1
|
Pei S, Zhang D, Li Z, Liu J, Li Z, Chen J, Xie Z. The Role of the Fox Gene in Breast Cancer Progression. Int J Mol Sci 2025; 26:1415. [PMID: 40003882 PMCID: PMC11855465 DOI: 10.3390/ijms26041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Forkhead box (FOX) genes are a family of transcription factors that participate in many biological activities, from early embryogenesis to the formation of organs, and from regulation of glucose metabolism to regulation of longevity. Given the extensive influence in the multicellular process, FOX family proteins are responsible for the progression of many types of cancers, especially lung cancer, breast cancer, prostate cancer, and other cancers. Breast cancer is the most common cancer among women, and 2.3 million women were diagnosed in 2020. So, various drugs targeting the FOX signaling pathway have been developed to inhibit breast cancer progression. While the role of the FOX family gene in cancer development has not received enough attention, discovering more potential drugs targeting the FOX signaling pathway is urgently demanded. Here, we review the main members in the FOX gene family and summarize their signaling pathway, including the regulation of the FOX genes and their effects on breast cancer progression. We hope this review will emphasize the understanding of the role of the FOX gene in breast cancer and inspire the discovery of effective anti-breast cancer medicines targeting the FOX gene in the future.
Collapse
Affiliation(s)
- Shaoxuan Pei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Dechun Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Ziyi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
| |
Collapse
|
2
|
Koch S. The transcription factor FOXQ1 in cancer. Cancer Metastasis Rev 2025; 44:22. [PMID: 39777582 PMCID: PMC11711781 DOI: 10.1007/s10555-025-10240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
FOXQ1 is a member of the large forkhead box (FOX) family of transcription factors that is involved in all aspects of mammalian development, physiology, and pathobiology. FOXQ1 has emerged as a major regulator of epithelial-to-mesenchymal transition and tumour metastasis in cancers, especially carcinomas of the digestive tract. Accordingly, FOXQ1 induction is recognised as an independent prognostic factor for worse overall survival in several types of cancer, including gastric and colorectal cancer. In this review article, I summarise new evidence on the role of FOXQ1 in cancer, with a focus on molecular mechanisms that control FOXQ1 levels and the regulation of FOXQ1 target genes. Unravelling the functions of FOXQ1 has the potential to facilitate the development of targeted treatments for metastatic cancers.
Collapse
Affiliation(s)
- Stefan Koch
- Wallenberg Centre for Molecular Medicine (WCMM), Linköping University, Linköping, Sweden.
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, BKV/MMV - Plan 13, Lab 1, 581 85, Linköping, Sweden.
| |
Collapse
|
3
|
Kim SH, Singh SV. The Role of MicroRNA-124-3p in Breast Cancer Stem Cell Inhibition by Benzyl Isothiocyanate. Pharm Res 2024; 41:1921-1932. [PMID: 39375243 PMCID: PMC11792746 DOI: 10.1007/s11095-024-03775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE We have shown previously that benzyl isothiocyanate (BITC) derived from cruciferous vegetables inhibits self-renewal of breast cancer stem-like cells (bCSC). The current study provides insights into the mechanism of bCSC inhibition by BITC. METHODS Quantitative real time-polymerase chain reaction and western blot analysis were performed to detect microRNAs (miRNAs) and Forkhead box Q1 (FoxQ1) protein expression, respectively. The bCSC were characterized by aldehyde dehydrogenase 1 activity and flow cytometric analysis of CD49f high/CD133high fraction. RESULTS BITC treatment resulted in induction of miR-124-3p expression in MDA-MB-231 and MCF-7 cells. miR-124-3p did not affect BITC-mediated inhibition of cell migration or cell proliferation but it significantly regulated bCSC in response to BITC. We also found that miR-124-3p directly targets the 3'untranslated regions (UTR) of FoxQ1 and negatively regulates its expression. The BITC-mediated inhibition of bCSC was partially attenuated by miR-124-3p inhibitor. CONCLUSIONS These findings indicate that miR-124-3p plays an important role in BITC-mediated inhibition of bCSC.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 2.32A Hillman Cancer Center Research Pavilion, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Shivendra V Singh
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 2.32A Hillman Cancer Center Research Pavilion, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
4
|
Liu Y, Shao K, Yang W, Shen Q, Lu M, Shao Z, Chu S, Wang Y, Wang X, Chen X, Bai J, Wu X. Phosphorylated FOXQ1, a novel substrate of JNK1, inhibits sorafenib-induced ferroptosis by activating ETHE1 in hepatocellular carcinoma. Cell Death Dis 2024; 15:395. [PMID: 38839744 PMCID: PMC11153576 DOI: 10.1038/s41419-024-06789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous and malignant cancer with poor overall survival. The application of sorafenib is a major breakthrough in the treatment of HCC. In our study, FOXQ1 was significantly overexpressed in sorafenib-resistant HCC cells and suppressed sorafenib-induced ferroptosis. We found that phosphorylation of FOXQ1 at serine 248 is critical for the suppression of sorafenib-induced ferroptosis. Furthermore, as the upstream phosphorylation kinase of FOXQ1, JNK1, which is activated by sorafenib, can directly phosphorylate the serine 248 site of FOXQ1. Then, the phosphorylated FOXQ1 got a high affinity for the promoter of ETHE1 and activates its transcription. Further flow cytometry results showed that ETHE1 reduced intracellular lipid peroxidation and iron levels. Collectively, our study implicated the JNK1-FOXQ1-ETHE1 axis in HCC ferroptosis induced by sorafenib, providing mechanistic insight into sensitivity to sorafenib therapy of HCC.
Collapse
Affiliation(s)
- Yiwei Liu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Ke Shao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
- Department of General Surgery, The People's Hospital of Rugao, Affiliated Rugao Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wendong Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qi Shen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Mengru Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yuming Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China.
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Liu Q, Cao Y, Wei X, Dong H, Cui M, Guan S, Liu B, Wang X, Xing P. Nuclear isoform of RAPH1 interacts with FOXQ1 to promote aggressiveness and radioresistance in breast cancer. Cell Death Dis 2023; 14:803. [PMID: 38062011 PMCID: PMC10703867 DOI: 10.1038/s41419-023-06331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
Radioresistance limits the efficacy of radiotherapy against breast cancer, especially the most lethal subtype of breast cancer, triple-negative breast cancer (TNBC). Epithelial-to-mesenchymal transition (EMT) is closely related to tumor radioresistance. In this work, we attempted to identify the key EMT-related transcription factor(s) that can induce radioresistance in breast cancer cells. A set of 44 EMT transcription factors were analyzed in parental and radioresistant TNBC cell lines. The function of FOXQ1, a differentially expressed transcription factor, was determined in TNBC radioresistance. FOXQ1-interacting proteins were identified by co-immunoprecipitation and mass spectrometry. Compared with parental cells, FOXQ1 was significantly upregulated in radioresistant TNBC cells. Silencing of FOXQ1 increased the radiosensitiviy of radioresistant TNBC cells both in vitro and in vivo. FOXQ1 associated with a nuclear isoform of RAPH1 (named RAPH1-i3) in radioresistant TNBC cells. Overexpression of RAPH1-i3 enhanced TNBC cell proliferation and migration, and most interestingly, induced radioresistance in parental TNBC cells when co-expressed with FOXQ1. Similar findings were observed in estrogen receptor-positive breast cancer cell lines that had co-expression of RAPH1-i3 and FOXQ1. Mechanistically, co-expression of RAPH1-i3 and FOXQ1 activated STAT3 signaling and increased the expression of CCND1, MCL1, Bcl-XL, and MMP2. Depletion of RAPH1-i3 impaired the radioresistance of radioresistant TNBC cells. Additionally, RAPH1-i3 upregulation was associated with advanced tumor stage and reduced disease-free survival in TNBC patients. These results collectively show that RAPH1-i3 interacts with FOXQ1 to promote breast cancer progression and radioresistance. RAPH1-i3 and FOXQ1 represent therapeutic targets for the treatment of breast cancer including TNBC.
Collapse
Affiliation(s)
- Qun Liu
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Yu Cao
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Xiaolin Wei
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Huiting Dong
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Mengyao Cui
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Shu Guan
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China
| | - Bo Liu
- Department of Cardiac Surgery, First Hospital of China Medical University, Shenyang, China.
| | - Xu Wang
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China.
| | - Peng Xing
- Department of Surgical Oncology, Breast Surgery, General Surgery, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Kim SH, Hahm ER, Singh SV. Forkhead Box Q1 is a novel regulator of autophagy in breast cancer cells. Mol Carcinog 2023; 62:1449-1459. [PMID: 37265428 PMCID: PMC10524720 DOI: 10.1002/mc.23588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
Forkhead Box Q1 (FoxQ1) transcription factor is overexpressed in luminal-type and basal-type human breast cancers when compared to normal mammary tissue. This transcription factor is best known for its role in promotion of breast cancer stem-like cells and epithelial to mesenchymal transition. The present study documents a novel function of FoxQ1 in breast cancer cells. Overexpression of FoxQ1 in basal-like SUM159 cells and luminal-type MCF-7 cells resulted in increased conversion of microtubule-associated protein light chain 3 beta-I (LC3B-I) to LC3B-II, which is a hallmark of autophagy. Autophagy induction by FoxQ1 overexpression was confirmed by visualization of LC3B puncta as well as by transmission electron microscopy. Expression profiling for genes implicated in autophagy regulation revealed upregulation of many genes, including ATG4B, ATG16L1, CTSS, CXCR4 and so forth but downregulation of BCL2L1, DRAM1, TNF, ULK2 and so forth by FoxQ1 overexpression in SUM159 cells. Western blot analysis confirmed upregulation of ATG4B and CXCR4 proteins by FoxQ1 overexpression in both SUM159 and MCF-7 cells. Chromatin immunoprecipitation assay revealed recruitment of FoxQ1 at the promoter of ATG4B. Pharmacological inhibition of ATG4B using S130 significantly increased apoptosis induction by DOX in empty vector transfected as well as FoxQ1 overexpressing SUM159 and MCF-7 cells but this effect was statistically significantly lowered by FoxQ1 overexpression indicating the protective role of FoxQ1 on apoptosis. Treatment of SUM159 cells with S130 and DOX enhanced LC3B-II level in both empty vector transfected cells and FoxQ1 overexpressing SUM159 cells but not in FoxQ1 overexpressing MCF-7 cells. In conclusion, FoxQ1 is a novel regulator of autophagy.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
7
|
Bi X, Zheng D, Cai J, Xu D, Chen L, Xu Z, Cao M, Li P, Shen Y, Wang H, Zheng W, Wu D, Zheng S, Li K. Pan-cancer analyses reveal multi-omic signatures and clinical implementations of the forkhead-box gene family. Cancer Med 2023; 12:17428-17444. [PMID: 37401400 PMCID: PMC10501247 DOI: 10.1002/cam4.6312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/05/2023] [Accepted: 06/23/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Forkhead box (FOX) proteins belong to one of the largest transcription factor families and play crucial roles in the initiation and progression of cancer. Prior research has linked several FOX genes, such as FOXA1 and FOXM1, to the crucial process of carcinogenesis. However, the overall picture of FOX gene family across human cancers is far from clear. METHODS To investigate the broad molecular signatures of the FOX gene family, we conducted study on multi-omics data (including genomics, epigenomics and transcriptomics) from over 11,000 patients with 33 different types of human cancers. RESULTS Pan-cancer analysis reveals that FOX gene mutations were found in 17.4% of tumor patients with a substantial cancer type-dependent pattern. Additionally, high expression heterogeneity of FOX genes across cancer types was discovered, which can be partially attributed to the genomic or epigenomic alteration. Co-expression network analysis reveals that FOX genes may exert functions by regulating the expression of both their own and target genes. For a clinical standpoint, we provided 103 FOX gene-drug target-drug predictions and found FOX gene expression have potential survival predictive value. All of the results have been included in the FOX2Cancer database, which is freely accessible at http://hainmu-biobigdata.com/FOX2Cancer. CONCLUSION Our findings may provide a better understanding of roles FOX genes played in the development of tumors, and help to offer new avenues for uncovering tumorigenesis and unprecedented therapeutic targets.
Collapse
Affiliation(s)
- Xiaoman Bi
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Dehua Zheng
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Jiale Cai
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Dahua Xu
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Liyang Chen
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Zhizhou Xu
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Meng Cao
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Peihu Li
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Yutong Shen
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Hong Wang
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| | - Wuping Zheng
- Department of Breast Thoracic TumorThe Second Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Deng Wu
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong KongHong KongChina
| | - Shaojiang Zheng
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
- Key Laboratory of Emergency and Trauma of Ministry of Education, Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Hainan Women and Children's Medical CenterHainan Medical UniversityHaikouChina
| | - Kongning Li
- Cancer Institute of The First Affiliated HospitalCollege of Biomedical Information and EngineeringKey Laboratory of Tropical Translational Medicine of Ministry of EducationHainan Medical UniversityHaikouChina
| |
Collapse
|
8
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
9
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
10
|
Pandey P, Khan F, Upadhyay TK, Seungjoon M, Park MN, Kim B. New insights about the PDGF/PDGFR signaling pathway as a promising target to develop cancer therapeutic strategies. Biomed Pharmacother 2023; 161:114491. [PMID: 37002577 DOI: 10.1016/j.biopha.2023.114491] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Numerous cancers express platelet-derived growth factors (PDGFs) and PDGF receptors (PDGFRs). By directly stimulating tumour cells in an autocrine manner or by stimulating tumour stromal cells in a paracrine manner, the platelet-derived growth factor (PDGF)/platelet-derived growth factor receptor (PDGFR) pathway is crucial in the growth and spread of several cancers. To combat hypoxia in the tumour microenvironment, it encourages angiogenesis. A growing body of experimental data shows that PDGFs target malignant cells, vascular cells, and stromal cells to modulate tumour growth, metastasis, and the tumour microenvironment. To combat medication resistance and enhance patient outcomes in cancers, targeting the PDGF/PDGFR pathway is a viable therapeutic approach. There have been reports of anomalies in the PDGF pathway, including the gain of function point mutations, activating chromosomal translocations, or overexpression or amplification of PDGF receptors (PDGFRs). As a result, it has been shown that targeting the PDGF/PDGFR signaling pathway is an effective method for treating cancer. As a result, this study will concentrate on the regulation of the PDGF/PDGFR signaling system, in particular the current methods and inhibitors used in cancer treatment, as well as the associated therapeutic advantages and side effects.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida, UP, India.
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Moon Seungjoon
- Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon 21390, Republic of Korea; Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
11
|
Pandey P, Suyal G, Pasbola K, Sharma R. NGS-based profiling identifies miRNAs and pathways dysregulated in cisplatin-resistant esophageal cancer cells. Funct Integr Genomics 2023; 23:111. [PMID: 36995552 DOI: 10.1007/s10142-023-01041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Esophageal cancer (EC) incidence remains to be on a global rise supported by an unchanged recurrence and 5-year survival rate owing to the development of chemoresistance. Resistance to cisplatin, one of the majorly used chemotherapeutic drugs in EC, is a major nuisance. This study sheds light on miRNA dysregulation and its inverse relation with dysregulated mRNAs to guide pathways into the manifestation of cisplatin resistance in EC. A cisplatin-resistant version of an EC cell line was established and comparative profiling by NGS with the parental cell line was employed to identify dysregulation in miRNA and mRNA levels. Protein-protein interaction network analysis was done using Cytoscape, followed by Funrich pathway analysis. Furthermore, selective significant miRNAs were validated using qRT-PCR. miRNA-mRNA integrated analysis was carried out using the Ingenuity Pathway Analysis (IPA) tool. Expression of various established resistance markers supported the successful establishment of cisplatin-resistant cell line. Whole-cell small RNA sequencing and transcriptome sequencing identified 261 miRNAs and 1892 genes to be significantly differentially expressed (DE), respectively. Pathway analysis indicated enrichment of EMT signaling, supported by NOTCH, mTOR, TNF receptor, and PI3K-mediated AKT signaling pathways, in chemoresistant cells. Validation by qRT-PCR confirmed upregulation of miR-10a-5p, miR-618, miR-99a-5p, and miR-935 and downregulation of miR-335-3p, miR-205-5p, miR-944, miR-130a-3p, and miR-429 in resistant cells. Pathway analysis that followed IPA analysis indicated that the dysregulation of these miRNAs and their target genes may be instrumental in the development and regulation of chemoresistance via p53 signaling, xenobiotic metabolism, and NRF2-mediated oxidative stress. This study concludes the interplay between miRNA and mRNA as an important aspect and occurrence in guiding the regulation, acquisition, and maintenance of chemoresistance in esophageal cancer in vitro.
Collapse
Affiliation(s)
- Prerna Pandey
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Geetika Suyal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
- Zonal Technology Management & Business Planning and Development Unit (ZTM & BPD Unit), Indian Council of Agricultural Research- Indian Agricultural Research Institute (ICAR-IARI), Pusa, New Delhi, India
| | - Kiran Pasbola
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Delhi, India.
| |
Collapse
|
12
|
Mitchell AV, Wu L, James Block C, Zhang M, Hackett J, Craig DB, Chen W, Zhao Y, Zhang B, Dang Y, Zhang X, Zhang S, Wang C, Gibson H, Pile LA, Kidder B, Matherly L, Yang Z, Dou Y, Wu G. FOXQ1 recruits the MLL complex to activate transcription of EMT and promote breast cancer metastasis. Nat Commun 2022; 13:6548. [PMID: 36319643 PMCID: PMC9626503 DOI: 10.1038/s41467-022-34239-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Aberrant expression of the Forkhead box transcription factor, FOXQ1, is a prevalent mechanism of epithelial-mesenchymal transition (EMT) and metastasis in multiple carcinoma types. However, it remains unknown how FOXQ1 regulates gene expression. Here, we report that FOXQ1 initiates EMT by recruiting the MLL/KMT2 histone methyltransferase complex as a transcriptional coactivator. We first establish that FOXQ1 promoter recognition precedes MLL complex assembly and histone-3 lysine-4 trimethylation within the promoter regions of critical genes in the EMT program. Mechanistically, we identify that the Forkhead box in FOXQ1 functions as a transactivation domain directly binding the MLL core complex subunit RbBP5 without interrupting FOXQ1 DNA binding activity. Moreover, genetic disruption of the FOXQ1-RbBP5 interaction or pharmacologic targeting of KMT2/MLL recruitment inhibits FOXQ1-dependent gene expression, EMT, and in vivo tumor progression. Our study suggests that targeting the FOXQ1-MLL epigenetic axis could be a promising strategy to combat triple-negative breast cancer metastatic progression.
Collapse
Affiliation(s)
- Allison V Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - C James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Mu Zhang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Justin Hackett
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Douglas B Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Yongzhong Zhao
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaohong Zhang
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xinsongjiang Road, Songjiang District, Shanghai, 201620, China
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Lori A Pile
- The Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Benjamin Kidder
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Larry Matherly
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yali Dou
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
13
|
Mitchell AV, Wu J, Meng F, Dong L, Block CJ, Song WM, Zhang B, Li J, Wu G. DDR2 coordinates EMT and metabolic reprogramming as a shared effector of FOXQ1 and SNAI1. CANCER RESEARCH COMMUNICATIONS 2022; 2:1388-1403. [PMID: 36713812 PMCID: PMC9881645 DOI: 10.1158/2767-9764.crc-22-0013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023]
Abstract
While multiple transcription factors (TFs) have been recognized to drive epithelial-mesenchymal transition (EMT) in cancer, their interdependence and context-dependent functions are poorly understood. In this study, we show that FOXQ1 and SNAI1 act as independent TFs within the EMT program with a shared ability to upregulate common EMT TFs without reciprocally impacting the expression of one another. Despite this independence, human mammary epithelial cells (HMLE) with ectopic expression of either FOXQ1 or SNAI1 share a common gene set that is enriched for a DDR2 coexpression signature. Further analysis identified DDR2 as the most upregulated receptor tyrosine kinase and a shared downstream effector of FOXQ1 and SNAI1 in triple-negative breast cancer (TNBC) cell lines. Alteration of DDR2 expression in either FOXQ1 or SNAI1 driven EMT models or in TNBC cells resulted in a profound change of cell motility without significantly impacting EMT marker expression, cell morphology, or the stem cell population. Lastly, we demonstrated that knockdown of DDR2 in the FOXQ1-driven EMT model and TNBC cell line significantly altered the global metabolic profile, including glutamine-glutamate and Aspartic acid recycling.
Collapse
Affiliation(s)
- Allison V. Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jason Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Biology, Purdue University, West Lafayette, Indiana
| | - Fanyan Meng
- Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, P.R. China
| | - Lun Dong
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, P.R. China
| | - C. James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, New York
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn Mount Sinai School of Medicine, New York, New York
| | - Jing Li
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
14
|
Castaneda M, den Hollander P, Mani SA. Forkhead Box Transcription Factors: Double-Edged Swords in Cancer. Cancer Res 2022; 82:2057-2065. [PMID: 35315926 PMCID: PMC9258984 DOI: 10.1158/0008-5472.can-21-3371] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/12/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023]
Abstract
A plethora of treatment options exist for cancer therapeutics, but many are limited by side effects and either intrinsic or acquired resistance. The need for more effective targeted cancer treatment has led to the focus on forkhead box (FOX) transcription factors as possible drug targets. Forkhead factors such as FOXA1 and FOXM1 are involved in hormone regulation, immune system modulation, and disease progression through their regulation of the epithelial-mesenchymal transition. Forkhead factors can influence cancer development, progression, metastasis, and drug resistance. In this review, we discuss the various roles of forkhead factors in biological processes that support cancer as well as their function as pioneering factors and their potential as targetable transcription factors in the fight against cancer.
Collapse
Affiliation(s)
- Maria Castaneda
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sendurai A. Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Corresponding Author: Sendurai A. Mani, Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Suite 910, Houston, TX 77030-3304. Phone: 713-792-9638; E-mail:
| |
Collapse
|
15
|
Targeted Inhibition of O-Linked β-N-Acetylglucosamine Transferase as a Promising Therapeutic Strategy to Restore Chemosensitivity and Attenuate Aggressive Tumor Traits in Chemoresistant Urothelial Carcinoma of the Bladder. Biomedicines 2022; 10:biomedicines10051162. [PMID: 35625898 PMCID: PMC9138654 DOI: 10.3390/biomedicines10051162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
Acquisition of acquired chemoresistance during treatment cycles in urothelial carcinoma of the bladder (UCB) is the major cause of death through enhancing the risk of cancer progression and metastasis. Elevated glucose flux through the abnormal upregulation of O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) controls key signaling and metabolic pathways regulating diverse cancer cell phenotypes. This study showed that OGT expression levels in two human UCB cell models with acquired resistance to gemcitabine and paclitaxel were significantly upregulated compared with those in parental cells. Reducing hyper-O-GlcNAcylation by OGT knockdown (KD) markedly facilitated chemosensitivity to the corresponding chemotherapeutics in both cells, and combination treatment with OGT-KD showed more severe growth defects in chemoresistant sublines. We subsequently verified the suppressive effects of OGT-KD monotherapy on cell migration/invasion in vitro and xenograft tumor growth in vivo in chemoresistant UCB cells. Transcriptome analysis of these cells revealed 97 upregulated genes, which were enriched in multiple oncogenic pathways. Our final choice of suspected OGT glycosylation substrate was VCAN, S1PR3, PDGFRB, and PRKCG, the knockdown of which induced cell growth defects. These findings demonstrate the vital role of dysregulated OGT activity and hyper-O-GlcNAcylation in modulating treatment failure and tumor aggression in chemoresistant UCB.
Collapse
|
16
|
Kim SH, Singh SV. Monocarboxylate transporter 1 is a novel target for breast cancer stem like-cell inhibition by diallyl trisulfide. Mol Carcinog 2022; 61:752-763. [PMID: 35512572 PMCID: PMC9262868 DOI: 10.1002/mc.23415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/06/2022]
Abstract
Diallyl trisulfide (DATS) is a promising small molecule phytochemical that exhibits in vitro and in vivo activity in multiple preclinical solid tumor models including breast cancer, but the underlying mechanism is not fully understood. We have shown previously that forkhead box Q1 (FoxQ1) transcription factor is a novel target for breast cancer stem-like cells (bCSC) inhibition by DATS. Analysis of the breast TCGA (The Cancer Genome Atlas) data revealed that FoxQ1 expression was positively associated with that of SLC16A1/monocarboxylate transporter 1 (MCT1). Western blot analysis confirmed increased expression of MCT1 protein in SUM159 (basal-like) and MCF-7 cells (luminal-type) stably transfected to overexpress FoxQ1. Furthermore, FoxQ1 was recruited to the promoter of SLC16A1/MCT1. Treatment of SUM159 and MCF-7 cell lines with DATS resulted in suppression of MCT1 protein level that was accompanied by a decrease in intracellular and secreted levels of lactate. Overexpression or knockdown of MCT1 protein failed to alter DATS-mediated inhibition of colony formation or cell migration when compared to corresponding control cells. On the other hand, overexpression of MCT1 protein conferred partial but statistically significant protection against DATS-mediated inhibition of bCSC fraction (CD49fhigh /CD44high and aldehyde dehydrogenase 1 activity). The size of the mammospheres was relatively smaller in the DATS-treated group compared to control group. Inhibition of bCSC upon DATS treatment was augmented by knockdown of the MCT1 protein. In conclusion, the present study reveals that MCT1 is a novel target for bCSC inhibition by DATS treatment.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Hillman Cancer Center Research Pavilion, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Diverse roles of tumor-stromal PDGFB-to-PDGFRβ signaling in breast cancer growth and metastasis. Adv Cancer Res 2022; 154:93-140. [PMID: 35459473 DOI: 10.1016/bs.acr.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last couple of decades, it has become increasingly apparent that the tumor microenvironment (TME) mediates every step of cancer progression and solid tumors are only able to metastasize with a permissive TME. This intricate interaction of cancer cells with their surrounding TME, or stroma, is becoming more understood with an ever greater knowledge of tumor-stromal signaling pairs such as platelet-derived growth factors (PDGF) and their cognate receptors. We and others have focused our research efforts on understanding how tumor-derived PDGFB activates platelet-derived growth factor receptor beta (PDGFRβ) signaling specifically in the breast cancer TME. In this chapter, we broadly discuss PDGF and PDGFR expression patterns and signaling in normal physiology and breast cancer. We then detail the expansive roles played by the PDGFB-to-PDGFRβ signaling pathway in modulating breast tumor growth and metastasis with a focus on specific cellular populations within the TME, which are responsive to tumor-derived PDGFB. Given the increasingly appreciated importance of PDGFB-to-PDGFRβ signaling in breast cancer progression, specifically in promoting metastasis, we end by discussing how therapeutic targeting of PDGFB-to-PDGFRβ signaling holds great promise for improving current breast cancer treatment strategies.
Collapse
|
18
|
Meng F, Liu J, Wei J, Yang J, Zhou C, Yan J, Liu B. Tumor-penetrating peptide internalizing RGD enhances radiotherapy efficacy through reducing tumor hypoxia. Cancer Sci 2022; 113:1417-1427. [PMID: 35133063 PMCID: PMC8990783 DOI: 10.1111/cas.15295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022] Open
Abstract
Resistance to irradiation (IR) remains a major therapeutic challenge in tumor radiotherapy. The development of novel tumor-specific radiosensitizers is crucial for effective radiotherapy against solid tumors. Here, we revealed that remodeling tumor tissue penetration via tumor-penetrating peptide internalizing arginine-glycine-aspartic acid RGD (iRGD) enhanced irradiation efficacy. The growth of 4T1 and CT26 multicellular tumor spheroids (MCTS) and tumors was delayed significantly by the treatment with IR and iRGD. Mechanistically, iRGD reduced hypoxia in MCTS and tumors, resulting in enhanced apoptosis after MCTS and tumors were treated with IR and iRGD. This is the first report that shows enhanced radiation efficacy by remodeling tumor-specific tissue penetration with iRGD, implying the potential clinical application of peptides in future tumor therapy.
Collapse
Affiliation(s)
- Fanyan Meng
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jun Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Ju Yang
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Chong Zhou
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jing Yan
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
19
|
Kim SH, Singh SV. The FoxQ1 transcription factor is a novel regulator of electron transport chain complex I subunits in human breast cancer cells. Mol Carcinog 2022; 61:372-381. [PMID: 34939230 PMCID: PMC8837712 DOI: 10.1002/mc.23381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/06/2022]
Abstract
The FoxQ1 is an oncogenic transcription factor that is overexpressed in basal-like and luminal-type human breast cancers when compared to the normal mammary tissue. The FoxQ1 is implicated in mammary tumor progression. However, the mechanism by which FoxQ1 promotes mammary tumorigenesis is not fully understood. In this study, we present experimental evidence for a novel function of FoxQ1 in the regulation of complex I activity of the electron transport chain. The RNA-seq data from FoxQ1 overexpressing basal-like SUM159 cells revealed a statistically significant increase in the expression of complex I subunits NDUFS1 and NDUFS2 when compared to the empty vector (EV) transfected control cells. Consistent with these results, the basal and ATP-linked oxygen consumption rates were significantly increased by FoxQ1 overexpression in SUM159 and luminal-type MCF-7 cells. The FoxQ1 overexpression in both cell lines resulted in increased intracellular levels of pyruvate, lactate, and ATP that was associated with overexpression of pyruvate dehydrogenase and pyruvate carboxylase proteins. Activity and assembly of complex I were significantly enhanced by FoxQ1 overexpression in SUM159 and MCF-7 cells that correlated with increased mRNA and/or protein levels of complex I subunits NDUFS1, NDUFS2, NDUFV1, and NDUFV2. The chromatin immunoprecipitation assay revealed the recruitment of FoxQ1 at the promoters of both NDUFS1 and NDUFV1. The cell proliferation of SUM159 and MCF-7 cells was increased significantly by overexpression of NDUFS1 as well as NDUFV1 proteins. In conclusion, we propose that increased complex I-linked oxidative phosphorylation is partly responsible for oncogenic role of FoxQ1 at least in human breast cancer cells.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Shivendra V. Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
20
|
Evolution of HER2-positive mammary carcinoma: HER2 loss reveals claudin-low traits in cancer progression. Oncogenesis 2021; 10:77. [PMID: 34775465 PMCID: PMC8590694 DOI: 10.1038/s41389-021-00360-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 01/05/2023] Open
Abstract
HER2-positive breast cancers may lose HER2 expression in recurrences and metastases. In this work, we studied cell lines derived from two transgenic mammary tumors driven by human HER2 that showed different dynamics of HER2 status. MamBo89HER2stable cell line displayed high and stable HER2 expression, which was maintained upon in vivo passages, whereas MamBo43HER2labile cell line gave rise to HER2-negative tumors from which MamBo38HER2loss cell line was derived. Both low-density seeding and in vitro trastuzumab treatment of MamBo43HER2labile cells induced the loss of HER2 expression. MamBo38HER2loss cells showed a spindle-like morphology, high stemness and acquired in vivo malignancy. A comprehensive molecular profile confirmed the loss of addiction to HER2 signaling and acquisition of an EMT signature, together with increased angiogenesis and migration ability. We identified PDGFR-B among the newly expressed determinants of MamBo38HER2loss cell tumorigenic ability. Sunitinib inhibited MamBo38HER2loss tumor growth in vivo and reduced stemness and IL6 production in vitro. In conclusion, HER2-positive mammary tumors can evolve into tumors that display distinctive traits of claudin-low tumors. Our dynamic model of HER2 status can lead to the identification of new druggable targets, such as PDGFR-B, in order to counteract the resistance to HER2-targeted therapy that is caused by HER2 loss.
Collapse
|
21
|
Block CJ, Mitchell AV, Wu L, Glassbrook J, Craig D, Chen W, Dyson G, DeGracia D, Polin L, Ratnam M, Gibson H, Wu G. RNA binding protein RBMS3 is a common EMT effector that modulates triple-negative breast cancer progression via stabilizing PRRX1 mRNA. Oncogene 2021; 40:6430-6442. [PMID: 34608266 PMCID: PMC9421946 DOI: 10.1038/s41388-021-02030-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) has been recognized as a driving force for tumor progression in breast cancer. Recently, our group identified the RNA Binding Motif Single Stranded Interacting Protein 3 (RBMS3) to be significantly associated with an EMT transcriptional program in breast cancer. Additional expression profiling demonstrated that RBMS3 was consistently upregulated by multiple EMT transcription factors and correlated with mesenchymal gene expression in breast cancer cell lines. Functionally, RBMS3 was sufficient to induce EMT in two immortalized mammary epithelial cell lines. In triple-negative breast cancer (TNBC) models, RBMS3 was necessary for maintaining the mesenchymal phenotype and invasion and migration in vitro. Loss of RBMS3 significantly impaired both tumor progression and spontaneous metastasis in vivo. Using a genome-wide approach to interrogate mRNA stability, we found that ectopic expression of RBMS3 upregulates many genes that are resistant to degradation following transcriptional blockade by actinomycin D (ACTD). Specifically, RBMS3 was shown to interact with the mRNA of EMT transcription factor PRRX1 and promote PRRX1 mRNA stability. PRRX1 is required for RBMS3-mediated EMT and is partially sufficient to rescue the effect of RBMS3 knockdown in TNBC cell lines. Together, this study identifies RBMS3 as a novel and common effector of EMT, which could be a promising therapeutic target for TNBC treatment.
Collapse
Affiliation(s)
- C. James Block
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Allison V. Mitchell
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Ling Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA.,Department of Molecular and Cellular Biology, McNair Medical Institute Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - James Glassbrook
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Douglas Craig
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Wei Chen
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Gregory Dyson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Donald DeGracia
- Department of Physiology, Wayne State University school of Medicine, Detroit, MI 48201, USA
| | - Lisa Polin
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Manohar Ratnam
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Heather Gibson
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI 48201, USA
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
22
|
Jia X, Zhang A, Li Z, Peng X, Tian X, Gao F. Activation of spinal PDGFRβ in microglia promotes neuronal autophagy via p38 MAPK pathway in morphine-tolerant rats. J Neurochem 2021; 158:373-390. [PMID: 33950542 DOI: 10.1111/jnc.15383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022]
Abstract
The adverse side effects of opioids, especially antinociceptive tolerance, limit their clinical application. A recent study reported that platelet-derived growth factor receptor β (PDGFRβ) blockage selectively inhibited morphine tolerance. Autophagy has been reported to contribute to the cellular and behavioral responses to morphine. However, little is known about the relationship between PDGFRβ and autophagy in the mechanisms of morphine tolerance. In this study, rats were intrathecally administered with morphine twice daily for 7 days to induce antinociceptive tolerance, which was evaluated using a tail-flick latency test. By administration autophagy inhibitor 3-Methyladenine, PDGFRβ inhibitor imatinib, p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 hydrochloride and minocycline hydrochloride, western blot, immunofluorescence, and transmission electron microscopy techniques were used to elucidate the roles of PDGFRβ, autophagy, and related signaling pathways in morphine tolerance. This study demonstrated for the first time that spinal PDGFRβ in microglia promotes autophagy in gamma-aminobutyric acid (GABA) interneurons through activating p38 MAPK pathway during the development of morphine tolerance, which suggest a potential strategy for preventing the development of morphine tolerance clinically, thereby improving the use of opioids in pain management.
Collapse
Affiliation(s)
- Xiaoqian Jia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anqi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiaoling Peng
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Wyss CB, Duffey N, Peyvandi S, Barras D, Martinez Usatorre A, Coquoz O, Romero P, Delorenzi M, Lorusso G, Rüegg C. Gain of HIF1 Activity and Loss of miRNA let-7d Promote Breast Cancer Metastasis to the Brain via the PDGF/PDGFR Axis. Cancer Res 2021; 81:594-605. [PMID: 33526470 DOI: 10.1158/0008-5472.can-19-3560] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 09/18/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022]
Abstract
Early detection and adjuvant therapies have significantly improved survival of patients with breast cancer over the past three decades. In contrast, management of metastatic disease remains unresolved. Brain metastasis is a late complication frequently observed among patients with metastatic breast cancer, whose poor prognosis calls for novel and more effective therapies. Here, we report that active hypoxia inducible factor-1 (HIF1) signaling and loss of the miRNA let-7d concur to promote brain metastasis in a recently established model of spontaneous breast cancer metastasis from the primary site to the brain (4T1-BM2), and additionally in murine and human experimental models of breast cancer brain metastasis (D2A1-BM2 and MDA231-BrM2). Active HIF1 and let-7d loss upregulated expression of platelet-derived growth factor (PDGF) B/A in murine and human brain metastatic cells, respectively, while either individual silencing of HIF1α and PDGF-A/B or let-7d overexpression suppressed brain metastasis formation in the tested models. Let-7d silencing upregulated HIF1α expression and HIF1 activity, indicating a regulatory hierarchy of the system. The clinical relevance of the identified targets was supported by human gene expression data analyses. Treatment of mice with nilotinib, a kinase inhibitor impinging on PDGF receptor (PDGFR) signaling, prevented formation of spontaneous brain metastases in the 4T1-BM2 model and reduced growth of established brain metastases in mouse and human models. These results identify active HIF1 signaling and let-7d loss as coordinated events promoting breast cancer brain metastasis through increased expression of PDGF-A/B. Moreover, they identify PDGFR inhibition as a potentially actionable therapeutic strategy for patients with brain metastatis. SIGNIFICANCE: These findings show that loss of miRNA let-7d and active HIF1 signaling promotes breast cancer brain metastasis via PDGF and that pharmacologic inhibition of PDGFR suppresses brain metastasis, suggesting novel therapeutic opportunities. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/3/594/F1.large.jpg.See related article by Thies et al., p. 606.
Collapse
Affiliation(s)
- Christof B Wyss
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nathalie Duffey
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sanam Peyvandi
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - David Barras
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Amaïa Martinez Usatorre
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Oriana Coquoz
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Pedro Romero
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois, Ludwig Center for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Girieca Lorusso
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| | - Curzio Rüegg
- Experimental and Translational Oncology, Pathology, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
24
|
Elian FA, Are U, Ghosh S, Nuin P, Footz T, McMullen TPW, Brindley DN, Walter MA. FOXQ1 is Differentially Expressed Across Breast Cancer Subtypes with Low Expression Associated with Poor Overall Survival. BREAST CANCER-TARGETS AND THERAPY 2021; 13:171-188. [PMID: 33688250 PMCID: PMC7935334 DOI: 10.2147/bctt.s282860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
Purpose Forkhead box Q1 (FOXQ1) has been shown to contribute to the development and progression of cancers, including ovarian and breast cancer (BC). However, research exploring FOXQ1 expression, copy number variation (CNV), and prognostic value across different BC subtypes is limited. Our purpose was to evaluate FOXQ1 mRNA expression, CNV, and prognostic value across BC subtypes. Materials and Methods We determined FOXQ1 expression and CNV in BC patient tumors using RT-qPCR and qPCR, respectively. We also analyzed FOXQ1 expression and CNV in BC cell lines in the CCLE database using K-means clustering. The prognostic value of FOXQ1 expression in the TCGA-BRCA database was assessed using univariate and multivariate Cox's regression analysis as well as using the online tools OncoLnc, GEPIA, and UALCAN. Results Our analyses reveal that FOXQ1 mRNA is differentially expressed between different subtypes of BC and is significantly decreased in luminal BC and HER2 patients when compared to normal breast tissue samples. Furthermore, analysis of BC cell lines showed that FOXQ1 mRNA expression was independent of CNV. Moreover, patients with low FOXQ1 mRNA expression had significantly poorer overall survival compared to those with high FOXQ1 mRNA expression. Finally, low FOXQ1 expression had a critical impact on the prognostic values of BC patients and was an independent predictor of overall survival when it was adjusted for BC subtypes and to two other FOX genes, FOXF2 and FOXM1. Conclusion Our study reveals for the first time that FOXQ1 is differentially expressed across BC subtypes and that low expression of FOXQ1 is indicative of poor prognosis in patients with BC.
Collapse
Affiliation(s)
- Fahed A Elian
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ubah Are
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Sunita Ghosh
- Department of Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada
| | - Paulo Nuin
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Todd P W McMullen
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - David N Brindley
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Michael A Walter
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Kim SH, Singh KB, Hahm ER, Singh SV. The Role of Forkhead Box Q1 Transcription Factor in Anticancer Effects of Withaferin A in Breast Cancer. Cancer Prev Res (Phila) 2021; 14:421-432. [PMID: 33509807 DOI: 10.1158/1940-6207.capr-20-0590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 11/16/2022]
Abstract
Elimination of both rapidly dividing epithelial mammary cancer cells as well as breast cancer stem-like cells (bCSC) is essential for maximizing antitumor response. Withaferin A (WA), a small molecule derived from a medicinal plant (Withania somnifera), is highly effective in reducing burden and/or incidence of breast cancer in vivo in various preclinical models. We have shown previously that suppression of breast cancer incidence by WA administration in a rat model is associated with a decrease in self-renewal of bCSC but the underlying mechanism is still elusive. This study investigated the role of forkhead box Q1 (FoxQ1) transcription factor in antitumor responses to WA. Exposure of MDA-MB-231 and SUM159 cells to WA resulted in downregulation of protein and mRNA levels of FoxQ1 as well as inhibition of its transcriptional activity. FoxQ1 overexpression in SUM159 and MCF-7 cells resulted in a marked protection against WA-mediated inhibition of bCSC as judged by flow cytometric analysis of CD49fhigh population and mammosphere assay. RNA-sequencing analysis revealed upregulation of many bCSC-associated genes by FoxQ1 overexpression in SUM159 cells, including IL8 whose expression was decreased by WA treatment in SUM159 and MCF-7 cells. FoxQ1 was recruited to the promoter of IL8 that was inhibited significantly by WA treatment. On the other hand, WA-mediated inhibition of cell proliferation or migration was not affected by FoxQ1 overexpression. The FoxQ1 overexpression partially attenuated WA-mediated G2-M phase cell cycle arrest in SUM159 cells only. These results indicate that FoxQ1 is a target of WA for inhibition of bCSC fraction. PREVENTION RELEVANCE: Withaferin A (WA) is highly effective in reducing burden and/or incidence of breast cancer in various preclinical models. However, the mechanism underlying breast cancer prevention by WA is not fully understood. This study shows a role for FoxQ1 in antitumor response to WA.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, Pittsburgh, Pennsylvania. .,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Jin H. Perspectives of Aptamers for Medical Applications. APTAMERS FOR MEDICAL APPLICATIONS 2021:405-462. [DOI: 10.1007/978-981-33-4838-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Wang Y, Chen J, Wang X, Wang K. miR-140-3p inhibits bladder cancer cell proliferation and invasion by targeting FOXQ1. Aging (Albany NY) 2020; 12:20366-20379. [PMID: 33098639 PMCID: PMC7655201 DOI: 10.18632/aging.103828] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022]
Abstract
Upregulation of the forkhead box protein Q1 (FOXQ1) promotes bladder cancer (BCa) cell growth and metastasis. Factors affecting FOXQ1 expression at the post-transcriptional level have not yet been identified. We performed cell proliferation, cell invasion, and tumorigenesis experiments to characterize the relationship between FOXQ1 and miR-140-3p. We found that FOXQ1 was significantly upregulated and miR-140-3p was significantly downregulated in BCa tissues. We also identified an inverse correlation between miR-140-3p and FOXQ1 expression in BCa tissues. Overexpression of miR-140-3p reduced FOXQ1 expression, suppressing BCa cell proliferation and invasion. A luciferase assay confirmed that miR-140-3p bound to the 3’-UTR of FOXQ1 mRNA and decreased its expression. In addition, we used a mouse xenograft model to demonstrate that miR-140-3p suppressed tumor cell growth in vivo. Our findings suggest that miR-140-3p suppresses BCa cell proliferation and invasion by directly decreasing FOXQ1 expression.
Collapse
Affiliation(s)
- Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Junwen Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
28
|
Camorani S, Passariello M, Agnello L, Esposito S, Collina F, Cantile M, Di Bonito M, Ulasov IV, Fedele M, Zannetti A, De Lorenzo C, Cerchia L. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer. J Exp Clin Cancer Res 2020; 39:180. [PMID: 32892748 PMCID: PMC7487859 DOI: 10.1186/s13046-020-01694-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a uniquely aggressive cancer with high rates of relapse due to resistance to chemotherapy. TNBC expresses higher levels of programmed cell death-ligand 1 (PD-L1) compared to other breast cancers, providing the rationale for the recently approved immunotherapy with anti-PD-L1 monoclonal antibodies (mAbs). A huge effort is dedicated to identify actionable biomarkers allowing for combination therapies with immune-checkpoint blockade. Platelet-derived growth factor receptor β (PDGFRβ) is highly expressed in invasive TNBC, both on tumor cells and tumor microenvironment. We recently proved that tumor growth and lung metastases are impaired in mouse models of human TNBC by a high efficacious PDGFRβ aptamer. Hence, we aimed at investigating the effectiveness of a novel combination treatment with the PDGFRβ aptamer and anti-PD-L1 mAbs in TNBC. METHODS The targeting ability of the anti-human PDGFRβ aptamer toward the murine receptor was verified by streptavidin-biotin assays and confocal microscopy, and its inhibitory function by transwell migration assays. The anti-proliferative effects of the PDGFRβ aptamer/anti-PD-L1 mAbs combination was assessed in human MDA-MB-231 and murine 4 T1 TNBC cells, both grown as monolayer or co-cultured with lymphocytes. Tumor cell lysis and cytokines secretion by lymphocytes were analyzed by LDH quantification and ELISA, respectively. Orthotopic 4 T1 xenografts in syngeneic mice were used for dissecting the effect of aptamer/mAb combination on tumor growth, metastasis and lymphocytes infiltration. Ex vivo analyses through immunohistochemistry, RT-qPCR and immunoblotting were performed. RESULTS We show that the PDGFRβ aptamer potentiates the anti-proliferative activity of anti-PD-L1 mAbs on both human and murine TNBC cells, according to its human/mouse cross-reactivity. Further, by binding to activated human and mouse lymphocytes, the aptamer enhances the anti-PD-L1 mAb-induced cytotoxicity of lymphocytes against tumor cells. Importantly, the aptamer heightens the antibody efficacy in inhibiting tumor growth and lung metastases in mice. It acts on both tumor cells, inhibiting Akt and ERK1/2 signaling pathways, and immune populations, increasing intratumoral CD8 + T cells and reducing FOXP3 + Treg cells. CONCLUSION Co-treatment of PDGFRβ aptamer with anti-PD-L1 mAbs is a viable strategy, thus providing for the first time an evidence of the efficacy of PDGFRβ/PD-L1 co-targeting combination therapy in TNBC.
Collapse
Affiliation(s)
- Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Lisa Agnello
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Silvia Esposito
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Francesca Collina
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Maurizio Di Bonito
- Pathology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Ilya V Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy
| | - Antonella Zannetti
- Institute of Biostructure and Bioimaging, CNR, Via T. De Amicis 95, 80145, Naples, Italy
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
- Ceinge-Biotecnologie Avanzate s.c.a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy.
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", CNR, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
29
|
Kim SH, Hahm ER, Singh KB, Singh SV. Novel mechanistic targets of forkhead box Q1 transcription factor in human breast cancer cells. Mol Carcinog 2020; 59:1116-1128. [PMID: 32754922 DOI: 10.1002/mc.23241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023]
Abstract
The transcription factor forkhead box Q1 (FoxQ1) is overexpressed in different solid tumors including breast cancer, but the mechanism underlying its oncogenic function is still not fully understood. In this study, we compared RNA-seq data from FoxQ1 overexpressing SUM159 cells with that of empty vector-transfected control cells to identify novel mechanistic targets of this transcription factor. Analysis of The Cancer Genome Atlas (TCGA) data set revealed significantly higher expression of FoxQ1 in black breast cancer patients compared with white women with this disease. In contrast, expression of FoxQ1 was comparable in ductal and lobular carcinomas in the breast cancer TCGA data set. Complementing our published findings in basal-like subtype, immunohistochemistry revealed upregulation of FoxQ1 protein in luminal-type human breast cancer tissue microarrays when compared with normal mammary tissues. Many previously reported transcriptional targets of FoxQ1 (eg, E-cadherin, N-cadherin, fibronectin 1, etc) were verified from the RNA-seq analysis. FoxQ1 overexpression resulted in the downregulation of genes associated with cell cycle checkpoints, M phase, and cellular response to stress/external stimuli as evidenced from the Reactome pathway analysis. Consequently, FoxQ1 overexpression resulted in mitotic arrest in basal-like SUM159 and human mammary epithelial cell line, but not in luminal-type MCF-7 cells. Finally, we show for the first time that FoxQ1 is a direct transcriptional regulator of interleukin (IL)-1α, IL-8, and vascular endothelial growth factor in breast cancer cells as evidenced by chromatin immunoprecipitation assay. In conclusion, the present study reports novel mechanistic targets of FoxQ1 in human breast cancer cells.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Krishna B Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Han S, Shi Y, Sun L, Liu Z, Song T, Liu Q. MiR-4319 induced an inhibition of epithelial-mesenchymal transition and prevented cancer stemness of HCC through targeting FOXQ1. Int J Biol Sci 2019; 15:2936-2947. [PMID: 31853229 PMCID: PMC6909970 DOI: 10.7150/ijbs.38000] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022] Open
Abstract
The heterogeneity existing in tumours is responsible for the poor response to treatment. Therefore, elucidating the molecular mechanisms of intratumoural heterogeneity in hepatocellular carcinoma (HCC) is vital for the discovery of new therapeutic methods for improving the prognosis of patients. Of note, cancer stem cells (CSCs) existing in HCC may explain the pathological properties of heterogeneity and recurrence. An increasing number of studies have confirmed that abnormally expressed microRNAs (miRNAs) take part in the carcinogenesis as well as the aggravation of HCC. However, little information is currently available about the specific miR-4319 in HCC. Herein, we demonstrated that the level of miR-4319 was remarkably decreased in HCC specimens and cells compared to that in normal counterparts and that the depression of miR-4319 in tumour specimens correlates with tumour size, histological grade and venous invasion. Through a series of functional experiments, we illustrated that miR-4319 repressed cell proliferation, accelerated apoptosis, inhibited epithelial-mesenchymal transition (EMT) and prevented cancer stemness in HCC cells by targeting FOXQ1 (Forkhead box Q1). An in vivo tumourigenesis assay uncovered that depletion of miR-4319 in Hep3B cells increased tumour growth and elevated the expression of EMT and CSC markers in comparison to those of the control group. Restoration of FOXQ1 expression also partially reversed the miR-4319-induced biological effects on HCC cells. Thus, miR-4319, as a posttranscriptional regulator, plays a profound role in suppressing the malignant progression of HCC, and our study highlights the miR-4319/FOXQ1 cascade as a potential therapeutic target for conquering HCC.
Collapse
Affiliation(s)
- Shaoshan Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Yu Shi
- Department of oncology, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Liankang Sun
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Zhikui Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Tao Song
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| |
Collapse
|
31
|
Wu G, Wang Q, Xu Y, Li J, Zhang H, Qi G, Xia Q. Targeting the transcription factor receptor LXR to treat clear cell renal cell carcinoma: agonist or inverse agonist? Cell Death Dis 2019; 10:416. [PMID: 31138790 PMCID: PMC6538631 DOI: 10.1038/s41419-019-1654-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/15/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Growing evidence indicates that clear cell renal cell carcinoma (ccRCC) is a metabolism-related disease. Changes in fatty acid (FA) and cholesterol metabolism play important roles in ccRCC development. As a nuclear transcription factor receptor, Liver X receptor (LXR) regulates a variety of key molecules associated with FA synthesis and cholesterol transport. Therefore, targeting LXR may provide new therapeutic targets for ccRCC. However, the potential regulatory effect and molecular mechanisms of LXR in ccRCC remain unknown. In the present study, we found that both an LXR agonist and an XLR inverse agonist could inhibit proliferation and colony formation and induce apoptosis in ccRCC cells. We observed that the LXR agonist LXR623 downregulated the expression of the low-density lipoprotein receptor (LDLR) and upregulated the expression of ABCA1, which resulted in reduced intracellular cholesterol and apoptosis. The LXR inverse agonist SR9243 downregulated the FA synthesis proteins sterol regulatory element-binding protein 1c (SREBP-1c), fatty acid synthase (FASN) and stearoyl-coA desaturase 1 (SCD1), causing a decrease in intracellular FA content and inducing apoptosis in ccRCC cells. SR9243 and LXR623 induced apoptosis in ccRCC cells but had no killing effect on normal renal tubular epithelial HK2 cells. We also found that SRB1-mediated high-density lipoprotein (HDL) in cholesterol influx is the cause of high cholesterol in ccRCC cells. In conclusion, our data suggest that an LXR inverse agonist and LXR agonist decrease the intracellular FA and cholesterol contents in ccRCC to inhibit tumour cells but do not have cytotoxic effects on non-malignant cells. Thus, LXR may be a safe therapeutic target for treating ccRCC patients.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, Shandong Province Hospital Affiliated to Shandong University, Jinan, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qinglian Wang
- Department of Nephrology, Shandong Province Hospital Affiliated to Shandong University, Jinan, China
| | - Yingkun Xu
- Department of Urology, Shandong Province Hospital Affiliated to Shandong University, Jinan, China
| | - Jianyi Li
- Department of Urology, Shandong Province Hospital Affiliated to Shandong University, Jinan, China
| | - Hongge Zhang
- Department of Urology, Tengzhou Hospital of Traditional Chinese Medicine, Tengzhou, China
| | - Guanghui Qi
- Department of Urology, The First Hospital of Zibo City, Zibo, China
| | - Qinghua Xia
- Department of Urology, Shandong Province Hospital Affiliated to Shandong University, Jinan, China.
| |
Collapse
|
32
|
Combination of eribulin plus AKT inhibitor evokes synergistic cytotoxicity in soft tissue sarcoma cells. Sci Rep 2019; 9:5759. [PMID: 30962488 PMCID: PMC6453888 DOI: 10.1038/s41598-019-42300-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
An activated AKT pathway underlies the pathogenesis of soft tissue sarcoma (STS), with over-expressed phosphorylated AKT (p-AKT) correlating with a poor prognosis in a subset of STS cases. Recently, eribulin, a microtubule dynamics inhibitor, has demonstrated efficacy and is approved in patients with advanced/metastatic liposarcoma and breast cancer. However, mechanisms of eribulin resistance and/or insensitivity remain largely unknown. In this study, we demonstrated that an increased p-AKT level was associated with eribulin resistance in STS cells. We found a combination of eribulin with the AKT inhibitor, MK-2206, synergistically inhibited STS cell growth in vivo as well as in vitro. Mechanistically, eribulin plus MK-2206 induced G1 or G2/M arrest by down-regulating cyclin-dependent kinases, cyclins and cdc2, followed by caspase-dependent apoptosis in STS cells. Our findings demonstrate the significance of p-AKT signaling for eribulin-resistance in STS cells and provide a rationale for the development of an AKT inhibitor in combination with eribulin to treat patients with STS.
Collapse
|
33
|
Kalimutho M, Sinha D, Mittal D, Srihari S, Nanayakkara D, Shafique S, Raninga P, Nag P, Parsons K, Khanna KK. Blockade of PDGFRβ circumvents resistance to MEK-JAK inhibition via intratumoral CD8 + T-cells infiltration in triple-negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:85. [PMID: 30777101 PMCID: PMC6379987 DOI: 10.1186/s13046-019-1075-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite the increasing progress in targeted and immune based-directed therapies for other solid organ malignancies, currently there is no targeted therapy available for TNBCs. A number of mechanisms have been reported both in pre-clinical and clinical settings that involve inherent, acquired and adaptive resistance to small molecule inhibitors. Here, we demonstrated a novel resistance mechanism in TNBC cells mediated by PDGFRβ in response to JAK2 inhibition. METHODS Multiple in vitro (subG1, western blotting, immunofluorescence, RT-PCR, Immunoprecipitation), in vivo and publically available datasets were used. RESULTS We showed that TNBC cells exposed to MEK1/2-JAK2 inhibitors exhibit resistant colonies in anchorage-independent growth assays. Moreover, cells treated with various small molecule inhibitors including JAK2 promote PDGFRβ upregulation. Using publically available databases, we showed that patients expressing high PDGFRβ or its ligand PDGFB exhibit poor relapse-free survival upon chemotherapeutic treatment. Mechanistically we found that JAK2 expression controls steady state levels of PDGFRβ. Thus, co-blockade of PDGFRβ with JAK2 and MEK1/2 inhibitors completely eradicated resistant colonies in vitro. We found that triple-combined treatment had a significant impact on CD44+/CD24- stem-cell-like cells. Likewise, we found a significant tumor growth inhibition in vivo through intratumoral CD8+ T cells infiltration in a manner that is reversed by anti-CD8 antibody treatment. CONCLUSION These findings reveal a novel regulatory role of JAK2-mediated PDGFRβ proteolysis and provide an example of a PDGFRβ-mediated resistance mechanism upon specific target inhibition in TNBC.
Collapse
Affiliation(s)
- Murugan Kalimutho
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
| | - Debottam Sinha
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Devathri Nanayakkara
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Shagufta Shafique
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Prahlad Raninga
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Purba Nag
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Kate Parsons
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Kum Kum Khanna
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
34
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
35
|
Voutsadakis IA. HER2 in stemness and epithelial-mesenchymal plasticity of breast cancer. Clin Transl Oncol 2018; 21:539-555. [PMID: 30306401 DOI: 10.1007/s12094-018-1961-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer had been the first non-hematologic malignancy where sub-types based on molecular characterization had entered clinical practice. HER2 over-expression, due to either gene amplification or protein up-regulation, defines one of these sub-types and is clinically exploited by addition of HER2-targeted treatments to the regimens of treatment. Nevertheless, in many occasions HER2-positive cancers are resistant or become refractory to these therapies. Several mechanisms, such as activation of alternative pathways or loss of expression of the receptor in cancer cells, have been proposed as the cause of these therapeutic failures. Cancer stem cells (CSCs, alternatively called tumor-initiating cells) comprise a small percentage of the tumor cells, but are capable of reconstituting and propagating tumors due to their superior intrinsic capacity for regeneration, survival and resistance to therapies. CSCs possess circuits enabling epigenetic plasticity which endow them with the ability to alternate between epithelial and mesenchymal states. This paper will discuss the expression and regulation of HER2 in CSCs of the different sub-types of breast cancer and relationships of the receptor with both the circuits of stemness and epithelial-mesenchymal plasticity. Therapeutic repercussions of the relationship of HER2-initiated signaling with stemness networks will also be proposed.
Collapse
Affiliation(s)
- I A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, 750 Great Northern Road, Sault Ste. Marie, ON, P6B 0A8, Canada. .,Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada.
| |
Collapse
|
36
|
Camorani S, Hill BS, Collina F, Gargiulo S, Napolitano M, Cantile M, Di Bonito M, Botti G, Fedele M, Zannetti A, Cerchia L. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Am J Cancer Res 2018; 8:5178-5199. [PMID: 30429893 PMCID: PMC6217067 DOI: 10.7150/thno.27798] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
While the overall mortality for breast cancer has recently declined, management of triple-negative breast cancer (TNBC) is still challenging because of its aggressive clinical behavior and the lack of targeted therapies. Genomic profiling studies highlighted the high level of heterogeneity of this cancer, which comprises different subtypes with unique phenotypes and response to treatment. Platelet-derived growth factor receptor β (PDGFRβ) is an established mesenchymal/stem cell-specific marker in human glioblastoma and, as recently suggested, it may uniquely mark breast cancer cells with stem-like characteristics and/or that have undergone epithelial-mesenchymal transition. Methods: Immunohistochemical analysis for PDGFRβ expression was performed on a human TNBC tissue microarray. Functional assays were conducted on mesenchymal-like TNBC cells to investigate the effect of a previously validated PDGFRβ aptamer on invasive cell growth in three-dimensional culture conditions, migration, invasion and tube formation. The aptamer was labeled with a near-infrared (NIR) dye and its binding specificity to PDGFRβ was assessed both in vitro (confocal microscopy and flow cytometry analyses) and in vivo (fluorescence molecular tomography in mice bearing TNBC xenografts). A mouse model of TNBC lung metastases formation was established and NIR-labeled PDGFRβ aptamer was used to detect lung metastases in mice untreated or intravenously injected with unlabeled aptamer. Results: Here, we present novel data showing that tumor cell expression of PDGFRβ identifies a subgroup of mesenchymal tumors with invasive and stem-like phenotype, and propose a previously unappreciated role for PDGFRβ in driving TNBC cell invasiveness and metastases formation. We show that the PDGFRβ aptamer blocked invasive growth and migration/invasion of mesenchymal TNBC cell lines and prevented TNBC lung metastases formation. Further, upon NIR-labeling, the aptamer specifically bound to TNBC xenografts and detected lung metastases. Conclusions: We propose PDGFRβ as a reliable biomarker of a subgroup of mesenchymal TNBCs with invasive and stem-like phenotype as well as the use of the PDGFRβ aptamer as a high efficacious tool for imaging and suppression of TNBC lung metastases. This study will allow for the significant expansion of the current repertoire of strategies for managing patients with more aggressive TNBC.
Collapse
|
37
|
Shimizu R, Tanaka M, Tsutsumi S, Aburatani H, Yamazaki Y, Homme M, Kitagawa Y, Nakamura T. EWS-FLI1 regulates a transcriptional program in cooperation with Foxq1 in mouse Ewing sarcoma. Cancer Sci 2018; 109:2907-2918. [PMID: 29945296 PMCID: PMC6125457 DOI: 10.1111/cas.13710] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/20/2018] [Indexed: 02/06/2023] Open
Abstract
EWS-FLI1 constitutes an oncogenic transcription factor that plays key roles in Ewing sarcoma development and maintenance. We have recently succeeded in generating an ex vivo mouse model for Ewing sarcoma by introducing EWS-FLI1 into embryonic osteochondrogenic progenitors. The model well recapitulates the biological characteristics, small round cell morphology, and gene expression profiles of human Ewing sarcoma. Here, we clarified the global DNA binding properties of EWS-FLI1 in mouse Ewing sarcoma. GGAA microsatellites were found to serve as binding sites of EWS-FLI1 albeit with less frequency than that in human Ewing sarcoma; moreover, genomic distribution was not conserved between human and mouse. Nevertheless, EWS-FLI1 binding sites within GGAA microsatellites were frequently associated with the histone H3K27Ac enhancer mark, suggesting that EWS-FLI1 could affect global gene expression by binding its target sites. In particular, the Fox transcription factor binding motif was frequently observed within EWS-FLI1 peaks and Foxq1 was identified as the cooperative partner that interacts with the EWS portion of EWS-FLI1. Trib1 and Nrg1 were demonstrated as target genes that are co-regulated by EWS-FLI1 and Foxq1, and are important for cell proliferation and survival of Ewing sarcoma. Collectively, our findings present novel aspects of EWS-FLI1 function as well as the importance of GGAA microsatellites.
Collapse
Affiliation(s)
- Rikuka Shimizu
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yukari Yamazaki
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mizuki Homme
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
38
|
Bagati A, Bianchi-Smiraglia A, Moparthy S, Kolesnikova K, Fink EE, Lipchick BC, Kolesnikova M, Jowdy P, Polechetti A, Mahpour A, Ross J, Wawrzyniak JA, Yun DH, Paragh G, Kozlova NI, Berman AE, Wang J, Liu S, Nemeth MJ, Nikiforov MA. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1. Cell Rep 2018; 20:2820-2832. [PMID: 28930679 DOI: 10.1016/j.celrep.2017.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas) or repress (in melanoma) transcription of the N-cadherin gene (CDH2). We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Sudha Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kateryna Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Masha Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Peter Jowdy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Anthony Polechetti
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amin Mahpour
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jason Ross
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joseph A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dong Hyun Yun
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Dermatology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Albert E Berman
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
39
|
Gambini V, Tilio M, Maina EW, Andreani C, Bartolacci C, Wang J, Iezzi M, Ferraro S, Ramadori AT, Simon OC, Pucciarelli S, Wu G, Dou QP, Marchini C, Galassi R, Amici A. In vitro and in vivo studies of gold(I) azolate/phosphane complexes for the treatment of basal like breast cancer. Eur J Med Chem 2018; 155:418-427. [PMID: 29906688 DOI: 10.1016/j.ejmech.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023]
Abstract
Basal like breast cancer (BLBC) is a very aggressive subtype of breast cancer giving few chances of survival, against which cisplatin based therapy is a compromise among the anticancer activity, the resistance development and the severe side effects. With the aim of finding new anticancer agents alternative to cisplatin, seven gold(I) azolate/phosphane compounds were evaluated in vitro by MTT tests in human MDA-MB-231, human mammary epithelial HMLE cells overexpressing FoxQ1, and murine A17 cells as models of BLBC. Two compounds, (4,5-dichloro-1H-imidazolate-1-yl)-(triphenylphosphane)-gold(I) 1 and (4,5-dicyano-1H-imidazolate-1-yl)-(triphenylphosphane)-gold(I) 2 were found very active and chosen for an in vivo study in A17 tumors transplanted in syngeneic mice. The compounds resulted to be more active than cisplatin, less nephrotoxic and generally more tolerated by the mice. This study also provides evidence that both gold(I) complexes inhibited the 19 S proteasome-associated deubiquitinase USP14 and induced apoptosis, while compound 1's mechanism of action depends also on its ability to down-regulate key molecules governing cancer growth and progression, such as STAT3 and Cox-2.
Collapse
Affiliation(s)
- Valentina Gambini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Martina Tilio
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Eunice Wairimu Maina
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Cristina Andreani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Caterina Bartolacci
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Manuela Iezzi
- Aging Research Centre, G. d'Annunzio University, Chieti, 66100, Italy
| | - Stefano Ferraro
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy
| | - Anna Teresa Ramadori
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy
| | - Oumarou Camille Simon
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy
| | - Stefania Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| | - Guojun Wu
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Q Ping Dou
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy.
| | - Rossana Galassi
- School of Science and Technology, Chemistry Division, University of Camerino, Camerino, I-62032, Italy.
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy
| |
Collapse
|
40
|
Laszlo V, Valko Z, Kovacs I, Ozsvar J, Hoda MA, Klikovits T, Lakatos D, Czirok A, Garay T, Stiglbauer A, Helbich TH, Gröger M, Tovari J, Klepetko W, Pirker C, Grusch M, Berger W, Hilberg F, Hegedus B, Dome B. Nintedanib Is Active in Malignant Pleural Mesothelioma Cell Models and Inhibits Angiogenesis and Tumor Growth In Vivo. Clin Cancer Res 2018; 24:3729-3740. [PMID: 29724868 DOI: 10.1158/1078-0432.ccr-17-1507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 02/22/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Malignant pleural mesothelioma (MPM) is an aggressive thoracic tumor type with limited treatment options and poor prognosis. The angiokinase inhibitor nintedanib has shown promising activity in the LUME-Meso phase II MPM trial and thus is currently being evaluated in the confirmatory LUME-Meso phase III trial. However, the anti-MPM potential of nintedanib has not been studied in the preclinical setting.Experimental Design: We have examined the antineoplastic activity of nintedanib in various in vitro and in vivo models of human MPM.Results: Nintedanib's target receptors were (co)expressed in all the 20 investigated human MPM cell lines. Nintedanib inhibited MPM cell growth in both short- and long-term viability assays. Reduced MPM cell proliferation and migration and the inhibition of Erk1/2 phosphorylation were also observed upon nintedanib treatment in vitro Additive effects on cell viability were detected when nintedanib was combined with cisplatin, a drug routinely used for systemic MPM therapy. In an orthotopic mouse model of human MPM, survival of animals receiving nintedanib per os showed a favorable trend, but no significant benefit. Nintedanib significantly reduced tumor burden and vascularization and prolonged the survival of mice when it was administered intraperitoneally. Importantly, unlike bevacizumab, nintedanib demonstrated significant in vivo antivascular and antitumor potential independently of baseline VEGF-A levels.Conclusions: Nintedanib exerts significant antitumor activity in MPM both in vitro and in vivo These data provide preclinical support for the concept of LUME-Meso trials evaluating nintedanib in patients with unresectable MPM. Clin Cancer Res; 24(15); 3729-40. ©2018 AACR.
Collapse
Affiliation(s)
- Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria.,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Zsuzsanna Valko
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Ildiko Kovacs
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Ozsvar
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria
| | - Mir Alireza Hoda
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria
| | - Thomas Klikovits
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria
| | - Dora Lakatos
- Department of Biological Physics, Eotvos University, Budapest, Hungary
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, Hungary.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Tamas Garay
- 2nd Department of Pathology, Semmelweis University, Budapest, Hungary.,Tumor Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary
| | - Alexander Stiglbauer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Marion Gröger
- Core Facility Imaging, Core Facilities, Medical University Vienna, Austria
| | - Jozsef Tovari
- Department of Experimental Pharmacology, National Institute of Oncology, Budapest, Hungary.,Kineto Lab Ltd., Budapest, Hungary
| | - Walter Klepetko
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | - Michael Grusch
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Austria
| | | | - Balazs Hegedus
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria. .,2nd Department of Pathology, Semmelweis University, Budapest, Hungary.,Tumor Progression Research Group, Hungarian Academy of Sciences-Semmelweis University, Budapest, Hungary.,Department of Thoracic Surgery, Ruhrlandklinik, University Duisburg-Essen, Germany
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Centre Vienna, Medical University Vienna, Austria. .,Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria.,National Koranyi Institute of Pulmonology, Budapest, Hungary.,Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| |
Collapse
|
41
|
Luo Q, Wang CQ, Yang LY, Gao XM, Sun HT, Zhang Y, Zhang KL, Zhu Y, Zheng Y, Sheng YY, Lu L, Jia HL, Yu WQ, Liu J, Dong QZ, Qin LX. FOXQ1/NDRG1 axis exacerbates hepatocellular carcinoma initiation via enhancing crosstalk between fibroblasts and tumor cells. Cancer Lett 2018; 417:21-34. [PMID: 29248714 DOI: 10.1016/j.canlet.2017.12.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022]
Abstract
Cancer associated fibroblast (CAF) is a well-known microenvironment contributor for the development of hepatocellular carcinoma (HCC), while forkhead box (FOX) proteins are also critical to exacerbate HCC malignancy. However, whether FOX proteins are involved in the crosstalk between CAFs and HCC cells remains unclear. In the present study, we reveal that CAFs induce forkhead box Q1 (FOXQ1) expression, and N-myc downstream-regulated gene 1 (NDRG1) is therefore trans-activated to enhance HCC initiation. Intriguingly, pSTAT6/C-C motif chemokine ligand 26 (CCL26) signaling is induced by FOXQ1/NDRG1 axis, thus recruiting hepatic stellate cells (HSCs), the main cellular source of CAFs, to the tumor microenvironment. Thereby, tumor initiating properties are enhanced at least partly through a positive feedback loop between CAFs and HCC cells. Importantly, leflunomide, a pSTAT6 inhibitor that has been approved for the treatment of rheumatoid arthritis, significantly blocks the loop and HCC progression. High expression of CAF marker, ACTA2, and induced FOXQ1/NDRG1 axis in HCC tissues predict unfavorable prognosis. Collectively, our findings uncover a positive feedback loop between CAFs and FOXQ1/NDRG1 axis in neoplastic cells to drive HCC initiation, thus providing new potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Qin Luo
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chao-Qun Wang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lu-Yu Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiao-Mei Gao
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao-Ting Sun
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kai-Li Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ying Zhu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuan-Yuan Sheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wen-Qiang Yu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
42
|
Roswall P, Bocci M, Bartoschek M, Li H, Kristiansen G, Jansson S, Lehn S, Sjölund J, Reid S, Larsson C, Eriksson P, Anderberg C, Cortez E, Saal LH, Orsmark-Pietras C, Cordero E, Haller BK, Häkkinen J, Burvenich IJG, Lim E, Orimo A, Höglund M, Rydén L, Moch H, Scott AM, Eriksson U, Pietras K. Microenvironmental control of breast cancer subtype elicited through paracrine platelet-derived growth factor-CC signaling. Nat Med 2018. [PMID: 29529015 PMCID: PMC5896729 DOI: 10.1038/nm.4494] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast tumors of the basal-like, hormone receptor-negative, subtype remain an unmet clinical challenge, as patients exhibit a high rate of recurrence and poor survival. Co-evolution of the malignant mammary epithelium and its underlying stroma instigates cancer-associated fibroblasts (CAFs) to endorse most, if not all, hallmarks of cancer progression. Here, we delineate a previously unappreciated role for CAFs as determinants of the molecular subtype of breast cancer. We identified a paracrine cross-talk between cancer cells expressing platelet-derived growth factor (PDGF)-CC and CAFs expressing the cognate receptors in human basal-like mammary carcinomas. Genetic or pharmacological intervention with PDGF-CC activity in mouse models of cancer resulted in conversion of basal-like breast cancers into a hormone receptor-positive state that conferred sensitivity to endocrine therapy in previously impervious tumors. We conclude that specification of the basal-like subtype of breast cancer is under microenvironmental control and therapeutically actionable in order to achieve sensitivity to endocrine therapy.
Collapse
Affiliation(s)
- Pernilla Roswall
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Matteo Bocci
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Michael Bartoschek
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hong Li
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Sara Jansson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Sophie Lehn
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Steven Reid
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christer Larsson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Charlotte Anderberg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Eliane Cortez
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lao H Saal
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Eugenia Cordero
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Bengt Kristian Haller
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jari Häkkinen
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ingrid J G Burvenich
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Akira Orimo
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lisa Rydén
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | - Ulf Eriksson
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
43
|
Overexpression of FOXQ1 enhances anti-senescence and migration effects of human umbilical cord mesenchymal stem cells in vitro and in vivo. Cell Tissue Res 2018; 373:379-393. [PMID: 29500491 DOI: 10.1007/s00441-018-2815-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are unique precursor cells characterized by active self-renewal and differentiation potential. These cells offer the advantages of ease of isolation and limited ethical issues as a resource and represent a promising cell therapy for neurodegenerative diseases. However, replicative senescence during cell culture as well as low efficiency of cell migration and differentiation after transplantation are major obstacles. In our previous study, we found that FOXQ1 binds directly to the SIRT1 promoter to regulate cellular senescence and also promotes cell proliferation and migration in many tumor cell lines. Currently, little is known about the effects of FOXQ1 on normal somatic cells. Therefore, we examine the effects of FOXQ1 on senescence and migration of MSCs. Lentiviral vector-mediated overexpression of FOXQ1 in human umbilical cord mesenchymal stem cells (hUC-MSCs) resulted in enhanced cell proliferation and viability. Furthermore, the expression of proteins and markers positively associated with senescence (p16, p21, p53) was reduced, whereas expression of proteins negatively associated with senescence (SIRT1, PCNA) was promoted. Following transplantation of hUC-MSCs overexpressing FOXQ1 in an animal model of Alzheimer's disease (APPV717I transgenic mice) resulted in amelioration of the effects of Alzheimer's disease (AD) on cognitive function and pathological senescence accompanied the increased numbers of hUC-MSCs in the AD brain. In conclusion, FOXQ1 overexpression promotes anti-senescence and migration of hUC-MSCs in vitro and in vivo. These findings also suggest that this strategy may contribute to optimization of the efficiency of stem cell therapy.
Collapse
|
44
|
Tu S, Zheng J, Gao X, Guan C, Cai B, Xiang L. The role of Foxq1 in proliferation of human dental pulp stem cell. Biochem Biophys Res Commun 2018; 497:543-549. [PMID: 29453987 DOI: 10.1016/j.bbrc.2018.02.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the role for Foxq1 in proliferation activity regulation of dental pulp stem cells (DPSCs). Proliferation of DPSC was induced by calcium hydroxide, then expression alteration of Foxq1 was evaluated. Lentivirus was employed to manipulate Foxq1 level in DPSC, and proliferation activities were evaluated. To look into mechanism regulating Foxq1 level after calcium hydroxide stimulation, expressions of various microRNAs were evaluated, then bioinformatics study and dual-luciferase study were carried out to confirm targeting relationship between microRNA and Foxq1. The result of our study indicated that proliferation activities of DPSCs were enhanced after calcium hydroxide stimulation, during which expression of Foxq1 was also up-regulated. Cell viability and progression from G1 to S phase were both improved with overexpression of Foxq1, and microRNAs profiling study and dual-luciferase result suggested miR-320b contributed to the up-regulation of Foxq1 after calcium hydroxide stimulation. These results suggested that miR-320b mediated Foxq1 up-regulation promote proliferation of dental pulp stem cells.
Collapse
Affiliation(s)
- Shaoqin Tu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, Guangdong, 510055, China
| | - Junming Zheng
- Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan University, No. 5, Hebin Road, Chancheng District, Foshan, Guangdong, 528000, China
| | - Xin Gao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, Guangdong, 510055, China
| | - Chenyu Guan
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, Guangdong, 510055, China
| | - Bin Cai
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, Guangdong, 510055, China
| | - Lusai Xiang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, Guangdong, 510055, China.
| |
Collapse
|
45
|
Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRα protein. Cell Discov 2017; 3:17042. [PMID: 29387451 PMCID: PMC5787695 DOI: 10.1038/celldisc.2017.42] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023] Open
Abstract
To develop traditional medicines as modern pharmacotherapies, understanding their molecular mechanisms of action can be very helpful. We have recently reported that Artemisinin and its derivatives, which are clinically used anti-malarial drugs, have significant effects against ovarian cancer, but the direct molecular targets and related combination therapy have been unclear. Herein, we report that dihydroartemisinin, one of the most active derivatives of Artemisinin, directly targets platelet-derived growth factor receptor-alpha (PDGFRα) to inhibit ovarian cancer cell growth and metastasis. Dihydroartemisinin directly binds to the intercellular domain of PDGFRα, reducing its protein stability by accelerating its ubiquitin-mediated degradation, which further inactivates downstream phosphoinositide 3-Kinase and mitogen-activated protein kinase pathways and subsequently represses epithelial–mesenchymal transition, inhibiting cell growth and metastasis of PDGFRα-positive ovarian cancer in vitro and in vivo. A combinational treatment reveals that dihydroartemisinin sensitizes ovarian cancer cells to PDGFR inhibitors. Our clinical study also finds that PDGFRα is overexpressed and positively correlated with high grade and metastasis in human ovarian cancer. Considering that Artemisinin compounds are currently clinically used drugs with favorable safety profiles, the results from this study will potentiate their use in combination with clinically used PDGFRα inhibitors, leading to maximal therapeutic efficacy with minimal adverse effects in PDGFRα-positive cancer patients. These findings also shed high light on future development of novel Artemisinin-based targeted therapy.
Collapse
|
46
|
Yang QL, Zhang LY, Wang HF, Li Y, Wang YY, Chen TT, Dai MF, Wu HH, Chen SL, Wang WR, Wu Q, Chen CJ, Zhou CZ. The N-terminal polypeptide derived from viral macrophage inflammatory protein II reverses breast cancer epithelial-to-mesenchymal transition via a PDGFRα-dependent mechanism. Oncotarget 2017; 8:37448-37463. [PMID: 28415580 PMCID: PMC5514921 DOI: 10.18632/oncotarget.16394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/01/2017] [Indexed: 01/22/2023] Open
Abstract
NT21MP, a 21-residue peptide derived from the viral macrophage inflammatory protein II, competed effectively with the natural ligand of CXC chemokine receptor 4 (CXCR4), stromal cell-derived factor 1-alpha, to induce apoptosis and inhibit growth in breast cancer. Its role in tumor epithelial-to-mesenchymal transition (EMT) regulation remains unknown. In this study, we evaluated the reversal of EMT upon NT21MP treatment and examined its role in the inhibition of EMT in breast cancer. The parental cells of breast cancer (SKBR-3 and MCF-7) and paclitaxel-resistant (SKBR-3 PR and MCF-7 PR) cells were studied in vitro and in combined immunodeficient mice. The mice injected with SKBR-3 PR cells were treated with NT21MP through the tail vein or intraperitoneally with paclitaxel or saline. Sections from tumors were evaluated for tumor weight and EMT markers based on Western blot. In vitro, the effects of NT21MP, CXCR4 and PDGFRα on tumor EMT were assessed by relative quantitative real-time reverse transcription-polymerase chain reaction, western blot and biological activity in breast cancer cell lines expressing high or low levels of CXCR4. Our results illustrated that NT21MP could reverse the phenotype of EMT in paclitaxel-resistant cells. Furthermore, we found that NT21MP governed PR-mediated EMT partly due to controlling platelet-derived growth factors A and B (PDGFA and PDGFB) and their receptor (PDGFRα). More importantly, NT21MP down-regulated AKT and ERK1/2 activity, which were activated by PDGFRα, and eventually reversed the EMT. Together, these results indicated that CXCR4 overexpression drives acquired paclitaxel resistance, partly by activating the PDGFA and PDGFB/PDGFRα autocrine signaling loops that activate AKT and ERK1/2. Inhibition of the oncogenic EMT process by targeting CXCR4/PDGFRα-mediated pathways using NT21MP may provide a novel therapeutic approach towards breast cancer.
Collapse
Affiliation(s)
- Qing-Ling Yang
- Hefei National Laboratory for Physical Sciences at Microscale and the Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 233030, China
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Ling-Yu Zhang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Hai-Feng Wang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yu Li
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Yue-Yue Wang
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Tian-Tian Chen
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Meng-Fen Dai
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Hai-Hua Wu
- Clinical Testing and Diagnose Experimental Center of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Su-Lian Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Wen-Rui Wang
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Qiong Wu
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Chang-Jie Chen
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Cong-Zhao Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and the Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 233030, China
| |
Collapse
|
47
|
Qiu GZ, Sun W, Jin MZ, Lin J, Lu PG, Jin WL. The bad seed gardener: Deubiquitinases in the cancer stem-cell signaling network and therapeutic resistance. Pharmacol Ther 2017; 172:127-138. [DOI: 10.1016/j.pharmthera.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Expression of CAF-Related Proteins Is Associated with Histologic Grade of Breast Phyllodes Tumor. DISEASE MARKERS 2016; 2016:4218989. [PMID: 27881889 PMCID: PMC5108870 DOI: 10.1155/2016/4218989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 10/10/2016] [Indexed: 11/18/2022]
Abstract
Purpose. The purpose of this study was to investigate the expression of cancer-associated fibroblast- (CAF-) related proteins and the implications in breast phyllodes tumor (PT). Methods. Tissue microarrays of 194 PT cases (151 benign PT, 27 borderline PT, and 16 malignant PT) were constructed. We performed immunohistochemical staining for CAF-related proteins (podoplanin, prolyl 4-hydroxylase, FAPα, S100A4, PDGFR α/β, and NG2) and analyzed the results according to clinicopathologic parameters. Results. Expression of PDGFRα and PDGFRβ in the stromal component increased with increasing histologic grade of PT (p = 0.003 and p = 0.034, resp.). Among clinicopathologic parameters, only expression of FAPα in stroma was associated with distant metastasis (p = 0.002). In univariate analysis, stromal expression of PDGFRα was associated with shorter overall survival (p = 0.002). In Cox multivariate analysis, stromal overgrowth and PDGFRα stromal positivity were associated with shorter overall survival (p = 0.006 and p = 0.050, resp.). Furthermore, expression of PDGFRβ in stroma was associated with shorter overall survival in patients with malignant PT (p = 0.041). Conclusion. Stromal expression of PDGFRα and PDGFRβ increased with increasing histologic grade of PT. In addition, PDGFR stromal positivity was associated with shorter overall survival. These results suggest that CAFs are associated with breast PT progression.
Collapse
|
49
|
D'Ippolito E, Plantamura I, Bongiovanni L, Casalini P, Baroni S, Piovan C, Orlandi R, Gualeni AV, Gloghini A, Rossini A, Cresta S, Tessari A, De Braud F, Di Leva G, Tripodo C, Iorio MV. miR-9 and miR-200 Regulate PDGFRβ-Mediated Endothelial Differentiation of Tumor Cells in Triple-Negative Breast Cancer. Cancer Res 2016; 76:5562-72. [PMID: 27402080 DOI: 10.1158/0008-5472.can-16-0140] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/06/2016] [Indexed: 11/16/2022]
Abstract
Organization of cancer cells into endothelial-like cell-lined structures to support neovascularization and to fuel solid tumors is a hallmark of progression and poor outcome. In triple-negative breast cancer (TNBC), PDGFRβ has been identified as a key player of this process and is considered a promising target for breast cancer therapy. Thus, we aimed at investigating the role of miRNAs as a therapeutic approach to inhibit PDGFRβ-mediated vasculogenic properties of TNBC, focusing on miR-9 and miR-200. In MDA-MB-231 and MDA-MB-157 TNBC cell lines, miR-9 and miR-200 promoted and inhibited, respectively, the formation of vascular-like structures in vitro Induction of endogenous miR-9 expression, upon ligand-dependent stimulation of PDGFRβ signaling, promoted significant vascular sprouting of TNBC cells, in part, by direct repression of STARD13. Conversely, ectopic expression of miR-200 inhibited this sprouting by indirectly reducing the protein levels of PDGFRβ through the direct suppression of ZEB1. Notably, in vivo miR-9 inhibition or miR-200c restoration, through either the generation of MDA-MB-231-stable clones or peritumoral delivery in MDA-MB-231 xenografted mice, strongly decreased the number of vascular lacunae. Finally, IHC and immunofluorescence analyses in TNBC specimens indicated that PDGFRβ expression marked tumor cells engaged in vascular lacunae. In conclusion, our results demonstrate that miR-9 and miR-200 play opposite roles in the regulation of the vasculogenic ability of TNBC, acting as facilitator and suppressor of PDGFRβ, respectively. Moreover, our data support the possibility to therapeutically exploit miR-9 and miR-200 to inhibit the process of vascular lacunae formation in TNBC. Cancer Res; 76(18); 5562-72. ©2016 AACR.
Collapse
Affiliation(s)
- Elvira D'Ippolito
- Start Up Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Plantamura
- Start Up Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Bongiovanni
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Patrizia Casalini
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Baroni
- Start Up Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Piovan
- Start Up Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Rosaria Orlandi
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ambra V Gualeni
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Rossini
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Cresta
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Anna Tessari
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy. Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Gianpiero Di Leva
- Environment & Life Sciences, University of Salford, Salford, United Kingdom
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, Palermo, Italy
| | - Marilena V Iorio
- Start Up Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
50
|
LI YANG, ZHANG YEFEI, YAO ZHENDONG, LI SISI, YIN ZHENHUA, XU MIN. Forkhead box Q1: A key player in the pathogenesis of tumors (Review). Int J Oncol 2016; 49:51-8. [DOI: 10.3892/ijo.2016.3517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/30/2016] [Indexed: 11/06/2022] Open
|