1
|
Xiao L, Tang R, Wang J, Wan D, Yin Y, Xie L. Gut microbiota bridges the iron homeostasis and host health. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1952-1975. [PMID: 37515687 DOI: 10.1007/s11427-022-2302-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/08/2023] [Indexed: 07/31/2023]
Abstract
The gut microbiota acts as a symbiotic microecosystem that plays an indispensable role in the regulation of a number of metabolic processes in the host by secreting secondary metabolites and impacting the physiology and pathophysiology of numerous organs and tissues through the circulatory system. This relationship, referred to as the "gut-X axis", is associated with the development and progression of disorders, including obesity, fatty liver and Parkinson's disease. Given its importance, the gut flora is a vital research area for the understanding and development of the novel therapeutic approaches for multiple disorders. Iron is a common but necessary element required by both mammals and bacteria. As a result, iron metabolism is closely intertwined with the gut microbiota. The host's iron homeostasis affects the composition of the gut microbiota and the interaction between host and gut microbiota through various mechanisms such as nutrient homeostasis, intestinal peaceability, gut immunity, and oxidative stress. Therefore, understanding the relationship between gut microbes and host iron metabolism is not only of enormous significance to host health but also may offer preventative and therapeutic approaches for a number of disorders that impact both parties. In this review, we delve into the connection between the dysregulation of iron metabolism and dysbiosis of gut microbiota, and how it contributes to the onset and progression of metabolic and chronic diseases.
Collapse
Affiliation(s)
- Lanling Xiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rui Tang
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, 510000, China
| | - Jie Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China.
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528308, China.
| |
Collapse
|
2
|
Feng G, Arima Y, Midorikawa K, Kobayashi H, Oikawa S, Zhao W, Zhang Z, Takeuchi K, Murata M. Knockdown of TFRC suppressed the progression of nasopharyngeal carcinoma by downregulating the PI3K/Akt/mTOR pathway. Cancer Cell Int 2023; 23:185. [PMID: 37644594 PMCID: PMC10466839 DOI: 10.1186/s12935-023-02995-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The transferrin receptor (TfR) encoded by TFRC gene is the main cellular iron importer. TfR is highly expressed in many cancers and is expected to be a promising new target for cancer therapy; however, its role in nasopharyngeal carcinoma (NPC) remains unknown. METHODS The TfR levels were investigated in NPC tissues and cell lines using immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. Knockdown of TFRC using two siRNA to investigate the effects on intracellular iron level and biological functions, including proliferation by CKK-8 assay, colony formation, cell apoptosis and cell cycle by flow cytometry, migration and invasion, and tumor growth in vivo by nude mouse xenografts. RNA sequencing was performed to find possible mechanism after TFRC knockdown on NPC cells and further verified by western blotting. RESULTS TfR was overexpressed in NPC cell lines and tissues. Knockdown of TFRC inhibited cell proliferation concomitant with increased apoptosis and cell cycle arrest, and it decreased intracellular iron, colony formation, migration, invasion, and epithelial-mesenchymal transition in HK1-EBV cells. Western blotting showed that TFRC knockdown suppressed the levels of the iron storage protein FTH1, anti-apoptotic marker BCL-xL, and epithelial-mesenchymal transition markers. We confirmed in vivo that TFRC knockdown also inhibited NPC tumor growth and decreased Ki67 expression in tumor tissues of nude mouse xenografts. RNA sequencing and western blotting revealed that TFRC silencing inhibited the PI3K/Akt/mTOR signaling pathway. CONCLUSIONS These results indicated that TfR was overexpressed in NPC, and TFRC knockdown inhibited NPC progression by suppressing the PI3K/Akt/mTOR signaling pathway. Thus, TfR may serve as a novel biomarker and therapeutic target for NPC.
Collapse
Affiliation(s)
- Guofei Feng
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Yasushi Arima
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, 510-0226, Mie, Japan
| | - Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan
| | - Weilin Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhe Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kazuhiko Takeuchi
- Department of Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, 514-8507, Mie, Japan.
| |
Collapse
|
3
|
Li J, Zhang Z, Zhang B, Yan X, Fan K. Transferrin receptor 1 targeted nanomedicine for brain tumor therapy. Biomater Sci 2023; 11:3394-3413. [PMID: 36847174 DOI: 10.1039/d2bm02152h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Achieving effective drug delivery to traverse the blood-brain barrier (BBB) and target tumor cells remains the greatest challenge for brain tumor therapy. Importantly, the overexpressed membrane receptors on the brain endothelial cells, especially transferrin receptor 1 (TfR1), which mediate their ligands/antibodies to overcome the BBB by transcytosis, have been emerging as promising targets for brain tumor therapy. By employing ligands (e.g., transferrin, H-ferritin), antibodies or targeting peptides of TfR1 or aptamers, various functional nano-formulations have been developed in the last decade. These agents showed great potential for the treatment of brain diseases due to their ideal size, high loading capacity, controlled drug release and suitable pharmacokinetics. Herein, we summarize the latest advances on TfR1-targeted nanomedicine for brain tumor therapy. Moreover, we also discuss the strategies of improving stability, targeting ability and accumulation of nano-formulations in brain tumors for better outcomes. In this review, we hope to provide inspiration for the rational design of TfR1-targeted nanomedicine against brain tumors.
Collapse
Affiliation(s)
- Jianru Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Zixia Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Baoli Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China.
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China. .,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China. .,Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.,University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA, Luria-Pérez R. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers (Basel) 2022; 14:cancers14174206. [PMID: 36077739 PMCID: PMC9455005 DOI: 10.3390/cancers14174206] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recombinant antibody fragments have shown remarkable potential as diagnostic and therapeutic tools in the fight against cancer. The single-chain fragment variable (scFv) that contains the complete antigen-binding domains of a whole antibody, has several advantages such as a high specificity and affinity for antigens, a low immunogenicity, and the proven ability to penetrate tumor tissues and diffuse. This review provides an overview of the current studies on the principle, generation, and applications of scFvs, particularly in the diagnosis and therapy of cancer, and underscores their potential use in clinical trials. Abstract Cancer remains a public health problem worldwide. Although conventional therapies have led to some excellent outcomes, some patients fail to respond to treatment, they have few therapeutic alternatives and a poor survival prognosis. Several strategies have been proposed to overcome this issue. The most recent approach is immunotherapy, particularly the use of recombinant antibodies and their derivatives, such as the single-chain fragment variable (scFv) containing the complete antigen-binding domains of a whole antibody that successfully targets tumor cells. This review describes the recent progress made with scFvs as a cancer diagnostic and therapeutic tool, with an emphasis on preclinical approaches and their potential use in clinical trials.
Collapse
Affiliation(s)
- Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-(55)-5228-9917 (ext. 4401)
| |
Collapse
|
5
|
Mojarad-Jabali S, Mahdinloo S, Farshbaf M, Sarfraz M, Fatahi Y, Atyabi F, Valizadeh H. Transferrin receptor-mediated liposomal drug delivery: recent trends in targeted therapy of cancer. Expert Opin Drug Deliv 2022; 19:685-705. [PMID: 35698794 DOI: 10.1080/17425247.2022.2083106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Compared to normal cells, malignant cancer cells require more iron for their growth and rapid proliferation, which can be supplied by a high expression level of transferrin receptor (TfR). It is well known that the expression of TfR on the tumor cells is considerably higher than that of normal cells, which makes TfR an attractive target in cancer therapy. AREAS COVERED In this review, the primary focus is on the role of TfR as a valuable tool for cancer-targeted drug delivery, followed by the full coverage of available TfR ligands and their conjugation chemistry to the surface of liposomes. Finally, the most recent studies investigating the potential of TfR-targeted liposomes as promising drug delivery vehicles to different cancer cells are highlighted with emphasis on their improvement possibilities to become a part of future cancer medicines. EXPERT OPINION Liposomes as a valuable class of nanocarriers have gained much attention toward cancer therapy. From all the studies that have exploited the therapeutic and diagnostic potential of TfR on cancer cells, it can be realized that the systematic assessment of TfR ligands applied for liposomal targeted delivery has yet to be entirely accomplished.
Collapse
Affiliation(s)
- Solmaz Mojarad-Jabali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Mahdinloo
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Farshbaf
- Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Cai Y, Liang X, Zhan Z, Zeng Y, Lin J, Xu A, Xue S, Xu W, Chai P, Mao Y, Song Z, Han L, Xiao J, Song Y, Zhang X. A Ferroptosis-Related Gene Prognostic Index to Predict Temozolomide Sensitivity and Immune Checkpoint Inhibitor Response for Glioma. Front Cell Dev Biol 2022; 9:812422. [PMID: 35174170 PMCID: PMC8842730 DOI: 10.3389/fcell.2021.812422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Gliomas are highly lethal brain tumors. Despite multimodality therapy with surgery, radiotherapy, chemotherapy, and immunotherapy, glioma prognosis remains poor. Ferroptosis is a crucial tumor suppressor mechanism that has been proven to be effective in anticancer therapy. However, the implications of ferroptosis on the clinical prognosis, chemotherapy, and immune checkpoint inhibitor (ICI) therapy for patients with glioma still need elucidation. Methods: Consensus clustering revealed two distinct ferroptosis-related subtypes based on the Cancer Genome Atlas (TCGA) glioma dataset (n = 663). Subsequently, the ferroptosis-related gene prognostic index (FRGPI) was constructed by weighted gene co-expression network analysis (WGCNA) and “stepAIC” algorithms and validated with the Chinese Glioma Genome Atlas (CGGA) dataset (n = 404). Subsequently, the correlation among clinical, molecular, and immune features and FRGPI was analyzed. Next, the temozolomide sensitivity and ICI response for glioma were predicted using the “pRRophetic” and “TIDE” algorithms, respectively. Finally, candidate small molecular drugs were defined using the connectivity map database based on FRGPI. Results: The FRGPI was established based on the HMOX1, TFRC, JUN, and SOCS1 genes. The distribution of FRGPI varied significantly among the different ferroptosis-related subtypes. Patients with high FRGPI had a worse overall prognosis than patients with low FRGPI, consistent with the results in the CGGA dataset. The final results showed that high FRGPI was characterized by more aggressive phenotypes, high PD-L1 expression, high tumor mutational burden score, and enhanced temozolomide sensitivity; low FRGPI was associated with less aggressive phenotypes, high microsatellite instability score, and stronger response to immune checkpoint blockade. In addition, the infiltration of memory resting CD4+ T cells, regulatory T cells, M1 macrophages, M2 macrophages, and neutrophils was positively correlated with FRGPI. In contrast, plasma B cells and naïve CD4+ T cells were negatively correlated. A total of 15 potential small molecule compounds (such as depactin, physostigmine, and phenacetin) were identified. Conclusion: FRGPI is a promising gene panel for predicting the prognosis, immune characteristics, temozolomide sensitivity, and ICI response in patients with glioma.
Collapse
Affiliation(s)
- Yonghua Cai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianqiu Liang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengming Zhan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Zeng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Lin
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Chai
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yangqi Mao
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zibin Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Han
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianqi Xiao
- Department of Neurosurgery, The First Hospital of Qiqihar City, Qiqihar, China
- *Correspondence: Xian Zhang, ; Ye Song, ; Jianqi Xiao,
| | - Ye Song
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Neurosurgery, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Xian Zhang, ; Ye Song, ; Jianqi Xiao,
| | - Xian Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Xian Zhang, ; Ye Song, ; Jianqi Xiao,
| |
Collapse
|
7
|
Lin L, Chen H, Zhao R, Zhu M, Nie G. Nanomedicine Targets Iron Metabolism for Cancer Therapy. Cancer Sci 2021; 113:828-837. [PMID: 34962017 PMCID: PMC8898713 DOI: 10.1111/cas.15250] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022] Open
Abstract
Iron is an essential element for cell proliferation and homeostasis by engaging in cell metabolism including DNA synthesis, cell cycle, and redox cycling; however, iron overload could contribute to tumor initiation, proliferation, metastasis, and angiogenesis. Therefore, manipulating iron metabolisms, such as using iron chelators, transferrin receptor 1 (TFR1) Abs, and cytotoxic ligands conjugated to transferrin, has become a considerable strategy for cancer therapy. However, there remain major limitations for potential translation to the clinic based on the regulation of iron metabolism in cancer treatment. Nanotechnology has made great advances for cancer treatment by improving the therapeutic potential and lowering the side‐effects of the proved drugs and those under various stages of development. Early studies that combined nanotechnology with therapeutic means for the regulation of iron metabolism have shown certain promise for developing specific treatment options based on the intervention of cancer iron acquisition, transportation, and utilization. In this review, we summarize the current understanding of iron metabolism involved in cancer and review the recent advances in iron‐regulatory nanotherapeutics for improved cancer therapy. We also envision the future development of nanotherapeutics for improved treatment for certain types of cancers.
Collapse
Affiliation(s)
- Liangru Lin
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Hanqing Chen
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
8
|
Guo Z, Zhang Y, Fu M, Zhao L, Wang Z, Xu Z, Zhu H, Lan X, Shen G, He Y, Lei P. The Transferrin Receptor-Directed CAR for the Therapy of Hematologic Malignancies. Front Immunol 2021; 12:652924. [PMID: 33854512 PMCID: PMC8039461 DOI: 10.3389/fimmu.2021.652924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
As many patients ultimately relapse after chimeric antigen receptor (CAR) T-cell therapy, identification of alternative targets is currently being evaluated. Substantial research efforts are underway to develop new targets. The transferrin receptor (TfR) is prevalently expressed on rapidly proliferating tumor cells and holds the potential to be the alternative target. In order to investigate the efficacy and challenges of TfR-targeting on the CAR-based therapy strategy, we generated a TfR-specific CAR and established the TfR-CAR–modified T cells. To take the advantage of TfR being widely shared by multiple tumors, TfR-CAR T cells were assessed against several TfR+ hematological malignant cell lines. Data showed that TfR-CAR T cells were powerfully potent in killing all these types of cells in vitro and in killing T-ALL cells in vivo. These findings suggest that TfR could be a universal target to broaden and improve the therapeutic efficacy of CAR T cells and warrant further efforts to use these cells as an alternative CAR T cell product for the therapy of hematological malignancies.
Collapse
Affiliation(s)
- Zilong Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yirui Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingpeng Fu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Zhao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuoshuo Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifen Zhu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong He
- Department of Nuclear Medicine and PET Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Candelaria PV, Leoh LS, Penichet ML, Daniels-Wells TR. Antibodies Targeting the Transferrin Receptor 1 (TfR1) as Direct Anti-cancer Agents. Front Immunol 2021; 12:607692. [PMID: 33815364 PMCID: PMC8010148 DOI: 10.3389/fimmu.2021.607692] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
The transferrin receptor 1 (TfR1), also known as cluster of differentiation 71 (CD71), is a type II transmembrane glycoprotein that binds transferrin (Tf) and performs a critical role in cellular iron uptake through the interaction with iron-bound Tf. Iron is required for multiple cellular processes and is essential for DNA synthesis and, thus, cellular proliferation. Due to its central role in cancer cell pathology, malignant cells often overexpress TfR1 and this increased expression can be associated with poor prognosis in different types of cancer. The elevated levels of TfR1 expression on malignant cells, together with its extracellular accessibility, ability to internalize, and central role in cancer cell pathology make this receptor an attractive target for antibody-mediated therapy. The TfR1 can be targeted by antibodies for cancer therapy in two distinct ways: (1) indirectly through the use of antibodies conjugated to anti-cancer agents that are internalized by receptor-mediated endocytosis or (2) directly through the use of antibodies that disrupt the function of the receptor and/or induce Fc effector functions, such as antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), or complement-dependent cytotoxicity (CDC). Although TfR1 has been used extensively as a target for antibody-mediated cancer therapy over the years, interest continues to increase for both targeting the receptor for delivery purposes and for its use as direct anti-cancer agents. This review focuses on the developments in the use of antibodies targeting TfR1 as direct anti-tumor agents.
Collapse
Affiliation(s)
- Pierre V. Candelaria
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Lai Sum Leoh
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Manuel L. Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- The Molecular Biology Institute, UCLA, Los Angeles, CA, United States
- UCLA AIDS Institute, UCLA, Los Angeles, CA, United States
| | - Tracy R. Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at the University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
10
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Arumov A, Liyanage PY, Trabolsi A, Roberts ER, Li L, Ferreira BCLB, Gao Z, Ban Y, Newsam AD, Taggart MW, Vega F, Bilbao D, Leblanc RM, Schatz JH. Optimized Doxorubicin Chemotherapy for Diffuse Large B-cell Lymphoma Exploits Nanocarrier Delivery to Transferrin Receptors. Cancer Res 2020; 81:763-775. [PMID: 33177062 DOI: 10.1158/0008-5472.can-20-2674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 11/16/2022]
Abstract
New treatments are needed to address persistent unmet clinical needs for diffuse large B-cell lymphoma (DLBCL). Overexpression of transferrin receptor 1 (TFR1) is common across cancer and permits cell-surface targeting of specific therapies in preclinical and clinical studies of various solid tumors. Here, we developed novel nanocarrier delivery of chemotherapy via TFR1-mediated endocytosis, assessing this target for the first time in DLBCL. Analysis of published datasets showed novel association of increased TFR1 expression with high-risk DLBCL cases. Carbon-nitride dots (CND) are emerging nanoparticles with excellent in vivo stability and distribution and are adaptable to covalent conjugation with multiple substrates. In vitro, linking doxorubicin (Dox) and transferrin (TF) to CND (CND-Dox-TF, CDT) was 10-100 times more potent than Dox against DLBCL cell lines. Gain- and loss-of-function studies and fluorescent confocal microscopy confirmed dependence of these effects on TFR1-mediated endocytosis. In contrast with previous therapeutics directly linking Dox and TF, cytotoxicity of CDT resulted from nuclear entry by Dox, promoting double-stranded DNA breaks and apoptosis. CDT proved safe to administer in vivo, and when incorporated into standard frontline chemoimmunotherapy in place of Dox, it improved overall survival by controlling patient-derived xenograft tumors with greatly reduced host toxicities. Nanocarrier-mediated Dox delivery to cell-surface TFR1, therefore, warrants optimization as a potential new therapeutic option in DLBCL. SIGNIFICANCE: Targeted nanoparticle delivery of doxorubicin chemotherapy via the TRF1 receptor presents a new opportunity against high-risk DLBCL tumors using potency and precision.
Collapse
Affiliation(s)
- Artavazd Arumov
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Piumi Y Liyanage
- Department of Chemistry, University of Miami, Coral Gables, Florida
| | - Asaad Trabolsi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Division of Hospital Medicine, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Evan R Roberts
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Cancer Modeling Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Lingxiao Li
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Zhen Gao
- Biostatistics and Bioinformatics Core Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Yuguang Ban
- Biostatistics and Bioinformatics Core Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Austin D Newsam
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Cancer Modeling Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, Florida.
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida. .,Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
12
|
Cheli VT, Correale J, Paez PM, Pasquini JM. Iron Metabolism in Oligodendrocytes and Astrocytes, Implications for Myelination and Remyelination. ASN Neuro 2020; 12:1759091420962681. [PMID: 32993319 PMCID: PMC7545512 DOI: 10.1177/1759091420962681] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron is a key nutrient for normal central nervous system (CNS) development and function; thus, iron deficiency as well as iron excess may result in harmful effects in the CNS. Oligodendrocytes and astrocytes are crucial players in brain iron equilibrium. However, the mechanisms of iron uptake, storage, and efflux in oligodendrocytes and astrocytes during CNS development or under pathological situations such as demyelination are not completely understood. In the CNS, iron is directly required for myelin production as a cofactor for enzymes involved in ATP, cholesterol and lipid synthesis, and oligodendrocytes are the cells with the highest iron levels in the brain which is linked to their elevated metabolic needs associated with the process of myelination. Unlike oligodendrocytes, astrocytes do not have a high metabolic requirement for iron. However, these cells are in close contact with blood vessel and have a strong iron transport capacity. In several pathological situations, changes in iron homoeostasis result in altered cellular iron distribution and accumulation and oxidative stress. In inflammatory demyelinating diseases such as multiple sclerosis, reactive astrocytes accumulate iron and upregulate iron efflux and influx molecules, which suggest that they are outfitted to take up and safely recycle iron. In this review, we will discuss the participation of oligodendrocytes and astrocytes in CNS iron homeostasis. Understanding the molecular mechanisms of iron uptake, storage, and efflux in oligodendrocytes and astrocytes is necessary for planning effective strategies for iron management during CNS development as well as for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Veronica T Cheli
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, The State University of New York, University at Buffalo, Buffalo, New York, United States
| | | | - Pablo M Paez
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, The State University of New York, University at Buffalo, Buffalo, New York, United States
| | - Juana M Pasquini
- CONICET, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
13
|
Macciò A, Gramignano G, Cherchi MC, Tanca L, Melis L, Madeddu C. Role of M1-polarized tumor-associated macrophages in the prognosis of advanced ovarian cancer patients. Sci Rep 2020; 10:6096. [PMID: 32269279 PMCID: PMC7142107 DOI: 10.1038/s41598-020-63276-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/27/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of prognostic and predictive markers is crucial for choosing the most appropriate management method for ovarian cancer patients. We aimed to assess the prognostic role of tumor-associated macrophage (TAM) polarization in advanced ovarian cancer patients. We carried out a prospective observational study that included 140 consecutive patients with advanced-stage high-grade serous ovarian cancer as well as patients with other histotypes of ovarian cancer and patients with ovarian metastasis from other sites between June 2013 and December 2018. Patients were enrolled at the time of laparoscopic surgery before receiving any antineoplastic treatment. We found that patients with high-grade serous papillary ovarian cancers had a prevalence of M1 TAMs, a higher M1/M2 ratio, and a longer overall survival (OS) and progression-free survival (PFS) than other patients. Regression analysis confirmed that there was a significant positive association between the M1/M2 ratio and an improved OS, PFS and platinum-free interval (PFI), both in the entire population and in patients stratified according to tumor type and initial surgery. Kaplan-Meier analysis was performed after the patients were divided into 2 groups according to the median M1/M2 ratio and revealed that patients with a high M1/M2 ratio had a higher OS, PFS and PFI than those with a low M1/M2 ratio. In conclusion, the prognostic and predictive role of TAM polarization in the tumor microenvironment could be of great clinical relevance and may allow the early identification of patients who are likely to respond to therapy. Further studies in a larger prospective sample are warranted.
Collapse
Affiliation(s)
- Antonio Macciò
- Department of Gynecologic Oncology, Azienda Ospedaliera Brotzu, Cagliari, Italy.
| | - Giulia Gramignano
- Medical Oncology Unit, "Nostra Signora di Bonaria" Hospital, San Gavino, Italy
| | | | - Luciana Tanca
- Department of Medical Oncology, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Luca Melis
- Department of Nuclear Medicine, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
14
|
Matthew-Onabanjo AN, Janusis J, Mercado-Matos J, Carlisle AE, Kim D, Levine F, Cruz-Gordillo P, Richards R, Lee MJ, Shaw LM. Beclin 1 Promotes Endosome Recruitment of Hepatocyte Growth Factor Tyrosine Kinase Substrate to Suppress Tumor Proliferation. Cancer Res 2019; 80:249-262. [PMID: 31744816 DOI: 10.1158/0008-5472.can-19-1555] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/01/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022]
Abstract
Beclin 1 has nonautophagic functions that include its ability to regulate endocytic receptor trafficking. However, the contribution of this function to tumor suppression is poorly understood. Here, we provide in vivo evidence that Beclin 1 suppresses tumor proliferation by regulating the endocytic trafficking and degradation of the EGFR and transferrin (TFR1) receptors. Beclin 1 promoted endosomal recruitment of hepatocyte growth factor tyrosine kinase substrate (HRS), which was necessary for sorting surface receptors to intraluminal vesicles for signal silencing and lysosomal degradation. In tumors with low Beclin 1 expression, endosomal HRS recruitment was diminished and receptor function was sustained. Collectively, our results demonstrate a novel role for Beclin 1 in impeding tumor growth by coordinating the regulation of key growth factor and nutrient receptors. These data provide an explanation for how low levels of Beclin 1 facilitate tumor proliferation and contribute to poor cancer outcomes. SIGNIFICANCE: Beclin 1 controls the trafficking fate of growth regulatory receptors to suppress tumor proliferation.
Collapse
Affiliation(s)
- Asia N Matthew-Onabanjo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.,Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jenny Janusis
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jose Mercado-Matos
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.,Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anne E Carlisle
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Dohoon Kim
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Fayola Levine
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Peter Cruz-Gordillo
- Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, Massachusetts.,Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ryan Richards
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Michael J Lee
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Leslie M Shaw
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
15
|
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019; 181:101665. [DOI: 10.1016/j.pneurobio.2019.101665] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
16
|
Neiveyans M, Melhem R, Arnoult C, Bourquard T, Jarlier M, Busson M, Laroche A, Cerutti M, Pugnière M, Ternant D, Gaborit N, Chardès T, Poupon A, Gouilleux-Gruart V, Pèlegrin A, Poul MA. A recycling anti-transferrin receptor-1 monoclonal antibody as an efficient therapy for erythroleukemia through target up-regulation and antibody-dependent cytotoxic effector functions. MAbs 2019; 11:593-605. [PMID: 30604643 PMCID: PMC6512944 DOI: 10.1080/19420862.2018.1564510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Targeting transferrin receptor 1 (TfR1) with monoclonal antibodies is a promising therapeutic strategy in cancer as tumor cells often overexpress TfR1 and show increased iron needs. We have re-engineered six anti-human TfR1 single-chain variable fragment (scFv) antibodies into fully human scFv2-Fcγ1 and IgG1 antibodies. We selected the more promising candidate (H7), based on its ability to inhibit TfR1-mediated iron-loaded transferrin internalization in Raji cells (B-cell lymphoma). The H7 antibody displayed nanomolar affinity for its target in both formats (scFv2-Fcγ1 and IgG1), but cross-reacted with mouse TfR1 only in the scFv2-Fc format. H7 reduced the intracellular labile iron pool and, contrary to what has been observed with previously described anti-TfR1 antibodies, upregulated TfR1 level in Raji cells. H7 scFv2-Fc format elimination half-life was similar in FcRn knock-out and wild type mice, suggesting that TfR1 recycling contributes to prevent H7 elimination in vivo. In vitro, H7 inhibited the growth of erythroleukemia and B-cell lymphoma cell lines (IC50 0.1 µg/mL) and induced their apoptosis. Moreover, the Im9 B-cell lymphoma cell line, which is resistant to apoptosis induced by rituximab (anti-CD20 antibody), was sensitive to H7. In vivo, tumor regression was observed in nude mice bearing ERY-1 erythroleukemia cell xenografts treated with H7 through a mechanism that involved iron deprivation and antibody-dependent cytotoxic effector functions. Therefore, targeting TfR1 using the fully human anti-TfR1 H7 is a promising tool for the treatment of leukemia and lymphoma.
Collapse
Affiliation(s)
- Madeline Neiveyans
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Rana Melhem
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Christophe Arnoult
- c CNRS , GICC UMR 7292 , Tours , France.,d Université François Rabelais de Tours , Tours , France
| | - Thomas Bourquard
- e UMR INRA CNRS Physiologie de la reproduction et des comportements, Université François Rabelais de Tours , Nouzilly , France
| | - Marta Jarlier
- b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Muriel Busson
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Adrien Laroche
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | | | - Martine Pugnière
- g PP2I, Plateforme Protéomique et Interactions Moléculaires , IRCM
| | - David Ternant
- c CNRS , GICC UMR 7292 , Tours , France.,d Université François Rabelais de Tours , Tours , France.,h CHRU de Tours, Department of medical pharmacology , Tours , France
| | - Nadège Gaborit
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Thierry Chardès
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Anne Poupon
- e UMR INRA CNRS Physiologie de la reproduction et des comportements, Université François Rabelais de Tours , Nouzilly , France
| | - Valérie Gouilleux-Gruart
- c CNRS , GICC UMR 7292 , Tours , France.,d Université François Rabelais de Tours , Tours , France
| | - Andre Pèlegrin
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| | - Marie-Alix Poul
- a IRCM, Institut de Recherche en Cancérologie de Montpellier ; INSERM, U1194, Université de Montpellier, Montpellier , France.,b ICM , Institut régional du Cancer de Montpellier , Montpellier , France
| |
Collapse
|
17
|
Johnsen KB, Bak M, Kempen PJ, Melander F, Burkhart A, Thomsen MS, Nielsen MS, Moos T, Andresen TL. Antibody affinity and valency impact brain uptake of transferrin receptor-targeted gold nanoparticles. Theranostics 2018; 8:3416-3436. [PMID: 29930740 PMCID: PMC6010987 DOI: 10.7150/thno.25228] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/17/2018] [Indexed: 11/15/2022] Open
Abstract
Rationale: The ability to treat invalidating neurological diseases is impeded by the presence of the blood-brain barrier (BBB), which inhibits the transport of most blood-borne substances into the brain parenchyma. Targeting the transferrin receptor (TfR) on the surface of brain capillaries has been a popular strategy to give a preferential accumulation of drugs or nanomedicines, but several aspects of this targeting strategy remain elusive. Here we report that TfR-targeted gold nanoparticles (AuNPs) can accumulate in brain capillaries and further transport across the BBB to enter the brain parenchyma. Methods: We characterized our targeting strategy both in vitro using primary models of the BBB and in vivo using quantitative measurements of gold accumulation by inductively-coupled plasma-mass spectrometry together with morphological assessments using light microscopy after silver enhancement and transmission electron microscopy with energy-dispersive X-ray spectroscopy. Results: We find that the uptake capacity is significantly modulated by the affinity and valency of the AuNP-conjugated antibodies. Specifically, antibodies with high and low affinities mediate a low and intermediate uptake of AuNPs into the brain, respectively, whereas a monovalent (bi-specific) antibody improves the uptake capacity remarkably. Conclusion: Our findings indicate that monovalent ligands may be beneficial for obtaining transcytosis of TfR-targeted nanomedicines across the BBB, which is relevant for future design of nanomedicines for brain drug delivery.
Collapse
|
18
|
Romano S, Moura V, Simões S, Moreira JN, Gonçalves J. Anticancer activity and antibody-dependent cell-mediated cytotoxicity of novel anti-nucleolin antibodies. Sci Rep 2018; 8:7450. [PMID: 29748553 PMCID: PMC5945777 DOI: 10.1038/s41598-018-25816-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/09/2018] [Indexed: 01/09/2023] Open
Abstract
Nucleolin arises as a relevant target for cancer therapy, as it is overexpressed at the surface of cancer and angiogenic endothelial cells thus enabling a dual cellular targeting strategy. Immunotherapeutic strategies, albeit of proven therapeutic relevance, have been scarcely explored against this target. Therefore, this work aimed at engineering an anti-nucleolin VHH-based antibody capable of triggering anticancer immune responses. Herein, anti-nucleolin VHHs have been generated upon grafting F3 peptide-derived nucleolin-binding sequences onto a VHH CDR1 or CDR3. One of these nucleolin-binding CDR3-grafted VHH was subsequently fused to a human IgG1 Fc region, enabling a significant antibody-dependent cell-mediated cytotoxicity (ADCC). The generated anti-nucleolin VHH revealed increased binding and antiproliferative effects against cancer cells, relative to the parental VHH, while the VHH-Fc counterpart presented increased cytotoxicity relative to the corresponding VHH. This VHH-Fc also triggered an ADCC effect, in the nanomolar range, against a nucleolin-overexpressing cancer cell line. This effect was evidenced by a 2 or 1.7-fold increase of cell death, in the presence of PBMCs, relative to the parental VHH-Fc or the VHH counterpart, respectively. Overall, these formats represent the first anti-nucleolin VHHs and the first anti-nucleolin antibody with ADCC activity that have been successfully developed.
Collapse
Affiliation(s)
- Sofia Romano
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Vera Moura
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- TREAT U, SA, Parque Industrial de Taveiro, Lote 44, 3045-508, Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal
- FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal.
- FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - João Gonçalves
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
19
|
Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics 2018; 9:1367-1375. [PMID: 28671201 DOI: 10.1039/c7mt00143f] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transferrin receptor (TfR1), which mediates cellular iron uptake through clathrin-dependent endocytosis of iron-loaded transferrin, plays a key role in iron homeostasis. Since the number of TfR1 molecules at the cell surface is the rate-limiting step for iron entry into cells and is essential to prevent iron overload, TfR1 expression is precisely controlled at multiple levels. In this review, we have discussed the latest advances in the molecular regulation of TfR1 expression and we have considered current understanding of TfR1 function beyond its canonical role in providing iron for erythroid precursors and rapidly proliferating cells.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
20
|
Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release 2018. [PMID: 29522834 DOI: 10.1016/j.jconrel.2018.03.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glioblastomas (GBMs) are highly aggressive brain tumors with a very grim prognosis even after multi-modal therapeutic regimens. Conventional chemotherapeutic agents frequently lead to drug resistance and result in severe toxicities to non-cancerous tissues. Resveratrol (RES), a natural polyphenol with pleiotropic health benefits, has proven chemopreventive effects in all the stages of cancer including initiation, promotion and progression. However, the poor physico-chemical properties of RES severely limit its use as a free drug. In this study, RES was loaded into PEGylated liposomes (RES-L) to counter its drawbacks as a free drug. Since transferrin receptors (TfRs) are up-regulated in GBM, the liposome surface was modified with transferrin moieties (Tf-RES-L) to make them cancer cell-specific. The liposomal nanomedicines developed in this project were aimed at enhancing the physico-chemical properties of RES and exploiting the passive and active targeting capabilities of liposomes to effectively treat GBM. The RES-L were stable, had a good drug-loading capacity, prolonged drug-release in vitro and were easily scalable. Flow cytometry and confocal microscopy were used to study the association with, and internalization of, Tf-L into U-87 MG cells. The Tf-RES-Ls were significantly more cytotoxic and induced higher levels of apoptosis accompanied by activation of caspases 3/7 in GBM cells when compared to free RES or RES-L. The ability of RES to arrest cells in the S-phase of the cell cycle, and selectively induce production of reactive oxygen species in cancer cells were probably responsible for its cytotoxic effects. The therapeutic efficacy of RES formulations was evaluated in a subcutaneous xenograft mouse model of GBM. A tumor growth inhibition study and a modified survival study showed that Tf-RES-Ls were more effective than other treatments in their ability to inhibit tumor growth and improve survival in mice. Overall, the liposomal nanomedicines of RES developed in this project exhibited favorable in vitro and in vivo efficacies, which warrant their further investigation for the treatment of GBMs.
Collapse
Affiliation(s)
- Aditi Jhaveri
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Pranali Deshpande
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Bhushan Pattni
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Urbiola K, Blanco-Fernández L, Ogris M, Rödl W, Wagner E, Tros de Ilarduya C. Novel PAMAM-PEG-Peptide Conjugates for siRNA Delivery Targeted to the Transferrin and Epidermal Growth Factor Receptors. J Pers Med 2018; 8:jpm8010004. [PMID: 29315261 PMCID: PMC5872078 DOI: 10.3390/jpm8010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 12/25/2022] Open
Abstract
The transferrin (TfR) and epidermal growth factor receptors (EGFR) are known to be overexpressed on the surface of a wide variety of tumor cells. Therefore, the peptides B6 (TfR specific) and GE11 (targeted to the EGFR) were linked to the PAMAM (polyamidoamine) structure via a polyethylenglycol (PEG) 2 kDa chain with the aim of improving the silencing capacity of the PAMAM-based dendriplexes. The complexes showed an excellent binding capacity to the siRNA with a maximal condensation at nitrogen/phosphate (N/P) 2. The nanoparticles formed exhibited hydrodynamic diameters below 200 nm. The zeta potential was always positive, despite the complexes containing the PEG chain in the structure showing a drop of the values due to the shielding effect. The gene silencing capacity was assayed in HeLa and LS174T cells stably transfected with the eGFPLuc cassette. The dendriplexes containing a specific anti luciferase siRNA, assayed at different N/P ratios, were able to mediate a mean decrease of the luciferase expression values of 14% for HeLa and 20% in LS174T cells, compared to an unspecific siRNA-control. (p < 0.05). In all the conditions assayed, dendriplexes resulted to be non-toxic and viability was always above 75%.
Collapse
Affiliation(s)
- Koldo Urbiola
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080 Pamplona, Spain; (K.U.); (L.B.-F.)
| | - Laura Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080 Pamplona, Spain; (K.U.); (L.B.-F.)
| | - Manfred Ogris
- Department of Pharmaceutical Chemistry, Laboratory of MacroMolecular Cancer Therapeutics (MMCT), University of Vienna, 1010 Vienna, Austria;
| | - Wolfgang Rödl
- Pharmaceutical Biotechnology, Center for NanoScience (CeNS), Ludwig-Maximilians-University (LMU) 80799 Munich, Germany; (W.R.); (E.W.)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoScience (CeNS), Ludwig-Maximilians-University (LMU) 80799 Munich, Germany; (W.R.); (E.W.)
| | - Conchita Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080 Pamplona, Spain; (K.U.); (L.B.-F.)
- Correspondence: ; Tel.: +34-948-425600 (ext. 80-6375)
| |
Collapse
|
22
|
Reduced cancer mortality at high altitude: The role of glucose, lipids, iron and physical activity. Exp Cell Res 2017; 356:209-216. [PMID: 28344053 DOI: 10.1016/j.yexcr.2017.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022]
Abstract
Residency at high altitude (HA) demands adaptation to challenging environmental conditions with hypobaric hypoxia being the most important one. Epidemiological and experimental data suggest that chronic exposure to HA reduces cancer mortality and lowers prevalence of metabolic disorders like diabetes and obesity implying that adaption to HA modifies a broad spectrum of physiological, metabolic and cellular programs with a generally beneficial outcome for humans. However, the complexity of multiple, potentially tumor-suppressive pathways at HA impedes the understanding of mechanisms leading to reduced cancer mortality. Many adaptive processes at HA are tightly interconnected and thus it cannot be ruled out that the entirety or at least some of the HA-related alterations act in concert to reduce cancer mortality. In this review we discuss tumor formation as a concept of competition between healthy and cancer cells with improved fitness - and therefore higher competitiveness - of healthy cells at high altitude. We discuss HA-related changes in glucose, lipid and iron metabolism that may have an impact on tumorigenesis. Additionally, we discuss two parameters with a strong impact on tumorigenesis, namely drug metabolism and physical activity, to underpin their potential contribution to HA-dependent reduced cancer mortality. Future studies are needed to unravel why cancer mortality is reduced at HA and how this knowledge might be used to prevent and to treat cancer patients.
Collapse
|
23
|
Brenner AK, Tvedt THA, Nepstad I, Rye KP, Hagen KM, Reikvam H, Bruserud Ø. Patients with acute myeloid leukemia can be subclassified based on the constitutive cytokine release of the leukemic cells; the possible clinical relevance and the importance of cellular iron metabolism. Expert Opin Ther Targets 2017; 21:357-369. [PMID: 28281897 DOI: 10.1080/14728222.2017.1300255] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Acute myeloid leukaemia (AML) is a heterogeneous malignancy; we studied how the constitutive cytokine release by the AML cells varies among patients. METHODS We investigated the constitutive release of 28 mediators during in vitro culture for 79 consecutive patients. RESULTS Constitutive cytokine release profiles differed among patients, and hierarchical clustering identified three subsets with high, intermediate and low release, respectively. The high-release subset showed high levels of most mediators, usually monocytic differentiation as well as altered mRNA expression of proteins involved in intracellular iron homeostasis and molecular trafficking; this subset also included 4 out of 6 patients with inv(16). Spontaneous in vitro apoptosis did not differ among the subsets. For the high-release patients, cytokines were released both by CD34+ and CD34- cells. The mRNA and released protein levels showed statistically significant correlations only for eleven of the cytokines. The overall survival after intensive anti-leukemic therapy was significantly higher for high-release compared with low-release patients. Pharmacological targeting of iron metabolism (iron chelation, transferrin receptor blocking) altered the cytokine release profile. CONCLUSIONS Subclassification of AML patients based on the constitutive cytokine release may be clinically relevant and a part of a low-risk (i.e. chemosensitive) AML cell phenotype.
Collapse
Affiliation(s)
- Annette K Brenner
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| | | | - Ina Nepstad
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Kristin P Rye
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Karen M Hagen
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway
| | - Håkon Reikvam
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway.,b Department of Medicine , Haukeland University Hospital , Bergen , Norway
| | - Øystein Bruserud
- a Section for Haematology, Department of Clinical Science , University of Bergen , Bergen , Norway.,b Department of Medicine , Haukeland University Hospital , Bergen , Norway
| |
Collapse
|
24
|
Shimosaki S, Nakahata S, Ichikawa T, Kitanaka A, Kameda T, Hidaka T, Kubuki Y, Kurosawa G, Zhang L, Sudo Y, Shimoda K, Morishita K. Development of a complete human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma. Biochem Biophys Res Commun 2017; 485:144-151. [DOI: 10.1016/j.bbrc.2017.02.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 12/31/2022]
|
25
|
Kindrat I, Tryndyak V, de Conti A, Shpyleva S, Mudalige TK, Kobets T, Erstenyuk AM, Beland FA, Pogribny IP. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis. Oncotarget 2016; 7:1276-87. [PMID: 26657500 PMCID: PMC4811459 DOI: 10.18632/oncotarget.6004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/06/2015] [Indexed: 02/06/2023] Open
Abstract
Over-expression of transferrin receptor 1 (TFRC) is observed in hepatocellular carcinoma (HCC); however, there is a lack of conclusive information regarding the mechanisms of this dysregulation. In the present study, we demonstrated a significant increase in the levels of TFRC mRNA and protein in preneoplastic livers from relevant experimental models of human hepatocarcinogenesis and in human HCC cells. Additionally, using the TCGA database, we demonstrated an over-expression of TFRC in human HCC tissue samples and a markedly decreased level of microRNA-152 (miR-152) when compared to non-tumor liver tissue. The results indicated that the increase in levels of TFRC in human HCC cells and human HCC tissue samples may be attributed, in part, to a post-transcriptional mechanism mediated by a down-regulation of miR-152. This was evidenced by a strong inverse correlation between the level of TFRC and the expression of miR-152 in human HCC cells (r = −0.99, p = 4. 7 × 10−9), and was confirmed by in vitro experiments showing that transfection of human HCC cell lines with miR-152 effectively suppressed TFRC expression. This suggests that miR-152-specific targeting of TFRC may provide a selective anticancer therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Iryna Kindrat
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.,Department of Biological and Medical Chemistry, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Svitlana Shpyleva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Thilak K Mudalige
- Office of Regulatory Affairs, Arkansas Regional Laboratory, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Tetyana Kobets
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Anna M Erstenyuk
- Department of Biological and Medical Chemistry, Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ukraine
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
26
|
Luria-Pérez R, Helguera G, Rodríguez JA. Antibody-mediated targeting of the transferrin receptor in cancer cells. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:372-379. [PMID: 29421281 DOI: 10.1016/j.bmhimx.2016.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022] Open
Abstract
Iron is essential for cell growth and is imported into cells in part through the action of transferrin (Tf), a protein that binds its receptor (TfR1 or CD71) on the surface of a cell, and then releases iron into endosomes. TfR1 is a single pass type-II transmembrane protein expressed at basal levels in most tissues. High expression of TfR1 is typically associated with rapidly proliferating cells, including various types of cancer. TfR1 is targeted by experimental therapeutics for several reasons: its cell surface accessibility, constitutive endocytosis into cells, essential role in cell growth and proliferation, and its overexpression by cancer cells. Among the therapeutic agents used to target TfR1, antibodies stand out due to their remarkable specificity and affinity. Clinical trials are being conducted to evaluate the safety and efficacy of agents targeting TfR1 in cancer patients with promising results. These observations suggest that therapies targeting TfR1 as direct therapeutics or delivery conduits remain an attractive alternative for the treatment of cancers that overexpress the receptor.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Gustavo Helguera
- Instituto de Biología y Medicina Experimental, Ciudad Autónoma de Buenos Aires, Argentina.
| | - José A Rodríguez
- Department of Chemistry and Biochemistry, UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California, USA.
| |
Collapse
|
27
|
Benadiba J, Rosilio C, Nebout M, Heimeroth V, Neffati Z, Popa A, Mary D, Griessinger E, Imbert V, Sirvent N, Peyron JF. Iron chelation: an adjuvant therapy to target metabolism, growth and survival of murine PTEN-deficient T lymphoma and human T lymphoblastic leukemia/lymphoma. Leuk Lymphoma 2016; 58:1433-1445. [PMID: 27736268 DOI: 10.1080/10428194.2016.1239257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an essential nutrient, acting as a catalyst for metabolic reactions that are fundamental to cell survival and proliferation. Iron complexed to transferrin is delivered to the metabolism after endocytosis via the CD71 surface receptor. We found that transformed cells from a murine PTEN-deficient T-cell lymphoma model and from T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/T-LL) cell lines overexpress CD71. As a consequence, the cells developed an addiction toward iron whose chelation by deferoxamine (DFO) dramatically affected their survival to induce apoptosis. Interestingly, DFO displayed synergistic activity with three ALL-specific drugs: dexamethasone, doxorubicin, and L-asparaginase. DFO appeared to act through a reactive oxygen species-dependent DNA damage response and potentiated the action of an inhibitor of the PARP pathway of DNA repair. Our results demonstrate that targeting iron metabolism could be an interesting adjuvant therapy for acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Joy Benadiba
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France.,c Centre Hospitalier Universitaire de Nice, Service d'Oncologie Pédiatrique, Hôpital de l'Archet , Nice , France
| | - Celia Rosilio
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Marielle Nebout
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Vera Heimeroth
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Zouhour Neffati
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Alexandra Popa
- b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France.,d CNRS, Institut de Pharmacologie Moléculaire et Cellulaire , Sophia-Antipolis, Valbonne, France
| | - Didier Mary
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Emmanuel Griessinger
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Véronique Imbert
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| | - Nicolas Sirvent
- e UAM Hématologie et Oncologie Pédiatriques, Centre Hospitalier Régional Universitaire de Montpellier, Hôpital Arnaud de Villeneuve , Nice , France
| | - Jean-François Peyron
- a INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Equipe 4 Inflammation, Cancer, Cellules Souches Cancéreuses , Nice , France.,b UFR Médecine, Faculté de Médecine , Université de Nice-Sophia Antipolis , Nice , France
| |
Collapse
|
28
|
Daniels-Wells TR, Penichet ML. Transferrin receptor 1: a target for antibody-mediated cancer therapy. Immunotherapy 2016; 8:991-4. [PMID: 27373880 DOI: 10.2217/imt-2016-0050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Tracy R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA
| | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, CHS 54-140, Box 951782, Los Angeles, CA 90095-1782, USA.,Department of Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,The Molecular Biology Institute, UCLA, Los Angeles, CA USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.,UCLA AIDS Institute, CA, USA
| |
Collapse
|
29
|
Johnsen KB, Moos T. Revisiting nanoparticle technology for blood–brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release 2016; 222:32-46. [DOI: 10.1016/j.jconrel.2015.11.032] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
|
30
|
Le Gall M, Crépin R, Neiveyans M, Auclair C, Fan Y, Zhou Y, Marks JD, Pèlegrin A, Poul MA. Neutralization of KIT Oncogenic Signaling in Leukemia with Antibodies Targeting KIT Membrane Proximal Domain 5. Mol Cancer Ther 2015; 14:2595-605. [PMID: 26358753 DOI: 10.1158/1535-7163.mct-15-0321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023]
Abstract
KIT is a cell surface tyrosine kinase receptor whose ligand stem cell factor (SCF) triggers homodimerization and activation of downstream effector pathways involved in cell survival, proliferation, homing, or differentiation. KIT-activating mutations are major oncogenic drivers in subsets of acute myeloid leukemia (AML), in mast cell leukemia, and in gastrointestinal stromal tumors (GIST). The overexpression of SCF and/or wild-type (WT) KIT is also observed in a number of cancers, including 50% of AML and small cell lung cancer. The use of tyrosine kinase inhibitors (TKI) in these pathologies is, however, hampered by initial or acquired resistance following treatment. Using antibody phage display, we obtained two antibodies (2D1 and 3G1) specific for the most membrane proximal extracellular immunoglobulin domain (D5) of KIT, which is implicated in KIT homodimerization. Produced as single chain variable antibody fragments fused to the Fc fragment of a human IgG1, bivalent 2D1-Fc and 3G1-Fc inhibited KIT-dependent growth of leukemic cell lines expressing WT KIT (UT7/Epo) or constitutively active KIT mutants, including the TKI imatinib-resistant KIT D816V mutant (HMC1.2 cell line). In all models, either expressing WT KIT or mutated KIT, 2D1 and 3G1-Fc induced KIT internalization and sustained surface downregulation. However, interestingly, KIT degradation was only observed in leukemic cell lines with oncogenic KIT, a property likely to limit the toxicity of these antibodies in patients. These fully human antibody formats may represent therapeutic tools to target KIT signaling in leukemia or GIST, and to bypass TKI resistance of certain KIT mutants.
Collapse
Affiliation(s)
- Marianne Le Gall
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France. Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure de Cachan, Cachan, France
| | - Ronan Crépin
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure de Cachan, Cachan, France
| | - Madeline Neiveyans
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Christian Auclair
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure de Cachan, Cachan, France
| | - Yongfeng Fan
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Yu Zhou
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - James D Marks
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Marie-Alix Poul
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
31
|
Zhang C, Zhang F. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities. Protein Cell 2014; 6:88-100. [PMID: 25476483 PMCID: PMC4312762 DOI: 10.1007/s13238-014-0119-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022] Open
Abstract
Excess iron is tightly associated with tumorigenesis in multiple human cancer types through a variety of mechanisms including catalyzing the formation of mutagenic hydroxyl radicals, regulating DNA replication, repair and cell cycle progression, affecting signal transduction in cancer cells, and acting as an essential nutrient for proliferating tumor cells. Thus, multiple therapeutic strategies based on iron deprivation have been developed in cancer therapy. During the past few years, our understanding of genetic association and molecular mechanisms between iron and tumorigenesis has expanded enormously. In this review, we briefly summarize iron homeostasis in mammals, and discuss recent progresses in understanding the aberrant iron metabolism in numerous cancer types, with a focus on studies revealing altered signal transduction in cancer cells.
Collapse
Affiliation(s)
- Caiguo Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, 80045, USA,
| | | |
Collapse
|
32
|
Farajnia S, Ahmadzadeh V, Tanomand A, Veisi K, Khosroshahi SA, Rahbarnia L. Development trends for generation of single-chain antibody fragments. Immunopharmacol Immunotoxicol 2014; 36:297-308. [DOI: 10.3109/08923973.2014.945126] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 2014; 81:49-60. [PMID: 24411731 DOI: 10.1016/j.neuron.2013.10.061] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 12/27/2022]
Abstract
Although biotherapeutics have vast potential for treating brain disorders, their use has been limited due to low exposure across the blood-brain barrier (BBB). We report that by manipulating the binding mode of an antibody fragment to the transferrin receptor (TfR), we have developed a Brain Shuttle module, which can be engineered into a standard therapeutic antibody for successful BBB transcytosis. Brain Shuttle version of an anti-Aβ antibody, which uses a monovalent binding mode to the TfR, increases β-Amyloid target engagement in a mouse model of Alzheimer's disease by 55-fold compared to the parent antibody. We provide in vitro and in vivo evidence that the monovalent binding mode facilitates transcellular transport, whereas a bivalent binding mode leads to lysosome sorting. Enhanced target engagement of the Brain Shuttle module translates into a significant improvement in amyloid reduction. These findings have major implications for the development of biologics-based treatment of brain disorders.
Collapse
|
34
|
Abstract
Iron is an essential nutrient that facilitates cell proliferation and growth. However, iron also has the capacity to engage in redox cycling and free radical formation. Therefore, iron can contribute to both tumour initiation and tumour growth; recent work has also shown that iron has a role in the tumour microenvironment and in metastasis. Pathways of iron acquisition, efflux, storage and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumour cell survival. Signalling through hypoxia-inducible factor (HIF) and WNT pathways may contribute to altered iron metabolism in cancer. Targeting iron metabolic pathways may provide new tools for cancer prognosis and therapy.
Collapse
Affiliation(s)
- Suzy V Torti
- Departments of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | |
Collapse
|
35
|
Tillotson BJ, de Larrinoa IF, Skinner CA, Klavas DM, Shusta EV. Antibody affinity maturation using yeast display with detergent-solubilized membrane proteins as antigen sources. Protein Eng Des Sel 2013; 26:101-12. [PMID: 23109730 PMCID: PMC3542525 DOI: 10.1093/protein/gzs077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/14/2012] [Accepted: 09/23/2012] [Indexed: 01/21/2023] Open
Abstract
Antigen preparations in the form of detergent-solubilized cell lysates could, in principle, render membrane proteins (MPs) compatible with in vitro antibody engineering technologies. To this end, detergent-solubilized cell lysates were coupled with the yeast surface display platform to affinity mature an anti-transferrin receptor (TfR) single-chain antibody (scFv). Lysates were generated from TfR-expressing HEK293 cells by solubilization with detergent-containing buffer after undergoing plasma membrane-restricted biotinylation. Lysate-resident TfR was then combined with a mutagenic anti-TfR scFv library in a competitive, dissociation rate screen, and scFvs were identified with up to 4-fold improved dissociation rates on the surface of yeast. Importantly, although the lysates contained a complex mixture of biotinylated proteins, the engineered scFvs retained their TfR binding specificity. When secreted by yeast as soluble proteins, mutant scFvs bound to cell surface TfR with 3-7-fold improvements in equilibrium binding affinity. Although a known MP antigen was targeted for purposes of this study, employing biotin tagging as a means of antigen detection makes the lysate-based approach particularly flexible. We have previously shown that yeast display can be used to identify lead antibodies using cell lysate-resident MP antigens, and combined with this work showing that antibodies can also be quantitatively engineered using cell lysates, these approaches may provide a high-throughput platform for generation and optimization of antibodies against MPs.
Collapse
Affiliation(s)
- Benjamin J. Tillotson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Iñigo F. de Larrinoa
- Departamento de Quimica Aplicada, Universidad del País Vasco, P M. Lardizabal 3, San Sebastian 20018, Spain
| | - Colin A. Skinner
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Derek M. Klavas
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| | - Eric V. Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI 53706, USA
| |
Collapse
|
36
|
Ye Q, Hu H, Wang Z, Lu T, Hu Z, Zeng X, Zhang S, Liu J, Lei P, Wang CY, Ye Z, Shen G. Generation and functional characterization of the anti-transferrin receptor single-chain antibody-GAL4 (TfRscFv-GAL4) fusion protein. BMC Biotechnol 2012. [PMID: 23192001 PMCID: PMC3560209 DOI: 10.1186/1472-6750-12-91] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The development of vectors for cell-specific gene delivery is a major goal of gene therapeutic strategies. Transferrin receptor (TfR) is an endocytic receptor and identified as tumor relative specific due to its overexpression on most tumor cells or tissues, and TfR binds and intakes of transferrin-iron complex. We have previously generated an anti-TfR single-chain variable fragments of immunoglobulin (scFv) which were cloned from hybridoma cell line producing antibody against TfR linked with a 20 aa-long linker sequence (G4S)4. In the present study, the anti-TfR single-chain antibody (TfRscFv) was fused to DNA-binding domain of the yeast transcription factor GAL4. The recombinant fusion protein, designated as TfRscFv-GAL4, is expected to mediate the entry of DNA-protein complex into targeted tumor cells. RESULTS Fusion protein TfRscFv-GAL4 was expressed in an E. coli bacterial expression system and was recovered from inclusion bodies with subsequent purification by metal-chelate chromatography. The resulting proteins were predominantly monomeric and, upon refolding, became a soluble biologically active bifunctional protein. In biological assays, the antigen-binding activity of the re-natured protein, TfRscFv-GAL4, was confirmed by specific binding to different cancer cells and tumor tissues. The cell binding rates, as indicated by flow cytometry (FCM) analysis, ranged from 54.11% to 8.23% in seven different human carcinoma cell lines. It showed similar affinity and binding potency as those of parent full-length mouse anti-TfR antibody. The positive binding rates to tumor tissues by tissue microarrays (TMA) assays were 75.32% and 63.25%, but it showed weakly binding with hepatic tissue in 5 cases, and normal tissues such as heart, spleen, adrenal cortex blood vessel and stomach. In addition, the re-natured fusion protein TfRscFv-GAL4 was used in an ELISA with rabbit anti-GAL4 antibody. The GAL4-DNA functional assay through the GAL4 complementary conjugation with the GAL4rec-GFP-pGes plasmid to verify the GLA4 activity and GAL4rec-recognized specificity functions. It also shows the complex, TfRscFv-GAL4-GAL4rec-GFP-pGes, could be taken into endochylema to express the green fluorescent protein (GFP) with 8 to 10-fold transfection efficiency. CONCLUSIONS Results of our study demonstrated that the biofunctianality of genetically engineered fusion protein, TfRscFv-GAL4, was retained, as the fusion protein could both carry the plasmid of GAL4rec-pGes and bind TfR on tumour cells. This product was able to transfect target cells effectively in an immuno-specific manner, resulting in transient gene expression. This protein that can be applied as an effective therapeutic and diagnostic delivery to the tumor using endogenous membrane transport system with potential widespread utility.
Collapse
Affiliation(s)
- Qing Ye
- Department of Pathology, Nanjing Drum Tower Hospital affiliated Nanjing University Medical School, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Geyer CR, McCafferty J, Dübel S, Bradbury ARM, Sidhu SS. Recombinant antibodies and in vitro selection technologies. Methods Mol Biol 2012; 901:11-32. [PMID: 22723092 DOI: 10.1007/978-1-61779-931-0_2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Over the past decade, the accumulation of detailed knowledge of antibody structure and function has enabled antibody phage display to emerge as a powerful in vitro alternative to hybridoma methods for creating antibodies. Many antibodies produced using phage display technology have unique properties that are not obtainable using traditional hybridoma technologies. In phage display, selections are performed under controlled, in vitro conditions that are tailored to suit demands of the antigen and the sequence encoding the antibody is immediately available. These features obviate many of the limitations of hybridoma methodology, and because the entire process relies on scalable molecular biology techniques, phage display is also suitable for high-throughput applications. Thus, antibody phage display technology is well suited for genome-scale biotechnology and therapeutic applications. This review describes the antibody phage display technology and highlights examples of antibodies with unique properties that cannot easily be obtained by other technologies.
Collapse
|
38
|
Rodríguez J, Luria-Pérez R, López-Valdés HE, Casero D, Daniels TR, Patel S, Avila D, Leuchter R, So S, ánchez EOS, Bonavida B, Martínez-Maza O, Charles A.C, Pellegrini M, Helguera G, Penichet ML. Lethal iron deprivation induced by non-neutralizing antibodies targeting transferrin receptor 1 in malignant B cells. Leuk Lymphoma 2011; 52:2169-2178. [PMID: 21870996 PMCID: PMC3732792 DOI: 10.3109/10428194.2011.596964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of antibodies have been developed that induce lethal iron deprivation (LID) by targeting the transferrin receptor 1 (TfR1/CD71) and either neutralizing transferrin (Tf) binding, blocking internalization of the receptor and/or inducing its degradation. We have developed recombinant antibodies targeting human TfR1 (ch128.1 and ch128.1Av), which induce receptor degradation and are cytotoxic to certain malignant B-cells. We now show that internalization of TfR1 bound to these antibodies can lead to its sequestration and degradation, as well as reduced Tf uptake, and the induction of a transcriptional response consistent with iron deprivation, which is mediated in part by downstream targets of p53. Cells resistant to these antibodies do not sequester and degrade TfR1 after internalization of the antibody/receptor complex, and accordingly maintain their ability to internalize Tf. These findings are expected to facilitate the rational design and clinical use of therapeutic agents targeting iron import via TfR1 in hematopoietic malignancies.
Collapse
Affiliation(s)
- JoséA. Rodríguez
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rosendo Luria-Pérez
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Unit of Investigative Research on Oncological Disease, Children’s Hospital of Mexico “Federico Gómez”, Mexico City, Mexico
| | - Héctor E. López-Valdés
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David Casero
- Department of Molecular Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Tracy R. Daniels
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shabnum Patel
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David Avila
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Richard Leuchter
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sokuntheavy So
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elizabeth Ortiz-S ánchez
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Otoniel Martínez-Maza
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Epidemiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Andrew .C Charles
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gustavo Helguera
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Manuel L. Penichet
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Mercier PL, Bachvarova M, Plante M, Gregoire J, Renaud MC, Ghani K, Têtu B, Bairati I, Bachvarov D. Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer. Mol Oncol 2011; 5:438-53. [PMID: 21856257 DOI: 10.1016/j.molonc.2011.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022] Open
Abstract
In attempt to discover novel aberrantly hypermethylated genes with putative tumor suppressor function in epithelial ovarian cancer (EOC), we applied expression profiling following pharmacologic inhibition of DNA methylation in EOC cell lines. Among the genes identified, one of particular interest was DOK1, or downstream of tyrosine kinase 1, previously recognized as a candidate tumor suppressor gene (TSG) for leukemia and other human malignancies. Using bisulfite sequencing, we determined that a 5'-non-coding DNA region (located at nt -1158 to -850, upstream of the DOK1 translation start codon) was extensively hypermethylated in primary serous EOC tumors compared with normal ovarian specimens; however, this hypermethylation was not associated with DOK1 suppression. On the contrary, DOK1 was found to be strongly overexpressed in serous EOC tumors as compared to normal tissue and importantly, DOK1 overexpression significantly correlated with improved progression-free survival (PFS) values of serous EOC patients. Ectopic modulation of DOK1 expression in EOC cells and consecutive functional analyses pointed toward association of DOK1 expression with increased EOC cell migration and proliferation, and better sensitivity to cisplatin treatment. Gene expression profiling and consecutive network and pathway analyses were also confirmative for DOK1 association with EOC cell migration and proliferation. These analyses were also indicative for DOK1 protective role in EOC tumorigenesis, linked to DOK1-mediated induction of some tumor suppressor factors and its suppression of pro-metastasis genes. Taken together, our findings are suggestive for a possible tumor suppressor role of DOK1 in EOC; however its implication in enhanced EOC cell migration and proliferation restrain us to conclude that DOK1 represents a true TSG in EOC. Further studies are needed to more completely elucidate the functional implications of DOK1 and other members of the DOK gene family in ovarian tumorigenesis.
Collapse
Affiliation(s)
- Pierre-Luc Mercier
- Department of Molecular Medicine, Laval University, Quebec (Quebec), Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|