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, Manchester, M20 4GJ, UK
| | - Francesca Ludovica Boffo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Elena Ceccacci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Fabio Conforti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Isabella Pallavicini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Fabio Bedin
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Roberto Ravasio
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Oglesby Cancer Research Centre Building, Manchester, M20 4GJ, UK
| | - Saverio Minucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, 20139, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, 20133, Italy.
| |
Collapse
|
44
|
Staehle HF, Pahl HL, Jutzi JS. The Cross Marks the Spot: The Emerging Role of JmjC Domain-Containing Proteins in Myeloid Malignancies. Biomolecules 2021; 11:biom11121911. [PMID: 34944554 PMCID: PMC8699298 DOI: 10.3390/biom11121911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Histone methylation tightly regulates chromatin accessibility, transcription, proliferation, and cell differentiation, and its perturbation contributes to oncogenic reprogramming of cells. In particular, many myeloid malignancies show evidence of epigenetic dysregulation. Jumonji C (JmjC) domain-containing proteins comprise a large and diverse group of histone demethylases (KDMs), which remove methyl groups from lysines in histone tails and other proteins. Cumulating evidence suggests an emerging role for these demethylases in myeloid malignancies, rendering them attractive targets for drug interventions. In this review, we summarize the known functions of Jumonji C (JmjC) domain-containing proteins in myeloid malignancies. We highlight challenges in understanding the context-dependent mechanisms of these proteins and explore potential future pharmacological targeting.
Collapse
Affiliation(s)
- Hans Felix Staehle
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
| | - Heike Luise Pahl
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
| | - Jonas Samuel Jutzi
- Division of Molecular Hematology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany; (H.F.S.); (H.L.P.)
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
- Correspondence:
| |
Collapse
|
45
|
Sun Y, Lv R, Wu T, Zhang X, Sun Y, Yan J, Zhang Z, Zhao D, Cheng M. Design, synthesis, and biological evaluation of coumarin analogs as novel LSD1 inhibitors. Arch Pharm (Weinheim) 2021; 355:e2100311. [PMID: 34862974 DOI: 10.1002/ardp.202100311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/23/2023]
Abstract
The abnormal expression of lysine-specific histone demethylase 1 (LSD1) is associated with different cancer types, and it is increasingly recognized as a potential therapeutic target in oncology. Here, utilizing core hopping and conformational restriction strategies, we designed and synthesized a series of coumarin analogs that were shown to be potent LSD1 inhibitors in the enzyme assay. Furthermore, several potent compounds were selected to evaluate their antiproliferative activity on A549 cells and MGC-803 cells with high expression of LSD1. Among them, YX10 showed an anticlonogenic effect on A549 cells and MGC-803 cells, with IC50 values of 1.52 ± 0.16 and 0.98 ± 0.18 μM, respectively. Modeling suggested that the inhibitors would bind to the active site of the protein located around the key residues of Asp555 and Lys661. Meanwhile, a preliminary druggability evaluation showed that compound YX10 showed favorable liver microsomal and moderate plasma stability and weak inhibitory activity against cytochrome P450 isoforms at 10 μM. All the results indicated that compound YX10 could represent a promising lead compound for further development.
Collapse
Affiliation(s)
- Yixiang Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruicheng Lv
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Yin Sun
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiangkun Yan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Ziheng Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
46
|
Ciaccio R, De Rosa P, Aloisi S, Viggiano M, Cimadom L, Zadran SK, Perini G, Milazzo G. Targeting Oncogenic Transcriptional Networks in Neuroblastoma: From N-Myc to Epigenetic Drugs. Int J Mol Sci 2021; 22:12883. [PMID: 34884690 PMCID: PMC8657550 DOI: 10.3390/ijms222312883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NB) is one of the most frequently occurring neurogenic extracranial solid cancers in childhood and infancy. Over the years, many pieces of evidence suggested that NB development is controlled by gene expression dysregulation. These unleashed programs that outline NB cancer cells make them highly dependent on specific tuning of gene expression, which can act co-operatively to define the differentiation state, cell identity, and specialized functions. The peculiar regulation is mainly caused by genetic and epigenetic alterations, resulting in the dependency on a small set of key master transcriptional regulators as the convergence point of multiple signalling pathways. In this review, we provide a comprehensive blueprint of transcriptional regulation bearing NB initiation and progression, unveiling the complexity of novel oncogenic and tumour suppressive regulatory networks of this pathology. Furthermore, we underline the significance of multi-target therapies against these hallmarks, showing how novel approaches, together with chemotherapy, surgery, or radiotherapy, can have substantial antineoplastic effects, disrupting a wide variety of tumorigenic pathways through combinations of different treatments.
Collapse
|
47
|
Agboyibor C, Dong J, Effah CY, Drokow EK, Pervaiz W, Li D, Kang L, Ma X, Li J, Liu Z, Liu HM. Systematic Review and Meta-Analysis of Lysine-Specific Demethylase 1 Expression as a Prognostic Biomarker of Cancer Survival and Disease Progression. Cancer Control 2021; 28:10732748211051557. [PMID: 34802287 PMCID: PMC8727833 DOI: 10.1177/10732748211051557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Numerous studies on the prognostic significance of lysine-specific demethylase 1 (LSD1) up-regulation in tumors have different outcomes. The inconsistency originated from various studies looking into the association between LSD1 and tumor cells has prompted the decision of this quantitative systematic review to decipher how up-regulated LSD1 and overall survival (OS) or recurrence-free survival (RFS) or disease-free survival (DFS) are linked in tumor patients. Methods Articles were searched from online databases such as Embase, Web of Science Core, PubMed, Google Scholar, and Scopus. The extraction of the hazard ratios (HR) with their 95% confidence intervals (CIs) was attained and survival data of 3151 tumor patients from 17 pieces of related research were used for this meta-analysis. Results To shed light on the link between LSD1 up-regulation and the prognosis of diverse tumors, the pooled hazard ratios (HRs) with their 95% confidence intervals (CIs) were determined. In this meta-analysis, it was observed that LSD1 up-regulation is linked with poor OS (HR = 2.08, 95% CI: 1.66–2.61, P < .01) and RFS (HR = 3.09, 95% CI: 1.81–5.26, P < .01) in tumor patients. However, LSD1 up-regulation was not linked to DFS (HR = 1.49, 95% CI: .83–2.69, P = .18) in tumor patients. The subcategory examination grouped by tumor type and ethnicity showed that LSD1 up-regulation was linked with a poor outcome in the esophageal tumor and hepatocellular carcinoma and Asian patients, respectively. For clinical-pathological factors, up-regulated LSD1 was significantly linked with Lymph node status. Conclusion Despite the shortfall of the present work, this meta-analysis proposes that LSD1 up-regulation may be a prognostic biomarker for patients with tumors including esophageal tumors and hepatocellular carcinoma. We propose that large-scale studies are vital to substantiate these outcomes.
Collapse
Affiliation(s)
- Clement Agboyibor
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Jianshu Dong
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Clement Y Effah
- College of Public Health, 12636Zhengzhou University, Zhengzhou, China
| | - Emmanuel K Drokow
- Department of Oncology, 89632Zhengzhou University People's Hospital and Henan Provincial People's Hospital Henan, Zhengzhou, China
| | - Waqar Pervaiz
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Dié Li
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Lei Kang
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| | - Xinli Ma
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jian Li
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zhenzhen Liu
- 12636The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, 12636Zhengzhou University, Zhengzhou, China.,Institute of Drug Discovery and Development; 12636Zhengzhou University, Zhengzhou, China.,Key Laboratory of Henan Province for Drug Quality Control and Evaluation, 12636Zhengzhou University, Zhengzhou, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province; 12636Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Kurmasheva RT, Erickson SW, Han R, Teicher BA, Smith MA, Roth M, Gorlick R, Houghton PJ. In vivo evaluation of the lysine-specific demethylase (KDM1A/LSD1) inhibitor SP-2577 (Seclidemstat) against pediatric sarcoma preclinical models: A report from the Pediatric Preclinical Testing Consortium (PPTC). Pediatr Blood Cancer 2021; 68:e29304. [PMID: 34453478 DOI: 10.1002/pbc.29304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 11/08/2022]
Abstract
SP-2577(Seclidemstat), an inhibitor of lysine-specific demthylase KDM1A (LSD1) that is overexpressed in pediatric sarcomas, was evaluated against pediatric sarcoma xenografts. SP-2577 (100 mg/kg/day × 28 days) statistically significantly (p < .05) inhibited growth of three of eight Ewing sarcoma (EwS), four of five rhabdomyosarcoma (RMS), and four of six osteosarcoma (OS) xenografts. The increase in EFS T/C was modest (<1.5) for all models except RMS Rh10 (EFS T/C = 2.8). There were no tumor regressions or consistent changes in dimethyl histone H3(K4), HOXM1, DAX1, c-MYC and N-MYC, or tumor histology/differentiation. SP-2577 has limited activity against these pediatric sarcoma models at the dose and schedule evaluated.
Collapse
Affiliation(s)
| | | | - Ruolan Han
- Salarius Pharmaceuticals, Salt Lake City, Utah, USA
| | - Beverly A Teicher
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael Roth
- Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Gorlick
- Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| |
Collapse
|
49
|
Sulejmani O, Grunewald L, Andersch L, Schwiebert S, Klaus A, Winkler A, Astrahantseff K, Eggert A, Henssen AG, Schulte JH, Anders K, Künkele A. Inhibiting Lysine Demethylase 1A Improves L1CAM-Specific CAR T Cell Therapy by Unleashing Antigen-Independent Killing via the FAS-FASL Axis. Cancers (Basel) 2021; 13:cancers13215489. [PMID: 34771652 PMCID: PMC8583435 DOI: 10.3390/cancers13215489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Solid tumor cells can lose or heterogeneously express antigens to become resistant to chimeric antigen receptor (CAR) T cell therapy. Here, we explore whether epigenetic manipulation to unleash antigen-independent killing mechanisms can overcome this hurdle. KDM1A is overexpressed in many cancers and removes lysine methylation on histones that keeps the DNA firmly packed to selectively activate or repress gene activity, depending on the specific lysine target. KDM1A also regulates the expression of nonhistone proteins. We inhibited KDM1A in the childhood tumor, neuroblastoma, to increase FAS expression on tumor cells. The FAS receptor can be triggered to induce cell death when bound by the FAS ligand on CAR and other activated T cells present in the tumor environment, even if the tumor cells lack the target antigen. FAS upregulation via KDM1A inhibition sensitized neuroblastoma cells to FAS-FASL-mediated killing and augmented CAR T cell therapy against antigen-poor or even antigen-negative neuroblastoma. Abstract Chimeric antigen receptor (CAR) T cell therapy has emerged as a promising treatment strategy, however, therapeutic success against solid tumors such as neuroblastoma remains modest. Recurrence of antigen-poor tumor variants often ultimately results in treatment failure. Using antigen-independent killing mechanisms such as the FAS receptor (FAS)-FAS ligand (FASL) axis through epigenetic manipulation may be a way to counteract the escape achieved by antigen downregulation. Analysis of public RNA-sequencing data from primary neuroblastomas revealed that a particular epigenetic modifier, the histone lysine demethylase 1A (KDM1A), correlated negatively with FAS expression. KDM1A is known to interact with TP53 to repress TP53-mediated transcriptional activation of genes, including FAS. We showed that pharmacologically blocking KDM1A activity in neuroblastoma cells with the small molecule inhibitor, SP-2509, increased FAS cell-surface expression in a strictly TP53-dependent manner. FAS upregulation sensitized neuroblastoma cells to FAS-FASL-dependent killing and augmented L1CAM-directed CAR T cell therapy against antigen-poor or even antigen-negative tumor cells in vitro. The improved therapeutic response was abrogated when the FAS-FASL interaction was abolished with an antagonistic FAS antibody. Our results show that KDM1A inhibition unleashes an antigen-independent killing mechanism via the FAS-FASL axis to make tumor cell variants that partially or totally suppress antigen expression susceptible to CAR T cell therapy.
Collapse
Affiliation(s)
- Ornela Sulejmani
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
| | - Lena Andersch
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
| | - Silke Schwiebert
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
| | - Anika Klaus
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
| | - Annika Winkler
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
| | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
- German Cancer Consortium (DKTK), 10117 Berlin, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anton G. Henssen
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
- German Cancer Consortium (DKTK), 10117 Berlin, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
- German Cancer Consortium (DKTK), 10117 Berlin, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kathleen Anders
- German Cancer Consortium (DKTK), 10117 Berlin, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universiät zu Berlin, 10353 Berlin, Germany; (O.S.); (L.G.); (L.A.); (S.S.); (A.K.); (A.W.); (K.A.); (A.E.); (A.G.H.); (J.H.S.)
- German Cancer Consortium (DKTK), 10117 Berlin, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-(0)30-450-616178
| |
Collapse
|
50
|
Song Y, Yang X, Yu B. Repurposing antidepressants for anticancer drug discovery. Drug Discov Today 2021; 27:1924-1935. [PMID: 34728374 DOI: 10.1016/j.drudis.2021.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023]
Abstract
Drug repurposing is an attractive strategy for identifying new indications for existing drugs. Three approved antidepressants have advanced into clinical trials for cancer therapy. In particular, further medicinal chemistry efforts with tranylcypromine (TCP) have led to the discovery of several TCP-based histone lysine specific demethylase 1 (LSD1) inhibitors that display therapeutic promise for treating cancer in the clinic. Thus repurposing antidepressants could be a promising strategy for cancer treatment. In this review, we illustrate the anticancer mechanisms of action of antidepressants and also discuss the challenges and future directions of repurposing antidepressants for anticancer drug discovery, to provide an overview of approved antidepressant cancer therapies.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100000, China
| | - Xiaoke Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100000, China.
| |
Collapse
|