1
|
Syed Altaf RR, Mohan A, Palani N, Mendonce KC, Monisha P, Rajadesingu S. A review of innovative design strategies: Artificial antigen presenting cells in cancer immunotherapy. Int J Pharm 2025; 669:125053. [PMID: 39667594 DOI: 10.1016/j.ijpharm.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Developing nanocarriers that can carry medications directly to tumors is an exciting development in cancer nanomedicine. The efficacy of this intriguing therapeutic approach is, however, compromised by intricate and immunosuppressive circumstances that arise concurrently with the onset of cancer. The artificial antigen presenting cell (aAPC), a micro or nanoparticle based device that mimics an antigen presenting cell by providing crucial signal proteins to T lymphocytes to activate them against cancer, is one cutting-edge method for cancer immunotherapy. This review delves into the critical design considerations for aAPCs, particularly focusing on particle size, shape, and the non-uniform distribution of T cell activating proteins on their surfaces. Adequate surface contact between T cells and aAPCs is essential for activation, prompting engineers to develop nano-aAPCs with microscale contact areas through techniques such as shape modification and nanoparticle clustering. Additionally, we explore recommendations for future advancements in this field.
Collapse
Affiliation(s)
- Rabiya Riffath Syed Altaf
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Agilandeswari Mohan
- Department of BioChemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Keren Celestina Mendonce
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem - 636016, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Ariail E, Garcia Espinoza N, Stephenson AC, Spangler JB. Emerging approaches for T cell-stimulating platform development. Cell Syst 2024; 15:1198-1208. [PMID: 39701036 DOI: 10.1016/j.cels.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
T cells are key mediators of the adaptive immune response, playing both direct and supporting roles in the destruction of foreign pathogenic threats as well as pathologically transformed host cells. The natural process through which T cells are activated requires coordinated molecular interactions between antigen-presenting cells and T cells. Promising advances in biomaterial design have catalyzed the development of artificial platforms that mimic the natural process of T cell stimulation, both to bolster the performance of cell therapies by activating T cells ex vivo prior to adoptive cell transfer and to directly activate T cells in vivo as off-the-shelf treatments. This review focuses on innovative strategies in T cell-stimulating platform design for applications in cancer therapy. We specifically highlight progress in bead-based artificial antigen-presenting cell engineering, hydrogel-based scaffolds, DNA-based systems, alternative polymeric strategies, and soluble activation approaches. Collectively, these advances are expanding the repertoire of tools for targeted immune activation.
Collapse
Affiliation(s)
- Emily Ariail
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nikol Garcia Espinoza
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - A Carson Stephenson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
3
|
Ben-Akiva E, Hickey JW, Meyer RA, Isser A, Shannon SR, Livingston NK, Rhodes KR, Kosmides AK, Warren TR, Tzeng SY, Schneck JP, Green JJ. Shape matters: Biodegradable anisotropic nanoparticle artificial antigen presenting cells for cancer immunotherapy. Acta Biomater 2023; 160:187-197. [PMID: 36812956 PMCID: PMC10335041 DOI: 10.1016/j.actbio.2023.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
Artificial antigen presenting cells are biomimetic particles that recapitulate the signals presented by natural antigen presenting cells in order to stimulate T cells in an antigen-specific manner using an acellular platform. We have engineered an enhanced nanoscale biodegradable artificial antigen presenting cell by modulating particle shape to achieve a nanoparticle geometry that allows for increased radius of curvature and surface area for T cell contact. The non-spherical nanoparticle artificial antigen presenting cells developed here have reduced nonspecific uptake and improved circulation time compared both to spherical nanoparticles and to traditional microparticle technologies. Additionally, the anisotropic nanoparticle artificial antigen presenting cells efficiently engage with and activate T cells, ultimately leading to a marked anti-tumor effect in a mouse melanoma model that their spherical counterparts were unable to achieve. STATEMENT OF SIGNIFICANCE: Artificial antigen presenting cells (aAPC) can activate antigen-specific CD8+ T cells but have largely been limited to microparticle-based platforms and ex vivo T cell expansion. Although more amenable to in vivo use, nanoscale aAPC have traditionally been ineffective due to limited surface area available for T cell interaction. In this work, we engineered non-spherical biodegradable nanoscale aAPC to investigate the role of particle geometry and develop a translatable platform for T cell activation. The non-spherical aAPC developed here have increased surface area and a flatter surface for T cell engagement and, therefore, can more effectively stimulate antigen-specific T cells, resulting in anti-tumor efficacy in a mouse melanoma model.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - John W Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Randall A Meyer
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ariel Isser
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sydney R Shannon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kelly R Rhodes
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tiarra R Warren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jonathan P Schneck
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
4
|
Yang H, Sun L, Chen R, Xiong Z, Yu W, Liu Z, Chen H. Biomimetic dendritic polymeric microspheres induce enhanced T cell activation and expansion for adoptive tumor immunotherapy. Biomaterials 2023; 296:122048. [PMID: 36842237 DOI: 10.1016/j.biomaterials.2023.122048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/23/2023]
Abstract
A variety of bioactive materials are currently developed to expand T cells ex vivo for adoptive T cell immunotherapy, also known as called artificial antigen-presenting cells (aAPCs). However, almost all the reported designs exhibit relatively smooth surface modified with T cell activating biomolecules, and therefore cannot well mimic the dendritic morphological characteristics of dendritic cells (DCs), the most important type of natural antigen-presenting cells (APCs) with high specific surface areas. Here, we propose a hydrophilic monomer-mediated surface morphology control strategy to synthesize biocompatible dendritic poly(N-isopropylacrylamide) (PNIPAM) microspheres for constructing aAPCs with surface morphology mimicking natural APCs (e.g., DCs). Interestingly, when maintaining the same ligands density, dendritic polymeric microspheres-based aAPCs (DPM beads) can more efficiently expand CD8+ T cells than that with smooth surfaces. Moreover, adoptive transfer of antigen-specific CD8+ T cells expanded by the DPM beads show significant antitumor effect of B16-OVA tumor bearing mice. Therefore, we provide a new concept for constructing biomimetic aAPCs with enhanced T cell expansion ability.
Collapse
Affiliation(s)
- He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Lele Sun
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rui Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zijian Xiong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Wenzhuo Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
5
|
Koyande NP, Srivastava R, Padmakumar A, Rengan AK. Advances in Nanotechnology for Cancer Immunoprevention and Immunotherapy: A Review. Vaccines (Basel) 2022; 10:1727. [PMID: 36298592 PMCID: PMC9610880 DOI: 10.3390/vaccines10101727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 01/24/2023] Open
Abstract
One of the most effective cancer therapies, cancer immunotherapy has produced outstanding outcomes in the field of cancer treatment. However, the cost is excessive, which limits its applicability. A smart way to address this issue would be to apply the knowledge gained through immunotherapy to develop strategies for the immunoprevention of cancer. The use of cancer vaccines is one of the most popular methods of immunoprevention. This paper reviews the technologies and processes that support the advantages of cancer immunoprevention over traditional cancer immunotherapies. Nanoparticle drug delivery systems and nanoparticle-based nano-vaccines have been employed in the past for cancer immunotherapy. This paper outlines numerous immunoprevention strategies and how nanotechnology can be applied in immunoprevention. To comprehend the non-clinical and clinical evaluation of these cancer vaccines through clinical studies is essential for acceptance of the vaccines.
Collapse
Affiliation(s)
| | | | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502285, India
| |
Collapse
|
6
|
Highly tailorable gellan gum nanoparticles as a platform for the development of T cell activator systems. Biomater Res 2022; 26:48. [PMID: 36180901 PMCID: PMC9523970 DOI: 10.1186/s40824-022-00297-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background T cell priming has been shown to be a powerful immunotherapeutic approach for cancer treatment in terms of efficacy and relatively weak side effects. Systems that optimize the stimulation of T cells to improve therapeutic efficacy are therefore in constant demand. A way to achieve this is through artificial antigen presenting cells that are complexes between vehicles and key molecules that target relevant T cell subpopulations, eliciting antigen-specific T cell priming. In such T cell activator systems, the vehicles chosen to deliver and present the key molecules to the targeted cell populations are of extreme importance. In this work, a new platform for the creation of T cell activator systems based on highly tailorable nanoparticles made from the natural polymer gellan gum (GG) was developed and validated. Methods GG nanoparticles were produced by a water in oil emulsion procedure, and characterized by dynamic light scattering, high resolution scanning electronic microscopy and water uptake. Their biocompatibility with cultured cells was assessed by a metabolic activity assay. Surface functionalization was performed with anti-CD3/CD28 antibodies via EDC/NHS or NeutrAvidin/Biotin linkage. Functionalized particles were tested for their capacity to stimulate CD4+ T cells and trigger T cell cytotoxic responses. Results Nanoparticles were approximately 150 nm in size, with a stable structure and no detectable cytotoxicity. Water uptake originated a weight gain of up to 3200%. The functional antibodies did efficiently bind to the nanoparticles, as confirmed by SDS-PAGE, which then targeted the desired CD4+ populations, as confirmed by confocal microscopy. The developed system presented a more sustained T cell activation over time when compared to commercial alternatives. Concurrently, the expression of higher levels of key cytotoxic pathway molecules granzyme B/perforin was induced, suggesting a greater cytotoxic potential for future application in adoptive cancer therapy. Conclusions Our results show that GG nanoparticles were successfully used as a highly tailorable T cell activator system platform capable of T cell expansion and re-education. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00297-z.
Collapse
|
7
|
Su FY, Zhao QH, Dahotre SN, Gamboa L, Bawage SS, Silva Trenkle AD, Zamat A, Phuengkham H, Ahmed R, Santangelo PJ, Kwong GA. In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles. SCIENCE ADVANCES 2022; 8:eabm7950. [PMID: 35196075 PMCID: PMC8865765 DOI: 10.1126/sciadv.abm7950] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/25/2022] [Indexed: 05/06/2023]
Abstract
Simultaneous delivery of mRNA to multiple populations of antigen (Ag)-specific CD8+ T cells is challenging given the diversity of peptide epitopes and polymorphism of class I major histocompatibility complexes (MHCI). We developed Ag-presenting nanoparticles (APNs) for mRNA delivery using pMHCI molecules that were refolded with photocleavable peptides to allow rapid ligand exchange by UV light and site-specifically conjugated with a lipid tail for postinsertion into preformed mRNA lipid nanoparticles. Across different TCR transgenic mouse models (P14, OT-1, and Pmel), UV-exchanged APNs bound and transfected their cognate Ag-specific CD8+ T cells equivalent to APNs produced using conventionally refolded pMHCI molecules. In mice infected with PR8 influenza, multiplexed delivery of UV-exchanged APNs against three immunodominant epitopes led to ~50% transfection of a VHH mRNA reporter in cognate Ag-specific CD8+ T cells. Our data show that UV-mediated peptide exchange can be used to rapidly produce APNs for mRNA delivery to multiple populations of Ag-specific T cells in vivo.
Collapse
Affiliation(s)
- Fang-Yi Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Qingyang Henry Zhao
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Shreyas N. Dahotre
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Lena Gamboa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Swapnil Subhash Bawage
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Aaron D. Silva Trenkle
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Ali Zamat
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hathaichanok Phuengkham
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Philip J. Santangelo
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Gabriel A. Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Integrated Cancer Research Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Georgia ImmunoEngineering Consortium, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Metzloff AE, Billingsley MM, Mitchell MJ. Lighting the way to personalized mRNA immune cell therapies. SCIENCE ADVANCES 2022; 8:eabo2423. [PMID: 35196095 PMCID: PMC11323827 DOI: 10.1126/sciadv.abo2423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Nanoparticles, mRNA, and ultraviolet light combine to reprogram specific immune cells directly in the body.
Collapse
Affiliation(s)
- Ann E. Metzloff
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Michael J. Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Sahoo A, Mukherjee D, Mahata D, Mukherjee G. Peptide–MHC complexes: dressing up to manipulate T cells against autoimmunity and cancer. Immunotherapy 2022; 14:337-350. [PMID: 35152723 DOI: 10.2217/imt-2021-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Antigen-specificity of T cells provides important clues to the pathogenesis of T cell-mediated autoimmune diseases and immune-evasion strategies of tumors. Identification of T cell clones involved in autoimmunity or cancer is achieved with soluble peptide–MHC (pMHC) complex multimers. Importantly, these complexes can also be used to manipulate disease-relevant T cells to restore homeostasis of T cell-mediated immune response. While auto-antigen-specific T cells can be deleted or anergized by T cell receptor engagement with cognate pMHC complexes in the absence of costimulation, integration of these complexes in artificial antigen-presenting systems can activate tumor antigen-specific T cells. Here the authors discuss the advancements in pMHC-complex-mediated immunotherapeutic strategies in autoimmunity and cancer and identify the lacunae in these strategies that need to be addressed to facilitate clinical implementation.
Collapse
Affiliation(s)
- Arpita Sahoo
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Debangshu Mukherjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Dhrubajyoti Mahata
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Gayatri Mukherjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
10
|
Isser A, Livingston NK, Schneck JP. Biomaterials to enhance antigen-specific T cell expansion for cancer immunotherapy. Biomaterials 2021; 268:120584. [PMID: 33338931 PMCID: PMC7856270 DOI: 10.1016/j.biomaterials.2020.120584] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/22/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
T cells are often referred to as the 'guided missiles' of our immune system because of their capacity to traffic to and accumulate at sites of infection or disease, destroy infected or mutated cells with high specificity and sensitivity, initiate systemic immune responses, sterilize infections, and produce long-lasting memory. As a result, they are a common target for a range of cancer immunotherapies. However, the myriad of challenges of expanding large numbers of T cells specific to each patient's unique tumor antigens has led researchers to develop alternative, more scalable approaches. Biomaterial platforms for expansion of antigen-specific T cells offer a path forward towards broadscale translation of personalized immunotherapies by providing "off-the-shelf", yet modular approaches to customize the phenotype, function, and specificity of T cell responses. In this review, we discuss design considerations and progress made in the development of ex vivo and in vivo technologies for activating antigen-specific T cells, including artificial antigen presenting cells, T cell stimulating scaffolds, biomaterials-based vaccines, and artificial lymphoid organs. Ultimate translation of these platforms as a part of cancer immunotherapy regimens hinges on an in-depth understanding of T cell biology and cell-material interactions.
Collapse
Affiliation(s)
- Ariel Isser
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA
| | - Natalie K Livingston
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for Nanobiotechnology, USA
| | - Jonathan P Schneck
- Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Institute for Nanobiotechnology, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
11
|
Su Q, Igyártó BZ. One-step artificial antigen presenting cell-based vaccines induce potent effector CD8 T cell responses. Sci Rep 2019; 9:18949. [PMID: 31831802 PMCID: PMC6908577 DOI: 10.1038/s41598-019-55286-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
The production and wide use of artificial antigen presenting cells (aAPCs) in the clinic as cancer immunotherapeutics are hindered by the need of identifying immunogenic cancer antigens and production of recombinant patient-specific major histocompatibility complexes (MHC) loaded with these peptides. To overcome these limitations, in this study, we tested the idea of whether peptide-MHCs can directly be captured from cell lysates, including cancer cells using affinity beads, and used to initiate T cell responses. In theory, these affinity beads covered with the unknown peptide-MHC repertoire captured from the cancer cells could interact with a wide range of antigen-specific T cells and promote anti-cancer responses. Indeed, we found that we can successfully pull-down peptide-MHCs from cell lysates and the aAPCs generated using this technique were able to induce antigen-specific cytotoxic effector T cell responses that led to in vitro and in vivo tumor cell killing. In summary, we present here a novel technique to generate patient-specific aAPCs, that might have the potential to revolutionize the field of cancer vaccines, and provide patients with a vaccine in matters of days at minimal costs.
Collapse
Affiliation(s)
- Qingtai Su
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, TX, USA
| | - Botond Z Igyártó
- Baylor Scott & White Research Institute, Baylor Institute for Immunology Research, Dallas, TX, USA.
| |
Collapse
|
12
|
Shahzad KA, Naeem M, Zhang L, Wan X, Song S, Pei W, Zhao C, Jin X, Shen C. Design and Optimization of PLGA Particles to Deliver Immunomodulatory Drugs for the Prevention of Skin Allograft Rejection. Immunol Invest 2019; 49:840-857. [PMID: 31809611 DOI: 10.1080/08820139.2019.1695134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: Recent advancements in therapeutic strategies have attracted considerable attention to control the acute organs and tissues rejection, which is the main cause of mortality in transplant recipients. The long-term usage of immunosuppressive drugs compromises the body immunity against simple infections and decrease the patients' quality of life. Tolerance of allograft in recipients without harming the rest of host immune system is the basic idea to develop the therapeutic approaches after induction of donor-specific transplant. Methods: Controlled and targeted delivery system by using biomimetic micro and nanoparticles as carriers is an effective strategy to deplete the immune cells in response to allograft in an antigen-specific manner. Polylactic-co-glycolic acid (PLGA) is a biocompatible and biodegradable polymer, which has frequently being used as drug delivery vehicle. Results: This review focuses on the biomedical applications of PLGA based biomimetic micro and nano-sized particles in drug delivery systems to prolong the survival of alloskin graft. Conclusion: We will discuss the mediating factors for rejection of alloskin graft, selective depletion of immune cells, controlled release mechanism, physiochemical properties, size-based body distribution of PLGA particles and their effect on overall host immune system.
Collapse
Affiliation(s)
- Khawar Ali Shahzad
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China.,School of Pharmacy, Taizhou Polytechnic College , Taizhou, Jiangsu, China
| | - Muhammad Naeem
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University , Multan, Pakistan
| | - Lei Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China.,Department of Clinical Laboratory, Lishui District People's Hospital of Nanjing , Nanjing, Jiangsu, China
| | - Xin Wan
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Shilong Song
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Weiya Pei
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chen Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Abstract
Responses of solid tumors to chimeric antigen receptor (CAR) T cell therapy are often minimal. This is potentially due to a lack of sustained activation and proliferation of CAR T cells when encountering antigen in a profoundly immunosuppressive tumor microenvironment. In this study, we investigate if inducing an interaction between CAR T cells and antigen-presenting cells (APCs) in lymphoid tissue, away from an immunosuppressive microenvironment, could enhance solid-tumor responses. We combined CAR T cell transfer with the bacterial enterotoxin staphylococcal enterotoxin-B (SEB), which naturally links a proportion of T cell receptor (TCR) Vβ subtypes to MHC-II, present on APCs. CAR T cell proliferation and function was significantly enhanced by SEB. Solid tumor-growth inhibition in mice was increased when CAR T cells were administered in combination with SEB. CAR T cell expansion in lymphoid tissue was demonstrated, and inhibition of lymphocyte egress from lymph nodes using FTY720 abrogated the benefit of SEB. We also demonstrate that a bispecific antibody, targeting a c-Myc tag on CAR T cells and cluster of differentiation 40 (CD40), could also enhance CAR T cell activity and mediate increased antitumor activity of CAR T cells. These model systems serve as proof-of-principle that facilitating the interaction of CAR T cells with APCs can enhance their ability to mediate antitumor activity.
Collapse
|
14
|
Wang H, Mooney DJ. Biomaterial-assisted targeted modulation of immune cells in cancer treatment. NATURE MATERIALS 2018; 17:761-772. [PMID: 30104668 DOI: 10.1038/s41563-018-0147-9] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/10/2018] [Indexed: 05/06/2023]
Abstract
The past decade has witnessed the accelerating development of immunotherapies for cancer treatment. Immune checkpoint blockade therapies and chimeric antigen receptor (CAR)-T cell therapies have demonstrated clinical efficacy against a variety of cancers. However, issues including life-threatening off-target side effects, long processing times, limited patient responses and high cost still limit the clinical utility of cancer immunotherapies. Biomaterial carriers of these therapies, though, enable one to troubleshoot the delivery issues, amplify immunomodulatory effects, integrate the synergistic effect of different molecules and, more importantly, home and manipulate immune cells in vivo. In this Review, we will analyse thus-far developed immunomaterials for targeted modulation of dendritic cells, T cells, tumour-associated macrophages, myeloid-derived suppressor cells, B cells and natural killer cells, and summarize the promises and challenges of cell-targeted immunomodulation for cancer treatment.
Collapse
Affiliation(s)
- Hua Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA
| | - David J Mooney
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Cambridge, MA, USA.
| |
Collapse
|
15
|
Gosselin EA, Eppler HB, Bromberg JS, Jewell CM. Designing natural and synthetic immune tissues. NATURE MATERIALS 2018; 17:484-498. [PMID: 29784994 PMCID: PMC6283404 DOI: 10.1038/s41563-018-0077-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 04/11/2018] [Indexed: 05/10/2023]
Abstract
Vaccines and immunotherapies have provided enormous improvements for public health, but there are fundamental disconnects between where most studies are performed-in cell culture and animal models-and the ultimate application in humans. Engineering immune tissues and organs, such as bone marrow, thymus, lymph nodes and spleen, could be instrumental in overcoming these hurdles. Fundamentally, designed immune tissues could serve as in vitro tools to more accurately study human immune function and disease, while immune tissues engineered for implantation as next-generation vaccines or immunotherapies could enable direct, on-demand control over generation and regulation of immune function. In this Review, we discuss recent interdisciplinary strategies that are merging materials science and immunology to create engineered immune tissues in vitro and in vivo. We also highlight the hurdles facing these approaches and the need for comparison to existing clinical options, relevant animal models, and other emerging technologies.
Collapse
Affiliation(s)
- Emily A Gosselin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Haleigh B Eppler
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Molecular and Cellular Biology, Biological Sciences Training Program, University of Maryland, College Park, MD, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
- Molecular and Cellular Biology, Biological Sciences Training Program, University of Maryland, College Park, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA.
- Robert E. Fischell Institute for Biomedical Devices, College Park, MD, USA.
- United States Department of Veterans Affairs, Maryland VA Health Care System, Baltimore, MD, USA.
| |
Collapse
|
16
|
Kosmides AK, Necochea K, Hickey JW, Schneck JP. Separating T Cell Targeting Components onto Magnetically Clustered Nanoparticles Boosts Activation. NANO LETTERS 2018; 18:1916-1924. [PMID: 29488768 PMCID: PMC6707078 DOI: 10.1021/acs.nanolett.7b05284] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
T cell activation requires the coordination of a variety of signaling molecules including T cell receptor-specific signals and costimulatory signals. Altering the composition and distribution of costimulatory molecules during stimulation greatly affects T cell functionality for applications such as adoptive cell therapy (ACT), but the large diversity in these molecules complicates these studies. Here, we develop and validate a reductionist T cell activation platform that enables streamlined customization of stimulatory conditions. This platform is useful for the optimization of ACT protocols as well as the more general study of immune T cell activation. Rather than decorating particles with both signal 1 antigen and signal 2 costimulus, we use distinct, monospecific, paramagnetic nanoparticles, which are then clustered on the cell surface by a magnetic field. This allows for rapid synthesis and characterization of a small number of single-signal nanoparticles which can be systematically combined to explore and optimize T cell activation. By increasing cognate T cell enrichment and incorporating additional costimulatory molecules using this platform, we find significantly higher frequencies and numbers of cognate T cells stimulated from an endogenous population. The magnetic field-induced association of separate particles thus provides a tool for optimizing T cell activation for adoptive immunotherapy and other immunological studies.
Collapse
Affiliation(s)
- Alyssa K. Kosmides
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Kevin Necochea
- Department of Materials Science and Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - John W. Hickey
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
| | - Jonathan P. Schneck
- Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States
- Corresponding Author:
| |
Collapse
|
17
|
Gammon JM, Dold NM, Jewell CM. Improving the clinical impact of biomaterials in cancer immunotherapy. Oncotarget 2017; 7:15421-43. [PMID: 26871948 PMCID: PMC4941251 DOI: 10.18632/oncotarget.7304] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/29/2016] [Indexed: 12/20/2022] Open
Abstract
Immunotherapies for cancer have progressed enormously over the past few decades, and hold great promise for the future. The successes of these therapies, with some patients showing durable and complete remission, demonstrate the power of harnessing the immune system to eradicate tumors. However, the effectiveness of current immunotherapies is limited by hurdles ranging from immunosuppressive strategies employed by tumors, to inadequate specificity of existing therapies, to heterogeneity of disease. Further, the vast majority of approved immunotherapies employ systemic delivery of immunomodulators or cells that make addressing some of these challenges more difficult. Natural and synthetic biomaterials–such as biocompatible polymers, self-assembled lipid particles, and implantable biodegradable devices–offer unique potential to address these hurdles by harnessing the benefits of therapeutic targeting, tissue engineering, co-delivery, controlled release, and sensing. However, despite the enormous investment in new materials and nanotechnology, translation of these ideas to the clinic is still an uncommon outcome. Here we review the major challenges facing immunotherapies and discuss how the newest biomaterials and nanotechnologies could help overcome these challenges to create new clinical options for patients.
Collapse
Affiliation(s)
- Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Neil M Dold
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.,Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, USA.,Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| |
Collapse
|
18
|
Vallejo D, Lee SH, Lee D, Zhang C, Rapier C, Chessler SD, Lee AP. Cell-sized lipid vesicles for cell-cell synaptic therapies. TECHNOLOGY 2017; 5:201-213. [PMID: 29744376 PMCID: PMC5937847 DOI: 10.1142/s233954781750011x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell-sized lipid vesicles (CLVs) have shown great promise for therapeutic and artificial cell applications, but their fragility and short shelf life has hindered widespread adoption and commercial viability. We present a method to circumvent the storage limitations of CLVs such as giant unilamellar vesicles (GUVs) and single-compartment multisomes (SCMs) by storing them in a double emulsion precursor form. The double emulsions can be stored for at least 8 months and readily converted into either GUVs or SCMs at any time. In this study, we investigate the interfacial parameters responsible for this morphological change, and we also demonstrate the therapeutic potential of CLVs by utilizing them to present a transmembrane protein, neuroligin-2, to pancreatic β-cells, forming cell-cell synapses that stimulate insulin secretion and cellular growth.
Collapse
Affiliation(s)
- D Vallejo
- Department of Biomedical Engineering, University of California at Irvine, 3120 Natural Science Il, Irvine, California 92697, USA
| | - S H Lee
- Department of Biomedical Engineering, University of California at Irvine, 3120 Natural Science Il, Irvine, California 92697, USA
| | - D Lee
- School of Medicine, University of California at Irvine, 1001 Health Sciences Rd, Irvine, CA, 92617, USA
| | - C Zhang
- School of Medicine, University of California at Irvine, 1001 Health Sciences Rd, Irvine, CA, 92617, USA
| | - C Rapier
- Department of Biomedical Engineering, University of California at Irvine, 3120 Natural Science Il, Irvine, California 92697, USA
| | - S D Chessler
- School of Medicine, University of California at Irvine, 1001 Health Sciences Rd, Irvine, CA, 92617, USA
| | - A P Lee
- Department of Biomedical Engineering, University of California at Irvine, 3120 Natural Science Il, Irvine, California 92697, USA
- Department of Mechanical and Aerospace Engineering, University of California at Irvine, 3120 Natural Science Il, Irvine, California 92697, USA
| |
Collapse
|
19
|
Hickey JW, Vicente FP, Howard GP, Mao HQ, Schneck JP. Biologically Inspired Design of Nanoparticle Artificial Antigen-Presenting Cells for Immunomodulation. NANO LETTERS 2017; 17:7045-7054. [PMID: 28994285 PMCID: PMC6709596 DOI: 10.1021/acs.nanolett.7b03734] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Particles engineered to engage and interact with cell surface ligands and to modulate cells can be harnessed to explore basic biological questions as well as to devise cellular therapies. Biology has inspired the design of these particles, such as artificial antigen-presenting cells (aAPCs) for use in immunotherapy. While much has been learned about mimicking antigen presenting cell biology, as we decrease the size of aAPCs to the nanometer scale, we need to extend biomimetic design to include considerations of T cell biology-including T-cell receptor (TCR) organization. Here we describe the first quantitative analysis of particle size effect on aAPCs with both Signals 1 and 2 based on T cell biology. We show that aAPCs, larger than 300 nm, activate T cells more efficiently than smaller aAPCs, 50 nm. The 50 nm aAPCs require saturating doses or require artificial magnetic clustering to activate T cells. Increasing ligand density alone on the 50 nm aAPCs did not increase their ability to stimulate CD8+ T cells, confirming the size-dependent phenomenon. These data support the need for multireceptor ligation and activation of T-cell receptor (TCR) nanoclusters of similar sizes to 300 nm aAPCs. Quantitative analysis and modeling of a nanoparticle system provides insight into engineering constraints of aAPCs for T cell immunotherapy applications and offers a case study for other cell-modulating particles.
Collapse
Affiliation(s)
- John W. Hickey
- Department of Biomedical Engineering, School of Medicine
- Institute for Cell Engineering, School of Medicine
- Translational Tissue Engineering Center
- Institute for Nanobiotechnology
| | | | - Gregory P. Howard
- Department of Biomedical Engineering, School of Medicine
- Institute for Nanobiotechnology
| | - Hai-Quan Mao
- Translational Tissue Engineering Center
- Institute for Nanobiotechnology
- Department of Materials Science and Engineering, Whiting School of Engineering
| | - Jonathan P. Schneck
- Institute for Cell Engineering, School of Medicine
- Department of Pathology, School of Medicine
- Institute for Nanobiotechnology
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21231, United States
- Corresponding Author: . Phone: 410-614-4589
| |
Collapse
|
20
|
Sun X, Han X, Xu L, Gao M, Xu J, Yang R, Liu Z. Surface-Engineering of Red Blood Cells as Artificial Antigen Presenting Cells Promising for Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701864. [PMID: 28861943 DOI: 10.1002/smll.201701864] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Indexed: 06/07/2023]
Abstract
The development of artificial antigen presenting cells (aAPCs) to mimic the functions of APCs such as dendritic cells (DCs) to stimulate T cells and induce antitumor immune responses has attracted substantial interests in cancer immunotherapy. In this work, a unique red blood cell (RBC)-based aAPC system is designed by engineering antigen peptide-loaded major histocompatibility complex-I and CD28 activation antibody on RBC surface, which are further tethered with interleukin-2 (IL2) as a proliferation and differentiation signal. Such RBC-based aAPC-IL2 (R-aAPC-IL2) can not only provide a flexible cell surface with appropriate biophysical parameters, but also mimic the cytokine paracrine delivery. Similar to the functions of matured DCs, the R-aAPC-IL2 cells can facilitate the proliferation of antigen-specific CD8+ T cells and increase the secretion of inflammatory cytokines. As a proof-of-concept, we treated splenocytes from C57 mice with R-aAPC-IL2 and discovered those splenocytes induced significant cancer-cell-specific lysis, implying that the R-aAPC-IL2 were able to re-educate T cells and induce adoptive immune response. This work thus presents a novel RBC-based aAPC system which can mimic the functions of antigen presenting DCs to activate T cells, promising for applications in adoptive T cell transfer or even in direct activation of circulating T cells for cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoqi Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiao Han
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ligeng Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Min Gao
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Rong Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
21
|
Wang C, Sun W, Ye Y, Bomba HN, Gu Z. Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs. Theranostics 2017; 7:3504-3516. [PMID: 28912891 PMCID: PMC5596439 DOI: 10.7150/thno.19017] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
The immune system protects the body against a wide range of infectious diseases and cancer by leveraging the efficiency of immune cells and lymphoid organs. Over the past decade, immune cell/organ therapies based on the manipulation, infusion, and implantation of autologous or allogeneic immune cells/organs into patients have been widely tested and have made great progress in clinical applications. Despite these advances, therapy with natural immune cells or lymphoid organs is relatively expensive and time-consuming. Alternatively, biomimetic materials and strategies have been applied to develop artificial immune cells and lymphoid organs, which have attracted considerable attentions. In this review, we survey the latest studies on engineering biomimetic materials for immunotherapy, focusing on the perspectives of bioengineering artificial antigen presenting cells and lymphoid organs. The opportunities and challenges of this field are also discussed.
Collapse
Affiliation(s)
- Chao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wujin Sun
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanqi Ye
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hunter N. Bomba
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Zilio S, Vella JL, De la Fuente AC, Daftarian PM, Weed DT, Kaifer A, Marigo I, Leone K, Bronte V, Serafini P. 4PD Functionalized Dendrimers: A Flexible Tool for In Vivo Gene Silencing of Tumor-Educated Myeloid Cells. THE JOURNAL OF IMMUNOLOGY 2017; 198:4166-4177. [PMID: 28396317 DOI: 10.4049/jimmunol.1600833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/13/2017] [Indexed: 12/11/2022]
Abstract
Myeloid cells play a key role in tumor progression and metastasis by providing nourishment and immune protection, as well as facilitating cancer invasion and seeding to distal sites. Although advances have been made in understanding the biology of these tumor-educated myeloid cells (TEMCs), their intrinsic plasticity challenges our further understanding of their biology. Indeed, in vitro experiments only mimic the in vivo setting, and current gene-knockout technologies do not allow the simultaneous, temporally controlled, and cell-specific silencing of multiple genes or pathways. In this article, we describe the 4PD nanoplatform, which allows the in vivo preferential transfection and in vivo tracking of TEMCs with the desired RNAs. This platform is based on the conjugation of CD124/IL-4Rα-targeting peptide with G5 PAMAM dendrimers as the loading surface and can convey therapeutic or experimental RNAs of interest. When injected i.v. in mice bearing CT26 colon carcinoma or B16 melanoma, the 4PD nanoparticles predominantly accumulate at the tumor site, transfecting intratumoral myeloid cells. The use of 4PD to deliver a combination of STAT3- and C/EBPβ-specific short hairpin RNA or miR-142-3p confirmed the importance of these genes and microRNAs in TEMC biology and indicates that silencing of both genes is necessary to increase the efficacy of immune interventions. Thus, the 4PD nanoparticle can rapidly and cost effectively modulate and assess the in vivo function of microRNAs and mRNAs in TEMCs.
Collapse
Affiliation(s)
- Serena Zilio
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136
| | - Jennifer L Vella
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136
| | | | - Pirouz M Daftarian
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136
| | - Donald T Weed
- Department of Otolaryngology, University of Miami, Miami, FL, 33136
| | - Angel Kaifer
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146
| | - Ilaria Marigo
- Istituto Oncologico Veneto-Istituto di Ricovero e Cura a Carattere Scientifico, IOV-IRCCS, 35128 Padova, Italy; and
| | - Kevin Leone
- Istituto Oncologico Veneto-Istituto di Ricovero e Cura a Carattere Scientifico, IOV-IRCCS, 35128 Padova, Italy; and
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, 37134 Verona, Italy
| | - Paolo Serafini
- Department of Microbiology and Immunology, University of Miami, Miami, FL, 33136;
| |
Collapse
|
23
|
Biomimetic biodegradable artificial antigen presenting cells synergize with PD-1 blockade to treat melanoma. Biomaterials 2016; 118:16-26. [PMID: 27940380 DOI: 10.1016/j.biomaterials.2016.11.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/03/2016] [Accepted: 11/24/2016] [Indexed: 01/08/2023]
Abstract
Biomimetic materials that target the immune system and generate an anti-tumor responses hold promise in augmenting cancer immunotherapy. These synthetic materials can be engineered and optimized for their biodegradability, physical parameters such as shape and size, and controlled release of immune-modulators. As these new platforms enter the playing field, it is imperative to understand their interaction with existing immunotherapies since single-targeted approaches have limited efficacy. Here, we investigate the synergy between a PLGA-based artificial antigen presenting cell (aAPC) and a checkpoint blockade molecule, anti-PD1 monoclonal antibody (mAb). The combination of antigen-specific aAPC-based activation and anti-PD-1 mAb checkpoint blockade induced the greatest IFN-γ secretion by CD8+ T cells in vitro. Combination treatment also acted synergistically in an in vivo murine melanoma model to result in delayed tumor growth and extended survival, while either treatment alone had no effect. This was shown mechanistically to be due to decreased PD-1 expression and increased antigen-specific proliferation of CD8+ T cells within the tumor microenvironment and spleen. Thus, biomaterial-based therapy can synergize with other immunotherapies and motivates the translation of biomimetic combinatorial treatments.
Collapse
|
24
|
Abstract
The immune system is an incredibly complex biological network that plays a significant role in almost all disease pathogenesis. With an increased understanding of how this vital system operates, there has been a great emphasis on leveraging, manipulating, and/or supplementing endogenous immunity to better prevent or treat different disease states. More recently, the advent of nanotechnology has ushered in a plethora of new nanoparticle-based platforms that can be used to improve existing immunomodulation modalities. As the ability to engineer at the nanoscale becomes increasingly sophisticated, nanoparticles can be finely tuned to effect the desired immune responses, leading to exciting new avenues for addressing pressing issues in public health. In this review, we give an overview of the different areas in which nanoparticle technology has been applied toward modulating the immune system and highlight the recent advances within each.
Collapse
Affiliation(s)
- Ronnie H Fang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093;
| | - Liangfang Zhang
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
25
|
Sun L, Guo H, Jiang R, Lu L, Liu T, Zhang Z, He X. Artificial antigen-presenting cells expressing AFP(158-166) peptide and interleukin-15 activate AFP-specific cytotoxic T lymphocytes. Oncotarget 2016; 7:17579-17590. [PMID: 27007051 PMCID: PMC4951234 DOI: 10.18632/oncotarget.8198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
Professional antigen-presenting cells (APCs) are potent generators of tumor antigen-specific cytotoxic T lymphocytes (CTLs) for adoptive immunotherapy; however, generation of APCs is cumbersome, expensive, and subject to the tumor microenvironment. Artificial APCs (aAPCs) have been developed as a cost-effective alternative to APCs. We developed a cellular aAPC that efficiently generated alpha-fetoprotein (AFP)-specific CTLs. We genetically modified the human B cell lymphoma cell line BJAB with a lentiviral vector to establish an aAPC called BA15. The expression of AFP(158-166)-HLA-A*02:01 complex, CD80, CD86, and interleukin (IL)-15 in BA15 cells was assessed. The efficiency of BA15 at generating AFP-specific CTLs and the specific cytotoxicity of CTLs against AFP+ cells were also determined. BA15 cells expressed high levels of AFP(158-166) peptide, HLA-A2, CD80, CD86, and IL-15. BA15 cells also exhibited higher efficiency in generating AFP-specific CTLs than did dendritic cells. These CTLs had greater cytotoxicity against AFP+ hepatocellular carcinoma cells than did CTLs obtained from dendritic cells in vitro and in vivo. Our novel aAPC system could provide a robust platform for the generation of functional AFP-specific CTLs for adoptive immunotherapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Longhao Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Guo
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruoyu Jiang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Lu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Tong Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixiang Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
26
|
Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, Xia JX, Zhu YH, Wang J. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Control Release 2016; 231:17-28. [PMID: 26829099 DOI: 10.1016/j.jconrel.2016.01.044] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/17/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022]
Abstract
The core purpose of cancer immunotherapy is the sustained activation and expansion of the tumor specific T cells, especially tumor-infiltrating cytotoxic T lymphocytes (CTLs). Currently, one of the main foci of immunotherapy involving nano-sized carriers is on cancer vaccines and the role of professional antigen presenting cells, such as dendritic cells (DCs) and other phagocytic immune cells. Besides the idea that cancer vaccines promote T cell immune responses, targeting immune inhibitory pathways with nanoparticle delivered regulatory agents such as small interfering RNA (siRNA) to the difficultly-transfected tumor-infiltrating T cells may provide more information on the utility of nanoparticle-mediated cancer immunotherapy. In this study, we constructed nanoparticles to deliver cytotoxic T lymphocyte-associated molecule-4 (CTLA-4)-siRNA (NPsiCTLA-4) and showed the ability of this siRNA delivery system to enter T cells both in vitro and in vivo. Furthermore, T cell activation and proliferation were enhanced after NPsiCTLA-4 treatment in vitro. The ability of direct regulation of T cells of this CTLA-4 delivery system was assessed in a mouse model bearing B16 melanoma. Our results demonstrated that this nanoparticle delivery system was able to deliver CTLA-4-siRNA into both CD4(+) and CD8(+) T cell subsets at tumor sites and significantly increased the percentage of anti-tumor CD8(+) T cells, while it decreased the ratio of inhibitory T regulatory cells (Tregs) among tumor infiltrating lymphocytes (TILs), resulting in augmented activation and anti-tumor immune responses of the tumor-infiltrating T cells. These data support the use of potent nanoparticle-based cancer immunotherapy for melanoma.
Collapse
Affiliation(s)
- Shi-Yong Li
- Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, PR China
| | - Yang Liu
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Cong-Fei Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, PR China
| | - Song Shen
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Rong Sun
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, PR China
| | - Xiao-Jiao Du
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, PR China
| | - Jin-Xing Xia
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China.
| | - Yan-Hua Zhu
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China
| | - Jun Wang
- CAS Center for Excellence in Nanoscience, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, PR China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, PR China; Innovation Center for Cell Signaling Network, University of Science & Technology of China, Hefei, Anhui 230027, PR China.
| |
Collapse
|
27
|
Amoozgar Z, Goldberg MS. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy. Adv Drug Deliv Rev 2015; 91:38-51. [PMID: 25280471 DOI: 10.1016/j.addr.2014.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022]
Abstract
While nanoparticles have traditionally been used to deliver cytotoxic drugs directly to tumors to induce cancer cell death, emerging data suggest that nanoparticles are likely to generate a larger impact on oncology through the delivery of agents that can stimulate antitumor immunity. Tumor-targeted nanocarriers have generally been used to localize chemotherapeutics to tumors and thus decrease off-target toxicity while enhancing efficacy. Challengingly, tumor heterogeneity and evolution render tumor-intrinsic approaches likely to succumb to relapse. The immune system offers exquisite specificity, cytocidal potency, and long-term activity that leverage an adaptive memory response. For this reason, the ability to manipulate immune cell specificity and function would be desirable, and nanoparticles represent an exciting means by which to perform such manipulation. Dendritic cells and tumor-associated macrophages are cells of the myeloid lineage that function as natural phagocytes, so they naturally take up nanoparticles. Dendritic cells direct the specificity and potency of cellular immune responses that can be targeted for cancer vaccines. Herein, we discuss the specific criteria needed for efficient vaccine design, including but not limited to the route of administration, size, morphology, surface charge, targeting ligands, and nanoparticle composition. In contrast, tumor-associated macrophages are critical mediators of immunosuppression whose trans-migratory abilities can be exploited to localize therapeutics to the tumor core and which can be directly targeted for elimination or for repolarization to a tumor suppressive phenotype. It is likely that a combination of targeting dendritic cells to stimulate antitumor immunity and tumor-associated macrophages to reduce immune suppression will impart significant benefits and result in durable antitumor responses.
Collapse
|
28
|
Zhu Z, Cuss SM, Singh V, Gurusamy D, Shoe JL, Leighty R, Bronte V, Hurwitz AA. CD4+ T Cell Help Selectively Enhances High-Avidity Tumor Antigen-Specific CD8+ T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:3482-9. [PMID: 26320256 DOI: 10.4049/jimmunol.1401571] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/31/2015] [Indexed: 01/18/2023]
Abstract
Maintaining antitumor immunity remains a persistent impediment to cancer immunotherapy. We and others have previously reported that high-avidity CD8(+) T cells are more susceptible to tolerance induction in the tumor microenvironment. In the present study, we used a novel model where T cells derived from two independent TCR transgenic mouse lines recognize the same melanoma antigenic epitope but differ in their avidity. We tested whether providing CD4(+) T cell help would improve T cell responsiveness as a function of effector T cell avidity. Interestingly, delivery of CD4(+) T cell help during in vitro priming of CD8(+) T cells improved cytokine secretion and lytic capacity of high-avidity T cells, but not low-avidity T cells. Consistent with this observation, copriming with CD4(+) T cells improved antitumor immunity mediated by higher avidity, melanoma-specific CD8(+) T cells, but not T cells with similar specificity but lower avidity. Enhanced tumor immunity was associated with improved CD8(+) T cell expansion and reduced tolerization, and it was dependent on presentation of both CD4(+) and CD8(+) T cell epitopes by the same dendritic cell population. Our findings demonstrate that CD4(+) T cell help preferentially augments high-avidity CD8(+) T cells and provide important insight for understanding the requirements to elicit and maintain durable tumor immunity.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Steven M Cuss
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Vinod Singh
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Devikala Gurusamy
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Jennifer L Shoe
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick, MD 21072
| | - Robert Leighty
- Data Management Services, National Cancer Institute, Frederick MD, 21702; and
| | - Vincenzo Bronte
- Department of Pathology and Diagnostics, Immunology Section, University of Verona, 37134 Verona, Italy
| | - Arthur A Hurwitz
- Tumor Immunity and Tolerance Section, Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702;
| |
Collapse
|
29
|
Meyer RA, Sunshine JC, Perica K, Kosmides AK, Aje K, Schneck JP, Green JJ. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1519-25. [PMID: 25641795 PMCID: PMC4529071 DOI: 10.1002/smll.201402369] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/29/2014] [Indexed: 05/20/2023]
Abstract
Non-spherical nanodimensional artificial antigen presenting cells (naAPCs) offer the potential to systemically induce an effective antigen-specific immune response. In this report it is shown biodegradable ellipsoidal naAPCs mimic the T-Cell/APC interaction better than equivalent spherical naAPCs. In addition, it is demonstrated ellipsoidal naAPCs offer reduced non-specific cellular uptake and a superior pharmacokinetic profile compared to spherical naAPCs.
Collapse
Affiliation(s)
- Randall A. Meyer
- Translational Tissue Engineering Center, Institute for Nanobiotechnology, Department of Biomedical Engineering, Johns Hopkins School of Medicine, 400 N Broadway, Baltimore MD, 21231, USA
| | - Joel C. Sunshine
- Translational Tissue Engineering Center, Institute for Nanobiotechnology, Department of Biomedical Engineering, Johns Hopkins School of Medicine, 400 N Broadway, Baltimore MD, 21231, USA
| | - Karlo Perica
- Institute for Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore MD, 21205, USA
| | - Alyssa K. Kosmides
- Institute for Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore MD, 21205, USA
| | - Kent Aje
- Institute for Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore MD, 21205, USA
| | - Jonathan P. Schneck
- Institute for Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore MD, 21205, USA
| | - Jordan J. Green
- Translational Tissue Engineering Center, Institute for Nanobiotechnology, Department of Biomedical Engineering, Johns Hopkins School of Medicine, 400 N Broadway, Baltimore MD, 21231, USA
| |
Collapse
|
30
|
Perica K, Kosmides AK, Schneck JP. Linking form to function: Biophysical aspects of artificial antigen presenting cell design. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:781-90. [PMID: 25200637 PMCID: PMC4344884 DOI: 10.1016/j.bbamcr.2014.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/22/2022]
Abstract
Artificial antigen presenting cells (aAPCs) are engineered platforms for T cell activation and expansion, synthesized by coupling T cell activating proteins to the surface of cell lines or biocompatible particles. They can serve both as model systems to study the basic aspects of T cell signaling and translationally as novel approaches for either active or adoptive immunotherapy. Historically, these reductionist systems have not been designed to mimic the temporally and spatially complex interactions observed during endogenous T cell-APC contact, which include receptor organization at both micro- and nanoscales and dynamic changes in cell and membrane morphologies. Here, we review how particle size and shape, as well as heterogenous distribution of T cell activating proteins on the particle surface, are critical aspects of aAPC design. In doing so, we demonstrate how insights derived from endogenous T cell activation can be applied to optimize aAPC, and in turn how aAPC platforms can be used to better understand endogenous T cell stimulation. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alyssa K Kosmides
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan P Schneck
- Institute of Cell Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
31
|
Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS NANO 2015; 9:16-30. [PMID: 25469470 DOI: 10.1021/nn5062029] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The design of nanovaccines capable of triggering effective antitumor immunity requires an understanding of how the immune system senses and responds to threats, including pathogens and tumors. Equally important is an understanding of the mechanisms employed by tumor cells to evade immunity and an appreciation of the deleterious effects that antitumor immune responses can have on tumor growth, such as by skewing tumor cell composition toward immunologically silent tumor cell variants. The immune system and tumors engage in a tug-of-war driven by competition where promoting antitumor immunity or tumor cell death alone may be therapeutically insufficient. Nanotechnology affords a unique opportunity to develop therapeutic compounds than can simultaneously tackle both aspects, favoring tumor eradication. Here, we review the current status of nanoparticle-based immunotherapeutic strategies for the treatment of cancer, ranging from antigen/adjuvant delivery vehicles (to professional antigen-presenting cell types of the immune system) to direct tumor antigen-specific T-lymphocyte-targeting compounds and their combinations thereof.
Collapse
Affiliation(s)
- Kun Shao
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cummings School of Medicine, University of Calgary , Calgary, Alberta T2N 4N1 Canada
| | | | | | | | | | | |
Collapse
|
32
|
Bruns H, Bessell C, Varela JC, Haupt C, Fang J, Pasemann S, Mackensen A, Oelke M, Schneck JP, Schütz C. CD47 Enhances In Vivo Functionality of Artificial Antigen-Presenting Cells. Clin Cancer Res 2015; 21:2075-83. [PMID: 25593301 DOI: 10.1158/1078-0432.ccr-14-2696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/04/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Artificial antigen-presenting cells, aAPC, have successfully been used to stimulate antigen-specific T-cell responses in vitro as well as in vivo. Although aAPC compare favorably with autologous dendritic cells in vitro, their effect in vivo might be diminished through rapid clearance by macrophages. Therefore, to prevent uptake and minimize clearance of aAPC by macrophages, thereby increasing in vivo functionality, we investigated the efficiency of "don't eat me" three-signal aAPC compared with classical two-signal aAPC. EXPERIMENTAL DESIGN To generate "don't eat me" aAPC, CD47 was additionally immobilized onto classical aAPC (aAPC(CD47+)). aAPC and aAPC(CD47+) were analyzed in in vitro human primary T-cell and macrophage cocultures. In vivo efficiency was compared in a NOD/SCID T-cell proliferation and a B16-SIY melanoma model. RESULTS This study demonstrates that aAPC(CD47+) in coculture with human macrophages show a CD47 concentration-dependent inhibition of phagocytosis, whereas their ability to generate and expand antigen-specific T cells was not affected. Furthermore, aAPC(CD47+)-generated T cells displayed equivalent killing abilities and polyfunctionality when compared with aAPC-generated T cells. In addition, in vivo studies demonstrated an enhanced stimulatory capacity and tumor inhibition of aAPC(CD47+) over normal aAPC in conjunction with diverging biodistribution in different organs. CONCLUSIONS Our data for the first time show that aAPC functionalized with CD47 maintain their stimulatory capacity in vitro and demonstrate enhanced in vivo efficiency. Thus, these next-generation aAPC(CD47+) have a unique potential to enhance the application of the aAPC technology for future immunotherapy approaches.
Collapse
Affiliation(s)
- Heiko Bruns
- Department of Internal Medicine 5-Hematology/Oncology, University of Erlangen, Erlangen, Germany
| | - Catherine Bessell
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Juan Carlos Varela
- Division of Hematology, Department of Medicine, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Carl Haupt
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jerry Fang
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Shirin Pasemann
- Department of Internal Medicine 5-Hematology/Oncology, University of Erlangen, Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5-Hematology/Oncology, University of Erlangen, Erlangen, Germany
| | - Mathias Oelke
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jonathan P Schneck
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Christian Schütz
- Institute of Cell Engineering, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
33
|
Eggermont LJ, Paulis LE, Tel J, Figdor CG. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol 2014; 32:456-65. [PMID: 24998519 PMCID: PMC4154451 DOI: 10.1016/j.tibtech.2014.06.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 01/07/2023]
Abstract
Active anti-cancer immune responses depend on efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells (APCs). Therapy with autologous natural APCs is costly and time-consuming and results in variable outcomes in clinical trials. Therefore, development of artificial APCs (aAPCs) has attracted significant interest as an alternative. We discuss the characteristics of various types of acellular aAPCs, and their clinical potential in cancer immunotherapy. The size, shape, and ligand mobility of aAPCs and their presentation of different immunological signals can all have significant effects on cytotoxic T cell activation. Novel optimized aAPCs, combining carefully tuned properties, may lead to efficient immunomodulation and improved clinical responses in cancer immunotherapy.
Collapse
Affiliation(s)
- Loek J Eggermont
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Leonie E Paulis
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jurjen Tel
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud University Medical Centre and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
34
|
van der Weijden J, Paulis LE, Verdoes M, van Hest JCM, Figdor CG. The right touch: design of artificial antigen-presenting cells to stimulate the immune system. Chem Sci 2014. [DOI: 10.1039/c4sc01112k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
35
|
Moliné-Velázquez V, Ortega MC, Vila del Sol V, Melero-Jerez C, de Castro F, Clemente D. The synthetic retinoid Am80 delays recovery in a model of multiple sclerosis by modulating myeloid-derived suppressor cell fate and viability. Neurobiol Dis 2014; 67:149-64. [PMID: 24709559 DOI: 10.1016/j.nbd.2014.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 03/06/2014] [Accepted: 03/28/2014] [Indexed: 02/07/2023] Open
Abstract
Relapsing-remitting multiple sclerosis (RR-MS) is an inflammatory and demyelinating disease of the central nervous system (CNS). It is characterized by relapsing phases with ongoing neurological affectation that are followed by a remitting period in which inflammatory events are controlled and the patients partially recover. Experimental Autoimmune Encephalomyelitis (EAE) is the animal model most often used to study the inflammatory component of MS. Several cell types are involved in controlling the immune response in EAE and immature myeloid-derived suppressor cells (MDSCs) have emerged as important actors in the immunomodulation that occurs in EAE due to their ability to suppress inflammatory responses by inducing T cell apoptosis. In this study, we assessed whether MDSC differentiation may have consequences on the clinical course of EAE by treating mice around the peak of the clinical course EAE with the MDSC-differentiating agent Am80, an analogue of retinoid acid. Am80 administration abrogates the immunomodulation that occurs in EAE mice through different MDSC-related mechanisms: i) induction of MDSC apoptosis; ii) polarization of MDSCs to mature subsets of myeloid cells (dendritic cells/macrophages/neutrophils); and iii) altering their immunosuppressor phenotype. Consequently, T cell density increases and their viability is promoted, delaying the animal's recovery. Therefore, our data point to MDSC behaviour as a crucial factor in facilitating the transition from the relapsing to the remission phase in EAE, which should be considered for future immune-related therapies for MS.
Collapse
Affiliation(s)
- Verónica Moliné-Velázquez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain
| | - María Cristina Ortega
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain
| | - Virginia Vila del Sol
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain
| | - Carolina Melero-Jerez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain
| | - Diego Clemente
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda" s/n, E-45071 Toledo, Spain.
| |
Collapse
|
36
|
Perica K, Tu A, Richter A, Bieler JG, Edidin M, Schneck JP. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS NANO 2014; 8:2252-60. [PMID: 24564881 PMCID: PMC4004316 DOI: 10.1021/nn405520d] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/05/2014] [Indexed: 05/20/2023]
Abstract
Iron-dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation. To enhance T cell activation, a magnetic field was used to drive aggregation of paramagnetic nano-aAPC, resulting in a doubling of TCR cluster size and increased T cell expansion in vitro and after adoptive transfer in vivo. T cells activated by nano-aAPC in a magnetic field inhibited growth of B16 melanoma, showing that this novel approach, using magnetic field-enhanced nano-aAPC stimulation, can generate large numbers of activated antigen-specific T cells and has clinically relevant applications for adoptive immunotherapy.
Collapse
Affiliation(s)
- Karlo Perica
- Department of Biomedical Engineering, Institute of Cell Engineering, Department of Biology, Department of Pathology, and Departments of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Ang Tu
- Department of Biomedical Engineering, Institute of Cell Engineering, Department of Biology, Department of Pathology, and Departments of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Joan Glick Bieler
- Department of Biomedical Engineering, Institute of Cell Engineering, Department of Biology, Department of Pathology, and Departments of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Michael Edidin
- Department of Biomedical Engineering, Institute of Cell Engineering, Department of Biology, Department of Pathology, and Departments of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Jonathan P. Schneck
- Department of Biomedical Engineering, Institute of Cell Engineering, Department of Biology, Department of Pathology, and Departments of Oncology and Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
37
|
Sunshine JC, Perica K, Schneck JP, Green JJ. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 2014; 35:269-277. [PMID: 24099710 PMCID: PMC3902087 DOI: 10.1016/j.biomaterials.2013.09.050] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/14/2013] [Indexed: 12/15/2022]
Abstract
Previous work developing particle-based acellular, artificial antigen presenting cells (aAPCs) has focused exclusively on spherical platforms. To explore the role of shape, we generated ellipsoidal PLGA microparticles with varying aspect ratios (ARs) and synthesized aAPCs from them. The ellipsoidal biomimetic aAPCs with high-AR showed significantly enhanced in vitro and in vivo activity above spherical aAPCs with particle volume and antigen content held constant. Confocal imaging indicates that CD8+ T cells preferentially migrate to and are activated by interaction with the long axis of the aAPC. Importantly, enhanced activity of high-AR aAPCs was seen in a mouse melanoma model, with high-AR aAPCs improving melanoma survival compared to non-cognate aAPCs (p = 0.004) and cognate spherical aAPCs (p = 0.05). These findings indicate that particle geometry is a critical design criterion in the generation of aAPCs, and may offer insight into the essential role of geometry in the interaction between CD8+ T cells and biological APCs.
Collapse
Affiliation(s)
- Joel C. Sunshine
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
| | - Karlo Perica
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
| | - Jonathan P. Schneck
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
- Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
| | - Jordan J. Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
- Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD. 21231
- Department of Ophthalmology Johns Hopkins University School of Medicine, Baltimore, MD. 21231
| |
Collapse
|
38
|
Platzman I, Janiesch JW, Matić J, Spatz JP. Artificial Antigen-Presenting Interfaces in the Service of Immunology. Isr J Chem 2013. [DOI: 10.1002/ijch.201300060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Holbrook BC, Yammani RD, Blevins LK, Alexander-Miller MA. In vivo modulation of avidity in highly sensitive CD8(+) effector T cells following viral infection. Viral Immunol 2013; 26:302-13. [PMID: 23971914 DOI: 10.1089/vim.2013.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Numerous studies have demonstrated a critical role for T cell avidity in predicting in vivo efficacy. Even though the measurement of avidity is now a routine assessment for the analysis of effector and memory T cell populations, our understanding of how this property is controlled in vivo at both the population and individual cell levels is limited. Our previous studies have identified high avidity as a property of the initial effector population generated in mice following respiratory virus infection. As the response progresses, lower avidity cells appear in the effector pool. The studies described here investigate the mechanistic basis of this in vivo regulation of avidity. We present data supporting in vivo avidity modulation within the early high avidity responders that results in a population of lower avidity effector cells. Changes in avidity were correlated with decreased lck expression and increased sensitivity to lck inhibitors in effector cells present at late versus early times postinfection. The possibility of tuning within select individual effectors is a previously unappreciated mechanism for the control of avidity in vivo.
Collapse
Affiliation(s)
- Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
40
|
Sunshine JC, Green JJ. Nanoengineering approaches to the design of artificial antigen-presenting cells. Nanomedicine (Lond) 2013; 8:1173-89. [PMID: 23837856 PMCID: PMC3951141 DOI: 10.2217/nnm.13.98] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Artificial antigen-presenting cells (aAPCs) have shown great initial promise for ex vivo activation of cytotoxic T cells. The development of aAPCs has focused mainly on the choice of proteins to use for surface presentation to T cells when conjugated to various spherical, microscale particles. We review here biomimetic nanoengineering approaches that have been applied to the development of aAPCs that move beyond initial concepts about aAPC development. This article also discusses key technologies that may be enabling for the development of nano- and micro-scale aAPCs with nanoscale features, and suggests several future directions for the field.
Collapse
Affiliation(s)
- Joel C Sunshine
- Department of Biomedical Engineering & the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering & the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Wilmer Eye Institute & the Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
41
|
Paulis LE, Mandal S, Kreutz M, Figdor CG. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr Opin Immunol 2013; 25:389-95. [PMID: 23571027 DOI: 10.1016/j.coi.2013.03.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/23/2022]
Abstract
Cancer immunotherapy critically relies on the efficient presentation of tumor antigens to T-cells to elicit a potent anti-tumor immune response aimed at life-long protection against cancer recurrence. Recent advances in the nanovaccine field have now resulted in formulations that trigger strong anti-tumor responses. Nanovaccines are assemblies that are able to present tumor antigens and appropriate immune-stimulatory signals either directly to T-cells or indirectly via antigen-presenting dendritic cells. This review focuses on important aspects of nanovaccine design for dendritic cells, including the synergistic and cytosolic delivery of immunogenic compounds, as well as their passive and active targeting to dendritic cells. In addition, nanoparticles for direct T-cell activation are discussed, addressing features necessary to effectively mimic dendritic cell/T-cell interactions.
Collapse
Affiliation(s)
- Leonie E Paulis
- Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | | | | | | |
Collapse
|
42
|
Ricupito A, Grioni M, Calcinotto A, Hess Michelini R, Longhi R, Mondino A, Bellone M. Booster vaccinations against cancer are critical in prophylactic but detrimental in therapeutic settings. Cancer Res 2013; 73:3545-54. [PMID: 23539449 DOI: 10.1158/0008-5472.can-12-2449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although cancer vaccines are in the clinic, several issues remain to be addressed to increase vaccine efficacy. In particular, whether how and how frequently a patient should be boosted remains to be defined. Here, we have assessed the ability of dendritic cell (DC)-based vaccines to induce a long-lasting tumor-specific CTL response in either prophylactic or therapeutic settings by taking advantage of transplantable and spontaneous mouse tumor models. Implementing a 24-hour ex vivo intracellular cytokine production assay, we have found that priming with a DC-based vaccine induced a long-lasting CTL response in wild-type mice, and homologous boosting better sustained the pool of central memory T cells, which associated with potent protection against B16F1 melanoma challenge. Appropriate timing of booster vaccination was also critical, as a tight boosting schedule hindered persistence of IFN-γ-competent memory CD8(+) T cells and mice survival in prophylactic settings. Conversely, prime/boost vaccination proved to be of no advantage or even detrimental in therapeutic settings in B16F1 and transgenic adenocarcinoma of the mouse prostate (TRAMP) models, respectively. Although DC priming was indeed needed for tumor shrinkage, restoration of immune competence, and prolonged survival of TRAMP mice, repeated boosting did not sustain the pool of central memory CTLs and was detrimental for mice overall survival. Thus, our results indicate that booster vaccinations impact antitumor immunity to different extents, depending on their prophylactic or therapeutic administration, and suggest evaluating the need for boosting in any given patient with cancer depending on the state of the disease.
Collapse
Affiliation(s)
- Alessia Ricupito
- Cellular Immunology Unit; Program of Immunology, Gene Therapy and Bio-Immunotherapy of Cancer (PIBIC, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Shen C, Cheng K, Miao S, Wang W, He Y, Meng F, Zhang J. Latex bead-based artificial antigen-presenting cells induce tumor-specific CTL responses in the native T-cell repertoires and inhibit tumor growth. Immunol Lett 2013; 150:1-11. [PMID: 23328744 DOI: 10.1016/j.imlet.2013.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 12/30/2012] [Accepted: 01/04/2013] [Indexed: 01/10/2023]
Abstract
Cell-free artificial antigen-presenting cells (aAPCs) were generated by coupling H-2K(b)/TRP2 tetramers together with anti-CD28 and anti-4-1BB antibodies onto cell-sized latex beads and injected intravenously and subcutaneously into naïve mice and antigen-primed mice (B6, H-2K(b)). Vigorous tumor antigen-specific CTL responses in the native T-cell repertoire in each mouse model were elicited as evaluated by measuring surface CD69 and CD25, intracellular IFN-γ, tetramer staining and cytolysis of melanoma cells. Furthermore, the aAPCs efficiently inhibited subcutaneous tumor growth and markedly delayed tumor progression in tumor-bearing mice. These data suggest that bead-based aAPCs represent a potential strategy for the active immunotherapy of cancers or persistent infections.
Collapse
Affiliation(s)
- Chuanlai Shen
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China.
| | | | | | | | | | | | | |
Collapse
|
44
|
East JE, Sun W, Webb TJ. Artificial antigen presenting cell (aAPC) mediated activation and expansion of natural killer T cells. J Vis Exp 2012:4333. [PMID: 23299308 PMCID: PMC3577866 DOI: 10.3791/4333] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Natural killer T (NKT) cells are a unique subset of T cells that display markers characteristic of both natural killer (NK) cells and T cells1. Unlike classical T cells, NKT cells recognize lipid antigen in the context of CD1 molecules2. NKT cells express an invariant TCRα chain rearrangement: Vα14Jα18 in mice and Vα24Jα18 in humans, which is associated with Vβ chains of limited diversity3-6, and are referred to as canonical or invariant NKT (iNKT) cells. Similar to conventional T cells, NKT cells develop from CD4-CD8- thymic precursor T cells following the appropriate signaling by CD1d 7. The potential to utilize NKT cells for therapeutic purposes has significantly increased with the ability to stimulate and expand human NKT cells with α-Galactosylceramide (α-GalCer) and a variety of cytokines8. Importantly, these cells retained their original phenotype, secreted cytokines, and displayed cytotoxic function against tumor cell lines. Thus, ex vivo expanded NKT cells remain functional and can be used for adoptive immunotherapy. However, NKT cell based-immunotherapy has been limited by the use of autologous antigen presenting cells and the quantity and quality of these stimulator cells can vary substantially. Monocyte-derived DC from cancer patients have been reported to express reduced levels of costimulatory molecules and produce less inflammatory cytokines9,10. In fact, murine DC rather than autologous APC have been used to test the function of NKT cells from CML patients11. However, this system can only be used for in vitro testing since NKT cells cannot be expanded by murine DC and then used for adoptive immunotherapy. Thus, a standardized system that relies on artificial Antigen Presenting Cells (aAPC) could produce the stimulating effects of DC without the pitfalls of allo- or xenogeneic cells12, 13. Herein, we describe a method for generating CD1d-based aAPC. Since the engagement of the T cell receptor (TCR) by CD1d-antigen complexes is a fundamental requirement of NKT cell activation, antigen: CD1d-Ig complexes provide a reliable method to isolate, activate, and expand effector NKT cell populations.
Collapse
Affiliation(s)
- James E East
- Department of Microbiology and Immunology, University of Maryland, Maryland, USA
| | | | | |
Collapse
|
45
|
Balmert SC, Little SR. Biomimetic delivery with micro- and nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3757-78. [PMID: 22528985 PMCID: PMC3627374 DOI: 10.1002/adma.201200224] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Indexed: 05/16/2023]
Abstract
The nascent field of biomimetic delivery with micro- and nanoparticles (MNP) has advanced considerably in recent years. Drawing inspiration from the ways that cells communicate in the body, several different modes of "delivery" (i.e., temporospatial presentation of biological signals) have been investigated in a number of therapeutic contexts. In particular, this review focuses on (1) controlled release formulations that deliver natural soluble factors with physiologically relevant temporal context, (2) presentation of surface-bound ligands to cells, with spatial organization of ligands ranging from isotropic to dynamically anisotropic, and (3) physical properties of particles, including size, shape and mechanical stiffness, which mimic those of natural cells. Importantly, the context provided by multimodal, or multifactor delivery represents a key element of most biomimetic MNP systems, a concept illustrated by an analogy to human interpersonal communication. Regulatory implications of increasingly sophisticated and "cell-like" biomimetic MNP systems are also discussed.
Collapse
Affiliation(s)
- Stephen C Balmert
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | | |
Collapse
|
46
|
Moon JJ, Huang B, Irvine DJ. Engineering nano- and microparticles to tune immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:3724-46. [PMID: 22641380 PMCID: PMC3786137 DOI: 10.1002/adma.201200446] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Indexed: 05/13/2023]
Abstract
The immune system can be a cure or cause of disease, fulfilling a protective role in attacking cancer or pathogenic microbes but also causing tissue destruction in autoimmune disorders. Thus, therapies aimed to amplify or suppress immune reactions are of great interest. However, the complex regulation of the immune system, coupled with the potential systemic side effects associated with traditional systemic drug therapies, has presented a major hurdle for the development of successful immunotherapies. Recent progress in the design of synthetic micro- and nano-particles that can target drugs, deliver imaging agents, or stimulate immune cells directly through their physical and chemical properties is leading to new approaches to deliver vaccines, promote immune responses against tumors, and suppress autoimmunity. In addition, novel strategies, such as the use of particle-laden immune cells as living targeting agents for drugs, are providing exciting new approaches for immunotherapy. This progress report describes recent advances in the design of micro- and nano-particles for immunotherapies and diagnostics.
Collapse
Affiliation(s)
- James J Moon
- Dept. of Materials Science and Eng., Massachusetts Institute of Technology-MIT, Cambridge, MA, USA
| | | | | |
Collapse
|
47
|
Klebanoff CA, Gattinoni L, Palmer DC, Muranski P, Ji Y, Hinrichs CS, Borman ZA, Kerkar SP, Scott CD, Finkelstein SE, Rosenberg SA, Restifo NP. Determinants of successful CD8+ T-cell adoptive immunotherapy for large established tumors in mice. Clin Cancer Res 2011; 17:5343-52. [PMID: 21737507 PMCID: PMC3176721 DOI: 10.1158/1078-0432.ccr-11-0503] [Citation(s) in RCA: 231] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE Adoptive cell transfer (ACT) of tumor infiltrating or genetically engineered T cells can cause durable responses in patients with metastatic cancer. Multiple clinically modifiable parameters can comprise this therapy, including cell dose and phenotype, in vivo antigen restimulation, and common gamma-chain (γ(c)) cytokine support. However, the relative contributions of each these individual components to the magnitude of the antitumor response have yet to be quantified. EXPERIMENTAL DESIGN To systematically and quantitatively appraise each of these variables, we employed the Pmel-1 mouse model treating large, established B16 melanoma tumors. In addition to cell dose and magnitude of in vivo antigen restimulation, we also evaluated the relative efficacy of central memory (T(CM)), effector memory (T(EM)), and stem cell memory (T(SCM)) subsets on the strength of tumor regression as well as the dose and type of clinically available γ(c) cytokines, including IL-2, IL-7, IL-15, and IL-21. RESULTS We found that cell dose, T-cell differentiation status, and viral vaccine titer each were correlated strongly and significantly with the magnitude of tumor regression. Surprisingly, although the total number of IL-2 doses was correlated with tumor regression, no significant benefit to prolonged (≥6 doses) administration was observed. Moreover, the specific type and dose of γ(c) cytokine only moderately correlated with response. CONCLUSION Collectively, these findings elucidate some of the key determinants of successful ACT immunotherapy for the treatment of cancer in mice and further show that γ(c) cytokines offer a similar ability to effectively drive antitumor T-cell function in vivo.
Collapse
Affiliation(s)
- Christopher A. Klebanoff
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Luca Gattinoni
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Douglas C. Palmer
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Pawel Muranski
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Yun Ji
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Christian S. Hinrichs
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Zachary A. Borman
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Sid P. Kerkar
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Christopher D. Scott
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Steven E. Finkelstein
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Steven A. Rosenberg
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| | - Nicholas P. Restifo
- Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland 20892
| |
Collapse
|
48
|
Shen C, He Y, Meng F, Cheng K, Zhang D, Miao F, Zhang J. Characterization of MHC/peptide complexes refolded by a one-step ion-exchange chromatography. J Immunol Methods 2011; 369:81-90. [DOI: 10.1016/j.jim.2011.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/14/2011] [Accepted: 04/21/2011] [Indexed: 01/12/2023]
|
49
|
Shen C, He Y, Cheng K, Zhang D, Miao S, Zhang A, Meng F, Miao F, Zhang J. Killer artificial antigen-presenting cells deplete alloantigen-specific T cells in a murine model of alloskin transplantation. Immunol Lett 2011; 138:144-55. [PMID: 21513739 DOI: 10.1016/j.imlet.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 11/19/2022]
Abstract
FasL-expressing killer antigen-presenting cells (KAPCs) have the ability to delete antigen-specific T cells and, therefore, could potentially be used for the treatment of allograft rejection and autoimmunity; however, their cellular nature markedly limits their clinical use. Novel bead-based killer artificial antigen-presenting cells (KaAPCs), which are generated by coupling major histocompatibility complex (MHC) class I antigens together with the apoptosis-inducing anti-Fas monoclonal antibody (mAb) onto magnetic beads, have recently attracted more attention. KaAPCs have a number of advantages over KAPCs and are able to deplete specific T cells in cocultures. However, it remains unknown whether bead-based KaAPCs can also induce apoptosis of alloreactive or autoreactive T cells and, consequently, generate hyporesponsiveness in vivo. In this study, H-2K(b)/peptide monomers and anti-Fas mAb have been covalently coupled to latex beads and administered intravenously into BALB/c mice (H-2K(d)) that had previously been grafted with skin squares from C57BL/6 mice (H-2K(b)). Alloskin graft survival was prolonged for 6 days. A 60% decrease of H-2K(b) antigen-alloreactive T cells was demonstrated by several measures 2 days after each injection of KaAPCs, but intact immune function, including antitumor activity, was maintained. These data provide the first in vivo evidence that bead-based KaAPCs can selectively deplete antigen-specific T cells without the loss of overall immune responsiveness and, therefore, highlight the therapeutic potential of this novel strategy for the treatment of allograft rejection and autoimmune disorders.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Murine-Derived
- Antigen-Presenting Cells/chemistry
- Antigen-Presenting Cells/cytology
- Antigen-Presenting Cells/immunology
- Apoptosis/drug effects
- Artificial Cells/chemistry
- Artificial Cells/cytology
- Artificial Cells/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation/drug effects
- Fas Ligand Protein/antagonists & inhibitors
- Fas Ligand Protein/immunology
- Fas Ligand Protein/metabolism
- Graft Rejection/immunology
- Graft Rejection/prevention & control
- Graft Survival/immunology
- Histocompatibility Antigens Class I/immunology
- Immune Tolerance
- Immunoconjugates/chemistry
- Immunoconjugates/immunology
- Immunoconjugates/pharmacology
- Injections, Intravenous
- Lymphocyte Depletion
- Magnetics/methods
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microspheres
- Models, Animal
- Skin Transplantation/immunology
- Transplantation, Homologous
Collapse
Affiliation(s)
- Chuanlai Shen
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kobayashi Y, Watanabe T. Synthesis of artificial lymphoid tissue with immunological function. Trends Immunol 2010; 31:422-8. [PMID: 20951645 DOI: 10.1016/j.it.2010.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 08/11/2010] [Accepted: 09/06/2010] [Indexed: 12/22/2022]
Abstract
The ability to generate functional artificial lymphoid tissue to induce specific immunity at ectopic sites could offer a potential breakthrough for treatment of diseases such as cancer and severe infection using immunotherapy. Artificial lymphoid tissue could also offer an informative tool to study further lymphoid tissue development and function in vivo. Here, we review the process of secondary and tertiary lymphoid organization, of which an understanding is essential for artificial lymphoid tissue synthesis. Using this knowledge, we consider the combination of cell types, soluble factors and scaffold properties that will enable proper accumulation and organization of lymphocytes into tissue grafts. Recent success in in vivo induction of artificial lymphoid tissue are also considered.
Collapse
Affiliation(s)
- Yuka Kobayashi
- Graduate School of Medicine, Kyoto University, Yoshida-konoe machi, Sakyo-ku, Kyoto 606-8501, Japan
| | | |
Collapse
|