1
|
Piersma SJ, Li S, Wong P, Bern MD, Poursine-Laurent J, Yang L, Beckman DL, Parikh BA, Yokoyama WM. Expression of a single inhibitory member of the Ly49 receptor family is sufficient to license NK cells for effector functions. eLife 2025; 13:RP100218. [PMID: 40085489 PMCID: PMC11908779 DOI: 10.7554/elife.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of major histocompatibility complex class I (MHC-I) and related molecules. Functionally, these receptor families are involved in the licensing and rejection of MHC-I-deficient cells through missing-self. The Ly49 family is highly polymorphic, making it challenging to detail the contributions of individual Ly49 receptors to NK cell function. Herein, we showed mice lacking expression of all Ly49s were unable to reject missing-self target cells in vivo, were defective in NK cell licensing, and displayed lower KLRG1 on the surface of NK cells. Expression of Ly49A alone on an H-2Dd background restored missing-self target cell rejection, NK cell licensing, and NK cell KLRG1 expression. Thus, a single inhibitory Ly49 receptor is sufficient to license NK cells and mediate missing-self in vivo.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
- Siteman Cancer Center, Washington University School of Medicine, St Louis, United States
| | - Shasha Li
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - Pamela Wong
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - Michael D Bern
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - Jennifer Poursine-Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - Diana L Beckman
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
| | - Bijal A Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
| | - Wayne M Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
2
|
Piersma SJ, Li S, Wong P, Bern MD, Poursine-Laurent J, Yang L, Beckman DL, Parikh BA, Yokoyama WM. Expression of a single inhibitory member of the Ly49 receptor family is sufficient to license NK cells for effector functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597367. [PMID: 38895234 PMCID: PMC11185686 DOI: 10.1101/2024.06.04.597367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of MHC class I and related molecules. Functionally, these receptor families are involved in licensing and rejection of MHC-I-deficient cells through missing-self. The Ly49 family is highly polymorphic, making it challenging to detail the contributions of individual Ly49 receptors to NK cell function. Herein, we showed mice lacking expression of all Ly49s were unable to reject missing-self target cells in vivo, were defective in NK cell licensing, and displayed lower KLRG1 on the surface of NK cells. Expression of Ly49A alone on a H-2Dd background restored missing-self target cell rejection, NK cell licensing, and NK cell KLRG1 expression. Thus, a single inhibitory Ly49 receptor is sufficient to license NK cells and mediate missing-self in vivo.
Collapse
Affiliation(s)
- Sytse J. Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shasha Li
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela Wong
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael D. Bern
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jennifer Poursine-Laurent
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liping Yang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Diana L. Beckman
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bijal A. Parikh
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Liu S, Sun Q, Ren X. Novel strategies for cancer immunotherapy: counter-immunoediting therapy. J Hematol Oncol 2023; 16:38. [PMID: 37055849 PMCID: PMC10099030 DOI: 10.1186/s13045-023-01430-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
The advent of immunotherapy has made an indelible mark on the field of cancer therapy, especially the application of immune checkpoint inhibitors in clinical practice. Although immunotherapy has proven its efficacy and safety in some tumors, many patients still have innate or acquired resistance to immunotherapy. The emergence of this phenomenon is closely related to the highly heterogeneous immune microenvironment formed by tumor cells after undergoing cancer immunoediting. The process of cancer immunoediting refers to the cooperative interaction between tumor cells and the immune system that involves three phases: elimination, equilibrium, and escape. During these phases, conflicting interactions between the immune system and tumor cells result in the formation of a complex immune microenvironment, which contributes to the acquisition of different levels of immunotherapy resistance in tumor cells. In this review, we summarize the characteristics of different phases of cancer immunoediting and the corresponding therapeutic tools, and we propose normalized therapeutic strategies based on immunophenotyping. The process of cancer immunoediting is retrograded through targeted interventions in different phases of cancer immunoediting, making immunotherapy in the context of precision therapy the most promising therapy to cure cancer.
Collapse
Affiliation(s)
- Shaochuan Liu
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Qian Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| | - Xiubao Ren
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, 300060, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, 300060, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, 300060, Tianjin, China.
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China.
| |
Collapse
|
4
|
Improved Antitumor Effect of NK Cells Activated by Neutrophils in a Bone Marrow Transplant Model. Mediators Inflamm 2023; 2023:6316581. [PMID: 36762286 PMCID: PMC9904906 DOI: 10.1155/2023/6316581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The licensing process mediated by inhibitory receptors of the Ly49 C-type lectin superfamily that recognizes self-major histocompatibility complex (MHC) class I in mice is essential for the proper antitumor function of natural killer (NK) cells. Several models for NK cell licensing can be exploited for adoptive immunotherapy for cancer. However, the appropriate adoptive transfer setting to induce efficient graft versus tumor/leukemia effects remains elusive, especially after hematopoietic stem cell transplantation (HSCT). In our previous experiment, we showed that intraperitoneal neutrophil administration with their corresponding NK receptor ligand-activated NK cells using congenic mice without HSCT. In this experiment, we demonstrate enhanced antitumor effects of licensed NK cells induced by weekly intraperitoneal injections of irradiated neutrophil-enriched peripheral blood mononuclear cells (PBMNCs) in recipient mice bearing lymphoma. Bone marrow transplantation was performed using BALB/c mice (H-2d) as the recipient and B10 mice (H-2b) as the donor. The tumor was A20, a BALB/c-derived lymphoma cell line, which was injected subcutaneously into the recipient at the same time as the HSCT. Acute graft versus host disease was not exacerbated in this murine MHC class I mismatched HSCT setting. The intraperitoneal injection of PBMNCs activated a transient licensing of NK subsets expressed Ly49G2, its corresponding NK receptor ligand to H-2d, and reduced A20 tumor growth in the recipient after HSCT. Pathological examination revealed that increased donor-oriented NK1.1+NK cells migrated into the recipient tumors, depending on neutrophil counts in the administered PBMNCs. Collectively, our data reveal a pivotal role of neutrophils in promoting NK cell effector functions and adoptive immunotherapy for cancer.
Collapse
|
5
|
Zhang H, Hu Y, Liu D, Liu Z, Xie N, Liu S, Zhang J, Jiang Y, Li C, Wang Q, Chen X, Ye D, Sun D, Zhai Y, Yan X, Liu Y, Chen CD, Huang X, Eugene Chin Y, Shi Y, Wu B, Zhang X. The histone demethylase Kdm6b regulates the maturation and cytotoxicity of TCRαβ +CD8αα + intestinal intraepithelial lymphocytes. Cell Death Differ 2022; 29:1349-1363. [PMID: 34999729 PMCID: PMC9287323 DOI: 10.1038/s41418-021-00921-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
Intestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression. Kdm6b is an epigenetic enzyme responsible for the demethylation of H3K27Me3 and thus promotes gene expression. Here we identified Kdm6b as an important intracellular regulator of small intestinal IELs. Mice genetically deficient for Kdm6b showed greatly reduced numbers of TCRαβ+CD8αα+ IELs. In the absence of Kdm6b, TCRαβ+CD8αα+ IELs exhibited increased apoptosis, disturbed maturation and a compromised capability to lyse target cells. Both IL-15 and Kdm6b-mediated demethylation of histone 3 at lysine 27 are responsible for the maturation of TCRαβ+CD8αα+ IELs through upregulating the expression of Gzmb and Fasl. In addition, Kdm6b also regulates the expression of the gut-homing molecule CCR9 by controlling H3K27Me3 level at its promoter. However, Kdm6b is dispensable for the reactivity of thymic precursors of TCRαβ+CD8αα+ IELs (IELPs) to IL-15 and TGF-β. In conclusion, we showed that Kdm6b plays critical roles in the maturation and cytotoxic function of small intestinal TCRαβ+CD8αα+ IELs.
Collapse
Affiliation(s)
- Haohao Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yiming Hu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Dandan Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Zhi Liu
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Ningxia Xie
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jie Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yuhang Jiang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Cuifeng Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qi Wang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Deji Ye
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Donglin Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
| | - Yujia Zhai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xinhui Yan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yongzhong Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032, Shanghai, China
| | - Charlie Degui Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xingxu Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China
| | - Y Eugene Chin
- Institutes of Biology and Medical Sciences, Soochow University Medical College, 215000, Suzhou, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China
- Institutes of Biology and Medical Sciences, Soochow University Medical College, 215000, Suzhou, China
| | - Baojin Wu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
| | - Xiaoren Zhang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University; Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes; State Key Laboratory of Respiratory Disease, 510000, Guangzhou, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, Shanghai, China.
| |
Collapse
|
6
|
Rocca Y, Pouxvielh K, Marotel M, Benezech S, Jaeger B, Allatif O, Bendriss-Vermare N, Marçais A, Walzer T. Combinatorial Expression of NK Cell Receptors Governs Cell Subset Reactivity and Effector Functions but Not Tumor Specificity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1802-1812. [PMID: 35288470 DOI: 10.4049/jimmunol.2100874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/28/2022] [Indexed: 12/20/2022]
Abstract
NK cell receptors allow NK cells to recognize targets such as tumor cells. Many of them are expressed on a subset of NK cells, independently of each other, which creates a vast diversity of receptor combinations. Whether these combinations influence NK cell antitumor responses is not well understood. We addressed this question in the C57BL/6 mouse model and analyzed the individual effector response of 444 mouse NK cell subsets, defined by combinations of 12 receptors, against tumor cell lines originating from different tissues and mouse strains. We found a wide range of reactivity among NK subsets, but the same hierarchy of responses was observed for the different tumor types, showing that the repertoire of NK cell receptors does not encode for different tumor specificities but for different intrinsic reactivities. The coexpression of CD27, NKG2A, and DNAM-1 identified subsets with relative cytotoxic specialization, whereas reciprocally, CD11b and KLRG1 defined the best IFN-γ producers. The expression of educating receptors Ly49C, Ly49I, and NKG2A was also strongly correlated with IFN-γ production, but this effect was suppressed by unengaged receptors Ly49A, Ly49F, and Ly49G2. Finally, IL-15 coordinated NK cell effector functions, but education and unbound inhibitory receptors retained some influence on their response. Collectively, these data refine our understanding of the mechanisms governing NK cell reactivity, which could help design new NK cell therapy protocols.
Collapse
Affiliation(s)
- Yamila Rocca
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR 5308, Lyon, France.,Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Kevin Pouxvielh
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR 5308, Lyon, France
| | - Marie Marotel
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR 5308, Lyon, France
| | - Sarah Benezech
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR 5308, Lyon, France
| | - Baptiste Jaeger
- Faculty of Medicine, Brain Research Institute, University of Zurich, Zurich, Switzerland; and.,Faculty of Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Omran Allatif
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR 5308, Lyon, France
| | - Nathalie Bendriss-Vermare
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| | - Antoine Marçais
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR 5308, Lyon, France;
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM U1111, Ecole Normale Supérieure de Lyon, Université Lyon 1, CNRS, UMR 5308, Lyon, France;
| |
Collapse
|
7
|
Soluble and Exosome-Bound α-Galactosylceramide Mediate Preferential Proliferation of Educated NK Cells with Increased Anti-Tumor Capacity. Cancers (Basel) 2021; 13:cancers13020298. [PMID: 33467442 PMCID: PMC7830699 DOI: 10.3390/cancers13020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells can kill target cells via the recognition of stress molecules and down-regulation of major histocompatibility complex class I (MHC-I). Some NK cells are educated to recognize and kill cells that have lost their MHC-I expression, e.g., tumor or virus-infected cells. A desired property of cancer immunotherapy is, therefore, to activate educated NK cells during anti-tumor responses in vivo. We here analyze NK cell responses to α-galactosylceramide (αGC), a potent activator of invariant NKT (iNKT) cells, or to exosomes loaded with αGC. In mouse strains which express different MHC-I alleles using an extended NK cell flow cytometry panel, we show that αGC induces a biased NK cell proliferation of educated NK cells. Importantly, iNKT cell-induced activation of NK cells selectively increased in vivo missing self-responses, leading to more effective rejection of tumor cells. Exosomes from antigen-presenting cells are attractive anti-cancer therapy tools as they may induce both innate and adaptive immune responses, thereby addressing the hurdle of tumor heterogeneity. Adding αGC to antigen-loaded dendritic-cell-derived exosomes also led to an increase in missing self-responses in addition to boosted T and B cell responses. This study manifests αGC as an attractive adjuvant in cancer immunotherapy, as it increases the functional capacity of educated NK cells and enhances the innate, missing self-based antitumor response.
Collapse
|
8
|
Chronic Lymphocytic Choriomeningitis Infection Causes Susceptibility to Mousepox and Impairs Natural Killer Cell Maturation and Function. J Virol 2020; 94:JVI.01831-19. [PMID: 31776282 DOI: 10.1128/jvi.01831-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
Chronic viral infections. like those of humans with cytomegalovirus, human immunodeficiency virus (even when under antiretroviral therapy), and hepatitis C virus or those of mice with lymphocytic choriomeningitis virus (LCMV) clone 13 (CL13), result in immune dysfunction that predisposes the host to severe infections with unrelated pathogens. It is known that C57BL/6 (B6) mice are resistant to mousepox, a lethal disease caused by the orthopoxvirus ectromelia virus (ECTV), and that this resistance requires natural killer (NK) cells and other immune cells. We show that most B6 mice chronically infected with CL13 succumb to mousepox but that most of those that recovered from acute infection with the LCMV Armstrong (Arm) strain survive. We also show that B6 mice chronically infected with CL13 and those that recovered from Arm infection have a reduced frequency and a reduced number of NK cells. However, at steady state, NK cells in mice that have recovered from Arm infection mature normally and, in response to ECTV, get activated, become more mature, proliferate, and increase their cytotoxicity in vivo Conversely, in mice chronically infected with CL13, NK cells are immature and residually activated, and following ECTV infection, they do not mature, proliferate, or increase their cytotoxicity. Given the well-established importance of NK cells in resistance to mousepox, these data suggest that the NK cell dysfunction caused by CL13 persistence may contribute to the susceptibility of CL13-infected mice to mousepox. Whether chronic infections similarly affect NK cells in humans should be explored.IMPORTANCE Infection of adult mice with the clone 13 (CL13) strain of lymphocytic choriomeningitis virus (LCMV) is extensively used as a model of chronic infection. In this paper, we show that mice chronically infected with CL13 succumb to challenge with ectromelia virus (ECTV; the agent of mousepox) and that natural killer (NK) cells in CL13-infected mice are reduced in numbers and have an immature and partially activated phenotype but do respond to ECTV. These data may provide additional clues why humans chronically infected with certain pathogens are less resistant to viral diseases.
Collapse
|
9
|
Narasimhan PB, Eggert T, Zhu YP, Marcovecchio P, Meyer MA, Wu R, Hedrick CC. Patrolling Monocytes Control NK Cell Expression of Activating and Stimulatory Receptors to Curtail Lung Metastases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:192-198. [PMID: 31767784 PMCID: PMC7890694 DOI: 10.4049/jimmunol.1900998] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
The role of nonclassical, patrolling monocytes in lung tumor metastasis and their functional relationships with other immune cells remain poorly defined. Contributing to these gaps in knowledge is a lack of cellular specificity in commonly used approaches for depleting nonclassical monocytes. To circumvent these limitations and study the role of patrolling monocytes in melanoma metastasis to lungs, we generated C57BL/6J mice in which the Nr4a1 superenhancer E2 subdomain is ablated (E2 -/- mice). E2 -/- mice lack nonclassical patrolling monocytes but preserve classical monocyte and macrophage numbers and functions. Interestingly, NK cell recruitment and activation were impaired, and metastatic burden was increased in E2 -/-mice. E2 -/- mice displayed unchanged "educated" (CD11b+CD27+) and "terminally differentiated" (CD11b+CD27-) NK cell frequencies. These perturbations were accompanied by reduced expression of stimulatory receptor Ly49D on educated NK cells and increased expression of inhibitory receptor NKG2A/CD94 on terminally differentiated NK cells. Thus, our work demonstrates that patrolling monocytes play a critical role in preventing lung tumor metastasis via NK cell recruitment and activation.
Collapse
Affiliation(s)
| | - Tobias Eggert
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Yanfang Peipei Zhu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Paola Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Melissa A Meyer
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| |
Collapse
|
10
|
Hedde PN, Staaf E, Singh SB, Johansson S, Gratton E. Pair Correlation Analysis Maps the Dynamic Two-Dimensional Organization of Natural Killer Cell Receptors at the Synapse. ACS NANO 2019; 13:14274-14282. [PMID: 31747251 PMCID: PMC8427743 DOI: 10.1021/acsnano.9b07486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 11/20/2019] [Indexed: 05/12/2023]
Abstract
In living systems, the contact between cells is the basis of recognition, differentiation, and orchestration of an immune response. Obstacles and barriers to biomolecular motion, especially for receptors at cellular synapses, critically control these functions by creating an anisotropic environment. Whereas conventional fluorescence fluctuation methods, such as fluorescence correlation spectroscopy or fluorescence recovery after photobleaching, can only measure the isotropic diffusion of molecules, the two-dimensional pair correlation function (2D-pCF) approach probes the anisotropic paths at different spatial locations within an image, allowing the creation of high-resolution maps that can visualize and quantify how molecules move in a living cell. In this work, we show how the 2D-pCF method maps the environment in cellular synapses as perceived by natural killer (NK) cell receptors. In cultured human HLA null 721.221 cells, 2D-pCF reveals the motion of inhibitory receptor HLA-Cw4-YFP coexpressed with KIR3DL1 to be highly directional around specific loci, while these restrictions were absent in the case of HLA-B51-YFP coexpressed with KIR2DL1. Further, in freshly isolated educated (H-2Dd) and uneducated (MHC-/-) primary murine NK cells, the 2D-pCF method shows significant differences in the paths taken by activating receptor NKp46 and inhibitory receptor Ly49A in educated compared to uneducated cells. Altogether, we demonstrate that the 2D-pCF method is very powerful in informing about the spatial organization of motion in cells. Our data support the hypothesis that flexibility in the spatial arrangement of membrane receptors, that is, the absence of barriers, is crucial for NK cell function.
Collapse
Affiliation(s)
- Per Niklas Hedde
- Laboratory
for Fluorescence Dynamics, University of
California Irvine, Irvine, California 92697, United States
- Department
of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96813, United States
| | - Elina Staaf
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Sunitha Bagawath Singh
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Sofia Johansson
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Enrico Gratton
- Laboratory
for Fluorescence Dynamics, University of
California Irvine, Irvine, California 92697, United States
| |
Collapse
|
11
|
Awad RM, De Vlaeminck Y, Maebe J, Goyvaerts C, Breckpot K. Turn Back the TIMe: Targeting Tumor Infiltrating Myeloid Cells to Revert Cancer Progression. Front Immunol 2018; 9:1977. [PMID: 30233579 PMCID: PMC6127274 DOI: 10.3389/fimmu.2018.01977] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor cells frequently produce soluble factors that favor myelopoiesis and recruitment of myeloid cells to the tumor microenvironment (TME). Consequently, the TME of many cancer types is characterized by high infiltration of monocytes, macrophages, dendritic cells and granulocytes. Experimental and clinical studies show that most myeloid cells are kept in an immature state in the TME. These studies further show that tumor-derived factors mold these myeloid cells into cells that support cancer initiation and progression, amongst others by enabling immune evasion, tumor cell survival, proliferation, migration and metastasis. The key role of myeloid cells in cancer is further evidenced by the fact that they negatively impact on virtually all types of cancer therapy. Therefore, tumor-associated myeloid cells have been designated as the culprits in cancer. We review myeloid cells in the TME with a focus on the mechanisms they exploit to support cancer cells. In addition, we provide an overview of approaches that are under investigation to deplete myeloid cells or redirect their function, as these hold promise to overcome resistance to current cancer therapies.
Collapse
|
12
|
Donini C, D'Ambrosio L, Grignani G, Aglietta M, Sangiolo D. Next generation immune-checkpoints for cancer therapy. J Thorac Dis 2018; 10:S1581-S1601. [PMID: 29951308 DOI: 10.21037/jtd.2018.02.79] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The discovery and clinical application of immune-checkpoint inhibitors has dramatically improved the treatments, outcomes and therapeutic concepts in multiple tumor settings. This breakthrough was mainly based on monoclonal antibodies blocking the inhibitory molecule CTLA-4 and or the PD-1/PD-L1 axis, with the aim of counteracting major tumor immune evasion mechanisms. Even acknowledging these important successes, not all the patients benefit from these treatments. Translational and clinical research efforts are ongoing to explore the potentialities of a new generation of immune-modulatory molecules to extend current clinical applications and contrast the unsolved issues of resistance and disease relapse that still affects a considerable rate of patients. New immune-checkpoints, with either stimulatory or inhibitory functions are emerging with key roles in regulating T cell response but also affecting other crucial effectors belonging to the innate immune response (e.g., natural killer). Their therapeutic exploitation, either alone or in strategical combinations, is providing important preclinical results, holding promises currently explored in initial clinical trials. The first results point toward favorable safety profiles with selective hints of activity in challenging settings. Important issues regarding the dose, schedule and rational combinations remain open and data from the clinical studies are needed. Here we provide an overview of the main emerging stimulatory or inhibitory immune-checkpoints exploitable in cancer treatment, briefly reporting their biological function, preclinical activity and preliminary clinical data.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Torino, Torino, Italy
| | - Lorenzo D'Ambrosio
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Sarcoma Unit, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| | - Giovanni Grignani
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Sarcoma Unit, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Sarcoma Unit, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy.,Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Torino, Italy.,Division of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Torino, Italy
| |
Collapse
|
13
|
Staaf E, Hedde PN, Bagawath Singh S, Piguet J, Gratton E, Johansson S. Educated natural killer cells show dynamic movement of the activating receptor NKp46 and confinement of the inhibitory receptor Ly49A. Sci Signal 2018; 11:11/517/eaai9200. [PMID: 29440510 DOI: 10.1126/scisignal.aai9200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Educated natural killer (NK) cells have inhibitory receptors specific for self major histocompatibility complex (MHC) class I molecules and kill cancer cells more efficiently than do NK cells that do not have such receptors (hyporesponsive NK cells). The mechanism behind this functional empowerment through education has so far not been fully described. In addition, distinctive phenotypic markers of educated NK cells at the single-cell level are lacking. We developed a refined version of the image mean square displacement (iMSD) method (called iMSD carpet analysis) and used it in combination with single-particle tracking to characterize the dynamics of the activating receptor NKp46 and the inhibitory receptor Ly49A on resting educated versus hyporesponsive murine NK cells. Most of the NKp46 and Ly49A molecules were restricted to microdomains; however, individual NKp46 molecules resided in these domains for shorter periods and diffused faster on the surface of educated, compared to hyporesponsive, NK cells. In contrast, the movement of Ly49A was more constrained in educated NK cells compared to hyporesponsive NK cells. Either disrupting the actin cytoskeleton or adding cholesterol to the cells prohibited activating signaling, suggesting that the dynamics of receptor movements within the cell membrane are critical for the proper activation of NK cells. The faster and more dynamic movement of NKp46 in educated NK cells may facilitate a swifter response to interactions with target cells.
Collapse
Affiliation(s)
- Elina Staaf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Per Niklas Hedde
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92697-2715, USA
| | - Sunitha Bagawath Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joachim Piguet
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology, Stockholm, Sweden
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA 92697-2715, USA
| | - Sofia Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
14
|
Nakasone ES, Hurvitz SA, McCann KE. Harnessing the immune system in the battle against breast cancer. Drugs Context 2018; 7:212520. [PMID: 29456568 PMCID: PMC5810622 DOI: 10.7573/dic.212520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most prevalent malignancy in women and the second most common cause of cancer-related death worldwide. Despite major innovations in early detection and advanced therapeutics, up to 30% of women with node-negative breast cancer and 70% of women with node-positive breast cancer will develop recurrence. The recognition that breast tumors are infiltrated by a complex array of immune cells that influence their development, progression, and metastasis, as well as their responsiveness to systemic therapies has sparked major interest in the development of immunotherapies. In fact, not only the native host immune system can be altered to promote potent antitumor response, but also its components can be manipulated to generate effective therapeutic strategies. We present here a review of the major approaches to immunotherapy in breast cancers, both successes and failures, as well as new therapies on the horizon.
Collapse
Affiliation(s)
- Elizabeth S Nakasone
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sara A Hurvitz
- Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kelly E McCann
- Division of Hematology/Oncology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Guillerey C, Smyth MJ. Cancer Immunosurveillance by Natural Killer Cells and Other Innate Lymphoid Cells. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Tu MM, Rahim MMA, Sayed C, Mahmoud AB, Makrigiannis AP. Immunosurveillance and Immunoediting of Breast Cancer via Class I MHC Receptors. Cancer Immunol Res 2017; 5:1016-1028. [DOI: 10.1158/2326-6066.cir-17-0056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/17/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022]
|
17
|
Immune selection during tumor checkpoint inhibition therapy paves way for NK-cell "missing self" recognition. Immunogenetics 2017; 69:547-556. [PMID: 28699110 PMCID: PMC5537320 DOI: 10.1007/s00251-017-1011-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 12/21/2022]
Abstract
The ability of NK cells to specifically recognize cells lacking expression of self-MHC class I molecules was discovered over 30 years ago. It provided the foundation for the "missing self" hypothesis. Research in the two past decades has contributed to a detailed understanding of the molecular mechanisms that determine the specificity and strength of NK cell-mediated "missing self" responses to tumor cells. However, in light of the recent remarkable breakthroughs in clinical cancer immunotherapy, the cytolytic potential of NK cells still remains largely untapped in clinical settings. There is abundant evidence demonstrating partial or complete loss of HLA class I expression in a wide spectrum of human tumor types. Such loss may result from immune selection of escape variants by tumor-specific CD8 T cells and has more recently also been linked to acquired resistance to checkpoint inhibition therapy. In the present review, we discuss the early predictions of the "missing self" hypothesis, its molecular basis and outline the potential for NK cell-based adoptive immunotherapy to convert checkpoint inhibitor therapy-resistant patients into clinical responders.
Collapse
|
18
|
Paul S, Kulkarni N, Shilpi, Lal G. Intratumoral natural killer cells show reduced effector and cytolytic properties and control the differentiation of effector Th1 cells. Oncoimmunology 2016; 5:e1235106. [PMID: 28151533 DOI: 10.1080/2162402x.2016.1235106] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/03/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are known to have effector and cytolytic properties to kill virus infected or tumor cells spontaneously. Due to these properties, NK cells have been used as an adoptive cellular therapy to control tumor growth in various clinical trials but have shown limited clinical benefits. This indicates that our knowledge about phenotypic and functional differences in NK cells within the tumor microenvironment and secondary lymphoid tissues is incomplete. In this work, we report that B16F10 cell-induced melanoma recruits the CD11b+CD27+ subset of NK cells at a very early stage during tumor progression. These intratumoral NK cells showed increased expression of CD69, reduced inhibitory receptor KLRG1, and decreased proliferative ability. As compared to splenic NK cells, intratumoral NK cells showed decreased expression of activating receptors NKG2D, Ly49D and Ly49H; increased inhibitory receptors, NKG2A and Ly49A; decreased cytokines IFNγ and GM-CSF; decreased cytokine receptors IL-21R, IL-6Rα, and CD122 expression. Depletion of NK cells led to decrease peripheral as well as intratumoral effector CD4+T-bet+ cells (Th1), and increased tumor growth. Furthermore, purified NK cells showed increased differentiation of Th1 cells in an IFNγ-dependent manner. Anti-NKG2D in the culture promoted differentiation of effector Th1 cells. Collectively, these observations suggest that intratumoral NK cells possess several inhibitory functions that can be partly reversed by signaling through the NKG2D receptor or by cytokine stimulation, which then leads to increased differentiation of effector Th1 cells.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science , Pune, India
| | | | - Shilpi
- National Centre for Cell Science , Pune, India
| | | |
Collapse
|
19
|
Yamada HY, Kumar G, Zhang Y, Rubin E, Lightfoot S, Dai W, Rao CV. Systemic chromosome instability in Shugoshin-1 mice resulted in compromised glutathione pathway, activation of Wnt signaling and defects in immune system in the lung. Oncogenesis 2016; 5:e256. [PMID: 27526110 PMCID: PMC5007830 DOI: 10.1038/oncsis.2016.56] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/15/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022] Open
Abstract
Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1(-/+)) mice, a transgenic mouse model of CIN, showed mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1(-/-) Sgo1(-/+) double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1(-/+) or RAG1(-/-) mice, suggesting immune system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used systems biology approach, comparative RNAseq, to RAG1(-/-) and RAG1(-/-) Sgo1(-/+). The comparative RNAseq data and follow-up analyses in the lungs of naive Sgo1(-/+) mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo1(-/+) mice. Our model presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung.
Collapse
Affiliation(s)
- H Y Yamada
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - G Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Y Zhang
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - E Rubin
- Department of Pathology, OU Medical Center, Oklahoma City, OK, USA
| | - S Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - W Dai
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, NY, USA
| | - C V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| |
Collapse
|
20
|
Filtjens J, Keirsse J, Van Ammel E, Taveirne S, Van Acker A, Kerre T, Taghon T, Vandekerckhove B, Plum J, Van Ginderachter JA, Leclercq G. Expression of the inhibitory Ly49E receptor is not critically involved in the immune response against cutaneous, pulmonary or liver tumours. Sci Rep 2016; 6:30564. [PMID: 27469529 PMCID: PMC4965774 DOI: 10.1038/srep30564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/06/2016] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) lymphocytes are part of the innate immune system and are important in immune protection against tumourigenesis. NK cells display a broad repertoire of activating and inhibitory cell surface receptors that regulate NK cell activity. The Ly49 family of NK receptors is composed of several members that recognize major histocompatibility complex class I (MHC-I) or MHC-I-related molecules. Ly49E is a unique inhibitory member, being triggered by the non-MHC-I-related protein urokinase plasminogen activator (uPA) in contrast to the known MHC-I-triggering of the other inhibitory Ly49 receptors. Ly49E also has an uncommon expression pattern on NK cells, including high expression on liver DX5− NK cells. Furthermore, Ly49E is the only Ly49 member expressed by epidermal γδ T cells. As γδ T cells and/or NK cells have been shown to be involved in the regulation of cutaneous, pulmonary and liver malignancies, and as uPA is involved in tumourigenesis, we investigated the role of the inhibitory Ly49E receptor in the anti-tumour immune response. We demonstrate that, although Ly49E is highly expressed on epidermal γδ T cells and liver NK cells, this receptor does not play a major role in the control of skin tumour formation or in lung and liver tumour development.
Collapse
Affiliation(s)
- Jessica Filtjens
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Ammel
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Sylvie Taveirne
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Aline Van Acker
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Tessa Kerre
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | | | - Jean Plum
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Rahim MMA, Makrigiannis AP. Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunol Rev 2016; 267:137-47. [PMID: 26284475 DOI: 10.1111/imr.12318] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells express cell surface receptors that recognize class I major histocompatibility complex (MHC-I) molecules to distinguish between healthy and unhealthy cells. The multigenic and polymorphic nature of the MHC-I genes has influenced the convergent evolution of similarly polymorphic and diversified NK cell receptor families: the C-type lectin-like Ly49 receptors in mice, and the killer cell immunoglobulin-like receptors (KIRs) in humans. Although structurally distinct, both receptor families have similar functions in terms of MHC-I recognition and downstream signal transduction, and they regulate multiple aspects of NK cell biology during development and after maturation as fully differentiated and functionally competent cells. The Ly49 gene locus has undergone rapid, lineage-specific expansions and contractions resulting in multiple distinct haplotypes of variable gene number, allelic diversity, and MHC-I ligand specificity. This in turn has influenced the type and degree of Ly49 receptor expression on NK cells, and their contribution to immunity in different mouse strains. In this review, we have attempted to describe the evolutionary processes that have shaped strain-specific Ly49 receptor repertoires, and their impact on NK cell functions during health and disease.
Collapse
Affiliation(s)
- Mir Munir A Rahim
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Tu MM, Mahmoud AB, Makrigiannis AP. Licensed and Unlicensed NK Cells: Differential Roles in Cancer and Viral Control. Front Immunol 2016; 7:166. [PMID: 27199990 PMCID: PMC4852173 DOI: 10.3389/fimmu.2016.00166] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/18/2016] [Indexed: 11/25/2022] Open
Abstract
Natural killer (NK) cells are known for their well characterized ability to control viral infections and eliminate tumor cells. Through their repertoire of activating and inhibitory receptors, NK cells are able to survey different potential target cells for various surface markers, such as MHC-I – which signals to the NK cell that the target is healthy – as well as stress ligands or viral proteins, which alert the NK cell to the aberrant state of the target and initiate a response. According to the “licensing” hypothesis, interactions between self-specific MHC-I receptors – Ly49 in mice and KIR in humans – and self-MHC-I molecules during NK cell development is crucial for NK cell functionality. However, there also exists a large proportion of NK cells in mice and humans, which lack self-specific MHC-I receptors and are consequentially “unlicensed.” While the licensed NK cell subset plays a major role in the control of MHC-I-deficient tumors, this review will go on to highlight the important role of the unlicensed NK cell subset in the control of MHC-I-expressing tumors, as well as in viral control. Unlike the licensed NK cells, unlicensed NK cells seem to benefit from the lack of self-specific inhibitory receptors, which could otherwise be exploited by some aberrant cells for immunoevasion by upregulating the expression of ligands or mimic ligands for these receptors.
Collapse
Affiliation(s)
- Megan M Tu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada; College of Applied Medical Sciences, Taibah University, Madinah Munawwarah, Saudi Arabia
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
23
|
Song X, Hong SH, Kwon WT, Bailey LM, Basse P, Bartlett DL, Kwon YT, Lee YJ. Secretory TRAIL-Armed Natural Killer Cell-Based Therapy: In Vitro and In Vivo Colorectal Peritoneal Carcinomatosis Xenograft. Mol Cancer Ther 2016; 15:1591-601. [PMID: 27196776 DOI: 10.1158/1535-7163.mct-15-0937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/03/2016] [Indexed: 12/31/2022]
Abstract
Since its discovery in 1995, TNF-related apoptosis-inducing ligand (TRAIL) has sparked growing interest among oncologists due to its remarkable ability to induce apoptosis in malignant human cells, but not in most normal cells. However, one major drawback is its fast clearance rate in vivo Thus, the development of an alternative means of delivery may increase the effectiveness of TRAIL-based therapy. In this study, we developed a secretory TRAIL-armed natural killer (NK) cell-based therapy and assessed its cytotoxic effects on colorectal cancer cells and its tumoricidal efficacy on colorectal peritoneal carcinomatosis xenograft. We generated genetically modified NK cells by transduction with a lentiviral vector consisting of a secretion signal domain, a trimerization domain, and an extracellular domain of the TRAIL gene. These NK cells secreted a glycosylated form of TRAIL fusion protein that induced apoptotic death. Intraperitoneally, but not intravenously, injected NK cells effectively accumulated at tumor sites, infiltrated tumor tissue, induced apoptosis, and delayed tumor growth. These results shed light on the therapeutic potential of genetically engineered NK cells to treat peritoneal carcinomatosis. Mol Cancer Ther; 15(7); 1591-601. ©2016 AACR.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Se-Hoon Hong
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William T Kwon
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa M Bailey
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Per Basse
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David L Bartlett
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yong Tae Kwon
- Protein Metabolism Medical Research Center and Department of Biomedical Science, College of Medicine, Seoul National University, Seoul, Korea
| | - Yong J Lee
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
24
|
Mahmoud AB, Tu MM, Wight A, Zein HS, Rahim MMA, Lee SH, Sekhon HS, Brown EG, Makrigiannis AP. Influenza Virus Targets Class I MHC-Educated NK Cells for Immunoevasion. PLoS Pathog 2016; 12:e1005446. [PMID: 26928844 PMCID: PMC4771720 DOI: 10.1371/journal.ppat.1005446] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 01/19/2016] [Indexed: 12/13/2022] Open
Abstract
The immune response to influenza virus infection comprises both innate and adaptive defenses. NK cells play an early role in the destruction of tumors and virally-infected cells. NK cells express a variety of inhibitory receptors, including those of the Ly49 family, which are functional homologs of human killer-cell immunoglobulin-like receptors (KIR). Like human KIR, Ly49 receptors inhibit NK cell-mediated lysis by binding to major histocompatibility complex class I (MHC-I) molecules that are expressed on normal cells. During NK cell maturation, the interaction of NK cell inhibitory Ly49 receptors with their MHC-I ligands results in two types of NK cells: licensed (“functional”), or unlicensed (“hypofunctional”). Despite being completely dysfunctional with regard to rejecting MHC-I-deficient cells, unlicensed NK cells represent up to half of the mature NK cell pool in rodents and humans, suggesting an alternative role for these cells in host defense. Here, we demonstrate that after influenza infection, MHC-I expression on lung epithelial cells is upregulated, and mice bearing unlicensed NK cells (Ly49-deficient NKCKD and MHC-I-deficient B2m-/- mice) survive the infection better than WT mice. Importantly, transgenic expression of an inhibitory self-MHC-I-specific Ly49 receptor in NKCKD mice restores WT influenza susceptibility, confirming a direct role for Ly49. Conversely, F(ab’)2-mediated blockade of self-MHC-I-specific Ly49 inhibitory receptors protects WT mice from influenza virus infection. Mechanistically, perforin-deficient NKCKD mice succumb to influenza infection rapidly, indicating that direct cytotoxicity is necessary for unlicensed NK cell-mediated protection. Our findings demonstrate that Ly49:MHC-I interactions play a critical role in influenza virus pathogenesis. We suggest a similar role may be conserved in human KIR, and their blockade may be protective in humans. Influenza virus has developed a number of immune-evasion mechanisms to prolong its survival within the host. Development of functional NK cells is dependent on multiple factors such as the interaction between MHC-I and Ly49 receptors. NK cells that develop in the absence of these interactions are referred to as ‘unlicensed’ and represent up to half of the total number of NK cells. We show that significant MHC-I upregulation on lung epithelial cells following influenza virus infection most likely allows influenza virus to evade detection by licensed NK cells. Importantly, we demonstrate that unlicensed NK cells play a major role in protecting mice from influenza infection. Both Ly49- and MHC-I-deficient mice, which possess unlicensed NK cells, exhibit better survival than WT mice when infected with a lethal dose of influenza virus. Survival of Ly49-deficient mice is associated with reduced viral titers and lung pathology, compared to the infected WT mice. Moreover, disrupting the interaction between MHC-I and inhibitory Ly49 receptors protects WT mice from a lethal influenza virus infection. These results suggest that the so-called unlicensed NK cells, previously characterized as being hyporesponsive, actually possess potent antiviral activity, and are crucial for protection from influenza virus and possibly other viral infections.
Collapse
MESH Headings
- Animals
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Coculture Techniques
- Crosses, Genetic
- Immune Evasion
- Immunity, Innate
- Influenza A virus/immunology
- Influenza A virus/physiology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/pathology
- Killer Cells, Natural/virology
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Lung/virology
- Mice, Knockout
- Mice, Transgenic
- NK Cell Lectin-Like Receptor Subfamily A/agonists
- NK Cell Lectin-Like Receptor Subfamily A/antagonists & inhibitors
- NK Cell Lectin-Like Receptor Subfamily A/genetics
- NK Cell Lectin-Like Receptor Subfamily A/metabolism
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/pathology
- Orthomyxoviridae Infections/virology
- Pore Forming Cytotoxic Proteins/genetics
- Pore Forming Cytotoxic Proteins/metabolism
- Receptors, KIR/agonists
- Receptors, KIR/antagonists & inhibitors
- Receptors, KIR/genetics
- Receptors, KIR/metabolism
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Respiratory Mucosa/pathology
- Respiratory Mucosa/virology
- Specific Pathogen-Free Organisms
- Survival Analysis
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/metabolism
Collapse
Affiliation(s)
- Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Madinah Munawwarah, Kingdom of Saudi Arabia
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Megan M. Tu
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew Wight
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Haggag S. Zein
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Cairo University Research Park, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Mir Munir A. Rahim
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Harman S. Sekhon
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - Earl G. Brown
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew P. Makrigiannis
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
25
|
Immunosurveillance and immunotherapy of tumors by innate immune cells. Curr Opin Immunol 2015; 38:52-8. [PMID: 26686774 DOI: 10.1016/j.coi.2015.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 02/02/2023]
Abstract
Increasing evidence supports a role for innate immune effector cells in tumor surveillance. Natural killer (NK) cells and myeloid cells represent the two main subsets of innate immune cells possessing efficient but quite different tumor suppressive abilities. Here, we describe the germline-encoded NK cell receptors that play a role in suppressing tumor development and describe briefly the cellular pathways leading to the upregulation of their ligands in tumor cells. We also describe mechanisms underlying the elimination of tumor cells by macrophages and a recently characterized mechanism dedicated to sensing cytosolic DNA that is implicated in antitumor immune responses.
Collapse
|
26
|
Krasnova Y, Putz EM, Smyth MJ, Souza-Fonseca-Guimaraes F. Bench to bedside: NK cells and control of metastasis. Clin Immunol 2015; 177:50-59. [PMID: 26476139 DOI: 10.1016/j.clim.2015.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/08/2015] [Accepted: 10/14/2015] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells play a critical role in host immune responses against tumor growth and metastasis. The numerous mechanisms used by NK cells to regulate and control cancer metastasis include interactions with tumor cells via specific receptors and ligands as well as direct cytotoxicity and cytokine-induced effector mechanisms. NK cells also play a role in tumor immunosurveillance and inhibition of metastases formation by recognition and killing of tumor cells. In this review, we provide an overview of the molecular mechanisms of NK cell responses against tumor metastases and discuss multiple strategies by which tumors evade NK cell-mediated surveillance. With an increasing understanding of the molecular mechanisms driving NK cell activity, there is a growing potential for the development of new cancer immunotherapies. Here we provide a historical background on NK cell-based therapies and discuss the implications of recent and ongoing clinical trials using novel NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Yelena Krasnova
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia
| | - Eva Maria Putz
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia
| | - Fernando Souza-Fonseca-Guimaraes
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia.
| |
Collapse
|
27
|
Teng MWL, Galon J, Fridman WH, Smyth MJ. From mice to humans: developments in cancer immunoediting. J Clin Invest 2015; 125:3338-46. [PMID: 26241053 DOI: 10.1172/jci80004] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer immunoediting explains the dual role by which the immune system can both suppress and/or promote tumor growth. Although cancer immunoediting was first demonstrated using mouse models of cancer, strong evidence that it occurs in human cancers is now accumulating. In particular, the importance of CD8+ T cells in cancer immunoediting has been shown, and more broadly in those tumors with an adaptive immune resistance phenotype. This Review describes the characteristics of the adaptive immune resistance tumor microenvironment and discusses data obtained in mouse and human settings. The role of other immune cells and factors influencing the effector function of tumor-specific CD8+ T cells is covered. We also discuss the temporal occurrence of cancer immunoediting in metastases and whether it differs from immunoediting in the primary tumor of origin.
Collapse
|
28
|
Abstract
Natural killer (NK) cells are innate lymphoid cells (ILC) known for their ability to recognize and rapidly eliminate infected or transformed cells. Consequently, NK cells are fundamental for host protection against virus infections and malignancies. Even though the critical role of NK cells in cancer immunosurveillance was suspected years ago, the underlying mechanisms took time to be unraveled. Today, it is clear that anti-tumor functions of NK cells are tightly regulated and expand far beyond the simple killing of malignant cells. In spite of tremendous steps made in understanding the NK cell biology, further work is warranted to fully exploit the anticancer potential of these cells. Indeed, tumor-mediated immune suppression hampers NK cell activity, thus complicating their stimulation for therapeutic purposes. Herein, we review the current knowledge of NK cell functions in anti-tumor immunity . We discuss NK cell activity in the cancer immunoediting process with particular emphasis on the elimination and escape phases.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, Australia.,School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, 4006, Australia. .,School of Medicine, University of Queensland, Herston, QLD, Australia.
| |
Collapse
|