1
|
Gu Y, Fang Y, Guo Y, Yang R, Ma J, Zhang C, Deng M, Wen Q, Gao N, Qiao H. Cytochrome P450 2E1 inhibitor Q11 is effective on hepatocellular carcinoma by promoting peritumor neutrophil chemotaxis. Int J Biol Macromol 2025; 293:139189. [PMID: 39732257 DOI: 10.1016/j.ijbiomac.2024.139189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Current studies found that the peritumoral tissue of hepatocellular carcinoma (HCC) may be different from normal liver tissue based on proteomics, and related to progression, recurrence and metastasis of HCC. Our previous study proposed "peritumor microenvironment (PME)" to summarize the influence of peritumor tissue on occurrence and progression of HCC. Peritumor CYP2E1 activity was significantly elevated in HCC, and related to occurrence and progression of HCC. However, the effectiveness and mechanism of inhibiting CYP2E1 against HCC remain unclear. In this study, by integrating the advantages of proteomics and transcriptomics, we reanalyzed the various influencing factors in PME. Although there were large differences in the occurrence and progression, the immunity and inflammation still played crucial roles. Peritumor neutrophil were "pro-tumor" phenotype in the stage of progression, while it showed cytotoxicity for tumor cell in the occurrence stage. CYP2E1 activity is associated with peritumor neutrophil infiltration and occurrence of HCC. CYP2E1 inhibitor Q11 showed anti-tumor effects in an orthotopic HCC mouse model by promoting secretion of chemokines and infiltration of neutrophils in peritumor tissue. Overall, these findings provided a reasonable mechanism of anti-tumor effects of CYP2E1 inhibitors, which may be a new strategy for the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Yuhan Gu
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Department of Clinical Pharmacy, Nanyang Central Hospital, Nanyang, China
| | - Yan Fang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Guo
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Rui Yang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jun Ma
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cunzhen Zhang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengyan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiang Wen
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Gao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Lu H, Wang Y, Chaudhary S, Balaga V, Ke H, Shi F, Liu J, Huo Y, Romanienko PJ, Xia B, De S, Chan CS, Shen Z. Medulloblastomas Initiated by Homologous Recombination Defects in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2007-2022. [PMID: 39168365 PMCID: PMC11816638 DOI: 10.1016/j.ajpath.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
Germline mutations of homologous-recombination (HR) genes are among the top contributors to medulloblastomas. A significant portion of human medulloblastomas exhibit genomic signatures of HR defects. Whether ablation of Brca2 and Palb2, and their related Brca1 and Bccip genes, in the mouse brain can differentially initiate medulloblastomas was explored here. Conditional knockout mouse models of these HR genes and a conditional knockdown of Bccip (shBccip-KD) were established. Deletion of any of these genes led to microcephaly and neurologic defects, with Brca1- and Bccip- producing the worst defects. Trp53 co-deletion significantly rescued the microcephaly with Brca1, Palb2, and Brca2 deficiency but exhibited limited impact on Bccip- mice. For the first time, inactivation of either Brca1 or Palb2 with Trp53 was found to induce medulloblastomas. Despite shBccip-CKD being highly penetrative, Bccip/Trp53 deletions failed to induce medulloblastomas. The tumors displayed diverse immunohistochemical features and chromosome copy number variation. Although there were widespread up-regulations of cell proliferative pathways, most of the tumors expressed biomarkers of the sonic hedgehog subgroup. The medulloblastomas developed from Brca1-, Palb2-, and Brca2- mice were highly sensitive to a poly (ADP-ribose) polymerase inhibitor but not the ones from shBccip-CKD mice. These models recapitulate the spontaneous medulloblastoma development with high penetrance and a narrow time window, providing ideal platforms to test therapeutic agents with the ability to differentiate HR-defective and HR-proficient tumors.
Collapse
Affiliation(s)
- Huimei Lu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Yuan Wang
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Shipra Chaudhary
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Varshita Balaga
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Hua Ke
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Fuqian Shi
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | | | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Chang S Chan
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey.
| |
Collapse
|
3
|
Qi F, Li J, Qi Z, Zhou B, Yang B, Zhang J, Qin W. Modeling cross-talk of RNA modification enzymes reveals tumor microenvironment-associated clinical significance and immunotherapy prediction in hepatobiliary malignancy. MedComm (Beijing) 2023; 4:e256. [PMID: 37090117 PMCID: PMC10113697 DOI: 10.1002/mco2.256] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023] Open
Abstract
RNA modification includes four main types, N6-methyladenosine, N1-methyladenosine, alternative polyadenylation (APA), and adenosine-to-inosine (A-to-I) RNA editing, involving 41 enzymes that serve as "writers", "readers" and "erasers". By collecting RNA modifying enzyme information in 1759 hepatobiliary malignancy (HBM) samples from 11 datasets, an RNA modification HBM Score (RH_score) was established based on unsupervised cluster analysis of RNA modification-associated differentially expressed genes (DEGs). We identified the imbalanced expression of 41 RNA modification enzymes in HBM, which was scientifically categorized into two groups: RH_Score high and RH_Score low. A high RH_Score was associated with a worse prognosis and more immature immune cells in the tumor microenvironment (TME), while a low RH_Score was associated with a better prognosis and more mature immune cells in the TME. Further analysis using single-cell databases showed that the high RH_Score was immune exhaustion in the TME. RH_Score was involved in transcriptional regulation and post-transcriptional events in HBM. Additionally, resistant and sensitive drugs were selected based on RNA modification, and anti-PD-L1 therapy responded better with low RH_Score. In conclusion, our study comprehensively analyzes RNA modification in HBM, which induces TME changes and transcriptional and posttranscriptional events, implying potential guiding significance in prognosis prediction and treatment options.
Collapse
Affiliation(s)
- Feng Qi
- Phase I Clinical Trial Center, Department of Oncology, Shanghai Medical CollegeFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jia Li
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhuoran Qi
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
| | - Bin Zhou
- Department of Hepatic Surgery VIEastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Biwei Yang
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
| | - Jun Zhang
- Department of OncologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenxing Qin
- Phase I Clinical Trial Center, Department of Oncology, Shanghai Medical CollegeFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Liu S, Chen H, Yin Y, Lu D, Gao G, Li J, Bai XC, Zhang X. Inhibition of FAM46/TENT5 activity by BCCIPα adopting a unique fold. SCIENCE ADVANCES 2023; 9:eadf5583. [PMID: 37018411 PMCID: PMC10075960 DOI: 10.1126/sciadv.adf5583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The FAM46 (also known as TENT5) proteins are noncanonical poly(A) polymerases (PAPs) implicated in regulating RNA stability. The regulatory mechanisms of FAM46 are poorly understood. Here, we report that the nuclear protein BCCIPα, but not the alternatively spliced isoform BCCIPβ, binds FAM46 and inhibits their PAP activity. Unexpectedly, our structures of the FAM46A/BCCIPα and FAM46C/BCCIPα complexes show that, despite sharing most of the sequence and differing only at the C-terminal portion, BCCIPα adopts a unique structure completely different from BCCIPβ. The distinct C-terminal segment of BCCIPα supports the adoption of the unique fold but does not directly interact with FAM46. The β sheets in BCCIPα and FAM46 pack side by side to form an extended β sheet. A helix-loop-helix segment in BCCIPα inserts into the active site cleft of FAM46, thereby inhibiting the PAP activity. Our results together show that the unique fold of BCCIPα underlies its interaction with and functional regulation of FAM46.
Collapse
Affiliation(s)
- Shun Liu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hua Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Yin
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Defen Lu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guoming Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Pan X, Geng Z, Li J, Li X, Zhang M, Wang X, Cong Y, Huang K, Xu J, Jia X. Peptide PDHPS1 inhibits ovarian cancer growth through disrupting YAP signaling. Mol Cancer Ther 2022; 21:1160-1170. [PMID: 35545004 DOI: 10.1158/1535-7163.mct-21-0848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/09/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
The lives of ovarian cancer patients are threatened largely due to metastasis and drug resistance. Endogenous peptides attract increasing attention in oncologic therapeutic area, a few anti-tumor peptides have been approved by the food and drug administration (FDA) for clinical use over the past decades. However, only few peptides or peptide-derived drugs with anti-ovarian cancer effects have been identified. Here we focused on the biological roles and mechanism of a peptide named PDHPS1 in ovarian cancer development. Our results indicated that PDHPS1 reduced the proliferation ability of ovarian cancer cells in vitro and inhibited the ovarian cancer growth in vivo. Peptide pull down and following mass spectrometry, western blot and qRT-PCR revealed that PDHPS1 could bind to protein phosphatase 2 phosphatase activator (PTPA), an essential activator of protein phosphatase 2A (PP2A), which resulted in increase of phosphorylated YAP, further inactivated YAP and suppressed the expression of its downstream target genes. Flow cytometry, cell membrane permeability test and immunohistochemical staining study demonstrated that there are no observable side effects of PDHPS1 on normal ovarian epithelium and hepatorenal function. Besides, modification of membrane penetration could improve the physicochemical properties and biological activity of PDHPS1. In conclusion, our study demonstrated that the endogenous peptide PDHPS1 serves as an anti-tumor peptide to inhibit YAP signaling pathway though interacting with PTPA in ovarian cancer.
Collapse
Affiliation(s)
- Xinxing Pan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhe Geng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyun Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xingxing Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Mi Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xusu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yu Cong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ke Huang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Juan Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xuemei Jia
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
6
|
Shi J, Lv X, Li W, Ming Z, Zeng L, Yuan J, Chen Y, Liu B, Yang S. Overexpression of BCCIP predicts an unfavorable prognosis and promotes the proliferation and migration of lung adenocarcinoma. Thorac Cancer 2021; 12:2324-2338. [PMID: 34297484 PMCID: PMC8410572 DOI: 10.1111/1759-7714.14073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background Lung cancer accounts for the highest rate of cancer‐related diagnosis and mortality. Lung adenocarcinoma (LUAD) is the most common histopathological type. BCCIP was originally identified as a BRCA2 and CDKN1A interacting protein. In different cancers, BCCIP plays different roles. The role of BCCIP in LUAD is still unknown. Methods The expression and prognostic value of BCCIP was analyzed using public databases, including LCE, GEPIA, TCGA, and clinical specimens. Bioinformatic analysis and vitro experiments were conducted to explore the biological functions of BCCIP in LUAD. By using the GEPIA and TIMER databases, we investigated the correlations between LUAD expression and immune infiltration in LUAD. Results Compared with normal tissue, LUAD tissue had a higher expression level of BCCIP and high expression level of BCCIP was detrimental to LUAD patient survival. The suppression of BCCIP inhibited LUAD cell proliferation, migration and resulted in G1/S phase arrest in vitro. Bioinformatic analysis demonstrated that BCCIP could be associated with cell cycle, DNA repair and E2F transcription factor family. There were significant correlations between BCCIP expression and immune infiltrates, including B cell, CD4+ T cell, macrophage, neutrophil and dendritic cells. Furthermore, BCCIP expression showed strong correlations with diverse immune marker sets in LUAD, such as B cell, macrophage and DC. Conclusions Overexpression of BCCIP predicts an unfavorable prognosis and promotes the proliferation and migration of lung adenocarcinoma cells. BCCIP is correlated with immune infiltration in LUAD. Suppression of BCCIP may be a potential approach in the prevention and treatment of LUAD.
Collapse
Affiliation(s)
- Jie Shi
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Lv
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Li
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zongjuan Ming
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lizhong Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingyan Yuan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Chen
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Boxuan Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuanying Yang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Ye C, Liu B, Lu H, Liu J, Rabson AB, Jacinto E, Pestov DG, Shen Z. BCCIP is required for nucleolar recruitment of eIF6 and 12S pre-rRNA production during 60S ribosome biogenesis. Nucleic Acids Res 2021; 48:12817-12832. [PMID: 33245766 PMCID: PMC7736804 DOI: 10.1093/nar/gkaa1114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023] Open
Abstract
Ribosome biogenesis is a fundamental process required for cell proliferation. Although evolutionally conserved, the mammalian ribosome assembly system is more complex than in yeasts. BCCIP was originally identified as a BRCA2 and p21 interacting protein. A partial loss of BCCIP function was sufficient to trigger genomic instability and tumorigenesis. However, a complete deletion of BCCIP arrested cell growth and was lethal in mice. Here, we report that a fraction of mammalian BCCIP localizes in the nucleolus and regulates 60S ribosome biogenesis. Both abrogation of BCCIP nucleolar localization and impaired BCCIP-eIF6 interaction can compromise eIF6 recruitment to the nucleolus and 60S ribosome biogenesis. BCCIP is vital for a pre-rRNA processing step that produces 12S pre-rRNA, a precursor to the 5.8S rRNA. However, a heterozygous Bccip loss was insufficient to impair 60S biogenesis in mouse embryo fibroblasts, but a profound reduction of BCCIP was required to abrogate its function in 60S biogenesis. These results suggest that BCCIP is a critical factor for mammalian pre-rRNA processing and 60S generation and offer an explanation as to why a subtle dysfunction of BCCIP can be tumorigenic but a complete depletion of BCCIP is lethal.
Collapse
Affiliation(s)
- Caiyong Ye
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Bochao Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Huimei Lu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Arnold B Rabson
- Department of Pharmacology, and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
Lu H, Ye C, Liu J, Rabson AB, Verzi M, De S, Shen Z. Requirement of Bccip for the Regeneration of Intestinal Progenitors. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:66-78. [PMID: 33039352 PMCID: PMC7857062 DOI: 10.1016/j.ajpath.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/30/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
BCCIP was originally identified as a BRCA2 and CDKN1A/p21 interaction protein. Although a partial loss of BCCIP function is sufficient to trigger genomic instability and tumorigenesis, complete deletion of BCCIP is lethal to cells. Using Rosa26-CreERT2 mouse models, we found that induced Bccip deletion in adult mice caused an acute intestinal epithelial denudation that cannot be relieved by co-deletion of Trp53. The critical role of Bccip in intestine epithelial renewal was verified with a Villin-CreERT2 mouse model. The epithelium degeneration was associated with a rapid loss of the proliferative capability of the crypt progenitor cells in vivo, lack of crypt base columnar stem cell markers, and a failure of in vitro crypt organoid growth. RNA-Seq analysis of freshly isolated intestinal crypt cells showed that Bccip deletion caused an overwhelming down-regulation of genes involved in mitotic cell division but an up-regulation of genes involved in apoptosis and stress response to microbiomes. Our data not only indicate that intestinal epithelium is the most sensitive tissue to whole-body deletion of Bccip but also point to Bccip as a novel and critical factor for the proliferation of the intestinal progenitors. These findings have significant implications for understanding why a hypomorphic loss of BCCIP functions is more relevant to tumorigenesis.
Collapse
Affiliation(s)
- Huimei Lu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Caiyong Ye
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Arnold B Rabson
- Department of Pharmacology, Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey; Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey; The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Michael Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey.
| |
Collapse
|
9
|
The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers (Basel) 2020; 12:cancers12092435. [PMID: 32867128 PMCID: PMC7564582 DOI: 10.3390/cancers12092435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
High mobility group box B (HMGB) proteins are overexpressed in different types of cancers such as epithelial ovarian cancers (EOC). We have determined the first interactome of HMGB1 and HMGB2 in epithelial ovarian cancer (the EOC-HMGB interactome). Libraries from the SKOV-3 cell line and a primary transitional cell carcinoma (TCC) ovarian tumor were tested by the Yeast Two Hybrid (Y2H) approach. The interactome reveals proteins that are related to cancer hallmarks and their expression is altered in EOC. Moreover, some of these proteins have been associated to survival and prognosis of patients. The interaction of MIEN1 and NOP53 with HMGB2 has been validated by co-immunoprecipitation in SKOV-3 and PEO1 cell lines. SKOV-3 cells were treated with different anti-tumoral drugs to evaluate changes in HMGB1, HMGB2, MIEN1 and NOP53 gene expression. Results show that combined treatment of paclitaxel and carboplatin induces a stronger down-regulation of these genes in comparison to individual treatments. Individual treatment with paclitaxel or olaparib up-regulates NOP53, which is expressed at lower levels in EOC than in non-cancerous cells. On the other hand, bevacizumab diminishes the expression of HMGB2 and NOP53. This study also shows that silencing of these genes affects cell-viability after drug exposure. HMGB1 silencing causes loss of response to paclitaxel, whereas silencing of HMGB2 slightly increases sensitivity to olaparib. Silencing of either HMGB1 or HMGB2 increases sensitivity to carboplatin. Lastly, a moderate loss of response to bevacizumab is observed when NOP53 is silenced.
Collapse
|
10
|
Wang F, Wang J, Wang J, Zhang L, Fu H, Li J, Tian T, Zuo J, Lv W, Ma X. BCCIPβ facilitates p53 ubiquitination via binding with E6 protein in high-risk HPV positive head and neck squamous cell carcinoma. Biochem Biophys Res Commun 2020; 529:685-691. [PMID: 32736693 DOI: 10.1016/j.bbrc.2020.05.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022]
Abstract
BRCA2 And CDKN1A Interacting Protein (BCCIP) is initially identified as a tumor suppressor. Some recent studies confirmed its p53 binding capability. In this study, we explored the regulatory effect of BCCIPβ on p53 stability in HPV-positive and HPV-negative HNSCC cells. RNA-seq data from TCGA-HNSC were extracted for transcript isoform analysis in HPV-positive and HPV-negative tumors. HPV16-positive UM-SCC-47 (SCC47) and UM-SCC-104 (SCC104) and HPV-negative SCC-9 (SCC9) and UM-SCC-1 (SCC1) cell lines were used as in vitro cell models. Results showed that BCCIPβ was the dominant transcript in both HPV-positive and HPV-negative HNSCC cases. Knockdown of BCCIPβ decreased p53 protein concentration in the two HPV-negative cell lines but increased p53 concentration in the two HPV-positive cell lines. BCCIPβ inhibition increased proliferation and G1/S transition of SCC9 and SCC1 cells. In comparison, BCCIPβ inhibition slowed proliferation and increased G1 arrest of SCC104 and SCC47 cells. BCCIPβ inhibition prolonged the half-life of p53 protein and reduced p53 ubiquitination in the two HPV16-positive cell lines. Co-IP assay confirmed interactions among BCCIPβ, HPV E6, and p53 in both SCC104 and SCC47 cells. In comparison, only the interaction between BCCIPα and p53 was confirmed in these two cell lines. Either E6 or BCCIPβ inhibition reduced p53 ubiquitination and increased p53 concentration. However, inhibiting E6 and BCCIPβ at the same did not generate synergistic effects. On the contrary, p53 ubiquitination level was even higher in the combination group, with lower p53 concentration compared to the shE6 group. BCCIPβ overexpression in SCC47 cells with HPV E6 depletion significantly reduced p53 ubiquitination. In conclusion, this study found a novel interaction between HPV E6 and BCCIPβ in HPV16-positive HNSCC cells. The presence of HPV E6 turned BCCIPβ from a p53 stabilizer to a ubiquitination facilitator. This mechanism helps explain why BCCIPβ acted as a tumor suppressor in HPV-negative HNSCC but exerted oncogenic function in HPV16-positive HNSCC.
Collapse
Affiliation(s)
- Fang Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jing Wang
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jingjing Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Lingnan Zhang
- Department of Orthodontics, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Honghai Fu
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jianwei Li
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Tian Tian
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jinhua Zuo
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Wenwen Lv
- Department of Pharmacy, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| | - Xiangrui Ma
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| |
Collapse
|
11
|
Lu H, Ye C, Feng X, Liu J, Bhaumik M, Xia B, Liu C, Shen Z. Spontaneous Development of Hepatocellular Carcinoma and B-Cell Lymphoma in Mosaic and Heterozygous Brca2 and Cdkn1a Interacting Protein Knockout Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1175-1187. [PMID: 32201259 DOI: 10.1016/j.ajpath.2020.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/02/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver tumors. Although HCC is associated with chronic viral infections, alcoholic cirrhosis, and nonalcoholic fatty liver disease, genetic factors that contribute to the HCC risk remain unknown. The BRCA2 DNA repair associated (BRCA2) and cyclin-dependent kinase inhibitor 1A (CDKN1A) interacting protein, known as BCCIP, are essential for cell viability and maintenance of genomic stability. In this study, we established a new genetically engineered mouse model with Bccip deficiency. Mosaic or heterozygous Bccip deletion conferred an increased risk of spontaneous liver tumorigenesis and B-cell lymphoma development at old age. These abnormalities are accompanied with chronic inflammation, histologic features of nonalcoholic steatohepatitis, keratin and ubiquitin aggregates within cytoplasmic Mallory-Denk bodies, and changes of the intracellular distribution of high-mobility group box 1 protein. Our study suggests BCCIP dysregulation as a risk factor for HCC and offers a novel mouse model for future investigations of nonviral or nonalcoholic causes of HCC development.
Collapse
Affiliation(s)
- Huimei Lu
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Caiyong Ye
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Xing Feng
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mantu Bhaumik
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Chen Liu
- Department of Pathology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
12
|
Feng X, Lu H, Yue J, Schneider N, Liu J, Denzin LK, Chan CS, De S, Shen Z. Loss of Setd4 delays radiation-induced thymic lymphoma in mice. DNA Repair (Amst) 2019; 86:102754. [PMID: 31794893 DOI: 10.1016/j.dnarep.2019.102754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Abstract
Radiation-induced lymphomagenesis results from a clonogenic lymphoid cell proliferation due to genetic alterations and immunological dysregulation. Mouse models had been successfully used to identify risk and protective factors for radiation-induced DNA damage and carcinogenesis. The mammalian SETD4 is a poorly understood putative methyl-transferase. Here, we report that conditional Setd4 deletion in adult mice significantly extended the survival of radiation-induced T-lymphoma. However, in Tp53 deficient mice, Setd4 deletion did not delay the radiation-induced lymphomagenesis although it accelerated the spontaneous T-lymphomagenesis in non-irradiated mice. The T-lymphomas were largely clonogenic in both Setd4flox/flox and Setd4Δ/Δ mice based on sequencing analysis of the T-cell antigen β receptors. However, the Setd4Δ/Δ T-lymphomas were CD4+/CD8+ double positive, while the littermate Setd4flox/floxtumor were largely CD8+ single positive. A genomic sequencing analysis on chromosome deletion, inversion, duplication, and translocation, revealed a larger contribution of inversion but a less contribution of deletion to the overall chromosome rearrangements in the in Setd4Δ/Δ tumors than the Setd4flox/flox tumors. In addition, the Setd4flox/flox mice died more often from the large sizes of primary thymus lymphoma at earlier time, but there was a slight increase of lymphoma dissemination among peripheral organs in Setd4Δ/Δ at later times. These results suggest that Setd4 has a critical role in modulating lymphomagenesis and may be targeted to suppress radiation-induced carcinogenesis.
Collapse
Affiliation(s)
- Xing Feng
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Huimei Lu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Jingyin Yue
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Neta Schneider
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Lisa K Denzin
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Chang S Chan
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
13
|
Liu F, Wei J, Hao Y, Tang F, Jiao W, Qu S, He N, Cai Y, Lan J, Yang Y, Wang Y, Li M, Weng J, Li B, Lu J, Han X. Long Noncoding RNAs and Messenger RNAs Expression Profiles Potentially Regulated by ZBTB7A in Nasopharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7246491. [PMID: 31309112 PMCID: PMC6594332 DOI: 10.1155/2019/7246491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023]
Abstract
Our previous studies showed that ZBTB7A played an important role in promoting nasopharyngeal carcinoma (NPC) progression. However, molecular mechanisms of different levels of ZBTB7A are still unclear. It is necessary to search molecular markers which are closely connected with ZBTB7A. We selected NPC sublines CNE2 with stably transfecting empty plasmid (negative control, NC) and short hair RNA (shRNA) plasmid targeting ZBTB7A as research objectives. Microarray was used to screen differentially expressed long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) via shRNA-CNE2 versus NC-CNE2. Quantitative PCR (qPCR) was used to validate lncRNAs and mRNAs from the sublines, chronic rhinitis, and NPC tissues. Bioinformatics was used to analyze regulatory pathways which were connected with ZBTB7A. The 1501 lncRNAs (long noncoding RNAs) and 1275 differentially expressed mRNAs were upregulated or downregulated over 2-fold. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the upregulated or downregulated carbohydrate and lipid metabolisms probably involved in carcinogenicity of shRNA-CNE2 (P-value cut-off was 0.05). In order to find the molecular mechanisms of ZBTB7A, we validated 12 differentially expressed lncRNAs and their nearby mRNAs by qPCR. Most of the differentially expressed mRNAs are closely connected with carbohydrate and lipid metabolisms in multiply cancers. Furthermore, part of them were validated in NPC and rhinitis tissues by qPCR. As a result, NR_047538, ENST00000442852, and fatty acid synthase (FASN) were closely associated with NPC. ZBTB7A had a positive association with NR_047538 and negative associations with ENST00000442852 and FASN. The results probably provide novel candidate biomarkers for NPC progression with different levels of ZBTB7A.
Collapse
Affiliation(s)
- Fei Liu
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yanrong Hao
- Cancer Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Fengzhu Tang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Wei Jiao
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Shenhong Qu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Ning He
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yonglin Cai
- Key Laboratory of Nasopharyngeal Carcinoma Etiology and Molecular Mechanism, Wuzhou Red Cross Hospital, Wuzhou 543002, China
| | - Jiao Lan
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yong Yang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Yongli Wang
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Min Li
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jingjin Weng
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Bing Li
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Jinlong Lu
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Xing Han
- Department of Otolaryngology & Head and Neck, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| |
Collapse
|
14
|
Sales-Dias J, Silva G, Lamy M, Ferreira A, Barbas A. The Notch ligand DLL1 exerts carcinogenic features in human breast cancer cells. PLoS One 2019; 14:e0217002. [PMID: 31107884 PMCID: PMC6527237 DOI: 10.1371/journal.pone.0217002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
CONCLUSIONS These findings provide further evidence that DLL1 exerts carcinogenic effects in BC cells. The dissimilar effects of DLL1 downregulation observed amongst MCF-7, BT474, and MDA-MB-231 cells is likely due to their distinctive genetic and biologic characteristics, suggesting that DLL1 contributes to BC through various mechanisms.
Collapse
Affiliation(s)
- Joana Sales-Dias
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB—Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - Gabriela Silva
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- * E-mail:
| | - Márcia Lamy
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Andreia Ferreira
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ana Barbas
- iBET—Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Bayer Portugal, Carnaxide, Portugal
| |
Collapse
|
15
|
Ba Q, Li X, Huang C, Li J, Fu Y, Chen P, Duan J, Hao M, Zhang Y, Li J, Sun C, Ying H, Song H, Zhang R, Shen Z, Wang H. BCCIPβ modulates the ribosomal and extraribosomal function of S7 through a direct interaction. J Mol Cell Biol 2018; 9:209-219. [PMID: 28510697 PMCID: PMC5907838 DOI: 10.1093/jmcb/mjx019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 05/14/2017] [Indexed: 11/14/2022] Open
Abstract
Extraribosomal functions of ribosomal proteins (RPs) have gained much attention for their implications in tumorigenesis and progression. However, the regulations for transition between the ribosomal and extraribosomal functions of RPs are rarely reported. Herein, we identified a ribosomal protein S7-interacting partner, BCCIPβ, which modulates the functional conversion of S7. Through the N-terminal acidic domain, BCCIPβ interacts with the central basic region in S7 and regulates the extraribosomal distribution of S7. BCCIPβ deficiency abrogates the ribosomal accumulation but enhances the ribosome-free location of S7. This translocation further impairs protein synthesis and triggers ribosomal stress. Consequently, BCCIPβ deficiency suppresses the ribosomal function and initiates the extraribosomal function of S7, resulting in restriction of cell proliferation. Moreover, clinically relevant S7 mutations were found to dampen the interaction with BCCIPβ and facilitate the functional transition of S7. In conclusion, BCCIPβ, as a S7 modulator, contributes to the regulation of ribosomal and extraribosomal functions of S7 and has implications in cell growth and tumor development.
Collapse
Affiliation(s)
- Qian Ba
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoguang Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Huang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junyang Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yijing Fu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peizhan Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juan Duan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Miao Hao
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yinghua Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chuanqi Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiyun Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology of Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence to: Hui Wang, E-mail:
| |
Collapse
|
16
|
Abstract
Background Dysregulated DNA repair and cell proliferation controls are essential driving forces in mammary tumorigenesis. BCCIP was originally identified as a BRCA2 and CDKN1A interacting protein that has been implicated in maintenance of genomic stability, cell cycle regulation, and microtubule dynamics. The aims of this study were to determine whether BCCIP deficiency contributes to mammary tumorigenesis, especially for a subset of breast cancers with 53BP1 abnormality, and to reveal the mechanistic implications of BCCIP in breast cancer interventions. Methods We analyzed the BCCIP protein level in 470 cases of human breast cancer to determine the associations between BCCIP and 53BP1, p53, and subtypes of breast cancer. We further constructed a unique BCCIP knockdown mouse model to determine whether a partial BCCIP deficiency leads to spontaneous breast cancer formation. Results We found that the BCCIP protein level is downregulated in 49% of triple-negative breast cancer and 25% of nontriple-negative breast cancer. The downregulation of BCCIP is mutually exclusive with p53 mutations but concurrent with 53BP1 loss in triple-negative breast cancer. In a K14-Cre-mediated conditional BCCIP knockdown mouse model, we found that BCCIP downregulation causes a formation of benign modules in the mammary glands, resembling the epidermal inclusion cyst of the breast. However, the majority of these benign lesions remain indolent, and only ~ 10% of them evolve into malignant tumors after a long latency. This tumor progression is associated with a loss of 53BP1 and p16 expression. BCCIP knockdown did not alter the latency of mammary tumor formation induced by conditional Trp53 deletion. Conclusions Our data suggest a confounding role of BCCIP deficiency in modulating breast cancer development by enhancing tumor initiation but hindering progression. Furthermore, secondary genetic alternations may overcome the progression suppression imposed by BCCIP deficiency through a synthetic viability mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0907-5) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Cumming BM, Rahman MA, Lamprecht DA, Rohde KH, Saini V, Adamson JH, Russell DG, Steyn AJC. Mycobacterium tuberculosis arrests host cycle at the G1/S transition to establish long term infection. PLoS Pathog 2017; 13:e1006389. [PMID: 28542477 PMCID: PMC5456404 DOI: 10.1371/journal.ppat.1006389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/02/2017] [Accepted: 04/28/2017] [Indexed: 02/08/2023] Open
Abstract
Signals modulating the production of Mycobacterium tuberculosis (Mtb) virulence factors essential for establishing long-term persistent infection are unknown. The WhiB3 redox regulator is known to regulate the production of Mtb virulence factors, however the mechanisms of this modulation are unknown. To advance our understanding of the mechanisms involved in WhiB3 regulation, we performed Mtb in vitro, intraphagosomal and infected host expression analyses. Our Mtb expression analyses in conjunction with extracellular flux analyses demonstrated that WhiB3 maintains bioenergetic homeostasis in response to available carbon sources found in vivo to establish Mtb infection. Our infected host expression analysis indicated that WhiB3 is involved in regulation of the host cell cycle. Detailed cell-cycle analysis revealed that Mtb infection inhibited the macrophage G1/S transition, and polyketides under WhiB3 control arrested the macrophages in the G0-G1 phase. Notably, infection with the Mtb whiB3 mutant or polyketide mutants had little effect on the macrophage cell cycle and emulated the uninfected cells. This suggests that polyketides regulated by Mtb WhiB3 are responsible for the cell cycle arrest observed in macrophages infected with the wild type Mtb. Thus, our findings demonstrate that Mtb WhiB3 maintains bioenergetic homeostasis to produce polyketide and lipid cyclomodulins that target the host cell cycle. This is a new mechanism whereby Mtb modulates the immune system by altering the host cell cycle to promote long-term persistence. This new knowledge could serve as the foundation for new host-directed therapeutic discovery efforts that target the host cell cycle.
Collapse
Affiliation(s)
| | | | - Dirk A. Lamprecht
- Africa Health Research Institute, Durban, KwaZulu Natal, South Africa
| | - Kyle H. Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John H. Adamson
- Africa Health Research Institute, Durban, KwaZulu Natal, South Africa
| | - David G. Russell
- Cornell University College of Veterinary Medicine, C5 171 Veterinary Medical Center, Ithaca, New York, United States of America
| | - Adrie J. C. Steyn
- Africa Health Research Institute, Durban, KwaZulu Natal, South Africa
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Regulation of spindle integrity and mitotic fidelity by BCCIP. Oncogene 2017; 36:4750-4766. [PMID: 28394342 PMCID: PMC5561484 DOI: 10.1038/onc.2017.92] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/11/2017] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
Centrosomes together with the mitotic spindle ensure the faithful distribution of chromosomes between daughter cells, and spindle orientation is a major determinant of cell fate during tissue regeneration. Spindle defects are not only an impetus of chromosome instability but are also a cause of developmental disorders involving defective asymmetric cell division. In this work, we demonstrate BCCIP, especially BCCIPα, as a previously unidentified component of the mitotic spindle pole and the centrosome. We demonstrate that BCCIP localizes proximal to the mother centriole and participates in microtubule organization and then redistributes to the spindle pole to ensure faithful spindle architecture. We find that BCCIP depletion leads to morphological defects, disoriented mitotic spindles, chromosome congression defects and delayed mitotic progression. Our study identifies BCCIP as a novel factor critical for microtubule regulation and explicates a mechanism utilized by BCCIP in tumor suppression.
Collapse
|
19
|
Graziano ACE, Cardile V, Avola R, Vicario N, Parenti C, Salvatorelli L, Magro G, Parenti R. Wilms' tumor gene 1 silencing inhibits proliferation of human osteosarcoma MG-63 cell line by cell cycle arrest and apoptosis activation. Oncotarget 2017; 8:13917-13931. [PMID: 28107196 PMCID: PMC5355150 DOI: 10.18632/oncotarget.14715] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Wilms' tumor gene 1 (WT1) plays complex roles in tumorigenesis, acting as tumor suppressor gene or an oncogene depending on the cellular context. A high WT1 expression level was described in various types of human bone and soft-tissue sarcomas, including osteosarcoma (OS), but its function in carcinogenesis is not yet well understood. This study investigated WT1 both in human OS tissues and in human OS MG-63 cell line in which WT1 gene is up-regulated. The results demonstrated that WT1 is expressed in 50% of human OS cases. WT1-silenced MG-63 cells showed deregulation of proteins of cell cycle and down-regulation of PI3K/AKT pathway. Induction of apoptotic programme was also established by activation of caspase-3 and increase of Bax/Bcl2 ratio and p53 protein. This study provided new findings on role of WT1 and indicated an association between WT1 expression, cell cycle and apoptotic machinery. In conclusion, WT1 acts as a tumour promoter in osteosarcoma and it could be a potential therapeutic target.
Collapse
Affiliation(s)
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95125 Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95125 Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95125 Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, 95125 Catania, Italy
| | - Lucia Salvatorelli
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria “Policlinico-Vittorio Emanuele” Anatomic Pathology, University of Catania, 95125 Catania, Italy
| | - Gaetano Magro
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria “Policlinico-Vittorio Emanuele” Anatomic Pathology, University of Catania, 95125 Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95125 Catania, Italy
| |
Collapse
|
20
|
Chen L, Ni S, Li M, Shen C, Lin Z, Ouyang Y, Xia F, Liang L, Jiang W, Ni R, Zhang J. High Expression of BCCIP β Can Promote Proliferation of Esophageal Squamous Cell Carcinoma. Dig Dis Sci 2017; 62:387-395. [PMID: 27995408 DOI: 10.1007/s10620-016-4382-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/10/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND BCCIP was originally identified as a BRCA2 interacting protein in humans and Ustilago maydis. It had low expression in some human cancer tissues. However, recent research indicated that many caretaker genes are also necessary for cell viability and their expression could contribute to tumor progression. AIM To characterize whether BCCIP is a caretaker gene in esophageal squamous cell carcinoma (ESCC). METHODS Western blotting and immunohistochemistry were used to measure the expression of BCCIP β. In vitro studies were used to verify the effects of BCCIP β in Eca109 cells. RESULTS Expression of BCCIP β was notably higher in tumor tissues of ESCC and Eca 109 cells. Meanwhile, the immunohistochemistry stain revealed that BCCIP β was positively correlated with clinical pathologic variables such as tumor size and tumor grade, as well as Ki-67, and prompted poor prognosis. In vitro studies such as starvation and refeeding assay along with BCCIP β-shRNA transfection assay demonstrated that BCCIP β expression promoted proliferation of ESCC cells. In addition, BCCIP β downregulation by silencing RNA significantly decreased the rate of colony formation, alleviated cellular apoptosis and increased the chemosensitivity of cisplatin. CONCLUSIONS This research first put forward that BCCIP β is an oncogene in human ESCC and contributes to the poor outcome of the deadly disease.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Sujie Ni
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Mei Li
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Chaoyan Shen
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Zhipeng Lin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yu Ouyang
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, Jiangsu, China
| | - Fei Xia
- Department of Radiology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Li Liang
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Wenyan Jiang
- Department of Medical Oncology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
21
|
Lin Z, Hu B, Ni W, Mao X, Zhou H, Lv J, Yin B, Shen Z, Wu M, Ding W, Xiao M, Ni R. Expression pattern of BCCIP in hepatocellular carcinoma is correlated with poor prognosis and enhanced cell proliferation. Tumour Biol 2016; 37:16305–16315. [PMID: 27832471 DOI: 10.1007/s13277-016-5424-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 09/23/2016] [Indexed: 12/23/2022] Open
Abstract
BCCIP was originally identified as a BRCA2- and CDKN1A- (Cip1/waf1/p21) interacting protein, also known as BCCIP. It has been reported to express in various types of cancers, including colorectal cancer (CRC), astrocytic brain tumors, and glioblastomas. However, the relationship between BCCIP expression and clinicopathological features of hepatocellular carcinoma (HCC) remains to be determined. Herein, we demonstrated that BCCIP was downregulated in clinical HCC tissues; its level was inversely correlated with multiple clinicopathological factors, such as tumor grade, tumor size, and Ki67 expression. Cox regression analysis of tumor samples revealed that BCCIP expression status was an independent prognostic factor for HCC patients' poor survival. Our study also indicated that BCCIP shutdown reduces p21 expression and accelerates G1 to S progression of LO2 hepatocytes significantly. Moreover, there is an interaction between BCCIP and p53 in hepatic L02 cells, and the downregulation of p21 expression by BCCIP is in a p53-dependent way. These findings revealed that BCCIP may play a significant role for the determination of HCC progression through its role in regulating cell growth. Thus, our results suggest that BCCIP is of potential interest for prognostic marker and therapeutic target of HCC.
Collapse
Affiliation(s)
- Zhipeng Lin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Baoying Hu
- Basic Medical Research Centre, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Xiaofei Mao
- Department of Stomatology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, People's Republic of China
| | - Huiling Zhou
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiale Lv
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Bihui Yin
- Department of Hepatic Oncology, Nantong Tumor Hospital, Nantong, 226361, Jiangsu, People's Republic of China
| | - Zhongyi Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Miaomiao Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China
| | - Wensen Ding
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu Province, People's Republic of China.
| |
Collapse
|
22
|
The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging (Albany NY) 2016; 7:854-68. [PMID: 26540407 PMCID: PMC4637210 DOI: 10.18632/aging.100831] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Medulloblastoma (MB), a primitive neuroectodermal tumor, is the most common malignant childhood brain tumor and remains incurable in about a third of patients. Currently, survivors carry a significant burden of late treatment effects. The p53 tumor suppressor protein plays a crucial role in influencing cell survival in response to cellular stress and while the p53 pathway is considered a key determinant of anti-tumor responses in many tumors, its role in cell survival in MB is much less well defined. Herein, we report that the experimental drug VMY-1-103 acts through induction of a partial DNA damage-like response as well induction of non-survival autophagy. Surprisingly, the genetic or chemical silencing of p53 significantly enhanced the cytotoxic effects of both VMY and the DNA damaging drug, doxorubicin. The inhibition of p53 in the presence of VMY revealed increased late stage apoptosis, increased DNA fragmentation and increased expression of genes involved in apoptosis, including CAPN12 and TRPM8, p63, p73, BIK, EndoG, CIDEB, P27Kip1 and P21cip1. These data provide the groundwork for additional studies on VMY as a therapeutic drug and support further investigations into the intriguing possibility that targeting p53 function may be an effective means of enhancing clinical outcomes in MB.
Collapse
|
23
|
Mukaihara K, Suehara Y, Kohsaka S, Kubota D, Toda-Ishii M, Akaike K, Fujimura T, Kobayashi E, Yao T, Ladanyi M, Kaneko K, Saito T. Expression of F-actin-capping protein subunit beta, CAPZB, is associated with cell growth and motility in epithelioid sarcoma. BMC Cancer 2016; 16:206. [PMID: 26965049 PMCID: PMC4787035 DOI: 10.1186/s12885-016-2235-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A previous proteomics study demonstrated the overexpression of F-actin capping protein subunit beta (CAPZB) in tissue specimens of epithelioid sarcoma (EpiS). The aim of the present study was to elucidate the function of CAPZB in EpiS. METHODS Cellular functional assays were performed in two EpiS cell lines using CAPZB siRNAs. In addition, comparative protein expression analyses using Isobaric Tags for Relative and Absolute Quantitation (i-TRAQ) method were performed to identify the specific proteins whose expression was dysregulated by CAPZB, and analysed the data with the Ingenuity Pathways Analysis (IPA) system using the obtained protein profiles to clarify the functional pathway networks associated with the oncogenic function of CAPZB in EpiS. Additionally, we performed functional assays of the INI1 protein using INI1-overexpressing EpiS cells. RESULTS All 15 EpiS cases showed an immunohistochemical expression of CAPZB, and two EpiS cell lines exhibited a strong CAPZB expression. Silencing of CAPZB inhibited the growth, invasion and migration of the EpiS cells. Analysis of protein profiles using the IPA system suggested that SWI/SNF chromatin-remodeling complexes including INI1 may function as a possible upstream regulator of CAPZB. Furthermore, silencing of CAPZB resulted in a decreased expression of INI1 proteins in the INI1-positive EpiS cells, whereas the induction of INI1 in the INI1-deficient EpiS cells resulted in an increased CAPZB mRNA expression. CONCLUSIONS CAPZB is involved in tumor progression in cases of EpiS, irrespective of the INI1 expression, and may be a potential therapeutic target. The paradoxical relationship between the tumor suppressor INI1 and the oncoprotein CAPZB in the pathogenesis of EpiS remains to be clarified.
Collapse
Affiliation(s)
- Kenta Mukaihara
- Department of Orthopedic Surgery, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Shinji Kohsaka
- Department of Medical Genomics Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daisuke Kubota
- Department of Orthopedic Surgery, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Midori Toda-Ishii
- Department of Orthopedic Surgery, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Human Pathology, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Keisuke Akaike
- Department of Orthopedic Surgery, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan.,Department of Human Pathology, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tsutomu Fujimura
- Laboratory of Biochemical Analysis, Central Laboratory of Medical Sciences, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Eisuke Kobayashi
- Division of Musculoskeletal Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Yao
- Department of Human Pathology, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Kazuo Kaneko
- Department of Orthopedic Surgery, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, School of Medicine, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
24
|
Xia P, Sun Y, Zheng C, Hou T, Kang M, Yang X. p53 mediated apoptosis in osteosarcoma MG-63 cells by inhibition of FANCD2 gene expression. Int J Clin Exp Med 2015; 8:11101-11108. [PMID: 26379910 PMCID: PMC4565293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/10/2015] [Indexed: 06/05/2023]
Abstract
PURPOSE The aim of this study was to investigate the association between osteosarcoma (OS) and Fanconi anemia (FA) related pathways and the molecular mechanisms. METHODS siRNA for Fanconi anemia complementation group D2 (FANCD2) was constructed and transfected into the osteosarcoma cell line MG-63 cells. Expression of TP53INP1, p53, p21, caspase-9, and caspase-3 mRNA in MG-63 cells were examined by real-time fluorescence quantitative PCR, and the protein levels were also determined by western blot. RESULTS After silence of the FANCD2 gene in MG-63 cells, cell proliferation was inhibited, cell cycle was arrested and cell apoptosis was induced. The apoptosis was mediated by the p53 signaling pathway. After FANCD2 expression was inhibited, TP53INP1 gene expression was up-regulated, phosphorylation of p53 was promoted and the p21 protein was activated, leading to cell cycle arrested in G1, finally resulted in caspase-dependent cell apoptosis. CONCLUSIONS Inhibition of FANCD2 gene expression can induce apoptosis of osteosarcoma cells, which indicated that FANCD2 played an important role in the development of osteosarcoma and it might be a potential target for treatment of osteosarcoma.
Collapse
Affiliation(s)
- Peng Xia
- Department of Orthopedics, The Second Hospital of Jilin UniversityChangchun 130000, China
| | - Yifu Sun
- Department of Orthopedics, China Japan Union Hospital of Jilin UniversityChangchun 130000, China
| | - Changjun Zheng
- Department of Orthopedics, The Second Hospital of Jilin UniversityChangchun 130000, China
| | - Tingting Hou
- Department of Orthopedics, The Second Hospital of Jilin UniversityChangchun 130000, China
| | - Mingyang Kang
- Department of Orthopedics, The Second Hospital of Jilin UniversityChangchun 130000, China
| | - Xiaoyu Yang
- Department of Orthopedics, The Second Hospital of Jilin UniversityChangchun 130000, China
| |
Collapse
|
25
|
Wu MY, Liang RR, Chen K, Shen M, Tian YL, Li DM, Duan WM, Gui Q, Gong FR, Lian L, Li W, Tao M. FH535 inhibited metastasis and growth of pancreatic cancer cells. Onco Targets Ther 2015; 8:1651-70. [PMID: 26185454 PMCID: PMC4500609 DOI: 10.2147/ott.s82718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
FH535 is a small-molecule inhibitor of the Wnt/β-catenin signaling pathway, which a substantial body of evidence has proven is activated in various cancers, including pancreatic cancer. Activation of the Wnt/β-catenin pathway plays an important role in tumor progression and metastasis. We investigated the inhibitory effect of FH535 on the metastasis and growth of pancreatic cancer cells. Western blotting and luciferase reporter gene assay indicated that FH535 markedly inhibited Wnt/β-catenin pathway viability in pancreatic cancer cells. In vitro wound healing, invasion, and adhesion assays revealed that FH535 significantly inhibited pancreatic cancer cell metastasis. We also observed the inhibitory effect of FH535 on pancreatic cancer cell growth via the tetrazolium and plate clone formation assays. Microarray analyses suggested that changes in the expression of multiple genes could be involved in the anti-cancer effect of FH535 on pancreatic cancer cells. Our results indicate for the first time that FH535 inhibits pancreatic cancer cell metastasis and growth, providing new insight into therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Rong-Rui Liang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Ya-Li Tian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Dao-Ming Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Wei-Ming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Qi Gui
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lian Lian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, People's Republic of China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China ; Institute of Medical Biotechnology, Soochow University, Suzhou, People's Republic of China ; PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
26
|
Characterization of medulloblastoma in Fanconi Anemia: a novel mutation in the BRCA2 gene and SHH molecular subgroup. Biomark Res 2015; 3:13. [PMID: 26064523 PMCID: PMC4462002 DOI: 10.1186/s40364-015-0038-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/26/2015] [Indexed: 11/10/2022] Open
Abstract
Fanconi Anemia (FA) is an inherited disorder characterized by the variable presence of multiple congenital somatic abnormalities, bone marrow failure and cancer susceptibility. Medulloblastoma (MB) has been described only in few cases of FA with biallelic inactivation in the tumor suppressor gene BRCA2/FANCD1 or its associated gene PALB2/FANCN. We report the case of a patient affected by Fanconi Anemia with Wilms tumor and unusual presentation of two medulloblastomas (MB1 and MB2). We identified a new pathogenetic germline BRCA2 mutation: c.2944_2944delA. Molecular analysis of MBs allowed us to define new features of MB in FA. MBs were found to belong to the Sonic Hedgehog (SHH) molecular subgroup with some differences between MB1 and MB2. We highlighted that MB in FA could share molecular aspects and hemispheric localization with sporadic adult SHH-MB. Our report provides new findings that shed new light on the genetic and molecular pathogenesis of MB in FA patients with implications in the disease management.
Collapse
|
27
|
The Transient Inactivation of the Master Cell Cycle Phosphatase Cdc14 Causes Genomic Instability in Diploid Cells of Saccharomyces cerevisiae. Genetics 2015; 200:755-69. [PMID: 25971663 DOI: 10.1534/genetics.115.177626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022] Open
Abstract
Genomic instability is a common feature found in cancer cells . Accordingly, many tumor suppressor genes identified in familiar cancer syndromes are involved in the maintenance of the stability of the genome during every cell division and are commonly referred to as caretakers. Inactivating mutations and epigenetic silencing of caretakers are thought to be the most important mechanisms that explain cancer-related genome instability. However, little is known of whether transient inactivation of caretaker proteins could trigger genome instability and, if so, what types of instability would occur. In this work, we show that a brief and reversible inactivation, during just one cell cycle, of the key phosphatase Cdc14 in the model organism Saccharomyces cerevisiae is enough to result in diploid cells with multiple gross chromosomal rearrangements and changes in ploidy. Interestingly, we observed that such transient loss yields a characteristic fingerprint whereby trisomies are often found in small-sized chromosomes, and gross chromosome rearrangements, often associated with concomitant loss of heterozygosity, are detected mainly on the ribosomal DNA-bearing chromosome XII. Taking into account the key role of Cdc14 in preventing anaphase bridges, resetting replication origins, and controlling spindle dynamics in a well-defined window within anaphase, we speculate that the transient loss of Cdc14 activity causes cells to go through a single mitotic catastrophe with irreversible consequences for the genome stability of the progeny.
Collapse
|
28
|
The flow cytometry-defined light chain cytoplasmic immunoglobulin index and an associated 12-gene expression signature are independent prognostic factors in multiple myeloma. Leukemia 2015; 29:1713-20. [PMID: 25753926 PMCID: PMC4530205 DOI: 10.1038/leu.2015.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 02/05/2023]
Abstract
As part of Total Therapy (TT) 3b, baseline marrow aspirates were subjected to two-color flow cytometry of nuclear DNA content and cytoplasmic immunoglobulin (DNA/CIG) as well as plasma cell gene expression profiling (GEP). DNA/CIG-derived parameters, GEP and standard clinical variables were examined for their effects on overall survival (OS) and progression-free survival (PFS). Among DNA/CIG parameters, the percentage of the light chain-restricted (LCR) cells and their cytoplasmic immunoglobulin index (CIg) were linked to poor outcome. In the absence of GEP data, low CIg <2.8, albumin <3.5 g/dl and age ⩾65 years were significantly associated with inferior OS and PFS. When GEP information was included, low CIg survived the model along with GEP70-defined high risk and low albumin. Low CIg was linked to beta-2-microglobulin >5.5 mg/l, a percentage of LCR cells exceeding 50%, C-reactive protein ⩾8 mg/l and GEP-derived high centrosome index. Further analysis revealed an association of low CIg with 12 gene probes implicated in cell cycle regulation, differentiation and drug transportation from which a risk score was developed in TT3b that held prognostic significance also in TT3a, TT2 and HOVON trials, thus validating its general applicability. Low CIg is a powerful new prognostic variable and has identified potentially drug-able targets.
Collapse
|