1
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2025; 68:328-353. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
2
|
Wang Z, Chen C, Ai J, Gao Y, Wang L, Xia S, Jia Y, Qin Y. The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities. MedComm (Beijing) 2025; 6:e70048. [PMID: 39811803 PMCID: PMC11731108 DOI: 10.1002/mco2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression. This dual role necessitates a careful evaluation of the beneficial and detrimental aspects of senescence within the tumor microenvironment (TME). Specifically, senescent cells display a unique senescence-associated secretory phenotype that releases a diverse array of soluble factors affecting the TME. Furthermore, the impact of senescence on tumor-immune interaction is complex and often underappreciated. Senescent immune cells create an immunosuppressive TME favoring tumor progression. In contrast, senescent tumor cells could promote a transition from immune evasion to clearance. Given these intricate dynamics, therapies targeting senescence hold promise for advancing antitumor strategies. This review aims to summarize the dual effects of senescence on tumor progression, explore its influence on tumor-immune interactions, and discuss potential therapeutic strategies, alongside challenges and future directions. Understanding how senescence regulates antitumor immunity, along with new therapeutic interventions, is essential for managing tumor cell senescence and remodeling the immune microenvironment.
Collapse
Affiliation(s)
- Zehua Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chen Chen
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiaoyu Ai
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yaping Gao
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lei Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shurui Xia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yongxu Jia
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yanru Qin
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
3
|
Perfilyeva YV, Aquino AD, Borodin MA, Kali A, Abdolla N, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Jainakbayev NT, Sharipov KO, Belyaev NN. Can interventions targeting MDSCs improve the outcome of vaccination in vulnerable populations? Int Rev Immunol 2024:1-17. [PMID: 39707917 DOI: 10.1080/08830185.2024.2443423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients. All of these groups are characterized by persistent chronic inflammation. Recent studies have demonstrated that one of the key players in immune regulation and the promotion of chronic inflammation are myeloid-derived suppressor cells (MDSCs). These cells possess a wide range of immunosuppressive mechanisms and are able to dampen immune responses in both antigen-specific and antigen-nonspecific manner, thus contributing to the establishment and maintenance of an inflammatory environment. Given their pivotal role in immune modulation, there is growing interest in understanding how MDSCs may influence the efficacy of vaccines, particularly in vulnerable populations. In this narrative review, we discuss whether MDSCs are able to regulate vaccine-induced immunity and whether their suppression can potentially enhance vaccine efficacy in vulnerable populations.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arthur D Aquino
- Almazov National Medical Research Center, St. Petersburg, Russia
| | - Maxim A Borodin
- Almazov National Medical Research Center, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Al-Farabi, Kazakh National University, Almaty, Kazakhstan
| | | | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | |
Collapse
|
4
|
Ramezani-Aliakbari K, Jalali SA, Alinejad M, Jeddi-Tehrani M, Shabani M. 5-Fluorouracil Effectively Depletes Tumor Induced Myeloid Derived Suppressor Cells in 4T1 Mammary Carcinoma Model. Avicenna J Med Biotechnol 2024; 16:244-250. [PMID: 39606677 PMCID: PMC11589428 DOI: 10.18502/ajmb.v16i4.16740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/20/2024] [Indexed: 11/29/2024] Open
Abstract
Background Myeloid Derived Suppressor Cells (MDSCs) are capable of inhibiting both innate and adaptive immune responses and accumulate in the microenvironment of breast tumors. Hence, MDSC depletion by chemotherapeutic agents can improve clinical efficacy of cancer immunotherapy. The effects of 5-FU and doxorubicin agents on MDSC reduction in 4T1 breast cancer murine model were evaluated. Methods 5×105 of 4T1 tumor cells were injected into mammary fat pad of BALB/c female mice. Tumor bearing mice were randomly divided into 4 groups: PBS receiving control group, doxorubicin receiving groups at doses of 2.5 and 5 mg/kg, and 5-FU receiving group at dose of 50 mg/kg. Doxorubicin and 5-FU agents were intraperitoneally administrated at three doses with 5-day intervals and five doses for three times a week, respectively. Then, on day 20 post tumor cells injection, spleens and tumors were isolated to determine frequency of CD11b+ Gr1+ MDSCs by flow cytometry analysis. Results 5-FU was able to reduce significantly both splenic and interatumoral MDSCs comparing to control group (p=0.0276 and p=0.0067, respectively). Also, Doxorubicin treatment at dose of 50 mg/kg was associated to a significant reduction of splenic MDSCs in comparison to untreated group (p=0.0382). However, only 5-FU injection led to inhibit notably tumor growth in comparison to control group (p=0.0139). Conclusion Findings show that 5-FU has inhibitory effects on MDSCs and tumor growth in 4T1 tumor model. So, more investigations are needed to study combination of 5-FU with immune based approaches to enhance the efficacy of cancer therapies.
Collapse
Affiliation(s)
- Khadijeh Ramezani-Aliakbari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamadan, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maedeh Alinejad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Becker W, Olkhanud PB, Seishima N, Moreno PA, Goldfarbmuren KC, Maeng HM, Berzofsky JA. Second-generation checkpoint inhibitors and Treg depletion synergize with a mouse cancer vaccine in accordance with tumor microenvironment characterization. J Immunother Cancer 2024; 12:e008970. [PMID: 38955422 PMCID: PMC11218019 DOI: 10.1136/jitc-2024-008970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Despite advances in checkpoint inhibitor (CPI) therapy for cancer treatment, many cancers remain resistant. Tumors deemed "cold" based on lack of T cell infiltration show reduced potential for CPI therapy. Cancer vaccines may overcome the inadequacy of existing T cells by inducing the needed antitumor T cell response to synergize with CPIs and overcome resistance. METHODS CT26 and TC1 tumor cells were injected subcutaneously into mice. Mice were treated with combinations of CPIs alone or a cancer vaccine specific to the tumor antigen E7 present in TC1 cells. CPIs for the TC1 model were selected because of immunophenotyping TC1 tumors. Antitumor and protumor immunity, tumor size and survival, sequence and timing of vaccine and CPI administration, and efficacy of treatment in young and aged mice were probed. RESULTS While "hot" CT26 tumors are treatable with combinations of second-generation CPIs alone or with anti-TGFβ, "cold" TC1 tumor reduction requires the synergy of a tumor-antigen-specific vaccine in combination with two CPIs, anti-TIGIT and anti-PD-L1, predicted by tumor microenvironment (TME) characterization. The synergistic triple combination delays tumor growth better than any pairwise combination and improves survival in a CD8+T cell-dependent manner. Depletion of CD4+T cells improved the treatment response, and depleting regulatory T cells (Treg) revealed Tregs to be inhibiting the response as also predicted from TME analysis. We found the sequence of CPI and vaccine administration dictates the success of the treatment, and the triple combination administered concurrently induces the highest E7-specific T cell response. Contrary to young mice, in aged mice, the cancer vaccine alone is ineffective, requiring the CPIs to delay tumor growth. CONCLUSIONS These findings show how pre-existing or vaccine-mediated de novo T cell responses can both be amplified by and facilitate synergistic CPIs and Treg depletion that together lead to greater survival, and how analysis of the TME can help rationally design combination therapies and precision medicine to enhance clinical response to CPI and cancer vaccine therapy.
Collapse
Affiliation(s)
- William Becker
- Vaccine Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Purevdorj B Olkhanud
- Vaccine Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Noriko Seishima
- Vaccine Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paloma A Moreno
- Vaccine Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine C Goldfarbmuren
- Vaccine Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Advanced Biomedical Computational Science, Leidos Biomedical Research Inc, Frederick, Maryland, USA
| | - Hoyoung M Maeng
- Vaccine Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jay A Berzofsky
- Vaccine Branch, CCR, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Fu Z, Xu H, Yue L, Zheng W, Pan L, Gao F, Liu X. Immunosenescence and cancer: Opportunities and challenges. Medicine (Baltimore) 2023; 102:e36045. [PMID: 38013358 PMCID: PMC10681516 DOI: 10.1097/md.0000000000036045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
As individuals age, cancer becomes increasingly common. This continually rising risk can be attributed to various interconnected factors that influence the body's susceptibility to cancer. Among these factors, the accumulation of senescent cells in tissues and the subsequent decline in immune cell function and proliferative potential are collectively referred to as immunosenescence. Reduced T-cell production, changes in secretory phenotypes, increased glycolysis, and the generation of reactive oxygen species are characteristics of immunosenescence that contribute to cancer susceptibility. In the tumor microenvironment, senescent immune cells may promote the growth and spread of tumors through multiple pathways, thereby affecting the effectiveness of immunotherapy. In recent years, immunosenescence has gained increasing attention due to its critical role in tumor development. However, our understanding of how immunosenescence specifically impacts cancer immunotherapy remains limited, primarily due to the underrepresentation of elderly patients in clinical trials. Furthermore, there are several age-related intervention methods, including metformin and rapamycin, which involve genetic and pharmaceutical approaches. This article aims to elucidate the defining characteristics of immunosenescence and its impact on malignant tumors and immunotherapy. We particularly focus on the future directions of cancer treatment, exploring the complex interplay between immunosenescence, cancer, and potential interventions.
Collapse
Affiliation(s)
- Zhibin Fu
- Weifang Hospital of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Hailong Xu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Lanping Yue
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Weiwei Zheng
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Linkang Pan
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Fangyi Gao
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| | - Xingshan Liu
- Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong, China
| |
Collapse
|
7
|
Thomas AL, Godarova A, Wayman JA, Miraldi ER, Hildeman DA, Chougnet CA. Accumulation of immune-suppressive CD4 + T cells in aging - tempering inflammaging at the expense of immunity. Semin Immunol 2023; 70:101836. [PMID: 37632992 PMCID: PMC10840872 DOI: 10.1016/j.smim.2023.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
The 'immune risk profile' has been shown to predict mortality in the elderly, highlighting the need to better understand age-related immune dysfunction. While aging leads to many defects affecting all arms of the immune system, this review is focused on the accrual of immuno-suppressive CD4 + T cell populations, including FoxP3 + regulatory T cells, and subsets of IL-10-producing T follicular helper cells. New data suggest that such accumulations constitute feedback mechanisms to temper the ongoing progressive low-grade inflammation that develops with age, the so-called "inflammaging", and by doing so, how they have the potential to promote healthier aging. However, they also impair effector immune responses, notably to infections, or vaccines. These studies also reinforce the idea that the aged immune system should not be considered as a poorly functional version of the young one, but more as a dynamic system in which CD4 + T cells, and other immune/non-immune subsets, differentiate, interact with their milieu and function differently than in young hosts. A better understanding of these unique interactions is thus needed to improve effector immune responses in the elderly, while keeping inflammaging under control.
Collapse
Affiliation(s)
- Alyssa L Thomas
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alzbeta Godarova
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Joseph A Wayman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Emily R Miraldi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Claire A Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Ontiveros CO, Murray CE, Crossland G, Curiel TJ. Considerations and Approaches for Cancer Immunotherapy in the Aging Host. Cancer Immunol Res 2023; 11:1449-1461. [PMID: 37769157 PMCID: PMC11287796 DOI: 10.1158/2326-6066.cir-23-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Advances in cancer immunotherapy are improving treatment successes in many distinct cancer types. Nonetheless, most tumors fail to respond. Age is the biggest risk for most cancers, and the median population age is rising worldwide. Advancing age is associated with manifold alterations in immune cell types, abundance, and functions, rather than simple declines in these metrics, the consequences of which remain incompletely defined. Our understanding of the effects of host age on immunotherapy mechanisms, efficacy, and adverse events remains incomplete. A deeper understanding of age effects in all these areas is required. Most cancer immunotherapy preclinical studies examine young subjects and fail to assess age contributions, a remarkable deficit given the known importance of age effects on immune cells and factors mediating cancer immune surveillance and immunotherapy efficacy. Notably, some cancer immunotherapies are more effective in aged versus young hosts, while others fail despite efficacy in the young. Here, we review our current understanding of age effects on immunity and associated nonimmune cells, the tumor microenvironment, cancer immunotherapy, and related adverse effects. We highlight important knowledge gaps and suggest areas for deeper enquiries, including in cancer immune surveillance, treatment response, adverse event outcomes, and their mitigation.
Collapse
Affiliation(s)
- Carlos O. Ontiveros
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Clare E. Murray
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
| | - Grace Crossland
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Tyler J. Curiel
- UT Health San Antonio Long School of Medicine and Graduate School of Biomedical Sciences, San Antonio, TX 78229
- Graduate School of Microbiology and Immunology, Dartmouth, Hanover, NH 03755
- The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Dartmouth Health and Dartmouth Cancer Center, Lebanon, NH 03756
| |
Collapse
|
9
|
Singh A, Ashar H, Butcher JT, Ranjan A. Age-associated changes in the gut microbiome impact efficacy of tumor immunomodulatory treatments. Exp Gerontol 2023; 181:112268. [PMID: 37572993 PMCID: PMC11073541 DOI: 10.1016/j.exger.2023.112268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
In-situ vaccination (ISV) utilizing nanoparticles (NPs) and therapeutic devices like focused ultrasound (FUS) can trigger immune-mediated killing of both treated and untreated cancer cells. However, the impact of confounding factors such as aging and gut microbiota composition on therapeutic outcomes remains poorly understood. In this study, we sequentially treated young mice (∼8 weeks) and old mice (>18 months) with bilateral melanoma using FUS and calreticulin nanoparticles (CRT-NP) to enhance immunogenic cell death. The combination of CRT-NP and FUS (CFUS) demonstrated greater efficacy in inducing regression of treated and untreated tumors in young mice compared to old mice. The diminished effectiveness in older mice was associated with significant differences in gut microbiome composition, characterized by alterations in bacterial species and splenic immune cells. Specifically, young mice exposed to CFUS exhibited higher abundance of Bacteroidetes and Verrucomicrobia, which was not observed in the aged cohorts. Turicibacter, Anaerotruncus, and Ruminiclostridium demonstrated negative correlations with CD8+ T cells but positive correlations with CD4+ T cells and MDSC cells in both age groups. Taxon set enrichment analysis revealed 58 significantly enriched host gene targets in the young cluster compared to only 11 in the aged cluster. These findings highlight the relationship between ISV treatment efficacy and gut microbiome composition, suggesting that interventions such as diet modification, probiotics, or fecal microbiota transplantation may hold potential as therapeutic strategies to enhance immune responses against solid tumors.
Collapse
Affiliation(s)
- Akansha Singh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Joshua T Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
10
|
Ramezani-Aliakbari K, Khaki-Bakhtiarvand V, Mahmoudian J, Asgarian-Omran H, Shokri F, Hojjat-Farsangi M, Jeddi-Tehrani M, Shabani M. Evaluation of the anti-tumor effects of an anti-Human Epidermal growth factor receptor 2 (HER2) monoclonal antibody in combination with CD11b +/Gr-1 + myeloid cells depletion using a recombinant peptibody in 4 T1-HER2 tumor model. Int Immunopharmacol 2023; 121:110463. [PMID: 37327513 DOI: 10.1016/j.intimp.2023.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Clinical efficacy of Human Epidermal growth factor Receptor 2 (HER2) targeted strategies is limited due to impaired anti-tumor responses negatively regulated by immunosuppressive cells. We thus, investigated the inhibitory effects of an anti-HER2 monoclonal antibody (1 T0 mAb) in combination with CD11b+/Gr-1+ myeloid cells depletion in 4 T1-HER2 tumor model. METHODS BALB/c mice were challenged with human HER2-expressing 4 T1 murine breast cancer cell line. A week post tumor challenge, each mouse received 50 µg of a myeloid cells specific peptibody every other day, or 10 mg/kg of 1 T0 mAb two times a week, and their combination for two weeks. The treatments effect on tumor growth was measured by calculating tumor size. Also, the frequencies of CD11b+/Gr-1+ cells and T lymphocytes were measured by flow cytometry. RESULTS Peptibody treated mice indicated tumor regression and 40 % of the mice eradicated their primary tumors. The peptibody was capable to deplete notably splenic CD11b+/Gr-1+ cells as well as intratumoral CD11b+/Gr-1+ cells (P < 0.0001) and led to an increased number of tumor infiltrating CD8+ T cells (3.3 folds) and also that of resident tumor draining lymph nodes (TDLNs) (3 folds). Combination of peptibody and 1 T0 mAb resulted in enhanced expansion of tumor infiltrating CD4 + and CD8+ T cells which was associated with tumor eradication in 60 % of the mice. CONCLUSIONS Peptibody is able to deplete CD11b+/Gr-1+ cells and increase anti-tumoral effects of the 1 T0 mAb in tumor eradication. Thus, this myeloid population have critical roles in development of tumors and their depletion is associated with induction of anti-tumoral responses.
Collapse
Affiliation(s)
| | - Vahid Khaki-Bakhtiarvand
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, 17164 Stockholm, Sweden
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Zhao B, Wu B, Feng N, Zhang X, Zhang X, Wei Y, Zhang W. Aging microenvironment and antitumor immunity for geriatric oncology: the landscape and future implications. J Hematol Oncol 2023; 16:28. [PMID: 36945046 PMCID: PMC10032017 DOI: 10.1186/s13045-023-01426-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
The tumor microenvironment (TME) has been extensively investigated; however, it is complex and remains unclear, especially in elderly patients. Senescence is a cellular response to a variety of stress signals, which is characterized by stable arrest of the cell cycle and major changes in cell morphology and physiology. To the best of our knowledge, senescence leads to consistent arrest of tumor cells and remodeling of the tumor-immune microenvironment (TIME) by activating a set of pleiotropic cytokines, chemokines, growth factors, and proteinases, which constitute the senescence-associated secretory phenotype (SASP). On the one hand, the SASP promotes antitumor immunity, which enhances treatment efficacy; on the other hand, the SASP increases immunosuppressive cell infiltration, including myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), M2 macrophages, and N2 neutrophils, contributing to TIME suppression. Therefore, a deeper understanding of the regulation of the SASP and components contributing to robust antitumor immunity in elderly individuals with different cancer types and the available therapies is necessary to control tumor cell senescence and provide greater clinical benefits to patients. In this review, we summarize the key biological functions mediated by cytokines and intercellular interactions and significant components of the TME landscape, which influence the immunotherapy response in geriatric oncology. Furthermore, we summarize recent advances in clinical practices targeting TME components and discuss potential senescent TME targets.
Collapse
Affiliation(s)
- Binghao Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100032, China
| | - Bo Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Nan Feng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xin Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
- Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China
| | - Wenxiong Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang University, 1 Minde Road, Nanchang, 330006, China.
| |
Collapse
|
12
|
Han S, Georgiev P, Ringel AE, Sharpe AH, Haigis MC. Age-associated remodeling of T cell immunity and metabolism. Cell Metab 2023; 35:36-55. [PMID: 36473467 PMCID: PMC10799654 DOI: 10.1016/j.cmet.2022.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Aging results in remodeling of T cell immunity and is associated with poor clinical outcomes in age-related diseases such as cancer. Among the hallmarks of aging, changes in host and cellular metabolism critically affect the development, maintenance, and function of T cells. Although metabolic perturbations impact anti-tumor T cell responses, the link between age-associated metabolic dysfunction and anti-tumor immunity remains unclear. In this review, we summarize recent advances in our understanding of aged T cell metabolism, with a focus on the bioenergetic and immunologic features of T cell subsets unique to the aging process. We also survey insights into mechanisms of metabolic T cell dysfunction in aging and discuss the impacts of aging on the efficacy of cancer immunotherapy. As the average life expectancy continues to increase, understanding the interplay between age-related metabolic reprogramming and maladaptive T cell immunity will be instrumental for the development of therapeutic strategies for older patients.
Collapse
Affiliation(s)
- SeongJun Han
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Peter Georgiev
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alison E Ringel
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Saito S, Okuno A, Maekawa T, Kobayashi R, Yamashita O, Tsujimura N, Inaba M, Kageyama Y, Tsuji NM. Lymphocyte antigen 6 complex locus G6D downregulation is a novel parameter for functional impairment of neutrophils in aged mice. Front Immunol 2022; 13:1001179. [PMID: 36389807 PMCID: PMC9647080 DOI: 10.3389/fimmu.2022.1001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/05/2022] [Indexed: 12/02/2022] Open
Abstract
Immunological aging is a critical event that causes serious functional impairment in the innate immune system. However, the identification markers and parameters are still poorly understood in immunological aging of myeloid lineage cells. Here, we show that a downregulation of lymphocyte antigen 6 complex locus G6D (Ly-6G) observed in aged mouse neutrophils could serve as a novel marker for the prediction of age-associated functional impairment in the neutrophils. Ly-6G expression was significantly downregulated in the bone marrow (BM) neutrophils of aged mice compared to young mice confirmed by flow cytometry analysis. In vitro experiments using BM-isolated neutrophils showed significant downregulations in their activities, such as phagocytosis, reactive oxygen species (ROS) production, interleukin (IL)-1β production, neutrophil extracellular trap (NET) formation, and migration as well as bacterial clearance, in the aged mouse neutrophils compared to those of young mice counterparts. Interestingly, the magnitudes of functional parameters were strongly correlated with the Ly-6G expression in the neutrophils. Thus, our results suggest that downregulation of Ly-6G reflects the age-associated functional attenuation of the neutrophils.
Collapse
Affiliation(s)
- Suguru Saito
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Suguru Saito, ; ; Noriko M. Tsuji, ;
| | - Alato Okuno
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Aomori, Japan
| | - Toshio Maekawa
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- iFoodMed Inc., Tsuchiura, Japan
| | - Ryoki Kobayashi
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- iFoodMed Inc., Tsuchiura, Japan
- Division of Microbiology and Immunology, Department of Infection and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Osamu Yamashita
- Technical Service Department, CLEA Japan, Inc., Tokyo, Japan
| | | | - Morihiko Inaba
- Tokyo Animal and Diet Department, CLEA Japan, Inc., Tokyo, Japan
| | - Yasushi Kageyama
- Tokyo Animal and Diet Department, CLEA Japan, Inc., Tokyo, Japan
| | - Noriko M. Tsuji
- Division of Cellular and Molecular Engineering, Department of Life Technology and Science, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- iFoodMed Inc., Tsuchiura, Japan
- Department of Food Science, Jumonji University, Niiza, Japan
- *Correspondence: Suguru Saito, ; ; Noriko M. Tsuji, ;
| |
Collapse
|
14
|
Ramezani-Ali Akbari K, Khaki-Bakhtiarvand V, Mahmoudian J, Asgarian-Omran H, Shokri F, Hojjat-Farsangi M, Jeddi-Tehrani M, Shabani M. Cloning, expression and characterization of a peptibody to deplete myeloid derived suppressor cells in a murine mammary carcinoma model. Protein Expr Purif 2022; 200:106153. [PMID: 35995320 DOI: 10.1016/j.pep.2022.106153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
BACKGROUND Myeloid derived suppressor cells (MDSCs) are an immature heterogeneous population of myeloid lineage that attenuate the anti-tumor immune responses. Depletion of MDSCs has been shown to improve efficacy of cancer immunotherapeutic approaches. Here, we expressed and characterized a peptibody which had previously been defined by phage display technique capable of recognizing and depleting murine MDSCs. MATERIALS AND METHODS Using splicing by overlap extension (SOE) PCR, the coding sequence of the MDSC binding peptide and linker were synthesized and then ligated into a home-made expression plasmid containing mouse IgG2a Fc. The peptibody construct was transfected into CHO-K1 cells by lipofectamine 3000 reagent and the resulting fusion protein was purified with protein G column and subsequently characterized by ELISA, SDS-PAGE and immunoblotting. The binding profile of the peptibody to splenic MDSCs and its MDSC depletion ability were then tested by flow cytometry. RESULTS The purified peptibody appeared as a 70 KDa band in Western blot. It could bind to 98.8% of splenic CD11b+/Gr-1+ MDSCs. In addition, the intratumoral MDSCs were significantly depleted after peptibody treatment compared to their PBS-treated negative control counterparts (P < 0.05). CONCLUSION In this study, a peptibody capable of depleting intratumoral MDSCs, was successfully expressed and purified. Our results imply that it could be considered as a potential tool for research on cancer immunotherapy.
Collapse
Affiliation(s)
| | - Vahid Khaki-Bakhtiarvand
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, 17164, Stockholm, Sweden
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Palatella M, Guillaume SM, Linterman MA, Huehn J. The dark side of Tregs during aging. Front Immunol 2022; 13:940705. [PMID: 36016952 PMCID: PMC9398463 DOI: 10.3389/fimmu.2022.940705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
In the last century, we have seen a dramatic rise in the number of older persons globally, a trend known as the grey (or silver) tsunami. People live markedly longer than their predecessors worldwide, due to remarkable changes in their lifestyle and in progresses made by modern medicine. However, the older we become, the more susceptible we are to a series of age-related pathologies, including infections, cancers, autoimmune diseases, and multi-morbidities. Therefore, a key challenge for our modern societies is how to cope with this fragile portion of the population, so that everybody could have the opportunity to live a long and healthy life. From a holistic point of view, aging results from the progressive decline of various systems. Among them, the distinctive age-dependent changes in the immune system contribute to the enhanced frailty of the elderly. One of these affects a population of lymphocytes, known as regulatory T cells (Tregs), as accumulating evidence suggest that there is a significant increase in the frequency of these cells in secondary lymphoid organs (SLOs) of aged animals. Although there are still discrepancies in the literature about modifications to their functional properties during aging, mounting evidence suggests a detrimental role for Tregs in the elderly in the context of bacterial and viral infections by suppressing immune responses against non-self-antigens. Interestingly, Tregs seem to also contribute to the reduced effectiveness of immunizations against many pathogens by limiting the production of vaccine-induced protective antibodies. In this review, we will analyze the current state of understandings about the role of Tregs in acute and chronic infections as well as in vaccination response in both humans and mice. Lastly, we provide an overview of current strategies for Treg modulation with potential future applications to improve the effectiveness of vaccines in older individuals.
Collapse
Affiliation(s)
- Martina Palatella
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
16
|
Barnett JD, Jin J, Penet MF, Kobayashi H, Bhujwalla ZM. Phototheranostics of Splenic Myeloid-Derived Suppressor Cells and Its Impact on Spleen Metabolism in Tumor-Bearing Mice. Cancers (Basel) 2022; 14:cancers14153578. [PMID: 35892836 PMCID: PMC9332589 DOI: 10.3390/cancers14153578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: MDSCs play an active role in the immune surveillance escape of cancer cells. Because MDSCs in mice are CD11b+Gr1+, near-infrared photoimmunotherapy (NIR-PIT) using the NIR dye IR700 conjugated to an MDSC-binding antibody provides an opportunity for targeted elimination of MDSCs. (2) Methods: The efficacy of Gr1-IR700-mediated NIR-PIT was evaluated in vitro using magnetically separated CD11b+Gr1+ MDSCs from spleens of 4T1-luc tumor-bearing (TB) mice. For in vivo evaluation, spleens of Gr1-IR700-injected 4T1-luc TB mice were irradiated with NIR light, and splenocyte viability was determined using CCK-8 assays. Metabolic profiling of NIR-PIT-irradiated spleens was performed using 1H MRS. (3) Results: Flow cytometric analysis confirmed a ten-fold increase in splenic MDSCs in 4T1-luc TB mice. Gr1-IR700-mediated NIR-PIT eliminated tumor-induced splenic MDSCs in culture. Ex vivo fluorescence imaging revealed an 8- and 9-fold increase in mean fluorescence intensity (MFI) in the spleen and lungs of Gr1-IR700-injected compared to IgG-IR700-injected TB mice. Splenocytes from Gr1-IR700-injected TB mice exposed in vivo to NIR-PIT demonstrated significantly lower viability compared to no light exposure or untreated control groups. Significant metabolic changes were observed in spleens following NIR-PIT. (4) Conclusions: Our data confirm the ability of NIR-PIT to eliminate splenic MDSCs, identifying its potential to eliminate MDSCs in tumors to reduce immune suppression. The metabolic changes observed may identify potential biomarkers of splenic MDSC depletion as well as potential metabolic targets of MDSCs.
Collapse
Affiliation(s)
- James D. Barnett
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
| | - Jiefu Jin
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
| | - Marie-France Penet
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, MD 20814, USA;
| | - Zaver M. Bhujwalla
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (J.D.B.); (J.J.); (M.-F.P.)
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence:
| |
Collapse
|
17
|
Aging-associated and CD4 T-cell–dependent ectopic CXCL13 activation predisposes to anti–PD-1 therapy-induced adverse events. Proc Natl Acad Sci U S A 2022; 119:e2205378119. [PMID: 35858347 PMCID: PMC9303859 DOI: 10.1073/pnas.2205378119] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immune-related adverse events (irAEs) induced by immune-checkpoint blockade including antiprogrammed death receptor (PD)-1 therapy are a major problematic issue in cancer immunotherapy. Preclinical models for more physiologically occurring irAEs are potentially useful for the clarification of fundamental causes and natural developmental course of irAEs. Here, we found that in tumor-bearing aged, but not young, mice, anti–PD-(L)1 therapy alone induces irAE-like multiorgan toxicities through CD4 T-cell–derived interleukin (IL)-21 and subsequent age-specific CXCL13 expression in tertiary lymphoid structure. Consistent with this animal model, a systemic increase in CXCL13 correlates with irAE incidence in cancer patients. These findings provide insight into the development of management strategies for irAE that balance both irAE-related immune response and antitumor immune surveillance. Clinical success of immune-checkpoint blockade (ICB) cancer immunotherapy is compromised by increased risk of immune-related adverse events (irAEs). However, mechanistic action(s) of immune responses underlying development of irAE remain not fully explored. Here, we found that in tumor-bearing aged, but not young, mice, antiprogrammed death receptor (PD)-1 therapy elicited irAE-like multiorgan dysfunctions with ectopic accumulation of T and B cells in damaged organs. In this preclinical model, the organ toxicities were mediated by immunoglobulin G (IgG) deposition because administration of IG from ICB-treated aged mice induced the pathogenicity specifically in naïve aged hosts. Mechanistically, CD4 T-cell–derived interleukin (IL)-21 upregulated B-cell–homing chemokine, CXCL13, preferentially in irAE organs from aged mice treated with anti–PD-1 therapy. The ICB-induced pathogenicity was alleviated by B-cell depletion or by blockade of IL-21 or CXCL13 activity. These results suggest that age-associated immune regulatory milieu contributes to the formation of tertiary lymphoid structure-like lymphocytic aggregates in irAE organs and irAE-related toxicity employing IL-21-CXCL13-auto-antibody axis. Supporting this, a systemic increase in CXCL13 and Il21 expression in CD4 T cells correlated with irAE incidence in ICB-treated patients. These findings provide rationale for therapeutic usefulness of CXCL13 in irAE management.
Collapse
|
18
|
Wang X, Ma L, Pei X, Wang H, Tang X, Pei JF, Ding YN, Qu S, Wei ZY, Wang HY, Wang X, Wei GH, Liu DP, Chen HZ. Comprehensive assessment of cellular senescence in the tumor microenvironment. Brief Bioinform 2022; 23:bbac118. [PMID: 35419596 PMCID: PMC9116224 DOI: 10.1093/bib/bbac118] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence (CS), a state of permanent growth arrest, is intertwined with tumorigenesis. Due to the absence of specific markers, characterizing senescence levels and senescence-related phenotypes across cancer types remain unexplored. Here, we defined computational metrics of senescence levels as CS scores to delineate CS landscape across 33 cancer types and 29 normal tissues and explored CS-associated phenotypes by integrating multiplatform data from ~20 000 patients and ~212 000 single-cell profiles. CS scores showed cancer type-specific associations with genomic and immune characteristics and significantly predicted immunotherapy responses and patient prognosis in multiple cancers. Single-cell CS quantification revealed intra-tumor heterogeneity and activated immune microenvironment in senescent prostate cancer. Using machine learning algorithms, we identified three CS genes as potential prognostic predictors in prostate cancer and verified them by immunohistochemical assays in 72 patients. Our study provides a comprehensive framework for evaluating senescence levels and clinical relevance, gaining insights into CS roles in cancer- and senescence-related biomarker discovery.
Collapse
Affiliation(s)
- Xiaoman Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifei Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoya Pei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jian-Fei Pei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang-Nan Ding
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyao Qu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zi-Yu Wei
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Yu Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center, Department of Biochemistry and Molecular Biology & Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Salminen A. Clinical perspectives on the age-related increase of immunosuppressive activity. J Mol Med (Berl) 2022; 100:697-712. [PMID: 35384505 PMCID: PMC8985067 DOI: 10.1007/s00109-022-02193-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
The aging process is associated with a remodeling of the immune system involving chronic low-grade inflammation and a gradual decline in the function of the immune system. These processes are also called inflammaging and immunosenescence. The age-related immune remodeling is associated with many clinical changes, e.g., risk for cancers and chronic infections increases, whereas the efficiency of vaccination and immunotherapy declines with aging. On the other hand, there is convincing evidence that chronic inflammatory states promote the premature aging process. The inflammation associated with aging or chronic inflammatory conditions stimulates a counteracting immunosuppression which protects tissues from excessive inflammatory injuries but promotes immunosenescence. Immunosuppression is a driving force in tumors and chronic infections and it also induces the tolerance to vaccination and immunotherapies. Immunosuppressive cells, e.g., myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and type M2 macrophages, have a crucial role in tumorigenesis and chronic infections as well as in the tolerance to vaccination and immunotherapies. Interestingly, there is substantial evidence that inflammaging is also associated with an increased immunosuppressive activity, e.g., upregulation of immunosuppressive cells and anti-inflammatory cytokines. Given that both the aging and chronic inflammatory states involve the activation of immunosuppression and immunosenescence, this might explain why aging is a risk factor for tumorigenesis and chronic inflammatory states and conversely, chronic inflammatory insults promote the premature aging process in humans.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
20
|
Vieco-Martí I, López-Carrasco A, de la Cruz-Merino L, Noguera R, Álvaro Naranjo T. The complexity of cancer immunotherapy illustrated through skin tumors. Int J Biol Markers 2022; 37:113-122. [PMID: 35473449 DOI: 10.1177/03936155221088884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Skin tumours are among the cancer types most sensitive to immunotherapy, due to their unique immunogenic features including skin-associated lymphoid tissue, high mutational load, overexpression of tumour antigens, and high frequency of viral antigens. Despite this high immunotherapy response rate, however, ultimately most skin tumours develop similar treatment resistance to most other malignant tumours, which highlights the need for in-depth study of mechanisms of response and resistance to immunotherapy. METHODS A bibliographic review of the most recent publications regarding currently in use and emerging biomarkers on skin tumors has been done. RESULTS Predictive biomarkers of treatment response, biomarkers that warn of possible resistance, and emerging markers, the majority of a systemic nature, are described. Including factors affecting not only genomics, but also the immune system, nervous system, microbiota, tumour microenvironment, metabolism and stress. CONCLUSIONS For accurate diagnosis of tumour type, knowledge of its functional mechanisms and selection of a comprehensive therapeutic protocol, this inclusive view of biology, health and disease is fundamental. This field of study could also become a valuable source of practical information applicable to other areas of oncology and immunotherapy.
Collapse
Affiliation(s)
- I Vieco-Martí
- Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain.,Centro de investigación biomédica en red de cáncer (CIBERONC), Madrid, Spain
| | - A López-Carrasco
- Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain.,Centro de investigación biomédica en red de cáncer (CIBERONC), Madrid, Spain
| | - L de la Cruz-Merino
- Departament of Oncology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - R Noguera
- Departament of Pathology, Medical School, University of Valencia - INCLIVA Biomedical Health Research Institute, Valencia, Spain.,Centro de investigación biomédica en red de cáncer (CIBERONC), Madrid, Spain
| | - T Álvaro Naranjo
- Centro de investigación biomédica en red de cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Hospital de Tortosa Verge de la Cinta, Catalan Institute of Health, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tortosa, Spain.,Department of Morphological Science, Medical School, Rovira i Virgili University, Reus, Spain
| |
Collapse
|
21
|
Anti-Gr-1 Antibody Provides Short-Term Depletion of MDSC in Lymphodepleted Mice with Active-Specific Melanoma Therapy. Vaccines (Basel) 2022; 10:vaccines10040560. [PMID: 35455309 PMCID: PMC9032646 DOI: 10.3390/vaccines10040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
Lymphodepletion, reconstitution and active-specific tumor cell vaccination (LRAST) enhances the induction of tumor-specific T cells in a murine melanoma model. Myeloid-derived suppressor cells (MDSC) may counteract the induction of tumor-reactive T cells and their therapeutic efficacy. Thus, the aim of the study was to evaluate a possible benefit of MDSC depletion using anti-Gr-1 antibodies (Ab) in combination with LRAST. Female C57BL/6 mice with 3 days established subcutaneous (s.c.) D5 melanoma were lymphodepleted with cyclophosphamide and reconstituted with naive splenocytes. Vaccination was performed with irradiated syngeneic mGM-CSF-secreting D5G6 melanoma cells. MDSC depletion was performed using anti-Gr-1 Ab (clone RB6-8C5). Induction of tumor-specific T cells derived from tumor vaccine draining lymph nodes (TVDLN) was evaluated by the amount of tumor-specific interferon (IFN)-γ release. LRAST combined with anti-Gr-1 mAb administration enhanced the induction of tumor-specific T cells in TVDLN capable of releasing IFN-γ in a tumor-specific manner. Additional anti-Gr-1 mAb administration in LRAST-treated mice delayed growth of D5 melanomas by two weeks. Furthermore, we elucidate the impact of anti-Gr-1-depleting antibodies on the memory T cell compartment. Our data indicate that standard of care treatment regimens against cancer can be improved by implementing agents, e.g., depleting antibodies, which target and eliminate MDSC.
Collapse
|
22
|
Bouleftour W, Magne N. Aging preclinical models in oncology field: from cells to aging. Aging Clin Exp Res 2022; 34:751-755. [PMID: 34528213 DOI: 10.1007/s40520-021-01981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Aging is a universal complex and multifactorial physiological process that leads to the increasing incidence of various diseases including cancer. Indeed, 40% of individuals aged 65 years and over will have newly diagnosed cancers. Although most treated patients are elderly people, a low inclusion of the geriatric population is observed in most clinical trials. Furthermore, lethal side effects of antineoplastic therapy are markedly exacerbated with aging. Most cancer therapies were validated on young mice models, complicating results transposition to elderly patients. Thus, understanding the role of aging in tumor progression and response to cancer therapies with accurate preclinical models must be investigated. Therefore, this review aimed to summarize the state of the literature about preclinical models used to investigate the impact of aging microenvironment on tumorigenic potential, and on antineoplastic therapy response. Despite the advances in technology, and the increasing incidence of cancer in the elderly population, this present review focuses on the few studies using preclinical tumor model of aging. Since the biology of aging is challenging, aging animal models are an inevitable prelude. New emerging tools such as human organoid offer a promising path in research dedicated to aging.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Medical Oncology Department, Lucien Neuwirth Cancer Institute, 108 bis avenue Albert Raimond, 42270, Saint Priest en Jarez, France.
| | - Nicolas Magne
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270, Saint Priest en Jarez, France
| |
Collapse
|
23
|
Garcia MG, Deng Y, Murray C, Reyes RM, Padron A, Bai H, Kancharla A, Gupta H, Shen-Orr S, Curiel TJ. Immune checkpoint expression and relationships to anti-PD-L1 immune checkpoint blockade cancer immunotherapy efficacy in aged versus young mice. AGING AND CANCER 2022; 3:68-83. [PMID: 36876140 PMCID: PMC9980712 DOI: 10.1002/aac2.12045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Introduction Aging is the biggest cancer risk, and immune checkpoint (IC) inhibition (ICI) is a revolutionary cancer immunotherapy approach. Nonetheless, there are limited preclinical/clinical data regarding aging effects on ICI outcomes or age effects on IC expression in different organs or tumors. Methods Flow cytometry assessed IC on immune and non-immune cells in various organs in young and aged BL6 mice. Comparisons: aged versus young naïve WT versus interferon-γ KO mice and WT challenged with B16F10 melanoma and treated with αPD-1 or αPD-L1 ICI. We co-cultured young and aged T cells and myeloid cells in vitro and used OMIQ analyses to test cell-cell interactions. Results αPD-1 ICI treated melanoma in young and aged hosts, whereas αPD-L1 ICI was only effective in young. We found considerable, previously undescribed age effects on expression of various IC molecules participating in the ICI treatment, including PD-1, PD-L1, PD-L2, and CD80, in distinct organs and in the tumor. These data help explain differential ICI efficacy in young and aged hosts. Host interferon-γ influenced age effects on IC expression in both directions depending on specific IC molecule and tissue. IC expression was further affected by tumor challenge on immune, non-immune, and tumor cells in tumor and other organs. In in vitro co-culture, αPD-1 versus αPD-L1 distinctly influenced polyclonal T cells in young versus aged, suggesting mechanisms for distinct age-related ICI outcomes. Conclusion Age affects IC expression on specific immune cells in an organ- and tissue-specific manner. ICs were generally higher on aged immune cells. High immune-cell PD-1 could help explain αPD-1 efficacy in aged. High co-expression of CD80 with PD-L1 on dendritic cells could help explain lack of αPD-L1 efficacy in aged hosts. Factors other than myeloid cells and interferon-γ also affect age-related IC expression and T cell function, meriting additional studies.
Collapse
Affiliation(s)
- Myrna G Garcia
- South Texas Medical Scientist Training Program, University of Texas Health, San Antonio, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, Texas, USA
| | - Yilun Deng
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Clare Murray
- South Texas Medical Scientist Training Program, University of Texas Health, San Antonio, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, Texas, USA
| | - Ryan M Reyes
- South Texas Medical Scientist Training Program, University of Texas Health, San Antonio, Texas, USA
| | - Alvaro Padron
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Haiyan Bai
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Aravind Kancharla
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA.,Senda Biosciences, Cambridge, MA, USA
| | - Harshita Gupta
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Shai Shen-Orr
- Technion, Israel Institute of Technology, Haifa, Israel
| | - Tyler J Curiel
- South Texas Medical Scientist Training Program, University of Texas Health, San Antonio, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas Health, San Antonio, Texas, USA.,Department of Medicine, University of Texas Health, San Antonio, Texas, USA.,Clayton Foundation for Research, Houston, Texas, USA.,Mays Cancer Center, University of Texas Health, San Antonio, Texas, USA
| |
Collapse
|
24
|
Tortora SC, Bodiwala VM, Quinn A, Martello LA, Vignesh S. Microbiome and colorectal carcinogenesis: Linked mechanisms and racial differences. World J Gastrointest Oncol 2022; 14:375-395. [PMID: 35317317 PMCID: PMC8918999 DOI: 10.4251/wjgo.v14.i2.375] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Various studies have shown the interplay between the intestinal microbiome, environmental factors, and genetic changes in colorectal cancer (CRC) development. In this review, we highlight the various gut and oral microbiota associated with CRC and colorectal adenomas, and their proposed molecular mechanisms in relation to the processes of “the hallmarks of cancer”, and differences in microbial diversity and abundance between race/ethnicity. Patients with CRC showed increased levels of Bacteroides, Prevotella, Escherichia coli, enterotoxigenic Bacteroides fragilis, Streptococcus gallolyticus, Enterococcus faecalis, Fusobacterium nucleatum (F. nucleatum) and Clostridium difficile. Higher levels of Bacteroides have been found in African American (AA) compared to Caucasian American (CA) patients. Pro-inflammatory bacteria such as F. nucleatum and Enterobacter species were significantly higher in AAs. Also, AA patients have been shown to have decreased microbial diversity compared to CA patients. Some studies have shown that using microbiome profiles in conjunction with certain risk factors such as age, race and body mass index may help predict healthy colon vs one with adenomas or carcinomas. Periodontitis is one of the most common bacterial infections in humans and is more prevalent in Non-Hispanic-Blacks as compared to Non-Hispanic Whites. This condition causes increased systemic inflammation, immune dysregulation, gut microbiota dysbiosis and thereby possibly influencing colorectal carcinogenesis. Periodontal-associated bacteria such as Fusobacterium, Prevotella, Bacteroides and Porphyromonas have been found in CRC tissues and in feces of CRC patients. Therefore, a deeper understanding of the association between oral and gastrointestinal bacterial profile, in addition to identifying prevalent bacteria in patients with CRC and the differences observed in ethnicity/race, may play a pivotal role in predicting incidence, prognosis, and lead to the development of new treatments.
Collapse
Affiliation(s)
- Sofia C Tortora
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Vimal M Bodiwala
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Andrew Quinn
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Laura A Martello
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Shivakumar Vignesh
- Department of Medicine and Division of Gastroenterology & Hepatology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| |
Collapse
|
25
|
Capietto AH, Lee S, Clever D, Eul E, Ellis H, Ma CX, Faccio R. Effective Treatment of Established Bone Metastases Can Be Achieved by Combinatorial Osteoclast Blockade and Depletion of Granulocytic Subsets. Cancer Immunol Res 2021; 9:1400-1412. [PMID: 34551967 PMCID: PMC8642282 DOI: 10.1158/2326-6066.cir-21-0232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
Osteoclast (OC) blockade has been successful in reducing tumor growth in bone in preclinical settings, but antiresorptive drugs, such as zoledronic acid (ZA), fail to improve the overall survival rate of patients with bone metastasis despite ameliorating skeletal complications. To address this unmet clinical need, we interrogated what other cells modulated tumor growth in bone in addition to OCs. Because myeloid-derived suppressor cells (MDSC)-heterogeneous populations expressing CD11b, Ly6C, and Ly6G markers-originate in the bone marrow and promote tumor progression, we hypothesized that their accumulation hinders ZA antitumor effects. By using a murine model of bone metastasis insensitive to OC blockade, we assessed the antitumor effect of MDSC depletion using anti-Gr1 in mice bearing skeletal lung [Lewis lung carcinoma (LLC)], melanoma (B16-F10), and mammary (4T1) tumors. Differently from soft tissue tumors, anti-Gr1 did not reduce bone metastases and led to the paradoxical accumulation of bone marrow-resident CD11b+Ly6CintLy6Gint cells that differentiated into OCs when cultured in vitro Anti-Gr1-mediated depletion of Ly6G+ granulocytic MDSCs combined with ZA-induced OC blockade reduced growth of established skeletal metastases compared with each agent alone. CD15+ granulocytic populations were increased in patients with breast cancer with progressive bone disease after antiresorptive treatment compared with those with stable bone disease. We provide evidence that antiresorptive therapies fail to reduce bone metastases in the presence of elevated granulocytic populations and that effective treatment of established skeletal metastases requires combinatorial depletion of granulocytes and OC blockade.
Collapse
Affiliation(s)
- Aude-Hélène Capietto
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
- Shriners Hospitals for Children, St. Louis, Missouri
| | - Seunghyun Lee
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - David Clever
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Emily Eul
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Haley Ellis
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Cynthia X Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Roberta Faccio
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri.
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
26
|
Zhang C, Lei L, Yang X, Ma K, Zheng H, Su Y, Jiao A, Wang X, Liu H, Zou Y, Shi L, Zhou X, Sun C, Hou Y, Xiao Z, Zhang L, Zhang B. Single-cell sequencing reveals antitumor characteristics of intratumoral immune cells in old mice. J Immunother Cancer 2021; 9:jitc-2021-002809. [PMID: 34642245 PMCID: PMC8513495 DOI: 10.1136/jitc-2021-002809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Background Aging has long been thought to be a major risk factor for various types of cancers. However, accumulating evidence indicates increased resistance of old animals to tumor growth. An in-depth understanding of how old individuals defend against tumor invasion requires further investigations. Methods We revealed age-associated alterations in tumor-infiltrating immune cells between young and old mice using single-cell RNA and coupled T cell receptor (TCR) sequencing analysis. Multiple bioinformatics methods were adopted to analyze the characteristics of the transcriptome between two groups. To explore the impacts of young and old CD8+ T cells on tumor growth, mice were treated with anti-CD8 antibody every 3 days starting 7 days after tumor inoculation. Flow cytometry was used to validate the differences indicated by sequencing analysis between young and old mice. Results We found a higher proportion of cytotoxic CD8+ T cells, naturally occurring Tregs, conventional dendritic cell (DC), and M1-like macrophages in tumors of old mice compared with a higher percentage of exhausted CD8+ T cells, induced Tregs, plasmacytoid DC, and M2-like macrophages in young mice. Importantly, TCR diversity analysis showed that top 10 TCR clones consisted primarily of exhausted CD8+ T cells in young mice whereas top clones were predominantly cytotoxic CD8+ T cells in old mice. Old mice had more CD8+ T cells with a ‘progenitor’ and less ‘terminally’ exhausted phenotypes than young mice. Consistently, trajectory inference demonstrated that CD8+ T cells preferentially differentiated into cytotoxic cells in old mice in contrast to exhausted cells in young mice. Importantly, elimination of CD8+ T cells in old mice during tumor growth significantly accelerated tumor development. Moreover, senescent features were demonstrated in exhausted but not cytotoxic CD8+ T cells regardless of young and old mice. Conclusions Our data revealed that a significantly higher proportion of effector immune cells in old mice defends against tumor progression, providing insights into understanding the altered kinetics of cancer development and the differential response to immunotherapeutic modulation in elderly patients.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Lei
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| | - Kaili Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujing Zou
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Durham, North Carolina, USA
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Zhengtao Xiao
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China.,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China .,Suzhou Institute of Systems Medicine, Suzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University, Xi'an, China .,Department of Pathogenic Microbiology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| |
Collapse
|
27
|
Age-related expansion and increased osteoclastogenic potential of myeloid-derived suppressor cells. Mol Immunol 2021; 137:187-200. [PMID: 34274794 DOI: 10.1016/j.molimm.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 01/24/2023]
Abstract
Aging is associated with excessive bone loss that is not counteracted with the development of new bone. However, the mechanisms underlying age-related bone loss are not completely clear. Myeloid-derived suppressor cells (MDSCs) are a population of heterogenous immature myeloid cells with immunosuppressive functions that are known to stimulate tumor-induced bone lysis. In this study, we investigated the association of MDSCs and age-related bone loss in mice. Our results shown that aging increased the accumulation of MDSCs in the bone marrow and spleen, while in the meantime potentiated the osteoclastogenic activity of the CD11b+Ly6ChiLy6G+ monocytic subpopulation of MDSCs. In addition, CD11b+Ly6ChiLy6G+ MDSCs from old mice exhibited increased expression of c-fms compared to young mice, and were more sensitive to RANKL-induced osteoclast gene expression. On the other hand, old mice showed elevated production of IL-6 and receptor activator of nuclear factor kappa-B ligand (RANKL) in the circulation. Furthermore, IL-6 and RANKL were able to induce the proliferation of CD11b+Ly6ChiLy6G+ MDSCs and up-regulate c-fms expression. Moreover, CD11b+Ly6ChiLy6G+ MDSCs obtained from old mice showed increased antigen-specific T cell suppressive function, pStat3 expression, and cytokine production in response to inflammatory stimulation, compared to those cells obtained from young mice. Our findings suggest that CD11b+Ly6ChiLy6G+ MDSCs are a source of osteoclast precursors that together with the presence of persistent, low-grade inflammation, contribute to age-associated bone loss in mice.
Collapse
|
28
|
Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 2021; 6:263. [PMID: 34248142 PMCID: PMC8273155 DOI: 10.1038/s41392-021-00658-5] [Citation(s) in RCA: 1199] [Impact Index Per Article: 299.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/11/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer development and its response to therapy are regulated by inflammation, which either promotes or suppresses tumor progression, potentially displaying opposing effects on therapeutic outcomes. Chronic inflammation facilitates tumor progression and treatment resistance, whereas induction of acute inflammatory reactions often stimulates the maturation of dendritic cells (DCs) and antigen presentation, leading to anti-tumor immune responses. In addition, multiple signaling pathways, such as nuclear factor kappa B (NF-kB), Janus kinase/signal transducers and activators of transcription (JAK-STAT), toll-like receptor (TLR) pathways, cGAS/STING, and mitogen-activated protein kinase (MAPK); inflammatory factors, including cytokines (e.g., interleukin (IL), interferon (IFN), and tumor necrosis factor (TNF)-α), chemokines (e.g., C-C motif chemokine ligands (CCLs) and C-X-C motif chemokine ligands (CXCLs)), growth factors (e.g., vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-β), and inflammasome; as well as inflammatory metabolites including prostaglandins, leukotrienes, thromboxane, and specialized proresolving mediators (SPM), have been identified as pivotal regulators of the initiation and resolution of inflammation. Nowadays, local irradiation, recombinant cytokines, neutralizing antibodies, small-molecule inhibitors, DC vaccines, oncolytic viruses, TLR agonists, and SPM have been developed to specifically modulate inflammation in cancer therapy, with some of these factors already undergoing clinical trials. Herein, we discuss the initiation and resolution of inflammation, the crosstalk between tumor development and inflammatory processes. We also highlight potential targets for harnessing inflammation in the treatment of cancer.
Collapse
|
29
|
Maggiorani D, Beauséjour C. Senescence and Aging: Does It Impact Cancer Immunotherapies? Cells 2021; 10:1568. [PMID: 34206425 PMCID: PMC8307798 DOI: 10.3390/cells10071568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer incidence increases drastically with age. Of the many possible reasons for this, there is the accumulation of senescent cells in tissues and the loss of function and proliferation potential of immune cells, often referred to as immuno-senescence. Immune checkpoint inhibitors (ICI), by invigorating immune cells, have the potential to be a game-changers in the treatment of cancer. Yet, the variability in the efficacy of ICI across patients and cancer types suggests that several factors influence the success of such inhibitors. There is currently a lack of clinical studies measuring the impact of aging and senescence on ICI-based therapies. Here, we review how cellular senescence and aging, either by directly altering the immune system fitness or indirectly through the modification of the tumor environment, may influence the cancer-immune response.
Collapse
Affiliation(s)
- Damien Maggiorani
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Christian Beauséjour
- Centre de Recherche du CHU Ste-Justine, Montréal, QC H3T 1C5, Canada;
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
30
|
Thibodeaux SR, Barnett BB, Pandeswara S, Wall SR, Hurez V, Dao V, Sun L, Daniel BJ, Brumlik MJ, Drerup J, Padrón Á, Whiteside T, Kryczek I, Zou W, Curiel TJ. IFNα Augments Clinical Efficacy of Regulatory T-cell Depletion with Denileukin Diftitox in Ovarian Cancer. Clin Cancer Res 2021; 27:3661-3673. [PMID: 33771857 DOI: 10.1158/1078-0432.ccr-20-4594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/14/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy treats some cancers, but not ovarian cancer. Regulatory T cells (Tregs) impede anti-ovarian cancer immunity but effective human Treg-directed treatments are lacking. We tested Treg depletion with denileukin diftitox (DD) ± IFNα as ovarian cancer immunotherapy. PATIENTS AND METHODS Mice with syngeneic ID8 ovarian cancer challenge were treated with DD, IFNα, or both. The phase 0/I trial tested one dose-escalated DD infusion for functional Treg reduction, safety, and tolerability. The phase II trial added IFNα2a to DD if DD alone failed clinically. RESULTS DD depleted Tregs, and improved antitumor immunity and survival in mice. IFNα significantly improved antitumor immunity and survival with DD. IFNα did not alter Treg numbers or function but boosted tumor-specific immunity and reduced tumor Treg function with DD by inducing dendritic cell IL6. DD alone was well tolerated, depleted functional blood Tregs and improved immunity in patients with various malignancies in phase 0/I. A patient with ovarian cancer in phase 0/I experienced partial clinical response prompting a phase II ovarian cancer trial, but DD alone failed phase II. Another phase II trial added pegylated IFNα2a to failed DD, producing immunologic and clinical benefit in two of two patients before a DD shortage halt. DD alone was well tolerated. Adding IFNα increased toxicities but was tolerable, and reduced human Treg numbers in blood, and function through dendritic cell-induced IL6 in vitro. CONCLUSIONS Treg depletion is clinically useful but unlikely alone to cure ovarian cancer. Rational treatment agent combinations can salvage clinical failure of Treg depletion alone, even when neither single agent provides meaningful clinical benefit.
Collapse
Affiliation(s)
- Suzanne R Thibodeaux
- The Graduate School of Biomedical Sciences, University of Texas Health San Antonio, Texas.,Department of Medicine, University of Texas Health San Antonio, Texas
| | - Brian B Barnett
- Tulane Medical School, Department of Medicine, New Orleans, Louisiana
| | | | - Shawna R Wall
- Department of Medicine, University of Texas Health San Antonio, Texas
| | - Vincent Hurez
- The Graduate School of Biomedical Sciences, University of Texas Health San Antonio, Texas.,Department of Medicine, University of Texas Health San Antonio, Texas
| | - Vinh Dao
- The Graduate School of Biomedical Sciences, University of Texas Health San Antonio, Texas
| | - Lishi Sun
- Department of Medicine, University of Texas Health San Antonio, Texas
| | - Benjamin J Daniel
- The Graduate School of Biomedical Sciences, University of Texas Health San Antonio, Texas.,Department of Medicine, University of Texas Health San Antonio, Texas
| | - Michael J Brumlik
- Department of Medicine, University of Texas Health San Antonio, Texas
| | - Justin Drerup
- The Graduate School of Biomedical Sciences, University of Texas Health San Antonio, Texas
| | - Álvaro Padrón
- Department of Medicine, University of Texas Health San Antonio, Texas
| | - Teresa Whiteside
- University of Pittsburgh and Hillman Comprehensive Cancer Center, Pittsburgh, Pennsylvania
| | - Ilona Kryczek
- Tulane Medical School, Department of Medicine, New Orleans, Louisiana
| | - Weiping Zou
- Tulane Medical School, Department of Medicine, New Orleans, Louisiana
| | - Tyler J Curiel
- The Graduate School of Biomedical Sciences, University of Texas Health San Antonio, Texas. .,Department of Medicine, University of Texas Health San Antonio, Texas.,Mays Cancer Center, University of Texas Health, San Antonio, Texas
| |
Collapse
|
31
|
Duong L, Radley HG, Lee B, Dye DE, Pixley FJ, Grounds MD, Nelson DJ, Jackaman C. Macrophage function in the elderly and impact on injury repair and cancer. IMMUNITY & AGEING 2021; 18:4. [PMID: 33441138 PMCID: PMC7805172 DOI: 10.1186/s12979-021-00215-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
Abstract
Older age is associated with deteriorating health, including escalating risk of diseases such as cancer, and a diminished ability to repair following injury. This rise in age-related diseases/co-morbidities is associated with changes to immune function, including in myeloid cells, and is related to immunosenescence. Immunosenescence reflects age-related changes associated with immune dysfunction and is accompanied by low-grade chronic inflammation or inflammageing. This is characterised by increased levels of circulating pro-inflammatory cytokines such as tumor necrosis factor (TNF), interleukin (IL)-1β and IL-6. However, in healthy ageing, there is a concomitant age-related escalation in anti-inflammatory cytokines such as transforming growth factor-β1 (TGF-β1) and IL-10, which may overcompensate to regulate the pro-inflammatory state. Key inflammatory cells, macrophages, play a role in cancer development and injury repair in young hosts, and we propose that their role in ageing in these scenarios may be more profound. Imbalanced pro- and anti-inflammatory factors during ageing may also have a significant influence on macrophage function and further impact the severity of age-related diseases in which macrophages are known to play a key role. In this brief review we summarise studies describing changes to inflammatory function of macrophages (from various tissues and across sexes) during healthy ageing. We also describe age-related diseases/co-morbidities where macrophages are known to play a key role, focussed on injury repair processes and cancer, plus comment briefly on strategies to correct for these age-related changes.
Collapse
Affiliation(s)
- L Duong
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - H G Radley
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - B Lee
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - D E Dye
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - F J Pixley
- School of Biomedical Sciences, University of Western Australia, 6009, Nedlands, Western Australia, Australia
| | - M D Grounds
- School of Human Sciences, University of Western Australia, 6009, Nedlands, Western Australia, Australia
| | - D J Nelson
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia
| | - C Jackaman
- Curtin Medical School, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Kent Street, 6102, Bentley, Western Australia, Australia.
| |
Collapse
|
32
|
Groth C, Weber R, Utikal J, Umansky V. Depletion and Maturation of Myeloid-Derived Suppressor Cells in Murine Cancer Models. Methods Mol Biol 2021; 2236:67-75. [PMID: 33237541 DOI: 10.1007/978-1-0716-1060-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are known to inhibit functions of T and NK cells. MDSC have been shown to be generated and to accumulate under chronic inflammatory conditions that are typical for cancer. Therefore, it would be highly beneficial to find ways to diminish the number and immunosuppressive functions of these cells in tumor-bearing hosts. Here we describe current protocols to deplete MDSC or induce their maturation in preclinical tumor models that could lead to the attenuation of their immunosuppressive functions.
Collapse
Affiliation(s)
- Christopher Groth
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Rebekka Weber
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
33
|
Hamilton JA, Henry CJ. Aging and immunotherapies: New horizons for the golden ages. AGING AND CANCER 2020; 1:30-44. [PMID: 35874875 PMCID: PMC9307207 DOI: 10.1002/aac2.12014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The life expectancy of the world’s elderly population (65 and older) continues to reach new milestones with older individuals currently comprising greater than 8.5% (617 million) of the world’s population. This percentage is predicted to approach 20% of the world’s population by 2050 (representing 1.6 billion people). Despite this amazing feat, many healthcare systems are not equipped to handle the multitude of diseases that commonly manifest with age, including most types of cancers. As the world’s aging population grows, cancer treatments continue to evolve. Immunotherapies are a new drug class that has revolutionized our ability to treat previously intractable cancers; however, their efficacy in patients with compromised immune systems remains unclear. In this review, we will discuss how aging-associated losses in immune homeostasis impact the efficacy and safety of immunotherapy treatment in preclinical models of aging. We will also discuss how these findings translate to elderly patients receiving immunotherapy treatment for refractory and relapsed cancers, as well as, strategies that could be explored to improve the efficacy of immunotherapies in aged patients.
Collapse
Affiliation(s)
- Jamie A.G. Hamilton
- Department of Pediatrics Emory University School of Medicine Atlanta Georgia USA
- Aflac Cancer and Blood Disorders Center Children's Healthcare of Atlanta Atlanta Georgia USA
| | - Curtis J. Henry
- Department of Pediatrics Emory University School of Medicine Atlanta Georgia USA
- Aflac Cancer and Blood Disorders Center Children's Healthcare of Atlanta Atlanta Georgia USA
| |
Collapse
|
34
|
Drijvers JM, Sharpe AH, Haigis MC. The effects of age and systemic metabolism on anti-tumor T cell responses. eLife 2020; 9:e62420. [PMID: 33170123 PMCID: PMC7655106 DOI: 10.7554/elife.62420] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Average age and obesity prevalence are increasing globally. Both aging and obesity are characterized by profound systemic metabolic and immunologic changes and are cancer risk factors. The mechanisms linking age and body weight to cancer are incompletely understood, but recent studies have provided evidence that the anti-tumor immune response is reduced in both conditions, while responsiveness to immune checkpoint blockade, a form of cancer immunotherapy, is paradoxically intact. Dietary restriction, which promotes health and lifespan, may enhance cancer immunity. These findings illustrate that the systemic context can impact anti-tumor immunity and immunotherapy responsiveness. Here, we review the current knowledge of how age and systemic metabolic state affect the anti-tumor immune response, with an emphasis on CD8+ T cells, which are key players in anti-tumor immunity. A better understanding of the underlying mechanisms may lead to novel therapies enhancing anti-tumor immunity in the context of aging or metabolic dysfunction.
Collapse
Affiliation(s)
- Jefte M Drijvers
- Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s HospitalBostonUnited States
- Department of Cell Biology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women’s HospitalBostonUnited States
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute and Ludwig Center at Harvard, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
35
|
Fane M, Weeraratna AT. Normal Aging and Its Role in Cancer Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037341. [PMID: 31615864 DOI: 10.1101/cshperspect.a037341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis is the most common cause of death, with treatments failing to provide a durable response. Aging is a key prognostic factor in many cancers. Emerging data suggest that normal age-related changes in the tumor microenvironment can contribute to metastatic progression. These changes encompass secreted factors, biophysical changes, and changes in both stromal and immune cell populations. These data also highlight the importance of conducting studies in preclinical models of appropriate age. Ultimately, therapies may also need to be tailored to reflect patient age, as markers of metastatic disease differ in young and aged populations. In this review, we will discuss some of the changes that occur during aging that increase the metastatic capacity of tumor cells.
Collapse
Affiliation(s)
- Mitchell Fane
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, Pennsylvania 19104, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| | - Ashani T Weeraratna
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, Pennsylvania 19104, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
36
|
Wu B, Chiang HC, Sun X, Yuan B, Mitra P, Hu Y, Curiel TJ, Li R. Genetic ablation of adipocyte PD-L1 reduces tumor growth but accentuates obesity-associated inflammation. J Immunother Cancer 2020; 8:e000964. [PMID: 32817394 PMCID: PMC7437875 DOI: 10.1136/jitc-2020-000964] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
The programmed death-ligand 1 (PD-L1)-dependent immune checkpoint attenuates host immunity and maintains self-tolerance. Imbalance between protective immunity and immunopathology due to altered PD-L1 signaling can lead to autoimmunity or tumor immunosuppression. The role of the PD-L1-dependent checkpoint in non-immune system is less reported. We previously found that white adipocytes highly express PD-L1. Here we show that adipocyte-specific PD-L1 knockout mice exhibit enhanced host anti-tumor immunity against mammary tumors and melanoma with low or no tumor PD-L1. However, adipocyte PD-L1 ablation in tumor-free mice also exacerbates diet-induced body weight gain, pro-inflammatory macrophage infiltration into adipose tissue, and insulin resistance. Low PD-L1 mRNA levels in human adipose tissue correlate with high body mass index and presence of type 2 diabetes. Therefore, our mouse genetic approach unequivocally demonstrates a cell-autonomous function of adipocyte PD-L1 in promoting tumor growth and inhibiting antitumor immunity. In addition, our work uncovers a previously unrecognized role of adipocyte PD-L1 in mitigating obesity-related inflammation and metabolic dysfunction.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Huai-Chin Chiang
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Xiujie Sun
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Payal Mitra
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Yanfen Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Tyler J Curiel
- Department of Medicine, Long School of Medicine, UT Health San Antonio, San Antonio, Texas, USA
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
37
|
Har-Noy M, Or R. Allo-priming as a universal anti-viral vaccine: protecting elderly from current COVID-19 and any future unknown viral outbreak. J Transl Med 2020; 18:196. [PMID: 32398026 PMCID: PMC7215129 DOI: 10.1186/s12967-020-02363-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We present the rationale for a novel allo-priming approach to serve the elderly as a universal anti-virus vaccine, as well serving to remodel the aging immune system in order to reverse immunosenescence and inflammaging. This approach has the potential to protect the most vulnerable from disease and provide society an incalculable economic benefit. Allo-priming healthy elderly adults is proposed to provide universal protection from progression of any type of viral infection, including protection against progression of the current outbreak of COVID-19 infection, and any future variants of the causative SARS-CoV-2 virus or the next 'Disease X'. Allo-priming is an alternative approach for the COVID-19 pandemic that provides a back-up in case vaccination strategies to elicit neutralizing antibody protection fails or fails to protect the vulnerable elderly population. The allo-priming is performed using activated, intentionally mismatched, ex vivo differentiated and expanded living Th1-like cells (AlloStim®) derived from healthy donors currently in clinical use as an experimental cancer vaccine. Multiple intradermal injections of AlloStim® creates a dominate titer of allo-specific Th1/CTL memory cells in circulation, replacing the dominance of exhausted memory cells of the aged immune system. Upon viral encounter, by-stander activation of the allo-specific memory cells causes an immediate release of IFN-ϒ, leading to development of an "anti-viral state", by-stander activation of innate cellular effector cells and activation of cross-reactive allo-specific CTL. In this manner, the non-specific activation of allo-specific Th1/CTL initiates a cascade of spatial and temporal immune events which act to limit the early viral titer. The release of endogenous heat shock proteins (HSP) and DAMP from lysed viral-infected cells, in the context of IFN-ϒ, creates of conditions for in situ vaccination leading to viral-specific Th1/CTL immunity. These viral-specific Th1/CTL provide sterilizing immunity and memory for protection from disease recurrence, while increasing the pool of Th1/CTL in circulation capable of responding to the next viral encounter. CONCLUSION Allo-priming has potential to provide universal protection from viral disease and is a strategy to reverse immunosenescence and counter-regulate chronic inflammation (inflammaging). Allo-priming can be used as an adjuvant for anti-viral vaccines and as a counter-measure for unknown biological threats and bio-economic terrorism.
Collapse
Affiliation(s)
- Michael Har-Noy
- Cancer Immunotherapy and Immunobiology Center, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel. .,Immunovative Therapies, Ltd, Malcha Technology Park, B1/F1, 9695101, Jerusalem, Israel. .,Mirror Biologics, Inc., 4824 E Baseline Rd #113, Phoenix, AZ, USA.
| | - Reuven Or
- Cancer Immunotherapy and Immunobiology Center, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| |
Collapse
|
38
|
Abstract
Most cancers arise in individuals over the age of 60. As the world population is living longer and reaching older ages, cancer is becoming a substantial public health problem. It is estimated that, by 2050, more than 20% of the world's population will be over the age of 60 - the economic, healthcare and financial burdens this may place on society are far from trivial. In this Review, we address the role of the ageing microenvironment in the promotion of tumour progression. Specifically, we discuss the cellular and molecular changes in non-cancerous cells during ageing, and how these may contribute towards a tumour permissive microenvironment; these changes encompass biophysical alterations in the extracellular matrix, changes in secreted factors and changes in the immune system. We also discuss the contribution of these changes to responses to cancer therapy as ageing predicts outcomes of therapy, including survival. Yet, in preclinical studies, the contribution of the aged microenvironment to therapy response is largely ignored, with most studies designed in 8-week-old mice rather than older mice that reflect an age appropriate to the disease being modelled. This may explain, in part, the failure of many successful preclinical therapies upon their translation to the clinic. Overall, the intention of this Review is to provide an overview of the interplay that occurs between ageing cell types in the microenvironment and cancer cells and how this is likely to impact tumour metastasis and therapy response.
Collapse
Affiliation(s)
- Mitchell Fane
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, PA, USA.
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Ashani T Weeraratna
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, PA, USA.
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Sekido K, Tomihara K, Tachinami H, Heshiki W, Sakurai K, Moniruzzaman R, Imaue S, Fujiwara K, Noguchi M. Alterations in composition of immune cells and impairment of anti-tumor immune response in aged oral cancer-bearing mice. Oral Oncol 2019; 99:104462. [PMID: 31683168 DOI: 10.1016/j.oraloncology.2019.104462] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/15/2019] [Accepted: 10/22/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVES Aging has been suggested to be associated with immune dysregulation. An understanding of alterations in the host immunity with advancing age is, therefore, important for designing immune therapy for elderly cancer patients. In this context, not much is known about age-associated alterations in the immune system in oral cancer. METHODS To evaluate age-associated alterations in the immune system, which might affect anti-tumor immune responses in oral cancer, we performed a comparative analysis of the proportion of different immune cells, the proliferative capacity of T cell compartment, and the response against immune therapies targeting immune check point molecules between young and aged oral cancer-bearing mice. RESULTS The proportion of immune regulatory cells, such as regulatory T cells and myeloid derived suppressor cells, was significantly increased in aged mice compared to that in young mice. Moreover, the expression of PD-1 and CTLA-4 on both CD4+ and CD8+ T cells was elevated in aged mice compared to that in young mice, and the proliferative abilities of CD4+ and CD8+ T cells derived from aged mice were significantly reduced following stimulation of T-cell receptors. Moreover, tumor growth was significantly enhanced in aged mice compared to that in young mice. However, immunotherapies targeting PD-1, CTLA-4, and PD-L1 resulted in faster tumor regression in aged mice than in young mice. CONCLUSIONS Together, our results indicate that age-associated alterations in the immune system are directly associated with the impairment of anti-tumor immunity in aged mice bearing oral cancer, and might facilitate the progression of the tumor.
Collapse
Affiliation(s)
- Katsuhisa Sekido
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Kei Tomihara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan.
| | - Hidetake Tachinami
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Wataru Heshiki
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Kotaro Sakurai
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Rohan Moniruzzaman
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Shuichi Imaue
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Kumiko Fujiwara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| | - Makoto Noguchi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama city, Toyama 930-0194, Japan
| |
Collapse
|
40
|
Galli G, De Toma A, Pagani F, Randon G, Trevisan B, Prelaj A, Ferrara R, Proto C, Signorelli D, Ganzinelli M, Zilembo N, de Braud F, Garassino MC, Lo Russo G. Efficacy and safety of immunotherapy in elderly patients with non-small cell lung cancer. Lung Cancer 2019; 137:38-42. [PMID: 31526910 DOI: 10.1016/j.lungcan.2019.08.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Most trials with Immune Checkpoint Inhibitors (ICIs) for Non-Small Cell Lung Cancer (NSCLC) included only small subgroups of patients aged ≥65. As NSCLC is often diagnosed in patients aged ≥70, real-world data about efficacy and safety of immunotherapy (IO) in elderly patients are essential. MATERIALS AND METHODS We retrospectively collected data about all patients with advanced NSCLC treated with IO at our Institution between April 2013 and March 2019. The patients were stratified for age as follows: <70 year-old, 70-79 year-old, ≥80 year-old. Chi-square test was used to compare qualitative variables. Survival was estimated with Kaplan-Meier method. Log-rank test was used to compare curves. Multivariate analyses were performed with Cox model. RESULTS We reviewed 290 cases, with a median age of 67 (range: 29-89). Patients aged<70, 70-79 and ≥80 year-old were 180, 94 and 16, respectively. Clinical/pathological variables were uniformly distributed across age classes, except for a higher rate of males (p 0.0228) and squamous histology (p 0.0071) in the intermediate class. Response Rate (RR) was similar across age groups (p 0.9470). Median Progression Free Survival (PFS) and Overall Survival (OS) did not differ according to age (p 0.2020 and 0.9144, respectively). Toxicity was comparable across subgroups (p 0.6493). The only variables influencing outcome were performance status (PS) (p < 0.0001 for PFS, p 0.0192 for OS), number of metastatic sites (p 0.0842 for PFS, p 0.0235 for OS) and IO line (p < 0.0001 for both PFS and OS). CONCLUSION Advanced age was not associated to a reduced efficacy of IO in our case series. Furthermore, no toxicity concern emerged even among the eldest pts. To our opinion, ICIs should be considered irrespective of age, provided an optimal PS at baseline. Of note, IO is often the only therapeutic option applicable to these cases considering the toxicity of chemotherapy.
Collapse
Affiliation(s)
- Giulia Galli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Alessandro De Toma
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo Pagani
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Randon
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Benedetta Trevisan
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Arsela Prelaj
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberto Ferrara
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Proto
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Diego Signorelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Ganzinelli
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nicoletta Zilembo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina Chiara Garassino
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Lo Russo
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
41
|
Zou C, Zhu C, Guan G, Guo Q, Liu T, Shen S, Yan Z, Xu X, Lin Z, Chen L, Wu A, Cheng W. CD48 is a key molecule of immunomodulation affecting prognosis in glioma. Onco Targets Ther 2019; 12:4181-4193. [PMID: 31213836 PMCID: PMC6549391 DOI: 10.2147/ott.s198762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Glioma is a refractory disease associated with immune cell infiltration, and the effectiveness of checkpoint blockade remains suboptimal. As an adhesion and costimulatory molecule, CD48 plays a significant role in immunomodulation. As such, studying CD48 may provide additional understanding of the immune and inflammation response of glioma. Methods: Using R language and GraphPad Prism 7, RNA sequencing data of 946 patients from Chinese Glioma Genome Atlas and The Cancer Genome Atlas cohorts were analyzed. Results: CD48 was highly expressed in the malignant progression of glioma. As an independent risk factor, high-CD48 patients were associated with poor prognosis. CD48 influenced glioma purity and the local immune cell subpopulation. CD48 was closely related to immune function in glioma. Patients with an enhanced immune phenotype, high CD48, were associated with immune suppressive molecules and checkpoints. In addition, CD48 correlated with the immune and inflammatory response. A checkpoint risk score including CD48, SLAMF8 and PD-L1 was used to assess the role of checkpoints. Risk score was particularly high in a malignant subtype of glioma and was an independent predictive indicator of unfavorable outcome. Additionally, age, IDH subtype and MGMT promoter status influenced the predictive significance of checkpoint risk score. Conclusion: CD48 exhibits a crucial role in reduced survival and immunomodulation in glioma. In addition, we found that checkpoints play a greater role in patients older than 40 years old with IDH wild-type and MGMT methylated status. These findings suggest that combining CD48 blockade with PD-L1 may be a promising approach to glioma immunotherapy for specific subpopulations of patients.
Collapse
Affiliation(s)
- Cunyi Zou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Tianqi Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Shuai Shen
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Zihao Yan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Xiaoyan Xu
- Department of Pathophysiology, College of Basic Medicine Science, China Medical University, Shenyang, Liaoning110122, People’s Republic of China
| | - Zhiguo Lin
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang150001, People’s Republic of China
| | - Ling Chen
- Department of Neurosurgery, General Hospital of People‘s Liberation Army of China (PLA), Medical College of PLA, Institute of Neurosurgery of PLA, Beijing100853, People’s Republic of China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning110001, People’s Republic of China
| |
Collapse
|
42
|
Wang Y, Ding Y, Guo N, Wang S. MDSCs: Key Criminals of Tumor Pre-metastatic Niche Formation. Front Immunol 2019; 10:172. [PMID: 30792719 PMCID: PMC6374299 DOI: 10.3389/fimmu.2019.00172] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
The emergence of disseminated metastases remains the primary cause of mortality in cancer patients. Formation of the pre-metastatic niche (PMN), which precedes the establishment of tumor lesions, is critical for metastases. Bone marrow-derived myeloid cells (BMDCs) are indispensable for PMN formation. Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells that accumulate in patients with cancer and appear in the early PMN. The mechanisms by which MDSCs establish the pre-metastatic microenvironment in distant organs are largely unknown, although MDSCs play an essential role in metastasis. Here, we summarize the key factors associated with the recruitment and activation of MDSCs in the PMN and review the mechanisms by which MDSCs regulate PMN formation and evolution. Finally, we predict the potential value of MDSCs in PMN detection and therapy.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yanxia Ding
- Department of Dermatology, The First People's Hospital of Yancheng City, Yancheng, China
| | - Naizhou Guo
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
43
|
Second-generation IL-2 receptor-targeted diphtheria fusion toxin exhibits antitumor activity and synergy with anti-PD-1 in melanoma. Proc Natl Acad Sci U S A 2019; 116:3100-3105. [PMID: 30718426 DOI: 10.1073/pnas.1815087116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Denileukin diftitox (DAB-IL-2, Ontak) is a diphtheria-toxin-based fusion protein that depletes CD25-positive cells including regulatory T cells and has been approved for the treatment of persistent or recurrent cutaneous T cell lymphoma. However, the clinical use of denileukin diftitox was limited by vascular leak toxicity and production issues related to drug aggregation and purity. We found that a single amino acid substitution (V6A) in a motif associated with vascular leak induction yields a fully active, second-generation biologic, s-DAB-IL-2(V6A), which elicits 50-fold less human umbilical vein endothelial cell monolayer permeation and is 3.7-fold less lethal to mice by LD50 analysis than s-DAB-IL-2. Additionally, to overcome aggregation problems, we developed a production method for the fusion toxin using Corynebacterium diphtheriae that secretes fully folded, biologically active, monomeric s-DAB-IL-2 into the culture medium. Using the poorly immunogenic mouse B16F10 melanoma model, we initiated treatment 7 days after tumor challenge and observed that, while both s-DAB-IL-2(V6A) and s-DAB-IL-2 are inhibitors of tumor growth, the capacity to treat with higher doses of s-DAB-IL-2(V6A) could provide a superior activity window. In a sequential dual-therapy study in tumors that have progressed for 10 days, both s-DAB-IL-2(V6A) and s-DAB-IL-2 given before checkpoint inhibition with anti-programmed cell death-1 (anti-PD-1) antibodies inhibited tumor growth, while either drug given as monotherapy had less effect. s-DAB-IL-2(V6A), a fully monomeric protein with reduced vascular leak, is a second-generation diphtheria-toxin-based fusion protein with promise as a cancer immunotherapeutic both alone and in conjunction with PD-1 blockade.
Collapse
|
44
|
Wu Q, Wang Q, Tang X, Xu R, Zhang L, Chen X, Xue Q, Wang Z, Shi R, Wang F, Ju F, Zhang B, Zhou YL. Correlation between patients' age and cancer immunotherapy efficacy. Oncoimmunology 2019; 8:e1568810. [PMID: 30906662 DOI: 10.1080/2162402x.2019.1568810] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Although immunosenescence-induced difference on overall immune function and immune cell subsets between younger and older populations has been well characterized, the potential effect of patients' age on the efficacy of immune checkpoint inhibitors (ICIs) remains little known. We performed a meta-analysis to investigate whether age differences play a role in cancer immunotherapy efficacy based on a large amount of clinical data. Methods: We conducted a systematic search of PubMed, Embase and MEDLINE for relevant randomized controlled trials. The primary outcome was overall survival (OS) and progression-free survival (PFS) was secondary outcome. The interaction test was used to assess the heterogeneity of HR between younger and older groups. Results: In total, 19 clinical randomized trials involving 11157 patients were included. The pooled HR for OS was 0.73 (95% CI 0.69-0.78) and 0.63 (95% CI 0.52-0.73) for PFS in younger patients receiving ICIs treatments, when compared with younger patients treated with controls. For older patients treated with ICIs, the pooled HR for OS compared with controls was 0.64 (95% CI 0.59-0.69) and 0.66 (95% CI 0.58-0.74) for PFS. The difference on OS efficacy between younger and older patients treated with ICIs was significant (Pheterogeneity = 0.025). Conclusions: Immune checkpoint inhibitors significantly improved OS and PFS in both younger and older patients compared with controls, but the magnitude of benefit was clinically age-dependent. Patients ≥65 y can benefit more from immunotherapy than younger patients. Future research should take age difference into consideration in trials and focus on tolerance and toxicity of ICIs in older patients.
Collapse
Affiliation(s)
- Qiong Wu
- Medical school, Nantong university, Nantong, P.R. China.,The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Qiuhong Wang
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Ran Xu
- Medical school, Nantong university, Nantong, P.R. China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China
| | - Xinming Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Qun Xue
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Ziheng Wang
- Department of Medicine, Nantong University Xinling college, Nantong, Jiangsu, P.R. China.,Department of anesthesiology, The First people's Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Rongfeng Shi
- Department of Interventional, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Feiran Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Fei Ju
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Bo Zhang
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - You Lang Zhou
- The Hand Surgery Research Center, Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, P.R. China
| |
Collapse
|
45
|
Lucas AT, Robinson R, Schorzman AN, Piscitelli JA, Razo JF, Zamboni WC. Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients. Antibodies (Basel) 2019; 8:E3. [PMID: 31544809 PMCID: PMC6640706 DOI: 10.3390/antib8010003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022] Open
Abstract
The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution. This review provides an updated summary of factors known to affect the disposition of mAbs/ADCs in development and in clinical use, as well as how these factors should be considered in the selection and design of preclinical studies of ADC agents in development.
Collapse
Affiliation(s)
- Andrew T Lucas
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ryan Robinson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Allison N Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Joseph A Piscitelli
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - Juan F Razo
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
| | - William C Zamboni
- University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA.
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
46
|
Gardner JK, Jackaman C, Mamotte CDS, Nelson DJ. The Regulatory Status Adopted by Lymph Node Dendritic Cells and T Cells During Healthy Aging Is Maintained During Cancer and May Contribute to Reduced Responses to Immunotherapy. Front Med (Lausanne) 2018; 5:337. [PMID: 30560130 PMCID: PMC6287204 DOI: 10.3389/fmed.2018.00337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
Aging is associated with an increased incidence of cancer. One contributing factor could be modulation of immune cells responsible for anti-tumor responses, such as dendritic cells (DCs) and T cells. These immunological changes may also impact the efficacy of cancer immunotherapies in the elderly. The effects of healthy aging on DCs and T cells, and their impact on anti-mesothelioma immune responses, had not been reported. This study examined DCs and T cells in young (2–5 months; equivalent to 16–26 human years) and elderly (20–24 months; equivalent to 60–70 human years) healthy and mesothelioma-bearing C57BL/6J mice. During healthy aging, elderly lymph nodes adopted a regulatory profile, characterized by: (i) increased plasmacytoid DCs, (ii) increased expression of the adenosine-producing enzyme CD73 on CD11c+ cells, and (iii) increased expression of multiple regulatory markers (including CD73, the adenosine A2B receptor, CTLA-4, PD-1, ICOS, LAG-3, and IL-10) on CD8+ and CD4+ T cells, compared to lymph nodes from young mice. Although mesotheliomas grew faster in elderly mice, the increased regulatory status observed in healthy elderly lymph node DCs and T cells was not further exacerbated. However, elderly tumor-bearing mice demonstrated reduced MHC-I, MHC-II and CD80 on CD11c+ cells, and decreased IFN-γ by CD8+ and CD4+ T cells within tumors, compared to young counterparts, implying loss of function. An agonist CD40 antibody based immunotherapy was less efficient at promoting tumor regression in elderly mice, which may be due to: (i) failure of elderly CD8+ T cells to up-regulate perforin, and (ii) increased expression of multiple regulatory markers on CD11c+ cells and T cells in elderly tumor-draining lymph nodes (including CD73, PD-1, ICOS, LAG-3, and TGF-β). Our findings suggest that checkpoint blockade may improve responses to immunotherapy in elderly hosts with mesothelioma, and warrants further investigation.
Collapse
Affiliation(s)
- Joanne K Gardner
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Connie Jackaman
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Cyril D S Mamotte
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Delia J Nelson
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Perth, WA, Australia.,Curtin Health and Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
47
|
Liu Y, Wei G, Cheng WA, Dong Z, Sun H, Lee VY, Cha SC, Smith DL, Kwak LW, Qin H. Targeting myeloid-derived suppressor cells for cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1181-1195. [PMID: 29855694 PMCID: PMC11028324 DOI: 10.1007/s00262-018-2175-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/19/2018] [Indexed: 01/05/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with an immune suppressive phenotype. They represent a critical component of the immune suppressive niche described in cancer, where they support immune escape and tumor progression through direct effects on both the innate and adaptive immune responses, largely by contributing to maintenance of a high oxidative stress environment. The number of MDSCs positively correlates with protumoral activity, and often diminishes the effectiveness of immunotherapies, which is particularly problematic with the emergence of personalized medicine. Approaches targeting MDSCs showed promising results in preclinical studies and are under active investigation in clinical trials in combination with various immune checkpoint inhibitors. In this review, we discuss MDSC targets and therapeutic approaches targeting MDSC that have the aim of enhancing the existing tumor therapies.
Collapse
Affiliation(s)
- Yijun Liu
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Guowei Wei
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Wesley A Cheng
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Zhenyuan Dong
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Han Sun
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Vincent Y Lee
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Soung-Chul Cha
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - D Lynne Smith
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Larry W Kwak
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| | - Hong Qin
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA, 91010, USA
| |
Collapse
|
48
|
Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol 2018; 19:e295-e304. [PMID: 29893261 PMCID: PMC6047065 DOI: 10.1016/s1470-2045(18)30095-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/18/2017] [Accepted: 01/15/2018] [Indexed: 12/21/2022]
Abstract
Cancer incidence substantially increases with ageing in both men and women, although the reason for this increase is unknown. In this Series paper, we propose that age-associated changes in gut commensal microbes, otherwise known as the microbiota, facilitate cancer development and growth by compromising immune fitness. Ageing is associated with a reduction in the beneficial commensal microbes, which control the expansion of pathogenic commensals and maintain the integrity of the intestinal barrier through the production of mucus and lipid metabolites, such as short-chain fatty acids. Expansion of gut dysbiosis and leakage of microbial products contributes to the chronic proinflammatory state (inflammaging), which negatively affects the immune system and impairs the removal of mutant and senescent cells, thereby enabling tumour outgrowth. Studies in animal models and the importance of commensals in cancer immunotherapy suggest that this status can be reversible. Thus, interventions that alter the composition of the gut microbiota might reduce inflammaging and rejuvenate immune functions to provide anticancer benefits in frail elderly people.
Collapse
Affiliation(s)
- Arya Biragyn
- Immunoregulation Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
49
|
Padrón Á, Hurez V, Gupta HB, Clark CA, Pandeswara SL, Yuan B, Svatek RS, Turk MJ, Drerup JM, Li R, Curiel TJ. Age effects of distinct immune checkpoint blockade treatments in a mouse melanoma model. Exp Gerontol 2018; 105:146-154. [DOI: 10.1016/j.exger.2017.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
|
50
|
Büll C, Boltje TJ, Balneger N, Weischer SM, Wassink M, van Gemst JJ, Bloemendal VR, Boon L, van der Vlag J, Heise T, den Brok MH, Adema GJ. Sialic Acid Blockade Suppresses Tumor Growth by Enhancing T-cell-Mediated Tumor Immunity. Cancer Res 2018; 78:3574-3588. [PMID: 29703719 DOI: 10.1158/0008-5472.can-17-3376] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/14/2018] [Accepted: 04/16/2018] [Indexed: 11/16/2022]
Abstract
Sialic acid sugars on the surface of cancer cells have emerged as potent immune modulators that contribute to the immunosuppressive microenvironment and tumor immune evasion. However, the mechanisms by which these sugars modulate antitumor immunity as well as therapeutic strategies directed against them are limited. Here we report that intratumoral injections with a sialic acid mimetic Ac53FaxNeu5Ac block tumor sialic acid expression in vivo and suppress tumor growth in multiple tumor models. Sialic acid blockade had a major impact on the immune cell composition of the tumor, enhancing tumor-infiltrating natural killer cell and CD8+ T-cell numbers while reducing regulatory T-cell and myeloid regulatory cell numbers. Sialic acid blockade enhanced cytotoxic CD8+ T-cell-mediated killing of tumor cells in part by facilitating antigen-specific T-cell-tumor cell clustering. Sialic acid blockade also synergized with adoptive transfer of tumor-specific CD8+ T cells in vivo and enhanced CpG immune adjuvant therapy by increasing dendritic cell activation and subsequent CD8+ T-cell responses. Collectively, these data emphasize the crucial role of sialic acids in tumor immune evasion and provide proof of concept that sialic acid blockade creates an immune-permissive tumor microenvironment for CD8+ T-cell-mediated tumor immunity, either as single treatment or in combination with other immune-based intervention strategies.Significance: Sialic acid sugars function as important modulators of the immunosuppressive tumor microenvironment that limit potent antitumor immunity.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3574/F1.large.jpg Cancer Res; 78(13); 3574-88. ©2018 AACR.
Collapse
Affiliation(s)
- Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Natasja Balneger
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sarah M Weischer
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Melissa Wassink
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jasper J van Gemst
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Victor R Bloemendal
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | | | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Torben Heise
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Martijn H den Brok
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|