1
|
Brink GJ, Groeneweg JW, van der Ploeg P, Jonges GN, Gort EH, Witteveen PO, Zweemer RP, Piek JMJ. Signal transduction pathway activity in adult-type granulosa cell tumor samples. Gynecol Oncol 2025; 195:6-11. [PMID: 40037143 DOI: 10.1016/j.ygyno.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
OBJECTIVE This study aims to evaluate signal transduction pathway (STP) activity in adult-type granulosa cell tumors (aGCT) in order to identify potential therapeutic targets. These results are compared with STP activity in healthy ovarian tissue and low and high grade serous ovarian carcinoma (LGSC and HGSC). METHODS STP activity was assessed by a RNA-based assay for the following oncogenic pathways: Hedhehog (HH), transforming growth factor beta (TGF-β), Notch, phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), androgen receptor (AR) and estrogen receptor (ER). RESULTS Samples of 31 aGCTs and a healthy granulosa cell were included and compared with 24 LGSC and 50 HGSC samples. In aGCT, significantly higher activity of the HH, Notch, PI3K and ER pathways was found, as compared to healthy granulosa cells. When compared with LGSC and HGSC, aGCT exhibited significantly higher PI3K pathway activity and lower HH, TGF-β, Notch, MAPK, AR, and ER pathway activity. CONCLUSIONS Our results show high PI3K pathway activity in aGCT samples. Pathway activity contrasts with findings in both healthy granulosa cells and serous ovarian carcinoma. Therefore, the PI3K pathway may be a target for treatment, specifically for aGCT patients.
Collapse
Affiliation(s)
- G J Brink
- Department of Gynecologic Oncology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - J W Groeneweg
- Department of Gynecologic Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - P van der Ploeg
- Department of Obstetrics and Gynecology, and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - G N Jonges
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - E H Gort
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - P O Witteveen
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - R P Zweemer
- Department of Gynecologic Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J M J Piek
- Department of Obstetrics and Gynecology, and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
2
|
Bouwman W, Raymakers R, van der Poll T, van de Stolpe A. Comparison Between Signal Transduction Pathway Activity in Blood Cells of Sepsis Patients and Laboratory Models. Cells 2025; 14:311. [PMID: 39996782 PMCID: PMC11854017 DOI: 10.3390/cells14040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Sepsis represents a serious disease burden that lacks effective treatment. Drug development for sepsis requires laboratory models that adequately represent sepsis patients. Simultaneous Transcriptome-based Activity Profiling of Signal Transduction Pathway (STAP-STP) technology quantitatively infers STP activity from mRNA levels of target genes of the STP-associated transcription factor. Here, we used STAP-STP technology to compare STP activities between sepsis patients and lipopolysaccharide (LPS)-based models. Activity scores of Androgen Receptor (AR), TGFβ, NFκB, JAK-STAT1/2, and JAK-STAT3 STPs were calculated based on publicly available transcriptome data. Peripheral blood mononuclear cells (PBMCs) from patients with Gram-negative sepsis, nor PBMCs stimulated with LPS in vitro, showed altered STP activity. Increased NFκB, JAK-STAT1/2, and JAK-STAT3 STP activity was found in whole blood stimulated with LPS in vitro, and in whole blood obtained after intravenous injection of LPS in humans in vivo; AR and TGFβ STP activity only increased in the in vivo LPS model. These results resembled previously reported STP activity in whole blood of sepsis patients. We provide the first comparison of STP activity between patients with sepsis and laboratory model systems. Results are of use for the refinement of sepsis model systems for rational drug development.
Collapse
Affiliation(s)
- Wilbert Bouwman
- Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | - Tom van der Poll
- Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
3
|
Hendrikse CSE, Theelen PMM, Verhaegh W, Lambrechts S, Bekkers RLM, van de Stolpe A, Piek JMJ. Patient-Representative Cell Line Models in a Heterogeneous Disease: Comparison of Signaling Transduction Pathway Activity Between Ovarian Cancer Cell Lines and Ovarian Cancer. Cancers (Basel) 2024; 16:4041. [PMID: 39682227 DOI: 10.3390/cancers16234041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background/Objectives: Advances in treatment options have barely improved the prognosis of ovarian carcinoma (OC) in recent decades. The inherent heterogeneity of OC underlies challenges in treatment (development) and patient stratification. One hurdle for effective drug development is the lack of patient-representative disease models available for preclinical drug research. Based on quantitative measurement of signal transduction pathway (STP) activity in cell lines, we aimed to identify cell line models that better mirror the different clinical subtypes of OC. Methods: The activity of seven oncogenic STPs (signal transduction pathways) was determined by previously described STP technology using transcriptome data from untreated OC cell lines available in the GEO database. Hierarchal clustering of cell lines was performed based on STP profiles. Associations between cell line histology (original tumor), cluster, and STP profiles were analyzed. Subsequently, STP profiles of clinical OC tissue samples were matched with OC cell lines. Results: Cell line search resulted in 80 cell line transcriptome data from 23 GEO datasets, with 51 unique cell lines. These cell lines were derived from eight different histological OC subtypes (as determined for the primary tumor). Clustering revealed seven clusters with unique STP profiles. When borderline tumors (n = 6), high-grade serous (n = 51) and low-grade (n = 31) OC were matched with cell lines, twelve different cell lines were identified as potentially patient-representative OC cell line models. Conclusions: Based on STP activity, we identified twelve different cell lines that were the most representative of the common subtypes of OC. These findings are important to improve drug development for OC.
Collapse
Affiliation(s)
- Cynthia S E Hendrikse
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Pauline M M Theelen
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| | - Wim Verhaegh
- Philips Research, 5656 AE Eindhoven, The Netherlands
| | - Sandrina Lambrechts
- Department of Gynecology and Obstetrics, Maastricht University Hospital, 6229 HX Maastricht, The Netherlands
| | - Ruud L M Bekkers
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Gynecology, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Anja van de Stolpe
- Drug Companion Diagnostics Company-Therapeutics (DCDC-Tx), 5263 EM Vught, The Netherlands
| | - Jurgen M J Piek
- Department of Gynecology and Obstetrics and Catharina Cancer Institute, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands
| |
Collapse
|
4
|
Bouwman W, Verhaegh W, van Doorn A, Raymakers R, van der Poll T, van de Stolpe A. Quantitative characterization of immune cells by measuring cellular signal transduction pathway activity. Sci Rep 2024; 14:24487. [PMID: 39424625 PMCID: PMC11489675 DOI: 10.1038/s41598-024-75666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
For many diseases, including cancer, infections, and auto-immune diseases, the immune response is a major determinant of disease progression, response to therapy, and clinical outcome. Innate and adaptive immune responses are controlled by coordinated activity of different immune cell types. The functional activity state of immune cells is determined by Signal Transduction Pathways (STPs). A recently developed technology (Simultaneous Transcriptome-based Activity Profiling of Signal Transduction Pathways, STAP-STP) enables simultaneous and quantitative activity measurement of relevant STPs in immune cells based on mRNA-analysis. STAP-STP technology was used to analyze public transcriptome data of a variety of immune cell types in resting and activated functional state. In addition, a clinical study on rheumatoid arthritis (RA) was analyzed to illustrate utility of the technology. Per sample, activity of androgen and estrogen receptor, PI3K, MAPK, TGFβ, Notch, NFκB, JAK-STAT1/2, and JAK-STAT3 STPs was calculated, generating an STP activity profile (SAP) consisting of 9 activity scores. Each analyzed immune cell type, i.e. naive/resting and immune-activated CD4 + and CD8 + T cells, T helper cells, B cells, NK cells, monocytes, macrophages, and dendritic cells, had a reproducible and characteristic SAP, reflecting both cell type and its activity state. Analysis of clinical RA samples revealed increased TGFβ STP activity in whole blood samples. In conclusion, STAP-STP technology enables quantitative measurement of the functional activity state of immune cells of the innate and adaptive immune system. Aside from diagnostic applications, utility lies in unravelling abnormal immune function in disease and immunomodulatory drug development.
Collapse
Affiliation(s)
- Wilbert Bouwman
- Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Tom van der Poll
- Center of Experimental and Molecular Medicine & Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
5
|
Luijten MMW, van Weelden WJ, Lalisang RI, Bulten J, Lindemann K, van Beekhuizen HJ, Trum H, Boll D, Werner HMJ, van Lonkhuijzen LRCW, Yigit R, Krakstad C, Witteveen PO, Galaal K, van Ginkel AA, Bignotti E, Weinberger V, Sweegers S, Eriksson AGZ, Keizer DM, van de Stolpe A, Romano A, Pijnenborg JMA. Hormone Receptor Expression and Activity for Different Tumour Locations in Patients with Advanced and Recurrent Endometrial Carcinoma. Cancers (Basel) 2024; 16:2084. [PMID: 38893205 PMCID: PMC11171125 DOI: 10.3390/cancers16112084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Response to hormonal therapy in advanced and recurrent endometrial cancer (EC) can be predicted by oestrogen and progesterone receptor immunohistochemical (ER/PR-IHC) expression, with response rates of 60% in PR-IHC > 50% cases. ER/PR-IHC can vary by tumour location and is frequently lost with tumour progression. Therefore, we explored the relationship between ER/PR-IHC expression and tumour location in EC. METHODS Pre-treatment tumour biopsies from 6 different sites of 80 cases treated with hormonal therapy were analysed for ER/PR-IHC expression and classified into categories 0-10%, 10-50%, and >50%. The ER pathway activity score (ERPAS) was determined based on mRNA levels of ER-related target genes, reflecting the actual activity of the ER receptor. RESULTS There was a trend towards lower PR-IHC (33% had PR > 50%) and ERPAS (27% had ERPAS > 15) in lymphogenic metastases compared to other locations (p = 0.074). Hematogenous and intra-abdominal metastases appeared to have high ER/PR-IHC and ERPAS (85% and 89% ER-IHC > 50%; 64% and 78% PR-IHC > 50%; 60% and 71% ERPAS > 15, not significant). Tumour grade and previous radiotherapy did not affect ER/PR-IHC or ERPAS. CONCLUSIONS A trend towards lower PR-IHC and ERPAS was observed in lymphogenic sites. Verification in larger cohorts is needed to confirm these findings, which may have implications for the use of hormonal therapy in the future.
Collapse
Affiliation(s)
- Maartje M. W. Luijten
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands (J.M.A.P.)
- Department of Gynaecology, Rijnstate Hospital, 6815 AD Arnhem, The Netherlands
| | - Willem Jan van Weelden
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands (J.M.A.P.)
- Department of Obstetrics and Gynaecology, Canisius Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Roy I. Lalisang
- GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Johan Bulten
- Department of Pathology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Kristina Lindemann
- Division of Medicine, Department of Gynecological Oncology, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | - Heleen J. van Beekhuizen
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, Erasmus Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Hans Trum
- Center for Gynecologic Oncology Amsterdam, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Dorry Boll
- Department of Gynaecology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands;
| | - Henrica M. J. Werner
- Department of Obstetrics and Gynecology, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| | - Luc R. C. W. van Lonkhuijzen
- Department of Gynaecology and Obstetrics, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Refika Yigit
- Department of Obstetrics and Gynecology, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Camilla Krakstad
- Department of Gynecology and Obstetrics, Haukeland University Hospital, 5009 Bergen, Norway;
| | - Petronella O. Witteveen
- Department of Medical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Khadra Galaal
- Sultan Qaboos Comprehensive Cancer Center, Muscat P.O. Box 566 PC 123, Oman
| | | | - Eliana Bignotti
- Division of Obstetrics and Gynecology, A. Nocivelli Institute for Molecular Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Vit Weinberger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- Department of Obstetrics and Gynecology, University Hospital Brno, 625 00 Brno, Czech Republic
| | - Sanne Sweegers
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands (J.M.A.P.)
| | - Ane Gerda Z. Eriksson
- Division of Medicine, Department of Gynecological Oncology, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| | | | | | - Andrea Romano
- GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
- Department of Obstetrics and Gynecology, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| | - Johanna M. A. Pijnenborg
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands (J.M.A.P.)
| | | |
Collapse
|
6
|
Lin LH, Wesseling-Rozendaal Y, Vasudevaraja V, Shen G, Black M, van Strijp D, Neerken S, van de Wiel PA, Jour G, Cotzia P, Darvishian F, Snuderl M. Increased PI3K pathway activity is associated with recurrent breast cancer in patients with low and intermediate 21-gene recurrence score. J Clin Pathol 2024:jcp-2023-209344. [PMID: 38383139 DOI: 10.1136/jcp-2023-209344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
AIMS We investigated key signalling pathways' activity and mutational status of early-stage breast carcinomas with low and intermediate 21-gene recurrence score (RS) to identify molecular features that may predict recurrence. METHODS This is a retrospective case-control study of 18 patients with recurrent breast carcinoma with low and intermediate 21-gene RS (<25) and control group of 15 non-recurrent breast cancer patients. DNA and mRNA were extracted from tumour tissue. mRNA expression of genes involved in oestrogen receptor (ER), androgen receptor (AR), PI3K and MAPK signalling pathways was measured by real-time quantitative reverse transcription-qPCR (OncoSIGNal G4 test, InnoSIGN). Tumour mutational landscape was assessed by targeted DNA sequencing (Oncomine Precision Assay). RESULTS There were no statistical differences between the groups' demographic and clinicopathological characteristics. PI3K pathway showed significantly higher activity in cases compared with controls (p=0.0014). Receiver operating characteristic curve analysis showed an area under the curve of 0.79 for PI3K pathway activity in the prediction of recurrent disease in low and intermediate 21-gene RS breast cancer. There was no difference in ER, AR and MAPK pathway activity. PIK3CA alterations were the most common driver mutations, but no difference was found between the groups (p=0.46) and no association with PI3K pathway activity (p=0.86). Higher Ki67 gene expression was associated with recurrences (p=0.042) CONCLUSION: Increased PI3K pathway activity, independent of PIK3CA mutations, may play a role in the recurrence of early-stage breast cancer with low and intermediate 21-gene RS. Pathway analysis can help to identify high-risk patients in this setting.
Collapse
Affiliation(s)
- Lawrence Hsu Lin
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York, USA
| | | | - Varshini Vasudevaraja
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York, USA
| | - Guomiao Shen
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York, USA
| | - Margaret Black
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York, USA
| | | | | | | | - George Jour
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York, USA
| | - Paolo Cotzia
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York, USA
| | - Farbod Darvishian
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York, USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health and Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
van der Ploeg P, Hendrikse CSE, Thijs AMJ, Westgeest HM, Smedts HPM, Vos MC, Jalving M, Lok CAR, Boere IA, van Ham MAPC, Ottevanger PB, Westermann AM, Mom CH, Lalisang RI, Lambrechts S, Bekkers RLM, Piek JMJ. Phenotype-guided targeted therapy based on functional signal transduction pathway activity in recurrent ovarian cancer patients: The STAPOVER study protocol. Heliyon 2024; 10:e23170. [PMID: 38187310 PMCID: PMC10770441 DOI: 10.1016/j.heliyon.2023.e23170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Ovarian cancer is the fifth cause of cancer-related death among women. The benefit of targeted therapy for ovarian cancer patients is limited even if treatment is stratified by molecular signature. There remains a high unmet need for alternative diagnostics that better predict targeted therapy, as current diagnostics are generally inaccurate predictors. Quantitative assessment of functional signal transduction pathway (STP) activity from mRNA measurements of target genes is an alternative approach. Therefore, we aim to identify aberrantly activated STPs in tumour tissue of patients with recurrent ovarian cancer and start phenotype-guided targeted therapy to improve survival without compromising quality of life. Study design Patients with recurrent ovarian cancer and either 1) have platinum-resistant disease, 2) refrain from standard therapy or 3) are asymptomatic and not yet eligible for standard therapy will be included in this multi-centre prospective cohort study with multiple stepwise executed treatment arms. Targeted therapy will be available for patients with aberrantly high functional activity of the oestrogen receptor, androgen receptor, phosphoinositide 3-kinase or Hedgehog STP. The primary endpoint of this study is the progression-free survival (PFS) ratio (PFS2/PFS1 ratio) according to RECIST 1.1 determined by the PFS on matched targeted therapy (PFS2) compared to PFS on prior therapy (PFS1). Secondary endpoints include among others best overall response, overall survival, side effects, health-related quality of life and cost-effectiveness. Conclusion The results of this study will show the clinical applicability of STP activity in selecting recurrent ovarian cancer patients for effective therapies.
Collapse
Affiliation(s)
- Phyllis van der Ploeg
- Department of Obstetrics and Gynaecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Cynthia SE. Hendrikse
- Department of Obstetrics and Gynaecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Anna MJ. Thijs
- Department of Internal Medicine and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| | - Hans M. Westgeest
- Department of Internal Medicine, Amphia Hospital, Breda, the Netherlands
| | - Huberdina PM. Smedts
- Department of Obstetrics and Gynaecology, Amphia Hospital, Breda, the Netherlands
| | - M Caroline Vos
- Department of Obstetrics and Gynaecology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Mathilde Jalving
- Department of Medical Oncology, University Medical Centre Groningen, Groningen, the Netherlands
| | - Christianne AR. Lok
- Department of Gynaecologic Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Ingrid A. Boere
- Department of Medical Oncology, Erasmus Medical Centre Cancer Institute, Rotterdam, the Netherlands
| | - Maaike APC. van Ham
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | - Anneke M. Westermann
- Department of Oncology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Constantijne H. Mom
- Department of Obstetrics and Gynaecology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Roy I. Lalisang
- Department of Medical Oncology, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre +, Maastricht, the Netherlands
| | - Ruud LM. Bekkers
- Department of Obstetrics and Gynaecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Jurgen MJ. Piek
- Department of Obstetrics and Gynaecology and Catharina Cancer Institute, Catharina Hospital, Eindhoven, the Netherlands
| |
Collapse
|
8
|
Menssouri N, Poiraudeau L, Helissey C, Bigot L, Sabio J, Ibrahim T, Pobel C, Nicotra C, Ngo-Camus M, Lacroix L, Rouleau E, Tselikas L, Chauchereau A, Blanc-Durand F, Bernard-Tessier A, Patrikidou A, Naoun N, Flippot R, Colomba E, Fuerea A, Albiges L, Lavaud P, van de Wiel P, den Biezen E, Wesseling-Rozendaal Y, Ponce S, Michiels S, Massard C, Gautheret D, Barlesi F, André F, Besse B, Scoazec JY, Friboulet L, Fizazi K, Loriot Y. Genomic Profiling of Metastatic Castration-Resistant Prostate Cancer Samples Resistant to Androgen Receptor Pathway Inhibitors. Clin Cancer Res 2023; 29:4504-4517. [PMID: 37364000 DOI: 10.1158/1078-0432.ccr-22-3736] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE The androgen receptor axis inhibitors (ARPI; e.g., enzalutamide, abiraterone acetate) are administered in daily practice for men with metastatic castration-resistant prostate cancer (mCRPC). However, not all patients respond, and mechanisms of both primary and acquired resistance remain largely unknown. EXPERIMENTAL DESIGN In the prospective trial MATCH-R (NCT02517892), 59 patients with mCRPC underwent whole-exome sequencing (WES) and/or RNA sequencing (RNA-seq) of samples collected before starting ARPI. Also, 18 patients with mCRPC underwent biopsy at time of resistance. The objectives were to identify genomic alterations associated with resistance to ARPIs as well as to describe clonal evolution. Associations of genomic and transcriptomic alterations with primary resistance were determined using Wilcoxon and Fisher exact tests. RESULTS WES analysis indicated that no single-gene genomic alterations were strongly associated with primary resistance. RNA-seq analysis showed that androgen receptor (AR) gene alterations and expression levels were similar between responders and nonresponders. RNA-based pathway analysis found that patients with primary resistance had a higher Hedgehog pathway score, a lower AR pathway score and a lower NOTCH pathway score than patients with a response. Subclonal evolution and acquisition of new alterations in AR-related genes or neuroendocrine differentiation are associated with acquired resistance. ARPIs do not induce significant changes in the tumor transcriptome of most patients; however, programs associated with cell proliferation are enriched in resistant samples. CONCLUSIONS Low AR activity, activation of stemness programs, and Hedgehog pathway were associated with primary ARPIs' resistance, whereas most acquired resistance was associated with subclonal evolution, AR-related events, and neuroendocrine differentiation. See related commentary by Slovin, p. 4323.
Collapse
Affiliation(s)
- Naoual Menssouri
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Loïc Poiraudeau
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | | | - Ludovic Bigot
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Jonathan Sabio
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Tony Ibrahim
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Cédric Pobel
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Claudio Nicotra
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Maud Ngo-Camus
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Ludovic Lacroix
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform-Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Etienne Rouleau
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform-Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Lambros Tselikas
- Department of Interventional Radiology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Anne Chauchereau
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Félix Blanc-Durand
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Anna Patrikidou
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Ronan Flippot
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Emeline Colomba
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alina Fuerea
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pernelle Lavaud
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | | | | | - Santiago Ponce
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Stefan Michiels
- Oncostat U1018, Inserm, University of Paris-Saclay, Labelled Ligue Contre le Cancer, Villejuif, France
| | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
| | - Daniel Gautheret
- Department of Biostatistics and Epidemiology, Gustave Roussy, University of Paris-Saclay, Villejuif, France
- PRISM Center for Personalized Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Fabrice Barlesi
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Fabrice André
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, University of Paris-Saclay, Villejuif, France
- PRISM Center for Personalized Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Benjamin Besse
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, University of Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
- Experimental and Translational Pathology Platform (PETRA), Genomic Platform-Molecular Biopathology Unit (BMO) and Biological Resource Center, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Luc Friboulet
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
| | - Karim Fizazi
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Yohann Loriot
- Inserm U981, Molecular Predictors and New Targets in Oncology, Gustave Roussy Cancer Campus, Paris-Saclay University, Villejuif, France
- Drug Development Department (DITEP), Gustave Roussy Cancer Campus, Villejuif, France
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Biostatistics and Epidemiology, Gustave Roussy, University of Paris-Saclay, Villejuif, France
- PRISM Center for Personalized Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
9
|
Angus L, Smid M, Wilting SM, Bos MK, Steeghs N, Konings IRHM, Tjan-Heijnen VCG, van Riel JMGH, van de Wouw AJ, Cuppen E, Lolkema MP, Jager A, Sleijfer S, Martens JWM. Genomic Alterations Associated with Estrogen Receptor Pathway Activity in Metastatic Breast Cancer Have a Differential Impact on Downstream ER Signaling. Cancers (Basel) 2023; 15:4416. [PMID: 37686693 PMCID: PMC10487136 DOI: 10.3390/cancers15174416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mutations in the estrogen receptor gene (ESR1), its transcriptional regulators, and the mitogen-activated protein kinase (MAPK) pathway are enriched in patients with endocrine-resistant metastatic breast cancer (MBC). Here, we integrated whole genome sequencing with RNA sequencing data from the same samples of 101 ER-positive/HER2-negative MBC patients who underwent a tumor biopsy prior to the start of a new line of treatment for MBC (CPCT-02 study, NCT01855477) to analyze the downstream effects of DNA alterations previously linked to endocrine resistance, thereby gaining a better understanding of the associated mechanisms. Hierarchical clustering was performed using expression of ESR1 target genes. Genomic alterations at the DNA level, gene expression levels, and last administered therapy were compared between the identified clusters. Hierarchical clustering revealed two distinct clusters, one of which was characterized by increased expression of ESR1 and its target genes. Samples in this cluster were significantly enriched for mutations in ESR1 and amplifications in FGFR1 and TSPYL. Patients in the other cluster showed relatively lower expression levels of ESR1 and its target genes, comparable to ER-negative samples, and more often received endocrine therapy as their last treatment before biopsy. Genes in the MAPK-pathway, including NF1, and ESR1 transcriptional regulators were evenly distributed. In conclusion, RNA sequencing identified a subgroup of patients with clear expression of ESR1 and its downstream targets, probably still benefiting from ER-targeting agents. The lower ER expression in the other subgroup might be partially explained by ER activity still being blocked by recently administered endocrine treatment, indicating that biopsy timing relative to endocrine treatment needs to be considered when interpreting transcriptomic data.
Collapse
Affiliation(s)
- Lindsay Angus
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| | - Saskia M. Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| | - Manouk K. Bos
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| | - Neeltje Steeghs
- Department of Medical Oncology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Center for Personalized Cancer Treatment, 6500 HB Nijmegen, The Netherlands; (V.C.G.T.-H.)
| | - Inge R. H. M. Konings
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Vivianne C. G. Tjan-Heijnen
- Center for Personalized Cancer Treatment, 6500 HB Nijmegen, The Netherlands; (V.C.G.T.-H.)
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | | | - Agnes J. van de Wouw
- Department of Medical Oncology, VieCuri Medical Center, 5912 BL Venlo, The Netherlands;
| | - CPCT Consortium
- Center for Personalized Cancer Treatment, 6500 HB Nijmegen, The Netherlands; (V.C.G.T.-H.)
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
- Hartwig Medical Foundation, 1098 XH Amsterdam, The Netherlands
| | - Martijn P. Lolkema
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
- Center for Personalized Cancer Treatment, 6500 HB Nijmegen, The Netherlands; (V.C.G.T.-H.)
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
- Center for Personalized Cancer Treatment, 6500 HB Nijmegen, The Netherlands; (V.C.G.T.-H.)
| | - John W. M. Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Cancer, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (M.S.); (S.M.W.); (M.K.B.); (M.P.L.); (A.J.); (S.S.); (J.W.M.M.)
| |
Collapse
|
10
|
Rižner TL, Romano A. Targeting the formation of estrogens for treatment of hormone dependent diseases-current status. Front Pharmacol 2023; 14:1155558. [PMID: 37188267 PMCID: PMC10175629 DOI: 10.3389/fphar.2023.1155558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Local formation and action of estrogens have crucial roles in hormone dependent cancers and benign diseases like endometriosis. Drugs that are currently used for the treatment of these diseases act at the receptor and at the pre-receptor levels, targeting the local formation of estrogens. Since 1980s the local formation of estrogens has been targeted by inhibitors of aromatase that catalyses their formation from androgens. Steroidal and non-steroidal inhibitors have successfully been used to treat postmenopausal breast cancer and have also been evaluated in clinical studies in patients with endometrial, ovarian cancers and endometriosis. Over the past decade also inhibitors of sulfatase that catalyses the hydrolysis of inactive estrogen-sulfates entered clinical trials for treatment of breast, endometrial cancers and endometriosis, with clinical effects observed primarily in breast cancer. More recently, inhibitors of 17beta-hydroxysteroid dehydrogenase 1, an enzyme responsible for formation of the most potent estrogen, estradiol, have shown promising results in preclinical studies and have already entered clinical evaluation for endometriosis. This review aims to provide an overview of the current status of the use of hormonal drugs for the major hormone-dependent diseases. Further, it aims to explain the mechanisms behind the -sometimes- observed weak effects and low therapeutic efficacy of these drugs and the possibilities and the advantages of combined treatments targeting several enzymes in the local estrogen formation, or drugs acting with different therapeutic mechanisms.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Laboratory for Molecular Basis of Hormone-Dependent Diseases and Biomarkers, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrea Romano
- GROW Department of Gynaecology, Faculty of Health, Medicine and Life Sciences (FHML)/GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
11
|
khan B, Fatima H, Qureshi A, Kumar S, Hanan A, Hussain J, Abdullah S. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 1:1-8. [PMID: 36785697 PMCID: PMC9908503 DOI: 10.1007/s44174-023-00063-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Artificial intelligence (AI) has the potential to make substantial progress toward the goal of making healthcare more personalized, predictive, preventative, and interactive. We believe AI will continue its present path and ultimately become a mature and effective tool for the healthcare sector. Besides this AI-based systems raise concerns regarding data security and privacy. Because health records are important and vulnerable, hackers often target them during data breaches. The absence of standard guidelines for the moral use of AI and ML in healthcare has only served to worsen the situation. There is debate about how far artificial intelligence (AI) may be utilized ethically in healthcare settings since there are no universal guidelines for its use. Therefore, maintaining the confidentiality of medical records is crucial. This study enlightens the possible drawbacks of AI in the implementation of healthcare sector and their solutions to overcome these situations. Graphical Abstract
Collapse
Affiliation(s)
- Bangul khan
- Hong Kong Centre for Cerebro-Caradiovasular Health Engineering (COCHE), Shatin, Hong Kong
- Riphah International University, Lahore, Pakistan
| | - Hajira Fatima
- Mehran University of Engineering and Technology, Jamshoro, Pakistan
| | | | | | - Abdul Hanan
- Mehran University of Engineering and Technology, Jamshoro, Pakistan
| | | | - Saad Abdullah
- Riphah International University, Lahore, Pakistan
- Mälardalen University, Västerås, Sweden
| |
Collapse
|
12
|
Yang L, Rivandi M, Franken A, Hieltjes M, van der Zaag PJ, Nelep C, Eberhardt J, Peter S, Niederacher D, Fehm T, Neubauer H. Implementing microwell slides for detection and isolation of single circulating tumor cells from complex cell suspensions. Cytometry A 2022; 101:1057-1067. [PMID: 35698878 DOI: 10.1002/cyto.a.24660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023]
Abstract
Cell loss during detection and isolation of circulating tumor cells (CTCs) is a challenge especially when label-free pre-enrichment technologies are used without the aid of magnetic particles. Although microfluidic systems can remove the majority of "contaminating" white blood cells (WBCs), their remaining numbers are still impeding single CTC isolation, thus making additional separation steps needed. This study aimed to develop a workflow from blood-to-single CTC for complex cell suspensions by testing two microwell formats. In the first step, different cell lines were used to compare the performances of Sievewell™ 370 K (TOK, Japan) and CellCelector™ Nanowell U25 (ALS Automated Lab Solutions, Germany) slides for cell labelling and single-cell micromanipulation. Confounding levels of auto-fluorescence inherent to different plastic materials used to cast the microwells, staining recovery rates, and cell isolation rates were determined. In the second step, three different blood preservation tubes were tested for RNA analysis. Lastly, the established workflow was applied to isolate CTCs from peripheral blood samples obtained from metastasized breast cancer (mBC) patients for single-cell DNA and RNA analysis. The detection of CTCs in Sievewell slides profit from better signal-to-noise ratios in the fluorescence channels mainly used for CTC detection. In addition, due to its design, Sievewell supports direct in situ CTC labelling, which minimizes cell loss and leads to single-cell recovery rates after staining of approx. 94%. Detection of PIK3CA mutations in single CTCs verified the applicability of the workflow for the analysis of genomic DNA of CTCs. Furthermore, combined with blood preservation up to 48 h at room temperature in LBguard tubes, panel RT-PCR transcript analysis was successful for single cell line cells and CTCs, respectively. The combined use of Sievewell microwell slides and CellCelector™ automated micromanipulation system improves single CTC detection, labelling and isolation from complex cell suspensions. This approach is especially valuable when samples of high cellular content are processed.
Collapse
Affiliation(s)
- Liwen Yang
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Maarten Hieltjes
- Philips Research Laboratories, Eindhoven, The Netherlands.,Plasmacure b.v., Eindhoven, The Netherlands
| | - Pieter Jan van der Zaag
- Philips Research Laboratories, Eindhoven, The Netherlands.,Molecular Biophysics, Zernike Institute, University of Groningen, Groningen, The Netherlands.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
13
|
Bouwman W, Verhaegh W, van de Stolpe A. Improved diagnosis of inflammatory bowel disease and prediction and monitoring of response to anti-TNF alpha treatment based on measurement of signal transduction pathway activity. Front Pharmacol 2022; 13:1008976. [PMID: 37090899 PMCID: PMC10115426 DOI: 10.3389/fphar.2022.1008976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Ulcerative colitis (UC) and Crohn’s disease (CD) are two subtypes of chronic inflammatory bowel disease (IBD). Differential diagnosis remains a challenge. Anti-TNFα treatment is an important treatment for IBD, yet resistance frequently occurs and cannot be predicted. Consequently, many patients receive ineffective therapy with potentially adverse effects. Novel assays are needed to improve diagnosis, and predict and monitor response to anti-TNF-α compounds.Design: Signal transduction pathway (STP) technology was used to quantify activity of STPs (androgen and estrogen receptor, PI3K, MAPK, TGFβ, Notch, Hedgehog, Wnt, NFκB, JAK-STAT1/2, and JAK-STAT3 pathways) in colon mucosa samples of CD and UC patients, based on transcriptome analysis. Previously described STP assay technology is based on computational inference of STP activity from mRNA levels of target genes of the STP transcription factor.Results: Results show that NFκB, JAK-STAT3, Wnt, MAPK, and androgen receptor pathways were abnormally active in CD and UC. Colon and ileum-localized CD differed with respect to STP activity, the JAK-STAT1/2 pathway being abnormally active in ileal CD. High activity of NFκB, JAK-STAT3, and TGFβ pathways was associated with resistance to anti-TNFα treatment in UC and colon-located CD, but not in ileal CD. Abnormal STP activity decreased with successful treatment.Conclusion: We believe that measuring mucosal STP activity provides clinically relevant information to improve differential diagnosis of IBD and prediction of resistance to anti-TNFα treatment in patients with colon-localized IBD, and provides new targets for treatment and overcoming anti-TNFα resistance.
Collapse
|
14
|
FOXO transcriptional activity is associated with response to chemoradiation in EAC. J Transl Med 2022; 20:183. [PMID: 35468793 PMCID: PMC9036728 DOI: 10.1186/s12967-022-03376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/03/2022] [Indexed: 11/17/2022] Open
Abstract
In this study we aimed to investigate signaling pathways that drive therapy resistance in esophageal adenocarcinoma (EAC). Paraffin-embedded material was analyzed in two patient cohorts: (i) 236 EAC patients with a primary tumor biopsy and corresponding post neoadjuvant chemoradiotherapy (nCRT) resection; (ii) 66 EAC patients with resection and corresponding recurrence. Activity of six key cancer-related signaling pathways was inferred using the Bayesian inference method. When assessing pre- and post-nCRT samples, lower FOXO transcriptional activity was observed in poor nCRT responders compared to good nCRT responders (p = 0.0017). This poor responder profile was preserved in recurrences compared to matched resections (p = 0.0007). PI3K pathway activity, inversely linked with FOXO activity, was higher in CRT poor responder cell lines compared to CRT good responders. Poor CRT responder cell lines could be sensitized to CRT using PI3K inhibitors. To conclude, by using a novel method to measure signaling pathway activity on clinically available material, we identified an association of low FOXO transcriptional activity with poor response to nCRT. Targeting this pathway sensitized cells for nCRT, underlining its feasibility to select appropriate targeted therapies.
Collapse
|
15
|
Ma F, Arai S, Wang K, Calagua C, Yuan AR, Poluben L, Gu Z, Russo JW, Einstein DJ, Ye H, He MX, Liu Y, Van Allen E, Sowalsky AG, Bhasin MK, Yuan X, Balk SP. Autocrine Canonical Wnt Signaling Primes Noncanonical Signaling through ROR1 in Metastatic Castration-Resistant Prostate Cancer. Cancer Res 2022; 82:1518-1533. [PMID: 35131873 PMCID: PMC9018564 DOI: 10.1158/0008-5472.can-21-1807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/22/2021] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Wnt signaling driven by genomic alterations in genes including APC and CTNNB, which encodes β-catenin, have been implicated in prostate cancer development and progression to metastatic castration-resistant prostate cancer (mCRPC). However, nongenomic drivers and downstream effectors of Wnt signaling in prostate cancer and the therapeutic potential of targeting this pathway in prostate cancer have not been fully established. Here we analyzed Wnt/β-catenin signaling in prostate cancer and identified effectors distinct from those found in other tissues, including aryl hydrocarbon receptor and RUNX1, which are linked to stem cell maintenance, and ROR1, a noncanonical Wnt5a coreceptor. Wnt/β-catenin signaling-mediated increases in ROR1 enhanced noncanonical responses to Wnt5a. Regarding upstream drivers, APC genomic loss, but not its epigenetic downregulation commonly observed in prostate cancer, was strongly associated with Wnt/β-catenin pathway activation in clinical samples. Tumor cell upregulation of the Wnt transporter Wntless (WLS) was strongly associated with Wnt/β-catenin pathway activity in primary prostate cancer but also associated with both canonical and noncanonical Wnt signaling in mCRPC. IHC confirmed tumor cell WLS expression in primary prostate cancer and mCRPC, and patient-derived prostate cancer xenografts expressing WLS were responsive to treatment with Wnt synthesis inhibitor ETC-1922159. These findings reveal that Wnt/β-catenin signaling in prostate cancer drives stem cell maintenance and invasion and primes for noncanonical Wnt signaling through ROR1. They further show that autocrine Wnt production is a nongenomic driver of canonical and noncanonical Wnt signaling in prostate cancer, which can be targeted with Wnt synthesis inhibitors to suppress tumor growth. SIGNIFICANCE This work provides fundamental insights into Wnt signaling and prostate cancer cell biology and indicates that a subset of prostate cancer driven by autocrine Wnt signaling is sensitive to Wnt synthesis inhibitors.
Collapse
Affiliation(s)
- Fen Ma
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Seiji Arai
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Department of Urology, Gunma University Hospital; Maebashi, Gunma, Japan
| | - Keshan Wang
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology; Wuhan, Hubei 430022, P.R. China
| | - Carla Calagua
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Amanda R. Yuan
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Zhongkai Gu
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Joshua W. Russo
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - David J. Einstein
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Huihui Ye
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Department of Pathology, UCLA David Geffen School of Medicine; Los Angeles, CA 90095
| | - Meng Xiao He
- Harvard Graduate Program in Biophysics, Harvard Medical School; Boston, MA 02115, USA
- Department of Medical Oncology, Dana Farber Cancer Institute; Boston, MA 02115
- Broad Institute of Harvard and MIT; Cambridge, MA 02142, USA
| | - Yu Liu
- Program in System Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School; Worcester, MA 01605, USA
| | - Eliezer Van Allen
- Department of Medical Oncology, Dana Farber Cancer Institute; Boston, MA 02115
- Broad Institute of Harvard and MIT; Cambridge, MA 02142, USA
| | - Adam G. Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, National Institutes of Health; Bethesda, MD 20892, USA
| | - Manoj K. Bhasin
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
- Departments of Pediatrics and Biomedical Informatics, Emory School of Medicine; Atlanta, GA 30322, USA
| | - Xin Yuan
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| | - Steven P. Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, 02215, USA
| |
Collapse
|
16
|
Holtzer L, Wesseling-Rozendaal Y, Verhaegh W, van de Stolpe A. Measurement of activity of developmental signal transduction pathways to quantify stem cell pluripotency and phenotypically characterize differentiated cells. Stem Cell Res 2022; 61:102748. [PMID: 35325817 DOI: 10.1016/j.scr.2022.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022] Open
Abstract
Important challenges in stem cell research and regenerative medicine are reliable assessment of pluripotency state and purity of differentiated cell populations. Pluripotency and differentiation are regulated and determined by activity of developmental signal transduction pathways (STPs). To date activity of these STPs could not be directly measured on a cell sample. Here we validate a novel assay platform for measurement of activity of developmental STPs (STP) for use in stem cells and stem cell derivatives. In addition to previously developed STP assays, we report development of an additional STP assay for the MAPK-AP1 pathway. Subsequently, activity of Notch, Hedgehog, TGFβ, Wnt, PI3K, MAPK-AP1, and NFκB signaling pathways was calculated from Affymetrix transcriptome data of human pluripotent embryonic (hES) and iPS cell lines under different culture conditions, organ-derived multipotent stem cells, and differentiated cell types, to generate quantitative STP activity profiles. Results show that the STP assay technology enables reliable and quantitative measurement of multiple STP activities simultaneously on any individual cell sample. Using the technology, we found that culture conditions dominantly influence the pluripotent stem cell STP activity profile, while the origin of the stem cell line was a minor variable. A pluripotency STP activity profile (Pluripotency qPAP) was defined (active PI3K, MAPK, Hedgehog, Notch, TGFβ, and NFκB pathway, inactive Wnt pathway). Differentiation of hES cells to intestinal progenitor cells resulted in an STP activity profile characterized by active PI3K, Wnt and Notch pathways, comparable to the STP activity profile measured on primary intestinal crypt stem cells. Quantitative STP activity measurement is expected to improve experimental reproducibility and standardization of pluripotent and multipotent stem cell culture/differentiation, and enable controlled manipulation of pluripotency/differentiation state using pathway targeting compounds.
Collapse
Affiliation(s)
- Laurent Holtzer
- Molecular Pathway Diagnostics, Philips, Eindhoven, The Netherlands.
| | | | - Wim Verhaegh
- Molecular Pathway Diagnostics, Philips, Eindhoven, The Netherlands.
| | | |
Collapse
|
17
|
Chakrabarty S, Quiros-Solano WF, Kuijten MM, Haspels B, Mallya S, Lo CSY, Othman A, Silvestri C, van de Stolpe A, Gaio N, Odijk H, van de Ven M, de Ridder CM, van Weerden WM, Jonkers J, Dekker R, Taneja N, Kanaar R, van Gent DC. A Microfluidic Cancer-on-Chip Platform Predicts Drug Response Using Organotypic Tumor Slice Culture. Cancer Res 2022; 82:510-520. [PMID: 34872965 PMCID: PMC9397621 DOI: 10.1158/0008-5472.can-21-0799] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
Optimal treatment of cancer requires diagnostic methods to facilitate therapy choice and prevent ineffective treatments. Direct assessment of therapy response in viable tumor specimens could fill this diagnostic gap. Therefore, we designed a microfluidic platform for assessment of patient treatment response using tumor tissue slices under precisely controlled growth conditions. The optimized Cancer-on-Chip (CoC) platform maintained viability and sustained proliferation of breast and prostate tumor slices for 7 days. No major changes in tissue morphology or gene expression patterns were observed within this time frame, suggesting that the CoC system provides a reliable and effective way to probe intrinsic chemotherapeutic sensitivity of tumors. The customized CoC platform accurately predicted cisplatin and apalutamide treatment response in breast and prostate tumor xenograft models, respectively. The culture period for breast cancer could be extended up to 14 days without major changes in tissue morphology and viability. These culture characteristics enable assessment of treatment outcomes and open possibilities for detailed mechanistic studies. SIGNIFICANCE: The Cancer-on-Chip platform with a 6-well plate design incorporating silicon-based microfluidics can enable optimal patient-specific treatment strategies through parallel culture of multiple tumor slices and diagnostic assays using primary tumor material.
Collapse
Affiliation(s)
- Sanjiban Chakrabarty
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - William F. Quiros-Solano
- Department of Microelectronics, Electronic Components, Technology and Materials, Delft University of Technology, Delft, the Netherlands.,BIOND Solutions B.V., Delft, the Netherlands
| | - Maayke M.P. Kuijten
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ben Haspels
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Calvin Shun Yu Lo
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Amr Othman
- BIOND Solutions B.V., Delft, the Netherlands
| | | | | | | | - Hanny Odijk
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Corrina M.A. de Ridder
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Wytske M. van Weerden
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jos Jonkers
- Preclinical Intervention Unit, Mouse Clinic for Cancer and Ageing, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Ronald Dekker
- Department of Microelectronics, Electronic Components, Technology and Materials, Delft University of Technology, Delft, the Netherlands.,Philips Research, Eindhoven, the Netherlands
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dik C. van Gent
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Oncode Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.,Corresponding Author: Dik C. van Gent, Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, Rotterdam 3015GD, the Netherlands. Phone: 31-10-7043932; E-mail:
| |
Collapse
|
18
|
van der Ploeg P, Uittenboogaard A, Bosch SL, van Diest PJ, Wesseling-Rozendaal YJ, van de Stolpe A, Lambrechts S, Bekkers RL, Piek JM. Signal transduction pathway activity in high-grade serous carcinoma, its precursors and Fallopian tube epithelium. Gynecol Oncol 2022; 165:114-120. [DOI: 10.1016/j.ygyno.2022.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
|
19
|
Wesseling-Rozendaal Y, van Doorn A, Willard-Gallo K, van de Stolpe A. Characterization of Immunoactive and Immunotolerant CD4+ T Cells in Breast Cancer by Measuring Activity of Signaling Pathways That Determine Immune Cell Function. Cancers (Basel) 2022; 14:cancers14030490. [PMID: 35158758 PMCID: PMC8833374 DOI: 10.3390/cancers14030490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Immunotherapy enhances the immune response against cancer and is potentially curative. Unfortunately, few patients with breast cancer benefit from this therapy. It is not possible to predict which patients will benefit. A blood cell, called CD4+ T-cell, plays a role in the immune response and in resistance to immunotherapy. Its function is determined by activity of biochemical processes, called signal transduction pathways (STPs). We developed a new technology to measure activity of these STPs, which was used to investigate whether CD4+ T cells function abnormally in breast cancer patients. We show that in CD4+ T-cells from most of the investigated breast cancer patients a number of these STPs are overactive. The abnormal activity of a few notable STPs (Notch and TGFβ) suggests that CD4+ T-cells have changed into regulatory T-cells, which inhibit the immune response against cancer and have been associated with resistance to immunotherapy. We also provide evidence that this change in the CD4+ T- cells is caused by a factor produced by breast cancer cells. We conclude that this new technology can be used to measure STP activity in blood of patients with cancer and has the potential to better identify patients who will benefit from immunotherapy. Abstract Cancer immunotolerance may be reversed by checkpoint inhibitor immunotherapy; however, only a subset of patients responds to immunotherapy. The prediction of clinical response in the individual patient remains a challenge. CD4+ T cells play a role in activating adaptive immune responses against cancer, while the conversion to immunosuppression is mainly caused by CD4+ regulatory T cell (Treg) cells. Signal transduction pathways (STPs) control the main functions of immune cells. A novel previously described assay technology enables the quantitative measurement of activity of multiple STPs in individual cell and tissue samples. The activities of the TGFβ, NFκB, PI3K-FOXO, JAK-STAT1/2, JAK-STAT3, and Notch STPs were measured in CD4+ T cell subsets and used to investigate cellular mechanisms underlying breast cancer-induced immunotolerance. Methods: STP activity scores were measured on Affymetrix expression microarray data of the following: (1) resting and immune-activated CD4+ T cells; (2) CD4+ T-helper 1 (Th1) and T-helper 2 (Th2) cells; (3) CD4+ Treg cells; (4) immune-activated CD4+ T cells incubated with breast cancer tissue supernatants; and (5) CD4+ T cells from blood, lymph nodes, and cancer tissue of 10 primary breast cancer patients. Results: CD4+ T cell activation induced PI3K, NFκB, JAK-STAT1/2, and JAK-STAT3 STP activities. Th1, Th2, and Treg cells each showed a typical pathway activity profile. The incubation of activated CD4+ T cells with cancer supernatants reduced the PI3K, NFκB, and JAK-STAT3 pathway activities and increased the TGFβ pathway activity, characteristic of an immunotolerant state. Immunosuppressive Treg cells were characterized by high NFκB, JAK-STAT3, TGFβ, and Notch pathway activity scores. An immunotolerant pathway activity profile was identified in CD4+ T cells from tumor infiltrate and blood of a subset of primary breast cancer patients, which was most similar to the pathway activity profile in immunosuppressive Treg cells. Conclusion: Signaling pathway assays can be used to quantitatively measure the functional immune response state of lymphocyte subsets in vitro and in vivo. Clinical results suggest that, in primary breast cancer, the adaptive immune response of CD4+ T cells may be frequently replaced by immunosuppressive Treg cells, potentially causing resistance to checkpoint inhibition. In vitro study results suggest that this is mediated by soluble factors from cancer tissue. Signaling pathway activity analysis on TIL and/or blood samples may improve response prediction and monitoring response to checkpoint inhibitors and may provide new therapeutic targets (e.g., the Notch pathway) to reduce resistance to immunotherapy.
Collapse
Affiliation(s)
| | | | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium;
| | - Anja van de Stolpe
- Molecular Pathway Diagnostics, Philips, 5656 AE Eindhoven, The Netherlands;
- Correspondence: ; Tel.: +31-612784841
| |
Collapse
|
20
|
van der Ploeg P, Uittenboogaard A, Bucks KMM, Lentjes-Beer MHFM, Bosch SL, van Rumste MME, Vos MC, van Diest PJ, Lambrechts S, van de Stolpe A, Bekkers RLM, Piek JMJ. Cyclic activity of signal transduction pathways in fimbrial epithelium of the human fallopian tube. Acta Obstet Gynecol Scand 2021; 101:256-264. [PMID: 34927235 DOI: 10.1111/aogs.14306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The local environment of the fallopian tube represents the optimal conditions for reproductive processes. To maintain tissue homeostasis, signal transduction pathways are thought to play a pivotal role. Enhancing our understanding of functional signal transduction pathway activity is important to be able to clarify the role of aberrant signal transduction pathway activity leading to female subfertility and other tubal diseases. Therefore, in this study we investigate the influence of the hormonal cycle on the activity of key signal transduction pathways in the fimbrial epithelium of morphologically normal fallopian tubes. MATERIAL AND METHODS We included healthy pre- (n = 17) and postmenopausal (n = 8) patients who had surgical interventions for benign gynecologic conditions. Histologic sections of the fallopian tubes were reviewed by two pathologists and, for the premenopausal patients, hormone serum levels and sections of the endometrium were examined to determine the hormonal phase (early follicular [n = 4], late follicular [n = 3], early luteal [n = 5], late luteal [n = 5]). After laser capture microdissection, total mRNA was extracted from the fimbrial epithelium and real-time quantitative reverse transcription-PCR was performed to determine functional signal transduction pathway activity of the androgen receptor (AR), estrogen receptor (ER), phosphoinositide-3-kinase (PI3K), Hedgehog (HH), transforming growth factor-beta (TGF-β) and canonical wingless-type MMTV integration site (Wnt) pathways. RESULTS The early luteal phase demonstrated high AR and ER pathway activity in comparison with the late luteal phase (p = 0.016 and p = 0.032, respectively) and low PI3K activity compared with the late follicular phase (p = 0.036), whereas the late luteal phase showed low activity of HH and Wnt compared with the early follicular phase (both p = 0.016). Signal transduction pathway activity in fimbrial epithelium from postmenopausal patients was most similar to the early follicular and/or late luteal phase with regard to the AR, ER and PI3K pathways. Wnt pathway activity in postmenopausal patients was comparable to the late follicular and early luteal phase. We observed no differences in HH and TGF-β pathway activity between pre- and postmenopausal samples. The cyclic changes in signal transduction pathway activity suggest a stage-specific function which may affect the morphology and physiology of the human fallopian tube. CONCLUSIONS We demonstrated cyclic changes in activity of the AR, ER, PI3K, HH and Wnt pathways throughout the hormonal cycle.
Collapse
Affiliation(s)
- Phyllis van der Ploeg
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Aniek Uittenboogaard
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands
| | - Karlijn M M Bucks
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Steven L Bosch
- Laboratory for Pathology and Medical Microbiology (Stichting PAMM), Eindhoven, The Netherlands
| | | | - M Caroline Vos
- Department of Obstetrics and Gynecology, Elisabeth-TweeSteden Hospital, Tilburg, The Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandrina Lambrechts
- Department of Obstetrics and Gynecology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Ruud L M Bekkers
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands.,GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jurgen M J Piek
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, The Netherlands
| |
Collapse
|
21
|
Bouwman W, Verhaegh W, van de Stolpe A. Androgen Receptor Pathway Activity Assay for Sepsis Diagnosis and Prediction of Favorable Prognosis. Front Med (Lausanne) 2021; 8:767145. [PMID: 34888328 PMCID: PMC8650119 DOI: 10.3389/fmed.2021.767145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022] Open
Abstract
Introduction: Sepsis is a life-threatening complication of a bacterial infection. It is hard to predict which patients with a bacterial infection will develop sepsis, and accurate and timely diagnosis as well as assessment of prognosis is difficult. Aside from antibiotics-based treatment of the causative infection and supportive measures, treatment options have remained limited. Better understanding of the immuno-pathophysiology of sepsis is expected to lead to improved diagnostic and therapeutic solutions. Functional activity of the innate (inflammatory) and adaptive immune response is controlled by a dedicated set of cellular signal transduction pathways, that are active in the various immune cell types. To develop an immune response-based diagnostic assay for sepsis and provide novel therapeutic targets, signal transduction pathway activities have been analyzed in whole blood samples from patients with sepsis. Methods: A validated and previously published set of signal transduction pathway (STP) assays, enabling determination of immune cell function, was used to analyze public Affymetrix expression microarray data from clinical studies containing data from pediatric and adult patients with sepsis. STP assays enable quantitative measurement of STP activity on individual patient sample data, and were used to calculate activity of androgen receptor (AR), estrogen receptor (ER), JAK-STAT1/2, JAK-STAT3, Notch, Hedgehog, TGFβ, FOXO-PI3K, MAPK-AP1, and NFκB signal transduction pathways. Results: Activity of AR and TGFβ pathways was increased in children and adults with sepsis. Using the mean plus two standard deviations of normal pathway activity (in healthy individuals) as threshold for abnormal STP activity, diagnostic assay parameters were determined. For diagnosis of pediatric sepsis, the AR pathway assay showed high sensitivity (77%) and specificity (97%), with a positive prediction value (PPV) of 99% and negative prediction value (NPV) of 50%. For prediction of favorable prognosis (survival), PPV was 95%, NPV was 21%. The TGFβ pathway activity assay performed slightly less for diagnosing sepsis, with a sensitivity of 64% and specificity of 98% (PPV 99%, NPV 39%). Conclusion: The AR and TGFβ pathways have an immunosuppressive role, suggesting a causal relation between increased pathway activity and sepsis immunopathology. STP assays have been converted to qPCR assays for further evaluation of clinical utility for sepsis diagnosis and prediction of prognosis, as well as for prediction of risk at developing sepsis in patients with a bacterial infection. STPs may present novel therapeutic targets in sepsis.
Collapse
|
22
|
van Lieshout L, van der Ploeg P, Wesseling-Rozendaal Y, van de Stolpe A, Bosch S, Lentjes-Beer M, Ottenheijm M, Meriaan A, Vos C, de Hullu J, Massuger L, Bekkers R, Piek J. Survival Is Related to Estrogen Signal Transduction Pathway Activity in Postmenopausal Women Diagnosed with High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2021; 13:5101. [PMID: 34680250 PMCID: PMC8533979 DOI: 10.3390/cancers13205101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGSC), the most common subtype of ovarian cancer, has a high mortality rate. Although there are some factors associated with survival, such as stage of disease, there are remarkable differences in survival among women diagnosed with advanced stage disease. In this study, we investigate possible relations between survival and signal transduction pathway (STP) activity. We assessed the functional activity of the androgen receptor (AR), estrogen receptor (ER), phosphoinositide-3-kinase (PI3K), Hedgehog (HH), transforming growth factor beta (TGF-β) and canonical wingless-type MMTV integration site (Wnt) pathway in 85 primary tumor samples of patients with FIGO stage IIIC to IVB HGSC and disease-free survival (DFS) below 12 (n = 52) or over 24 months (n = 33). There were no significant differences in median pathway activity between patients with a short and long DFS. In univariate Cox proportional hazards analysis, ER pathway activity was related to a favorable DFS and overall survival (OS) in postmenopausal women (p = 0.033 and p = 0.041, respectively), but not in premenopausal women. We divided the postmenopausal group into subgroups based on ER pathway activity quartiles. Survival analysis revealed that postmenopausal women in the lowest ER quartile had a shorter DFS and OS (log-rank p = 0.006 and p < 0.001, respectively). Furthermore, we were able to form subgroups of patients based on an inverse relation between ER and PI3K pathway activity. In conclusion, in postmenopausal patients with advanced stage HGSC, a poorer survival outcome was associated with low functional ER pathway activity.
Collapse
Affiliation(s)
- Laura van Lieshout
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, P.O. Box 1350, 5602 ZA Eindhoven, The Netherlands; (P.v.d.P.); (M.O.); (A.M.); (R.B.)
- Department of Obstetrics and Gynecology, Radboud Institute for Health Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - Phyllis van der Ploeg
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, P.O. Box 1350, 5602 ZA Eindhoven, The Netherlands; (P.v.d.P.); (M.O.); (A.M.); (R.B.)
- GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Yvonne Wesseling-Rozendaal
- Molecular Pathway Diagnostics, Philips, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands; (Y.W.-R.); (A.v.d.S.)
| | - Anja van de Stolpe
- Molecular Pathway Diagnostics, Philips, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands; (Y.W.-R.); (A.v.d.S.)
| | - Steven Bosch
- Laboratory for Pathology and Medical Microbiology (Stichting PAMM), P.O. Box 2, 5500 AA Veldhoven, The Netherlands;
| | - Marjolein Lentjes-Beer
- Laboratory for Pathology, Jeroen Bosch Hospital, P.O. Box 90153, 5200 ME ‘s-Hertogenbosch, The Netherlands;
| | - Meggy Ottenheijm
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, P.O. Box 1350, 5602 ZA Eindhoven, The Netherlands; (P.v.d.P.); (M.O.); (A.M.); (R.B.)
| | - Annelen Meriaan
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, P.O. Box 1350, 5602 ZA Eindhoven, The Netherlands; (P.v.d.P.); (M.O.); (A.M.); (R.B.)
| | - Caroline Vos
- Department of Obstetrics and Gynecology, Elisabeth-TweeSteden Hospital, P.O. Box 90151, 5000 LC Tilburg, The Netherlands;
| | - Joanne de Hullu
- Department of Obstetrics and Gynecology, Radboud Institute for Health Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - Leon Massuger
- Radboud Institute for Health Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands;
| | - Ruud Bekkers
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, P.O. Box 1350, 5602 ZA Eindhoven, The Netherlands; (P.v.d.P.); (M.O.); (A.M.); (R.B.)
- GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Jurgen Piek
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, P.O. Box 1350, 5602 ZA Eindhoven, The Netherlands; (P.v.d.P.); (M.O.); (A.M.); (R.B.)
| |
Collapse
|
23
|
van Weelden WJ, Lalisang RI, Bulten J, Lindemann K, van Beekhuizen HJ, Trum H, Boll D, Werner HM, van Lonkhuijzen LR, Yigit R, Forsse D, Witteveen PO, Galaal K, van Ginkel A, Bignotti E, Weinberger V, Sweegers S, Kroep JR, Cabrera S, Snijders MP, Inda MA, Eriksson AGZ, Krakstad C, Romano A, van de Stolpe A, Pijnenborg JM, Pijnenborg JMA. Impact of hormonal biomarkers on response to hormonal therapy in advanced and recurrent endometrial cancer. Am J Obstet Gynecol 2021; 225:407.e1-407.e16. [PMID: 34019887 DOI: 10.1016/j.ajog.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/02/2021] [Accepted: 05/08/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Approximately 20% of women with endometrial cancer have advanced-stage disease or suffer from a recurrence. For these women, prognosis is poor, and palliative treatment options include hormonal therapy and chemotherapy. Lack of predictive biomarkers and suboptimal use of existing markers for response to hormonal therapy have resulted in overall limited efficacy. OBJECTIVE This study aimed to improve the efficacy of hormonal therapy by relating immunohistochemical expression of estrogen and progesterone receptors and estrogen receptor pathway activity scores to response to hormonal therapy. STUDY DESIGN Patients with advanced or recurrent endometrial cancer and available biopsies taken before the start of hormonal therapy were identified in 16 centers within the European Network for Individualized Treatment in Endometrial Cancer and the Dutch Gynecologic Oncology Group. Tumor tissue was analyzed for estrogen and progesterone receptor expressions and estrogen receptor pathway activity using a quantitative polymerase chain reaction-based messenger RNA model to measure the activity of estrogen receptor-related target genes in tumor RNA. The primary endpoint was response rate defined as complete and partial response using the Response Evaluation Criteria in Solid Tumors. The secondary endpoints were clinical benefit rate and progression-free survival. RESULTS Pretreatment biopsies with sufficient endometrial cancer tissue and complete response evaluation were available in 81 of 105 eligible cases. Here, 22 of 81 patients (27.2%) with a response had estrogen and progesterone receptor expressions of >50%, resulting in a response rate of 32.3% (95% confidence interval, 20.9-43.7) for an estrogen receptor expression of >50% and 50.0% (95% confidence interval, 35.2-64.8) for a progesterone receptor expression of >50%. Clinical benefit rate was 56.9% for an estrogen receptor expression of >50% (95% confidence interval, 44.9-68.9) and 75.0% (95% confidence interval, 62.2-87.8) for a progesterone receptor expression of >50%. The application of the estrogen receptor pathway test to cases with a progesterone receptor expression of >50% resulted in a response rate of 57.6% (95% confidence interval, 42.1-73.1). After 2 years of follow-up, 34.3% of cases (95% confidence interval, 20-48) with a progesterone receptor expression of >50% and 35.8% of cases (95% confidence interval, 20-52) with an estrogen receptor pathway activity score of >15 had not progressed. CONCLUSION The prediction of response to hormonal treatment in endometrial cancer improves substantially with a 50% cutoff level for progesterone receptor immunohistochemical expression and by applying a sequential test algorithm using progesterone receptor immunohistochemical expression and estrogen receptor pathway activity scores. However, results need to be validated in the prospective Prediction of Response to Hormonal Therapy in Advanced and Recurrent Endometrial Cancer (PROMOTE) study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynaecology, Radboud Institute of Health Sciences, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
24
|
Spaan I, van de Stolpe A, Raymakers RA, Peperzak V. Multiple Myeloma Relapse Is Associated with Increased NFκB Pathway Activity and Upregulation of the Pro-Survival BCL-2 Protein BFL-1. Cancers (Basel) 2021; 13:cancers13184668. [PMID: 34572895 PMCID: PMC8467450 DOI: 10.3390/cancers13184668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy that is still considered incurable due to the development of therapy resistance and subsequent relapse of disease. MM plasma cells (PC) use NFκB signaling to stimulate cell growth and disease progression, and for protection against therapy-induced apoptosis. Amongst its diverse array of target genes, NFκB regulates the expression of pro-survival BCL-2 proteins BCL-XL, BFL-1, and BCL-2. A possible role for BFL-1 in MM is controversial, since BFL-1, encoded by BCL2A1, is downregulated when mature B cells differentiate into antibody-secreting PC. NFκB signaling can be activated by many factors in the bone marrow microenvironment and/or induced by genetic lesions in MM PC. We used the novel signal transduction pathway activity (STA) computational model to quantify the functional NFκB pathway output in primary MM PC from diverse patient subsets at multiple stages of disease. We found that NFκB pathway activity is not altered during disease development, is irrespective of patient prognosis, and does not predict therapy outcome. However, disease relapse after treatment resulted in increased NFκB pathway activity in surviving MM PC, which correlated with increased BCL2A1 expression in a subset of patients. This suggests that BFL-1 upregulation, in addition to BCL-XL and BCL-2, may render MM PC resistant to therapy-induced apoptosis, and that BFL-1 targeting could provide a new approach to reduce therapy resistance in a subset of relapsed/refractory MM patients.
Collapse
Affiliation(s)
- Ingrid Spaan
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Anja van de Stolpe
- Precision Diagnostics, Philips Research, 5656 AE Eindhoven, The Netherlands;
| | - Reinier A. Raymakers
- Department of Hematology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| | - Victor Peperzak
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
- Correspondence: ; Tel.: +31-88-7567391
| |
Collapse
|
25
|
Bleach R, Madden SF, Hawley J, Charmsaz S, Selli C, Sheehan KM, Young LS, Sims AH, Souček P, Hill AD, McIlroy M. Steroid Ligands, the Forgotten Triggers of Nuclear Receptor Action; Implications for Acquired Resistance to Endocrine Therapy. Clin Cancer Res 2021; 27:3980-3989. [PMID: 34016642 PMCID: PMC9401529 DOI: 10.1158/1078-0432.ccr-20-4135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/22/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE There is strong epidemiologic evidence indicating that estrogens may not be the sole steroid drivers of breast cancer. We hypothesize that abundant adrenal androgenic steroid precursors, acting via the androgen receptor (AR), promote an endocrine-resistant breast cancer phenotype. EXPERIMENTAL DESIGN AR was evaluated in a primary breast cancer tissue microarray (n = 844). Androstenedione (4AD) levels were evaluated in serum samples (n = 42) from hormone receptor-positive, postmenopausal breast cancer. Levels of androgens, progesterone, and estradiol were quantified using LC/MS-MS in serum from age- and grade-matched recurrent and nonrecurrent patients (n = 6) before and after aromatase inhibitor (AI) therapy (>12 months). AR and estrogen receptor (ER) signaling pathway activities were analyzed in two independent AI-treated cohorts. RESULTS AR protein expression was associated with favorable progression-free survival in the total population (Wilcoxon, P < 0.001). Pretherapy serum samples from breast cancer patients showed decreasing levels of 4AD with age only in the nonrecurrent group (P < 0.05). LC/MS-MS analysis of an AI-sensitive and AI-resistant cohort demonstrated the ability to detect altered levels of steroids in serum of patients before and after AI therapy. Transcriptional analysis showed an increased ratio of AR:ER signaling pathway activities in patients failing AI therapy (t test P < 0.05); furthermore, 4AD mediated gene changes associated with acquired AI resistance. CONCLUSIONS This study highlights the importance of examining the therapeutic consequences of the steroid microenvironment and demonstrable receptor activation using indicative gene expression signatures.
Collapse
Affiliation(s)
- Rachel Bleach
- Endocrine Oncology Research, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Stephen F Madden
- Data Science Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - James Hawley
- Department of Biochemistry, Manchester University, NHS Foundation Trust, London, United Kingdom
| | - Sara Charmsaz
- Endocrine Oncology Research, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Cigdem Selli
- Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, United Kingdom
| | | | - Leonie S Young
- Endocrine Oncology Research, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, United Kingdom
| | - Pavel Souček
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Arnold D Hill
- Endocrine Oncology Research, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Surgery, Beaumont Hospital, Dublin, Ireland
| | - Marie McIlroy
- Endocrine Oncology Research, Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
26
|
Lassche G, Tada Y, van Herpen CML, Jonker MA, Nagao T, Saotome T, Hirai H, Saigusa N, Takahashi H, Ojiri H, van Engen-Van Grunsven ACH, Schalken JA, Fushimi C, Verhaegh GW. Predictive and Prognostic Biomarker Identification in a Large Cohort of Androgen Receptor-Positive Salivary Duct Carcinoma Patients Scheduled for Combined Androgen Blockade. Cancers (Basel) 2021; 13:cancers13143527. [PMID: 34298742 PMCID: PMC8307921 DOI: 10.3390/cancers13143527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022] Open
Abstract
Patients suffering from recurrent or metastatic (R/M) salivary duct carcinoma (SDC) are often treated with combined androgen blockade (CAB). However, CAB frequently fails, resulting in a worse prognosis. Therefore, biomarkers that can predict treatment failure are urgently needed. mRNA from 76 R/M androgen receptor (AR)-positive SDC patients treated with leuprorelin acetate combined with bicalutamide was extracted from pre-treatment tumor specimens. AR, Notch, MAPK, TGFβ, estrogen receptor (ER), Hedgehog (HH), and PI3K signaling pathway activity scores (PAS) were determined based on the expression levels of target genes. Additionally, 5-alpha reductase type 1 (SRD5A1) expression was determined. These markers were related to clinical benefit (complete/partial response or stable disease ≥6 months) and progression-free and overall survival (PFS/OS). SRD5A1 expression had the highest general predictive value for clinical benefit and positive predictive value (PPV: 85.7%). AR PAS had the highest negative predictive value (NPV: 93.3%). The fitting of a multivariable model led to the identification of SRD5A1, TGFβ, and Notch PAS as the most predictive combination. High AR, high Notch, high ER, low HH PAS, and high SRD5A1 expression were also of prognostic importance regarding PFS and SRD5A1 expression levels for OS. AR, Notch PAS, and SRD5A1 expression have the potential to predict the clinical benefit of CAB treatment in SDC patients. SRD5A1 expression can identify patients that will and AR PAS patients that will not experience clinical benefit (85.7% and 93.3% for PPV and NPV, respectively). The predictive potential of SRD5A1 expression forms a rational basis for including SRD5A1-inhibitors in SDC patients' treatment.
Collapse
Affiliation(s)
- Gerben Lassche
- Department of Medical Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands;
| | - Yuichiro Tada
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare, Mita Hospital, Tokyo 108-8329, Japan; (Y.T.); (C.F.)
| | - Carla M. L. van Herpen
- Department of Medical Oncology, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands;
- Correspondence: ; Tel.: +31-24-3667251
| | - Marianne A. Jonker
- Department of Health Evidence, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands;
| | - Toshitaka Nagao
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo 160-0023, Japan; (T.N.); (H.H.); (N.S.)
| | - Takashi Saotome
- Division of Medical Oncology, Matsudo City General Hospital, Chiba 270-2296, Japan;
| | - Hideaki Hirai
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo 160-0023, Japan; (T.N.); (H.H.); (N.S.)
| | - Natsuki Saigusa
- Department of Anatomic Pathology, Tokyo Medical University, Tokyo 160-0023, Japan; (T.N.); (H.H.); (N.S.)
| | - Hideaki Takahashi
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Kanagawa 236-0004, Japan;
| | - Hiroya Ojiri
- Department of Radiology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | | | - Jack A. Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (J.A.S.); (G.W.V.)
| | - Chihiro Fushimi
- Department of Head and Neck Oncology and Surgery, International University of Health and Welfare, Mita Hospital, Tokyo 108-8329, Japan; (Y.T.); (C.F.)
| | - Gerald W. Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525GA Nijmegen, The Netherlands; (J.A.S.); (G.W.V.)
| |
Collapse
|
27
|
Functional estrogen receptor signaling pathway activity in high-grade serous ovarian carcinoma as compared to estrogen receptor protein expression by immunohistochemistry. Cell Oncol (Dordr) 2021; 44:951-957. [PMID: 33723801 PMCID: PMC8338831 DOI: 10.1007/s13402-021-00600-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 01/25/2023] Open
Abstract
Purpose Anti-estrogen therapy may be used as a palliative treatment option in high-grade serous ovarian carcinomas (HGSC). However, clinical implementation is limited as the use of estrogen receptor (ER) protein expression by immunohistochemistry remains insufficient in predicting therapy response. To determine the accuracy of ER protein expression as a marker for ER signaling pathway activity, we aimed to correlate ER protein expression to functional ER signaling pathway activity in HGSC. Methods Immunohistochemical ER protein expression was visually scored using total percentages of stained tumor cells and histoscores. Subsequently, mRNA was extracted, and RT-qPCR analysis was performed. Functional ER pathway activity was assessed by a computational Bayesian model inferring ER signaling pathway activity from mRNA levels of ER-specific target genes. Results Our analysis of 29 HGSCs shows that neither total percentage of ER protein expression, nor ER histoscores are significantly correlated to ER signaling pathway activity (respectively, p = 0.473 and p = 0.606). Classification of HGSC into three groups based on ER histoscores 0–100 (n = 6), 101–200 (n = 15) and 201–300 (n = 8) resulted in comparable mean ER signaling pathway activity among the groups (p = 0.356). Several samples in the higher ER histoscore groups had low ER signaling pathway activity, indicating that nuclear ER protein expression is not sufficient to describe transcriptional ER activation. Conclusion Positive immunohistochemical ER staining is not always indicative of an active ER signaling pathway and is, therefore, a poor predictor of anti-estrogen response. Further research is needed to prove the predictive value of ER signaling pathway activity regarding anti-estrogen sensitivity in HGSC patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13402-021-00600-5.
Collapse
|
28
|
Inda MA, van Swinderen P, van Brussel A, Moelans CB, Verhaegh W, van Zon H, den Biezen E, Bikker JW, van Diest PJ, van de Stolpe A. Heterogeneity in Signaling Pathway Activity within Primary and between Primary and Metastatic Breast Cancer. Cancers (Basel) 2021; 13:1345. [PMID: 33809754 PMCID: PMC8002348 DOI: 10.3390/cancers13061345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Targeted therapy aims to block tumor-driving signaling pathways and is generally based on analysis of one primary tumor (PT) biopsy. Tumor heterogeneity within PT and between PT and metastatic breast lesions may, however, impact the effect of a chosen therapy. Whereas studies are available that investigate genetic heterogeneity, we present results on phenotypic heterogeneity by analyzing the variation in the functional activity of signal transduction pathways, using an earlier developed platform to measure such activity from mRNA measurements of pathways' direct target genes. Statistical analysis comparing macro-scale variation in pathway activity on up to five spatially distributed PT tissue blocks (n = 35), to micro-scale variation in activity on four adjacent samples of a single PT tissue block (n = 17), showed that macro-scale variation was not larger than micro-scale variation, except possibly for the PI3K pathway. Simulations using a "checkerboard clone-size" model showed that multiple small clones could explain the higher micro-scale variation in activity found for the TGFβ and Hedgehog pathways, and that intermediate/large clones could explain the possibly higher macro-scale variation of the PI3K pathway. While within PT, pathway activities presented a highly positive correlation, correlations weakened between PT and lymph node metastases (n = 9), becoming even worse for PT and distant metastases (n = 9), including a negative correlation for the ER pathway. While analysis of multiple sub-samples of a single biopsy may be sufficient to predict PT response to targeted therapies, metastatic breast cancer treatment prediction requires analysis of metastatic biopsies. Our findings on phenotypic intra-tumor heterogeneity are compatible with emerging ideas on a Big Bang type of cancer evolution in which macro-scale heterogeneity appears not dominant.
Collapse
Affiliation(s)
- Márcia A. Inda
- Precision Diagnostics Department, Philips Research, 5656 AE Eindhoven, The Netherlands; (M.A.I.); (P.v.S.); (H.v.Z.)
| | - Paul van Swinderen
- Precision Diagnostics Department, Philips Research, 5656 AE Eindhoven, The Netherlands; (M.A.I.); (P.v.S.); (H.v.Z.)
| | - Anne van Brussel
- Philips Molecular Pathway Diagnostics, 5656 AE Eindhoven, The Netherlands; (A.v.B.); (E.d.B.); (A.v.d.S.)
| | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (C.B.M.); (P.J.v.D.)
| | - Wim Verhaegh
- Precision Diagnostics Department, Philips Research, 5656 AE Eindhoven, The Netherlands; (M.A.I.); (P.v.S.); (H.v.Z.)
| | - Hans van Zon
- Precision Diagnostics Department, Philips Research, 5656 AE Eindhoven, The Netherlands; (M.A.I.); (P.v.S.); (H.v.Z.)
| | - Eveline den Biezen
- Philips Molecular Pathway Diagnostics, 5656 AE Eindhoven, The Netherlands; (A.v.B.); (E.d.B.); (A.v.d.S.)
| | - Jan Willem Bikker
- CQM, Consultants in Quantitative Methods, 5616 RM Eindhoven, The Netherlands;
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (C.B.M.); (P.J.v.D.)
| | - Anja van de Stolpe
- Philips Molecular Pathway Diagnostics, 5656 AE Eindhoven, The Netherlands; (A.v.B.); (E.d.B.); (A.v.d.S.)
| |
Collapse
|
29
|
Greve P, Meyer-Wentrup FAG, Peperzak V, Boes M. Upcoming immunotherapeutic combinations for B-cell lymphoma. IMMUNOTHERAPY ADVANCES 2021; 1:ltab001. [PMID: 35919738 PMCID: PMC9326875 DOI: 10.1093/immadv/ltab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 01/09/2021] [Indexed: 11/13/2022] Open
Abstract
After initial introduction for B-cell lymphomas as adjuvant therapies to established cancer treatments, immune checkpoint inhibitors and other immunotherapies are now integrated in mainstream regimens, both in adult and pediatric patients. We here provide an overview of the current status of combination therapies for B-cell lymphoma, by in-depth analysis of combination therapy trials registered between 2015–2020. Our analysis provides new insight into the rapid evolution in lymphoma treatment, as propelled by new additions to the treatment arsenal. We conclude with prospects on upcoming clinical trials which will likely use systematic testing approaches of more combinations of established chemotherapy regimens with new agents, as well as new combinations of immunotherapy and targeted therapy. Future trials will be set up as basket or umbrella-type trials to facilitate the evaluation of new drugs targeting specific genetic changes in the tumor or associated immune microenvironment. As such, lymphoma patients will benefit by receiving more tailored treatment that is based on synergistic effects of chemotherapy combined with new agents targeting specific aspects of tumor biology and the immune system.
Collapse
Affiliation(s)
- Patrick Greve
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Hematology-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Victor Peperzak
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
van de Stolpe A, Verhaegh W, Blay JY, Ma CX, Pauwels P, Pegram M, Prenen H, De Ruysscher D, Saba NF, Slovin SF, Willard-Gallo K, Husain H. RNA Based Approaches to Profile Oncogenic Pathways From Low Quantity Samples to Drive Precision Oncology Strategies. Front Genet 2021; 11:598118. [PMID: 33613616 PMCID: PMC7893109 DOI: 10.3389/fgene.2020.598118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
Precision treatment of cancer requires knowledge on active tumor driving signal transduction pathways to select the optimal effective targeted treatment. Currently only a subset of patients derive clinical benefit from mutation based targeted treatment, due to intrinsic and acquired drug resistance mechanisms. Phenotypic assays to identify the tumor driving pathway based on protein analysis are difficult to multiplex on routine pathology samples. In contrast, the transcriptome contains information on signaling pathway activity and can complement genomic analyses. Here we present the validation and clinical application of a new knowledge-based mRNA-based diagnostic assay platform (OncoSignal) for measuring activity of relevant signaling pathways simultaneously and quantitatively with high resolution in tissue samples and circulating tumor cells, specifically with very small specimen quantities. The approach uses mRNA levels of a pathway's direct target genes, selected based on literature for multiple proof points, and used as evidence that a pathway is functionally activated. Using these validated target genes, a Bayesian network model has been built and calibrated on mRNA measurements of samples with known pathway status, which is used next to calculate a pathway activity score on individual test samples. Translation to RT-qPCR assays enables broad clinical diagnostic applications, including small analytes. A large number of cancer samples have been analyzed across a variety of cancer histologies and benchmarked across normal controls. Assays have been used to characterize cell types in the cancer cell microenvironment, including immune cells in which activated and immunotolerant states can be distinguished. Results support the expectation that the assays provide information on cancer driving signaling pathways which is difficult to derive from next generation DNA sequencing analysis. Current clinical oncology applications have been complementary to genomic mutation analysis to improve precision medicine: (1) prediction of response and resistance to various therapies, especially targeted therapy and immunotherapy; (2) assessment and monitoring of therapy efficacy; (3) prediction of invasive cancer cell behavior and prognosis; (4) measurement of circulating tumor cells. Preclinical oncology applications lie in a better understanding of cancer behavior across cancer types, and in development of a pathophysiology-based cancer classification for development of novel therapies and precision medicine.
Collapse
Affiliation(s)
| | | | - Jean-Yves Blay
- Medical Oncology, Université Claude Bernard Lyon 1, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Cynthia X. Ma
- Medicine, Division of Oncology, Section of Medical Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Patrick Pauwels
- Molecular Pathology, Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Mark Pegram
- Stanford University School of Medicine, Clinical Research, Stanford Cancer Institute, Stanford, CA, United States
| | - Hans Prenen
- Oncology Department, Head of Phase I – Early Clinical Trials Unit, Clinical Trial Management Program, Oncology Department, Antwerp University Hospital, Antwerp, Belgium
| | - Dirk De Ruysscher
- Oncology-Radiotherapy, Maastro/Maastricht University Medical Center, Maastricht, Netherlands
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
- Head and Neck Medical Oncology Program, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | | | | | - Hatim Husain
- University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
31
|
van Hemert F, Dam-de Veen C, Konings S, van der Ven J, van de Stolpe A. A Novel Dual Antibody Staining Assay to Measure Estrogen Receptor Transcriptional Activity. J Fluoresc 2021; 31:219-227. [PMID: 33205346 PMCID: PMC7820081 DOI: 10.1007/s10895-020-02635-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
Activity of the canonical estrogen receptor (ER) pathway is equivalent to functional activity of the nuclear ER transcription factor. Monoclonal antibodies (MoAbs) that identify nuclear ER in cells and tissue samples are frequently used to assess ER transcriptional activity, however, it remains unclear if this approach is sufficiently predictive of ER pathway activity. This study uses ER-positive breast cancer cell lines (MCF7 and T47D) in which ER transcriptional activity was quantified using an mRNA-based ER pathway activity assay. The relationship between ER activity and nuclear ER staining with ER MoAbs was then investigated. Confirming earlier findings, the results show that while the presence of ER in the cell nucleus is a prerequisite for ER activity, it is not predictive of ER transcriptional activity. There were remarkable differences in the behaviours of the antibodies used in the study. EP1 and 1D5 showed reduced nuclear staining when ER was transcriptionally active, while staining with H4624 was independent of ER activity. To improve discrimination between active and inactive nuclear ER based on ER staining, a method was developed which consists of dual ER MoAb immunofluorescent staining, followed by generation of a digital image with a standard digital pathology scanner. Then a cell nucleus detection algorithm and per cell calculation of the nuclear H4624/EP1 fluorescence intensity ratio was applied, where a high H4624/EP1 ratio predicts an active ER pathway. With this method, the EP1 and 1D5 antibodies are interchangeable. We hypothesize that the transcriptional activation of ER hides the epitope recognized by MoAbs EP1 and 1D5, while H4624 binds an ER epitope that remains accessible during ER pathway activation. The method described in this study should add substantial value to the assessment of ER pathway activity for biomedical research and diagnostics.
Collapse
Affiliation(s)
- Freek van Hemert
- Precision Diagnostics, Philips Research, Eindhoven, The Netherlands.
| | | | - Sil Konings
- Precision Diagnostics, Philips Research, Eindhoven, The Netherlands
| | - John van der Ven
- Precision Diagnostics, Philips Research, Eindhoven, The Netherlands
| | | |
Collapse
|
32
|
Canté-Barrett K, Holtzer L, van Ooijen H, Hagelaar R, Cordo’ V, Verhaegh W, van de Stolpe A, Meijerink JPP. A Molecular Test for Quantifying Functional Notch Signaling Pathway Activity in Human Cancer. Cancers (Basel) 2020; 12:cancers12113142. [PMID: 33120947 PMCID: PMC7692325 DOI: 10.3390/cancers12113142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The Notch signal transduction pathway is important for various physiological processes, including immune responses, and plays a role in many diseases, for example cancer. We have developed a new assay to quantitatively measure Notch pathway activity, and we validated it using data from various human cancer cell lines. The assay can be applied across different cell types, and offers numerous possibilities to explore the contribution of the Notch pathway to tumor formation and the stratification of cancer patients. We assessed Notch pathway activity in a cohort of T cell acute lymphoblastic leukemia (T-ALL) patient samples, and found that the pathway activity score more accurately reflects Notch pathway activity than a prediction on the basis of NOTCH1 mutations alone. Finally, we found that patients with low Notch pathway activity had a significantly shorter event-free survival compared to patients who had T-ALL cells with higher activity. Abstract Background: The Notch signal transduction pathway is pivotal for various physiological processes, including immune responses, and has been implicated in the pathogenesis of many diseases. The effectiveness of various targeted Notch pathway inhibitors may vary due to variabilities in Notch pathway activity among individual patients. The quantitative measurement of Notch pathway activity is therefore essential to identify patients who could benefit from targeted treatment. Methods: We here describe a new assay that infers a quantitative Notch pathway activity score from the mRNA levels of generally conserved direct NOTCH target genes. Following the calibration and biological validation of our Notch pathway activity model over a wide spectrum of human cancer types, we assessed Notch pathway activity in a cohort of T-ALL patient samples and related it to biological and clinical parameters, including outcome. Results: We developed an assay using 18 select direct target genes and high-grade serous ovarian cancer for calibration. For validation, seven independent human datasets (mostly cancer series) were used to quantify Notch activity in agreement with expectations. For T-ALL, the median Notch pathway activity was highest for samples with strong NOTCH1-activating mutations, and T-ALL patients of the TLX subtype generally had the highest levels of Notch pathway activity. We observed a significant relationship between ICN1 levels and the absence/presence of NOTCH1-activating mutations with Notch pathway activity scores. Patients with the lowest Notch activity scores had the shortest event-free survival compared to other patients. Conclusions: High Notch pathway activity was not limited to T-ALL samples harboring strong NOTCH1 mutations, including juxtamembrane domain mutations or hetero-dimerization combined with PEST-domain or FBXW7 mutations, indicating that additional mechanisms may activate Notch signaling. The measured Notch pathway activity was related to intracellular NOTCH levels, indicating that the pathway activity score more accurately reflects Notch pathway activity than when it is predicted on the basis of NOTCH1 mutations. Importantly, patients with low Notch pathway activity had a significantly shorter event-free survival compared to patients showing higher activity.
Collapse
Affiliation(s)
- Kirsten Canté-Barrett
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Laurent Holtzer
- Philips Molecular Pathway Dx, Royal Philips, 5656 AE Eindhoven, The Netherlands; (L.H.); (A.v.d.S.)
| | - Henk van Ooijen
- Philips Research, Royal Philips, 5656 AE Eindhoven, The Netherlands; (H.v.O.); (W.V.)
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Valentina Cordo’
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
| | - Wim Verhaegh
- Philips Research, Royal Philips, 5656 AE Eindhoven, The Netherlands; (H.v.O.); (W.V.)
| | - Anja van de Stolpe
- Philips Molecular Pathway Dx, Royal Philips, 5656 AE Eindhoven, The Netherlands; (L.H.); (A.v.d.S.)
| | - Jules P. P. Meijerink
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.C.-B.); (R.H.); (V.C.)
- Correspondence: ; Tel.: +31-6-15064275
| |
Collapse
|
33
|
Bouwman W, Verhaegh W, Holtzer L, van de Stolpe A. Measurement of Cellular Immune Response to Viral Infection and Vaccination. Front Immunol 2020; 11:575074. [PMID: 33193365 PMCID: PMC7604353 DOI: 10.3389/fimmu.2020.575074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Combined cellular and humoral host immune response determine the clinical course of a viral infection and effectiveness of vaccination, but currently the cellular immune response cannot be measured on simple blood samples. As functional activity of immune cells is determined by coordinated activity of signaling pathways, we developed mRNA-based JAK-STAT signaling pathway activity assays to quantitatively measure the cellular immune response on Affymetrix expression microarray data of various types of blood samples from virally infected patients (influenza, RSV, dengue, yellow fever, rotavirus) or vaccinated individuals, and to determine vaccine immunogenicity. JAK-STAT1/2 pathway activity was increased in blood samples of patients with viral, but not bacterial, infection and was higher in influenza compared to RSV-infected patients, reflecting known differences in immunogenicity. High JAK-STAT3 pathway activity was associated with more severe RSV infection. In contrast to inactivated influenza virus vaccine, live yellow fever vaccine did induce JAK-STAT1/2 pathway activity in blood samples, indicating superior immunogenicity. Normal (healthy) JAK-STAT1/2 pathway activity was established, enabling assay interpretation without the need for a reference sample. The JAK-STAT pathway assays enable measurement of cellular immune response for prognosis, therapy stratification, vaccine development, and clinical testing.
Collapse
|
34
|
van Lieshout L, van de Stolpe A, van der Ploeg P, Bowtell D, de Hullu J, Piek J. Signal Transduction Pathway Activity in High-Grade, Serous Ovarian Carcinoma Reveals a More Favorable Prognosis in Tumors with Low PI3K and High NF-κB Pathway Activity: A Novel Approach to a Long-Standing Enigma. Cancers (Basel) 2020; 12:cancers12092660. [PMID: 32961868 PMCID: PMC7564278 DOI: 10.3390/cancers12092660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary All cells have a complex internal network of ‘communication chains’ called signal transduction pathways (STPs). Through interaction of different proteins in STPs, they are partly responsible for the behavior of a cell. In our study, we investigated the activity of eight STPs in datasets with genetic information on 140 cancer samples. These samples were derived from the most common subtype of ovarian cancer: high grade serous ovarian carcinoma (HGSC). With a novel method, we determined which STPs were active and discerned two groups based on activity of the phosphoinositide 3-kinase (PI3K) and nuclear factor-kappa B (NF-kB) pathways. The group with low PI3K and high NF-kB activity had a better progression free and overall survival compared to the group with high PI3K and low NF-kB activity. This difference may indicate that the ‘better prognosis group’ had a more active immune system or that the cells divided at a slower rate. Abstract We investigated signal transduction pathway (STP) activity in high-grade serous ovarian carcinoma (HGSC) in relation to progression-free survival (PFS) and overall survival (OS). We made use of signal transduction pathway activity analysis (STA analysis), a novel method to quantify functional STP activity. Activity of the following pathways was measured: androgen receptor (AR), estrogen receptor (ER), phosphoinositide 3-kinase (PI3K), Hedgehog (Hh), Notch, nuclear factor-kappa B (NF-κB), transforming growth factor beta (TGF-β), and Wnt. We selected HGSC samples from publicly available datasets of ovarian cancer tissue, and used repeated k-means clustering to identify pathway activity clusters. PFS and OS of the clusters were analyzed. We used a subset of publicly available dataset GSE9891 (n = 140), where repeated k-means clustering based on PI3K and NF-κB pathway activity in HGSC samples resulted in two stable clusters. The cluster with low PI3K and high NF-κB pathway activity (n = 72) had a more favorable prognosis for both PFS (p = 0.004) and OS (p = 0.001) compared to the high-PI3K and low-NF-κB pathway activity cluster (n = 68). The low PI3K and high NF-κB pathway activity of the favorable prognosis cluster may indicate a more active immune response, while the high PI3K and low NF-κB pathway activity of the unfavorable prognosis cluster may indicate high cell division.
Collapse
Affiliation(s)
- Laura van Lieshout
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, 5602ZA Eindhoven, The Netherlands; (P.v.d.P.); (J.P.)
- Radboud Institute for Health Sciences, Department of Obstetrics and Gynecology, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands;
- Correspondence: ; Tel.: +31-6-2211-9850
| | - Anja van de Stolpe
- Precision Diagnostics, Philips Research, 5656AE Eindhoven, The Netherlands;
| | - Phyllis van der Ploeg
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, 5602ZA Eindhoven, The Netherlands; (P.v.d.P.); (J.P.)
| | - David Bowtell
- Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne 3000, Australia;
- Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney 2145, Australia
| | - Joanne de Hullu
- Radboud Institute for Health Sciences, Department of Obstetrics and Gynecology, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands;
| | - Jurgen Piek
- Department of Obstetrics and Gynecology, Catharina Cancer Institute, Catharina Hospital, 5602ZA Eindhoven, The Netherlands; (P.v.d.P.); (J.P.)
| |
Collapse
|
35
|
van Weelden WJ, van der Putten LJM, Inda MA, van Brussel A, Snijders MPLM, Schriever LMM, Bulten J, Massuger LFAG, van de Stolpe A, Pijnenborg JMA. Oestrogen receptor pathway activity is associated with outcome in endometrial cancer. Br J Cancer 2020; 123:785-792. [PMID: 32507853 PMCID: PMC7463017 DOI: 10.1038/s41416-020-0925-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Oestrogen receptor (ER) expression is a prognostic biomarker in endometrial cancer (EC). However, expression does not provide information about the functional activity of the ER pathway. We evaluated a model to quantify ER pathway activity in EC, and determined the prognostic relevance of ER pathway activity. METHODS ER pathway activity was measured in two publicly available datasets with endometrial and EC tissue, and one clinical cohort with 107 samples from proliferative and hyperplastic endometrium and endometrioid-type EC (EEC) and uterine serous cancer (USC). ER pathway activity scores were inferred from ER target gene mRNA levels from Affymetrix microarray data (public datasets), or measured by qPCR on formalin-fixed paraffin-embedded samples (clinical cohort) and related to ER expression and outcome. RESULTS ER pathway activity scores differed significantly throughout the menstrual cycle supporting the validity of the pathway test. The highest ER pathway scores were found in proliferative and hyperplastic endometrium and stage I EEC, whereas stage II-IV EEC and USCs had significantly lower levels. Low ER pathway activity was associated with recurrent disease, and added prognostic value in patients with low ER expression. CONCLUSION The ER pathway test reflects activity of the ER pathway, and may improve prediction of outcome in EC patients.
Collapse
Affiliation(s)
- Willem Jan van Weelden
- Department of Obstetrics and Gynaecology, Radboud Institute for Health Science, Radboud university medical center, Nijmegen, the Netherlands.
| | - Louis J M van der Putten
- Department of Obstetrics and Gynaecology, Radboud Institute for Health Science, Radboud university medical center, Nijmegen, the Netherlands
| | | | | | - Marc P L M Snijders
- Department of Obstetrics and Gynaecology, Canisius-Wilhelmina Hospital, Nijmegen, the Netherlands
| | - Lisanne M M Schriever
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Johan Bulten
- Department of Pathology, Radboud university medical center, Nijmegen, the Netherlands
| | - Leon F A G Massuger
- Department of Obstetrics and Gynaecology, Radboud Institute for Health Science, Radboud university medical center, Nijmegen, the Netherlands
| | | | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynaecology, Radboud Institute for Health Science, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
36
|
Gray M, Turnbull AK, Meehan J, Martínez-Pérez C, Kay C, Pang LY, Argyle DJ. Comparative Analysis of the Development of Acquired Radioresistance in Canine and Human Mammary Cancer Cell Lines. Front Vet Sci 2020; 7:439. [PMID: 32851022 PMCID: PMC7396503 DOI: 10.3389/fvets.2020.00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Research using in vitro canine mammary cancer cell lines and naturally-occurring canine mammary tumors are not only fundamental models used to advance the understanding of cancer in veterinary patients, but are also regarded as excellent translational models of human breast cancer. Human breast cancer is commonly treated with radiotherapy; however, tumor response depends on both innate radiosensitivity and on tumor repopulation by cells that develop radioresistance. Comparative canine and human studies investigating the mechanisms of radioresistance may lead to novel cancer treatments that benefit both species. In this study, we developed a canine mammary cancer (REM-134) radioresistant (RR) cell line and investigated the cellular mechanisms related to the development of acquired radioresistance. We performed a comparative analysis of this resistant model with our previously developed human breast cancer radioresistant cell lines (MCF-7 RR, ZR-751 RR, and MDA-MB-231 RR), characterizing inherent differences through genetic, molecular, and cell biology approaches. RR cells demonstrated enhanced invasion/migration capabilities, with phenotypic evidence suggestive of epithelial-to-mesenchymal transition. Similarities were identified between the REM-134 RR, MCF-7 RR, and ZR-751 RR cell lines in relation to the pattern of expression of both epithelial and mesenchymal genes, in addition to WNT, PI3K, and MAPK pathway activation. Following the development of radioresistance, transcriptomic data indicated that parental MCF-7 and ZR-751 cell lines changed from a luminal A classification to basal/HER2-overexpressing (MCF-7 RR) and normal-like/HER2-overexpressing (ZR-751 RR). These radioresistant subtypes were similar to the REM-134 and REM-134 RR cell lines, which were classified as HER2-overexpressing. To our knowledge, our study is the first to generate a canine mammary cancer RR cell line model and provide a comparative genetic and phenotypic analysis of the mechanisms of acquired radioresistance between canine and human cancer cell lines. We demonstrate that the cellular processes that occur with the development of acquired radioresistance are similar between the human and canine cell lines; our results therefore suggest that the canine model is appropriate to study both human and canine radioresistant mammary cancers, and that treatment strategies used in human medicine may also be applicable to veterinary patients.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Arran K Turnbull
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - James Meehan
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Martínez-Pérez
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlene Kay
- Translational Oncology Research Group, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David J Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
M. Sieuwerts A, A. Inda M, Smid M, van Ooijen H, van de Stolpe A, Martens JWM, Verhaegh WFJ. ER and PI3K Pathway Activity in Primary ER Positive Breast Cancer Is Associated with Progression-Free Survival of Metastatic Patients under First-Line Tamoxifen. Cancers (Basel) 2020; 12:E802. [PMID: 32230714 PMCID: PMC7226576 DOI: 10.3390/cancers12040802] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022] Open
Abstract
: Estrogen receptor positive (ER+) breast cancer patients are eligible for hormonal treatment, but only around half respond. A test with higher specificity for prediction of endocrine therapy response is needed to avoid hormonal overtreatment and to enable selection of alternative treatments. A novel testing method was reported before that enables measurement of functional signal transduction pathway activity in individual cancer tissue samples, using mRNA levels of target genes of the respective pathway-specific transcription factor. Using this method, 130 primary breast cancer samples were analyzed from non-metastatic ER+ patients, treated with surgery without adjuvant hormonal therapy, who subsequently developed metastatic disease that was treated with first-line tamoxifen. Quantitative activity levels were measured of androgen and estrogen receptor (AR and ER), PI3K-FOXO, Hedgehog (HH), NFκB, TGFβ, and Wnt pathways. Based on samples with known pathway activity, thresholds were set to distinguish low from high activity. Subsequently, pathway activity levels were correlated with the tamoxifen treatment response and progression-free survival. High ER pathway activity was measured in 41% of the primary tumors and was associated with longer time to progression (PFS) of metastases during first-line tamoxifen treatment. In contrast, high PI3K, HH, and androgen receptor pathway activity was associated with shorter PFS, and high PI3K and TGFβ pathway activity with worse treatment response. Potential clinical utility of assessment of ER pathway activity lies in predicting response to hormonal therapy, while activity of PI3K, HH, TGFβ, and AR pathways may indicate failure to respond, but also opens new avenues for alternative or complementary targeted treatments.
Collapse
Affiliation(s)
- Anieta M. Sieuwerts
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus MC, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Márcia A. Inda
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus MC, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Henk van Ooijen
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Anja van de Stolpe
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology and Cancer Genomics Netherlands, Erasmus MC Cancer Institute, Erasmus MC, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wim F. J. Verhaegh
- Philips Research, Precision Diagnostics Department, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
38
|
Moazzenzade T, Huskens J, Lemay SG. Stochastic electrochemistry at ultralow concentrations: the case for digital sensors. Analyst 2020; 145:750-758. [PMID: 31808469 DOI: 10.1039/c9an01832h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is increasing demand, in particular from the medical field, for assays capable of detecting sub-pM macromolecular concentrations with high specificity. Methods for detecting single bio/macromolecules have already been developed based on a variety of transduction mechanisms, which represents the ultimate limit of mass sensitivity. Due to limitations imposed by mass transport and binding kinetics, however, achieving high concentration sensitivity additionally requires the massive parallelization of these single-molecule methods. This leads to a new sort of 'digital' assay based on large numbers of parallel, time-resolved measurements aimed at detecting, identifying and counting discrete macromolecular events instead of reading out an average response. In this Tutorial Review we first discuss the challenges inherent to trace-level detection and the motivations for developing digital assays. We then focus on the potential of recently developed single-entity impact electrochemistry methods for use in digital sensors. These have the inherent advantage of relying on purely electrical signals. They can thus in principle be implemented using integrated circuits to provide the parallelization, readout and analysis capabilities required for digital sensors.
Collapse
Affiliation(s)
- Taghi Moazzenzade
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Jurriaan Huskens
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Serge G Lemay
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
39
|
van Boxtel W, Verhaegh GW, van Engen-van Grunsven IA, van Strijp D, Kroeze LI, Ligtenberg MJ, van Zon HB, Hendriksen Y, Keizer D, van de Stolpe A, Schalken JA, van Herpen CM. Prediction of clinical benefit from androgen deprivation therapy in salivary duct carcinoma patients. Int J Cancer 2019; 146:3196-3206. [PMID: 31745978 PMCID: PMC7187215 DOI: 10.1002/ijc.32795] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Androgen deprivation therapy (ADT) is first‐line palliative treatment in androgen receptor‐positive (AR+) salivary duct carcinoma (SDC), and response rates are 17.6–50.0%. We investigated potential primary ADT resistance mechanisms for their predictive value of clinical benefit from ADT in a cohort of recurrent/metastatic SDC patients receiving palliative ADT (n = 30). We examined mRNA expression of androgen receptor (AR), AR splice variant‐7, intratumoral androgen synthesis enzyme‐encoding genes AKR1C3, CYP17A1, SRD5A1 and SRD5A2, AR protein expression, ERBB2 (HER2) gene amplification and DNA mutations in driver genes. Furthermore, functional AR pathway activity was determined using a previously reported Bayesian model which infers pathway activity from AR target gene expression levels. SRD5A1 expression levels and AR pathway activity scores were significantly higher in patients with clinical benefit from ADT compared to those without benefit. Survival analysis showed a trend toward a longer median progression‐free survival for patients with high SRD5A1 expression levels and high AR pathway activity scores. The AR pathway activity analysis, and not SRD5A1 expression, also showed a trend toward better disease‐free survival in an independent cohort of locally advanced SDC patients receiving adjuvant ADT (n = 14) after surgical tumor resection, and in most cases a neck dissection (13/14 patients) and postoperative radiotherapy (13/14 patients). In conclusion, we are the first to describe that AR pathway activity may predict clinical benefit from ADT in SDC patients, but validation in a prospective study is needed. What's new? Androgen deprivation therapy (ADT) is a leading treatment strategy in the palliative care of patients with androgen receptor (AR)‐positive salivary duct carcinoma (SDC). However, while as many as half of patients may respond to ADT, resistance frequently emerges, undermining its use. In this investigation of primary ADT resistance mechanisms, expression of the androgen synthesis enzyme‐encoding gene SRD5A1 and functional activity of the AR pathway were found to predict clinical benefit from ADT in SDC patients. High AR pathway activity scores were further linked to improved disease‐free survival in SDC patients with locally advanced disease who received adjuvant ADT.
Collapse
Affiliation(s)
- Wim van Boxtel
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Leonie I Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolein J Ligtenberg
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Yara Hendriksen
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Diederick Keizer
- Molecular Pathway Diagnostics, Philips Healthworks, Eindhoven, The Netherlands
| | | | - Jack A Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carla M van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
40
|
van der Zwet JCG, Cordo' V, Canté-Barrett K, Meijerink JPP. Multi-omic approaches to improve outcome for T-cell acute lymphoblastic leukemia patients. Adv Biol Regul 2019; 74:100647. [PMID: 31523030 DOI: 10.1016/j.jbior.2019.100647] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 06/10/2023]
Abstract
In the last decade, tremendous progress in curative treatment has been made for T-ALL patients using high-intensive, risk-adapted multi-agent chemotherapy. Further treatment intensification to improve the cure rate is not feasible as it will increase the number of toxic deaths. Hence, about 20% of pediatric patients relapse and often die due to acquired therapy resistance. Personalized medicine is of utmost importance to further increase cure rates and is achieved by targeting specific initiation, maintenance or resistance mechanisms of the disease. Genomic sequencing has revealed mutations that characterize genetic subtypes of many cancers including T-ALL. However, leukemia may have various activated pathways that are not accompanied by the presence of mutations. Therefore, screening for mutations alone is not sufficient to identify all molecular targets and leukemic dependencies for therapeutic inhibition. We review the extent of the driving type A and the secondary type B genomic mutations in pediatric T-ALL that may be targeted by specific inhibitors. Additionally, we review the need for additional screening methods on the transcriptional and protein levels. An integrated 'multi-omic' screening will identify potential targets and biomarkers to establish significant progress in future individualized treatment of T-ALL patients.
Collapse
Affiliation(s)
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | | |
Collapse
|
41
|
Inda MA, Blok EJ, Kuppen PJK, Charehbili A, den Biezen-Timmermans EC, van Brussel A, Fruytier SE, Meershoek-Klein Kranenbarg E, Kloet S, van der Burg B, Martens JWM, Sims AH, Turnbull AK, Dixon JM, Verhaegh W, Kroep JR, van de Velde CJH, van de Stolpe A. Estrogen Receptor Pathway Activity Score to Predict Clinical Response or Resistance to Neoadjuvant Endocrine Therapy in Primary Breast Cancer. Mol Cancer Ther 2019; 19:680-689. [PMID: 31727690 DOI: 10.1158/1535-7163.mct-19-0318] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/08/2019] [Accepted: 11/08/2019] [Indexed: 11/16/2022]
Abstract
Endocrine therapy is important for management of patients with estrogen receptor (ER)-positive breast cancer; however, positive ER staining does not reliably predict therapy response. We assessed the potential to improve prediction of response to endocrine treatment of a novel test that quantifies functional ER pathway activity from mRNA levels of ER pathway-specific target genes. ER pathway activity was assessed on datasets from three neoadjuvant-treated ER-positive breast cancer patient cohorts: Edinburgh: 3-month letrozole, 55 pre-/2-week/posttreatment matched samples; TEAM IIa: 3- to 6-month exemestane, 49 pre-/28 posttreatment paired samples; and NEWEST: 16-week fulvestrant, 39 pretreatment samples. ER target gene mRNA levels were measured in fresh-frozen tissue (Edinburgh, NEWEST) with Affymetrix microarrays, and in formalin-fixed paraffin-embedded samples (TEAM IIa) with qRT-PCR. Approximately one third of ER-positive patients had a functionally inactive ER pathway activity score (ERPAS), which was associated with a nonresponding status. Quantitative ERPAS decreased significantly upon therapy (P < 0.001 Edinburgh and TEAM IIa). Responders had a higher pretreatment ERPAS and a larger 2-week decrease in activity (P = 0.02 Edinburgh). Progressive disease was associated with low baseline ERPAS (P = 0.03 TEAM IIa; P = 0.02 NEWEST), which did not decrease further during treatment (P = 0.003 TEAM IIa). In contrast, the staining-based ER Allred score was not significantly associated with therapy response (P = 0.2). The ERPAS identified a subgroup of ER-positive patients with a functionally inactive ER pathway associated with primary endocrine resistance. Results confirm the potential of measuring functional ER pathway activity to improve prediction of response and resistance to endocrine therapy.
Collapse
Affiliation(s)
| | - Erik J Blok
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands.,Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Ayoub Charehbili
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Sevgi E Fruytier
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Susan Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom
| | - Arran K Turnbull
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, Edinburgh, United Kingdom.,Edinburgh Breast Unit, Western General Hospital, Edinburgh, United Kingdom
| | - J Michael Dixon
- Edinburgh Breast Unit, Western General Hospital, Edinburgh, United Kingdom
| | | | - Judith R Kroep
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
42
|
Are contralateral parenchymal enhancement on dynamic contrast-enhanced MRI and genomic ER-pathway activity in ER-positive/HER2-negative breast cancer related? Eur J Radiol 2019; 121:108705. [PMID: 31655316 DOI: 10.1016/j.ejrad.2019.108705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE To retrospectively explore the relation between parenchymal enhancement of the healthy contralateral breast on dynamic contrast-enhanced magnetic resonance imaging (MRI) and genomic tests for estrogen receptor (ER)-pathway activity in patients with ER-positive/HER2-negative cancer. METHODS A subset of 227 consecutively included patients with unilateral invasive ER-positive/HER2-negative breast cancer underwent dynamic contrast-enhanced MRI prior to breast-conserving therapy between 2000 and 2008. Perfusion of the parenchyma in the healthy breast was assessed using a previously reported measure of contralateral parenchymal enhancement (CPE), consisting of the mean of the top-10% late enhancement. ER-pathway activity was assessed from the surgical resection specimen by the previously reported sensitivity to endocrine therapy (SET)-index and ER-factor. The SET-index is a genetic test to estimate survival benefit from endocrine therapy, consisting of genes related to the ESR1 gene. The ER-factor examines other factors as well including protein expression. The relation between CPE and ER-pathway activity was modeled using linear regression. RESULTS Patients had a median age of 59 years. CPE was not significantly associated with the SET-index (R-squared = 0.005) nor the ER-factor (R-squared = 0.0002). The only variable significantly different between low and high CPE was age at diagnosis (P < 0.001). CONCLUSIONS Contralateral parenchymal enhancement on dynamic contrast-enhanced MRI was not associated with tumor-derived estrogen receptor pathway activity.
Collapse
|
43
|
Noordhoek I, de Groot AF, Cohen D, Liefers GJ, Portielje JEA, Kroep JR. Higher ER load is not associated with better outcome in stage 1-3 breast cancer: a descriptive overview of quantitative HR analysis in operable breast cancer. Breast Cancer Res Treat 2019; 176:27-36. [PMID: 30997625 PMCID: PMC6548750 DOI: 10.1007/s10549-019-05233-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/10/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE In breast cancer, hormone receptor (HR) status is generally a qualitative measure; positive or negative. Quantitatively measured oestrogen and progesterone receptors (ER and PR) are frequently proposed prognostic and predictive markers, some guidelines even provide different treatment options for patients with strong versus weak expression. AIM To evaluate quantitative HR load assessed by immunohistochemistry as a prognostic and predictive measure in stage 1-3 breast cancer. METHODS We reviewed all the available literature on quantitatively measured HRs using immunohistochemistry. RESULTS All included studies (n = 19) comprised a cohort of 30,754 patients. Only 2 out of 17 studies found a clear correlation between higher quantitative ER and better disease outcome. Only one trial examined quantitative ER both as prognostic and predictive marker and found no association between ER% and survival. Ten studies examined quantitative PR load, only two of those found a significant correlation between higher PR load and better disease outcome. Two trials examined quantitative PR both as prognostic and predictive marker, neither found any association between PR% and disease outcome. CONCLUSIONS There is no clear evidence for using quantitatively assessed ER and PR as prognostic nor predictive marker in patients with stage 1-3 breast cancer. We recommend only using a qualitative HR status in future guidelines and treatment considerations.
Collapse
Affiliation(s)
- I Noordhoek
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - A F de Groot
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - D Cohen
- Department of Pathology, Leiden University Medical Centre, Leiden, The Netherlands
| | - G J Liefers
- Department of Surgery, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - J E A Portielje
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| | - J R Kroep
- Department of Medical Oncology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
44
|
van Weelden WJ, Massuger LFAG, Pijnenborg JMA, Romano A. Anti-estrogen Treatment in Endometrial Cancer: A Systematic Review. Front Oncol 2019; 9:359. [PMID: 31134155 PMCID: PMC6513972 DOI: 10.3389/fonc.2019.00359] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022] Open
Abstract
Introduction: Hormonal therapy in endometrial cancer (EC) is used for patients who wish to preserve fertility and for patients with advanced or recurrent disease in a palliative setting. First line hormonal therapy consists of treatment with progestins, which has a response rate of 25% in an unselected population. Treatment with anti-estrogens is an alternative hormonal therapy option, but there is limited data on the effect and side-effects of anti-estrogens in EC. Therefore, we performed a systematic review to investigate the response rate and toxicity of anti-estrogenic therapy in patients with endometrial cancer. Methods: A systematic search in electronic databases was performed to identify studies on selective estrogen receptor modulators (SERM) and down-regulators (SERD) and aromatase inhibitors that reported on response rates (RR) among EC patients. Outcome in estrogen receptor (ER) positive and negative disease was assessed independently. Results: Sixteen studies on advanced stage and recurrent EC were included. Ten studies investigated anti-estrogen monotherapy and seven investigated a combination of anti-estrogenic drugs with either progestin or targeted treatment. Due to heterogeneity in patient population, no meta-analysis was performed. The median age of the patients in the included studies ranged from 61 to 71 years and the proportion of low grade tumors ranged from 38 to 80%. The RR for tamoxifen ranged from 10 to 53%, for other SERMs and SERDs 9–31%, for aromatase inhibitors from 8 to 9%, for combined tamoxifen/progestin treatment 19–58%, for combined chemo- and hormonal therapy 43% and for combination of anti-estrogenic treatment with mammalian target of rapamycin (mTOR) inhibitors 14–31%. Toxicity consisted mainly of nausea and thrombotic events and was higher in combination therapy of chemotherapy and hormonal therapy and hormonal therapy and mTOR inhibitors compared to other therapies. Conclusion: Tamoxifen or a combination of tamoxifen and progestin should be the preferred choice when selecting second line hormonal treatment because the RRs are similar to first line progestin treatment and the toxicity is low. The response can be optimized by selecting patients with endometrioid tumors and positive estrogen receptor status, which should be based on a pretreatment biopsy.
Collapse
Affiliation(s)
- Willem Jan van Weelden
- Department of Obstetrics and Gynecology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leon F A G Massuger
- Department of Obstetrics and Gynecology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynecology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
45
|
Gray M, Turnbull AK, Ward C, Meehan J, Martínez-Pérez C, Bonello M, Pang LY, Langdon SP, Kunkler IH, Murray A, Argyle D. Development and characterisation of acquired radioresistant breast cancer cell lines. Radiat Oncol 2019; 14:64. [PMID: 30987655 PMCID: PMC6466735 DOI: 10.1186/s13014-019-1268-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Radiotherapy plays an important role in the multimodal treatment of breast cancer. The response of a breast tumour to radiation depends not only on its innate radiosensitivity but also on tumour repopulation by cells that have developed radioresistance. Development of effective cancer treatments will require further molecular dissection of the processes that contribute to resistance. METHODS Radioresistant cell lines were established by exposing MDA-MB-231, MCF-7 and ZR-751 parental cells to increasing weekly doses of radiation. The development of radioresistance was evaluated through proliferation and colony formation assays. Phenotypic characterisation included migration and invasion assays and immunohistochemistry. Transcriptomic data were also generated for preliminary hypothesis generation involving pathway-focused analyses. RESULTS Proliferation and colony formation assays confirmed radioresistance. Radioresistant cells exhibited enhanced migration and invasion, with evidence of epithelial-to-mesenchymal-transition. Significantly, acquisition of radioresistance in MCF-7 and ZR-751 cell lines resulted in a loss of expression of both ERα and PgR and an increase in EGFR expression; based on transcriptomic data they changed subtype classification from their parental luminal A to HER2-overexpressing (MCF-7 RR) and normal-like (ZR-751 RR) subtypes, indicating the extent of phenotypic changes and cellular plasticity involved in this process. Radioresistant cell lines derived from ER+ cells also showed a shift from ER to EGFR signalling pathways with increased MAPK and PI3K activity. CONCLUSIONS This is the first study to date that extensively describes the development and characterisation of three novel radioresistant breast cancer cell lines through both genetic and phenotypic analysis. More changes were identified between parental cells and their radioresistant derivatives in the ER+ (MCF-7 and ZR-751) compared with the ER- cell line (MDA-MB-231) model; however, multiple and likely interrelated mechanisms were identified that may contribute to the development of acquired resistance to radiotherapy.
Collapse
Affiliation(s)
- Mark Gray
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland. .,Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.
| | - Arran K Turnbull
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland.,Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.,Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, Scotland
| | - Carlos Martínez-Pérez
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland.,Breast Cancer Now Edinburgh Research Team, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Maria Bonello
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Lisa Y Pang
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, Scotland
| | - Alan Murray
- School of Engineering, Faraday Building, The King's Buildings, University of Edinburgh, Edinburgh, Scotland
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
46
|
van Hartskamp M, Consoli S, Verhaegh W, Petkovic M, van de Stolpe A. Artificial Intelligence in Clinical Health Care Applications: Viewpoint. Interact J Med Res 2019; 8:e12100. [PMID: 30950806 PMCID: PMC6473209 DOI: 10.2196/12100] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/18/2019] [Accepted: 01/31/2019] [Indexed: 12/26/2022] Open
Abstract
The idea of artificial intelligence (AI) has a long history. It turned out, however, that reaching intelligence at human levels is more complicated than originally anticipated. Currently, we are experiencing a renewed interest in AI, fueled by an enormous increase in computing power and an even larger increase in data, in combination with improved AI technologies like deep learning. Healthcare is considered the next domain to be revolutionized by artificial intelligence. While AI approaches are excellently suited to develop certain algorithms, for biomedical applications there are specific challenges. We propose six recommendations—the 6Rs—to improve AI projects in the biomedical space, especially clinical health care, and to facilitate communication between AI scientists and medical doctors: (1) Relevant and well-defined clinical question first; (2) Right data (ie, representative and of good quality); (3) Ratio between number of patients and their variables should fit the AI method; (4) Relationship between data and ground truth should be as direct and causal as possible; (5) Regulatory ready; enabling validation; and (6) Right AI method.
Collapse
|
47
|
van de Stolpe A. Quantitative Measurement of Functional Activity of the PI3K Signaling Pathway in Cancer. Cancers (Basel) 2019; 11:E293. [PMID: 30832253 PMCID: PMC6468721 DOI: 10.3390/cancers11030293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) growth factor signaling pathway plays an important role in embryonic development and in many physiological processes, for example the generation of an immune response. The pathway is frequently activated in cancer, driving cell division and influencing the activity of other signaling pathways, such as the MAPK, JAK-STAT and TGFβ pathways, to enhance tumor growth, metastasis, and therapy resistance. Drugs that inhibit the pathway at various locations, e.g., receptor tyrosine kinase (RTK), PI3K, AKT and mTOR inhibitors, are clinically available. To predict drug response versus resistance, tests that measure PI3K pathway activity in a patient sample, preferably in combination with measuring the activity of other signaling pathways to identify potential resistance pathways, are needed. However, tests for signaling pathway activity are lacking, hampering optimal clinical application of these drugs. We recently reported the development and biological validation of a test that provides a quantitative PI3K pathway activity score for individual cell and tissue samples across cancer types, based on measuring Forkhead Box O (FOXO) transcription factor target gene mRNA levels in combination with a Bayesian computational interpretation model. A similar approach has been used to develop tests for other signaling pathways (e.g., estrogen and androgen receptor, Hedgehog, TGFβ, Wnt and NFκB pathways). The potential utility of the test is discussed, e.g., to predict response and resistance to targeted drugs, immunotherapy, radiation and chemotherapy, as well as (pre-) clinical research and drug development.
Collapse
Affiliation(s)
- Anja van de Stolpe
- Precision Diagnostics, Philips Research, High Tech Campus, 5656AE Eindhoven, The Netherlands.
| |
Collapse
|
48
|
de Kruijff IE, Sieuwerts AM, Onstenk W, Jager A, Hamberg P, de Jongh FE, Smid M, Kraan J, Timmermans MA, Martens JWM, Sleijfer S. Androgen receptor expression in circulating tumor cells of patients with metastatic breast cancer. Int J Cancer 2019; 145:1083-1089. [PMID: 30761532 DOI: 10.1002/ijc.32209] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/28/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
Abstract
The androgen receptor (AR) has potential clinical relevance in metastatic breast cancer (mBC) since it might be a treatment target and has been associated with endocrine resistance. A minimal-invasive way to determine AR expression on metastatic tumor cells is by characterization of circulating tumor cells (CTCs). Here, we assessed AR mRNA expression in CTCs (CTC-AR) and in matched primary tumor samples from mBC patients representing different breast cancer subtypes. In addition, we explored CTC-AR-status in relation to outcome on endocrine therapy. AR, and 92 AR or estrogen receptor (ER) related genes, were measured in CellSearch-enriched CTCs from 124 mBC patients and in 52 matched FFPE primary tissues using quantitative reverse-transcriptase PCR. AR in CTCs was considered positive if the expression was 1 standard deviation higher than the expression measured in 11 healthy blood donors. A total of 31% of the mBC patients had AR-positive (AR+) CTCs. 58% of the matched CTC and primary tumor samples were discordant with respect to AR status, observing both switches from AR+ to AR-negative (AR-) and vice versa. There was no statistically significant difference in progression-free survival for patients treated with ER-targeting drugs and CTC-AR-status (13 AR+/ 37 AR- cases, p = 0.28). Thus, AR can be determined in RNA isolated from CTCs, with in our set 31% AR-positive samples. Given the discordance between AR status in CTC samples and corresponding primary tumors, determination of AR expression in CTCs might be a promising tool to select mBC patients for AR inhibiting agents.
Collapse
Affiliation(s)
- Ingeborg E de Kruijff
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anieta M Sieuwerts
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wendy Onstenk
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Paul Hamberg
- Department of Medical Oncology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Felix E de Jongh
- Department of Medical Oncology, Ikazia Ziekenhuis, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Mieke A Timmermans
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
49
|
van Boxtel W, Locati LD, van Engen-van Grunsven ACH, Bergamini C, Jonker MA, Fiets E, Cavalieri S, Tooten S, Bos E, Quattrone P, Verhaegh GW, Schalken JA, Licitra L, van Herpen CML. Adjuvant androgen deprivation therapy for poor-risk, androgen receptor-positive salivary duct carcinoma. Eur J Cancer 2019; 110:62-70. [PMID: 30771738 DOI: 10.1016/j.ejca.2018.12.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
Abstract
AIM Salivary duct carcinoma (SDC), an aggressive subtype of salivary gland cancer, is androgen receptor (AR)-positive in 67-96% of cases. In patients with locally recurrent and metastatic (R/M) AR-positive SDC, androgen deprivation therapy (ADT) has an overall response rate of 18-64.7%. In this study, we describe the efficacy of adjuvant ADT in patients with poor-risk (stage 4a) AR-positive SDC. METHODS This is a retrospective cohort study in which patients with stage 4a AR-positive SDC were offered adjuvant ADT, i.e. bicalutamide, luteinizing hormone-releasing hormone (LHRH) analogue or a combination of these after tumour resection. In the control group, data were collected on patients with stage 4a SDC who underwent a tumour resection but did not receive adjuvant ADT. RESULTS Twenty-two AR-positive SDC patients were treated with adjuvant ADT for a median duration of 12 months. The control group consisted of 111 SDC patients. After a median follow-up of 20 months in the ADT-treated patients and 26 months in the control group, the 3-year disease-free survival (DFS) was estimated as 48.2% (95% confidence interval [CI] 14.0-82.4%) and 27.7% (95% CI 18.5-36.9%) (P = 0.037). Multivariable Cox regression analysis showed a hazard ratio of 0.138 (95% CI 0.025-0.751, P = 0.022) for DFS and 0.064 (95% CI 0.005-0.764, P = 0.030) for overall survival (OS) in favour of the ADT-treated patients. CONCLUSION Poor-risk, AR-positive SDC patients who received adjuvant ADT have a significantly longer DFS compared with patients in the control group, who did not receive adjuvant ADT. For OS, this was just below and above the significance level, in case there was or was no correction for confounders.
Collapse
Affiliation(s)
- W van Boxtel
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, the Netherlands
| | - L D Locati
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, 20133 Milan, Italy
| | - A C H van Engen-van Grunsven
- Department of Pathology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - C Bergamini
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, 20133 Milan, Italy
| | - M A Jonker
- Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - E Fiets
- Department of Medical Oncology, Medical Center Leeuwarden, Henri Dunantweg 2, 8934 AD Leeuwarden, the Netherlands
| | - S Cavalieri
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, 20133 Milan, Italy
| | - S Tooten
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, the Netherlands
| | - E Bos
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, the Netherlands
| | - P Quattrone
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, 20133 Milan, Italy
| | - G W Verhaegh
- Department of Urology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - J A Schalken
- Department of Urology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, the Netherlands
| | - L Licitra
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian 1, 20133 Milan, Italy; University of Milan, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - C M L van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 8, 6525 GA Nijmegen, the Netherlands.
| | | |
Collapse
|
50
|
Enabling precision medicine by unravelling disease pathophysiology: quantifying signal transduction pathway activity across cell and tissue types. Sci Rep 2019; 9:1603. [PMID: 30733525 PMCID: PMC6367506 DOI: 10.1038/s41598-018-38179-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Signal transduction pathways are important in physiology and pathophysiology. Targeted drugs aim at modifying pathogenic pathway activity, e.g., in cancer. Optimal treatment choice requires assays to measure pathway activity in individual patient tissue or cell samples. We developed a method enabling quantitative measurement of functional pathway activity based on Bayesian computational model inference of pathway activity from measurements of mRNA levels of target genes of the pathway-associated transcription factor. Oestrogen receptor, Wnt, and PI3K-FOXO pathway assays have been described previously. Here, we report model development for androgen receptor, Hedgehog, TGFβ, and NFκB pathway assays, biological validation on multiple cell types, and analysis of data from published clinical studies (multiple sclerosis, amyotrophic lateral sclerosis, contact dermatitis, Ewing sarcoma, lymphoma, medulloblastoma, ependymoma, skin and prostate cancer). Multiple pathway analysis of clinical prostate cancer (PCa) studies showed increased AR activity in hyperplasia and primary PCa but variable AR activity in castrate resistant (CR) PCa, loss of TGFβ activity in PCa, increased Wnt activity in TMPRSS2:ERG fusion protein-positive PCa, active PI3K pathway in advanced PCa, and active PI3K and NFκB as potential hormonal resistance pathways. Potential value for future clinical practice includes disease subtyping and prediction and targeted therapy response prediction and monitoring.
Collapse
|